1
|
Cooper RL, Santos-Durán G, Milinkovitch MC. Protocol for the rapid intravenous in ovo injection of developing amniote embryos. STAR Protoc 2023; 4:102324. [PMID: 37210721 DOI: 10.1016/j.xpro.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
We present a technique for precise drug delivery into the vascular system of developing amniote embryos via injection into chorioallantoic veins underlying the eggshell membrane. We describe steps for incubating and candling eggs, removing the shell to expose underlying veins, and precise intravenous injection. In addition to chicken embryos, this protocol is applicable to other amniote species that lay hard-shell eggs, including crocodiles and tortoises. This technique is rapid, is reproducible, is of low cost, and will provide an important resource for developmental biologists. For complete details on the use and execution of this protocol, please refer to Cooper & Milinkovitch.1.
Collapse
Affiliation(s)
- Rory L Cooper
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Gabriel Santos-Durán
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
| |
Collapse
|
2
|
Ma S, Liu H, Wang J, Wang L, Xi Y, Liu Y, Xu Q, Hu J, Han C, Bai L, Li L, Wang J. Transcriptome Analysis Reveals Genes Associated With Sexual Dichromatism of Head Feather Color in Mallard. Front Genet 2021; 12:627974. [PMID: 34956302 PMCID: PMC8692775 DOI: 10.3389/fgene.2021.627974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males' head's feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males' head feathers, back feathers, and the females' head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males' head feather follicles were significantly higher than those in the back feather follicles and females' head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
4
|
Cooper RL, Martin KJ, Rasch LJ, Fraser GJ. Developing an ancient epithelial appendage: FGF signalling regulates early tail denticle formation in sharks. EvoDevo 2017; 8:8. [PMID: 28469835 PMCID: PMC5414203 DOI: 10.1186/s13227-017-0071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background Vertebrate epithelial appendages constitute a diverse group of organs that includes integumentary structures such as reptilian scales, avian feathers and mammalian hair. Recent studies have provided new evidence for the homology of integumentary organ development throughout amniotes, despite their disparate final morphologies. These structures develop from conserved molecular signalling centres, known as epithelial placodes. It is not yet certain whether this homology extends beyond the integumentary organs of amniotes, as there is a lack of knowledge regarding their development in basal vertebrates. As the ancient sister lineage of bony vertebrates, extant chondrichthyans are well suited to testing the phylogenetic depth of this homology. Elasmobranchs (sharks, skates and rays) possess hard, mineralised epithelial appendages called odontodes, which include teeth and dermal denticles (placoid scales). Odontodes constitute some of the oldest known vertebrate integumentary appendages, predating the origin of gnathostomes. Here, we used an emerging model shark (Scyliorhinus canicula) to test the hypothesis that denticles are homologous to other placode-derived amniote integumentary organs. To examine the conservation of putative gene regulatory network (GRN) member function, we undertook small molecule inhibition of fibroblast growth factor (FGF) signalling during caudal denticle formation. Results We show that during early caudal denticle morphogenesis, the shark expresses homologues of conserved developmental gene families, known to comprise a core GRN for early placode morphogenesis in amniotes. This includes conserved expression of FGFs, sonic hedgehog (shh) and bone morphogenetic protein 4 (bmp4). Additionally, we reveal that denticle placodes possess columnar epithelial cells with a reduced rate of proliferation, a conserved characteristic of amniote skin appendage development. Small molecule inhibition of FGF signalling revealed placode development is FGF dependent, and inhibiting FGF activity resulted in downregulation of shh and bmp4 expression, consistent with the expectation from comparison to the amniote integumentary appendage GRN. Conclusion Overall, these findings suggest the core GRN for building vertebrate integumentary epithelial appendages has been highly conserved over 450 million years. This provides evidence for the continuous, historical homology of epithelial appendage placodes throughout jawed vertebrates, from sharks to mammals. Epithelial placodes constitute the shared foundation upon which diverse vertebrate integumentary organs have evolved. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0071-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Kyle J Martin
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Liam J Rasch
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, and the Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
5
|
Farré M, Narayan J, Slavov GT, Damas J, Auvil L, Li C, Jarvis ED, Burt DW, Griffin DK, Larkin DM. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles. Genome Biol Evol 2016; 8:2442-51. [PMID: 27401172 PMCID: PMC5010900 DOI: 10.1093/gbe/evw166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes.
Collapse
Affiliation(s)
- Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| | - Jitendra Narayan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, UK
| | - Gancho T Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| | - Loretta Auvil
- Illinois Informatics Institute, University of Illinois, Urbana, IL 61801, USA
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - David W Burt
- Department of Genomics and Genetics, the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| |
Collapse
|
6
|
|
7
|
Spurlin J, Lwigale P. A technique to increase accessibility to late-stage chick embryos for in ovo manipulations. Dev Dyn 2013. [PMID: 23184557 DOI: 10.1002/dvdy.23907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND During early development, avian embryos are easily accessible in ovo for transplantations and experimental perturbations. However, these qualities of the avian embryonic model rapidly wane shortly after embryonic day (E)4 when the embryo is obscured by extraembryonic membranes, making it difficult to study developmental events that occur at later stages in vivo. RESULTS In this study, we describe a multistep method that involves initially windowing eggs at E3, followed by dissecting away extraembryonic membranes at E5 to facilitate embryo accessibility in ovo until later stages of development. The majority of the embryos subjected to this technique remain exposed between E5 and E8, then become gradually displaced by the growing allantois from posterior to anterior regions. CONCLUSIONS Exposed embryos are viable and compatible with embryological and modern developmental biology techniques including tissue grafting and ablation, gene manipulation by electroporation, and protein expression. This technique opens up new avenues for studying complex cellular interactions during organogenesis and can be further extrapolated to regeneration and stem cell studies.
Collapse
Affiliation(s)
- James Spurlin
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77025, USA
| | | |
Collapse
|
8
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
9
|
Lin J, Wang C, Redies C. Expression of multiple delta-protocadherins during feather bud formation. Gene Expr Patterns 2013; 13:57-65. [DOI: 10.1016/j.gep.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/30/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
|
10
|
Obinata A, Akimoto Y. Effects of retinoic acid and Gbx1 on feather-bud formation and epidermal transdifferentiation in chick embryonic cultured dorsal skin. Dev Dyn 2012; 241:1405-12. [PMID: 22826214 DOI: 10.1002/dvdy.23834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Retinoic acid, an active metabolite of retinol, is known to regulate cell proliferation, differentiation, and morphogenesis during normal development of many tissues. Using chick embryonic tarsometatarsal skin, we showed previously that the expression of Gbx1, a divergent homeobox gene, is increased in the epidermis through interaction with retinol-pretreated dermal fibroblasts followed by epidermal transdifferentiation to mucous epithelium. This present study was performed to elucidate the effects of retinoic acid and Gbx1 on feather-bud formation and epidermal transdifferentiation. RESULTS We showed that Gbx1 was expressed in the chick embryonic dorsal epidermis as early as at placode stage (Hamburger and Hamilton stage 31) and increased in amount during feather-bud formation. Treatment with 1 μM retinoic acid for 24 hr inhibited feather-bud formation and induced the transdifferentiation of the epidermis to a mucosal epithelium with a concomitant increase in Gbx1 mRNA expression in the epithelium. Furthermore, transient transfection of the epidermis with Gbx1 cDNA by electroporation induced elongation of the feather bud, but did not result in transdifferentiation. CONCLUSIONS These results indicate that Gbx1 was involved in the feather-bud formation and was one of target genes of retinoic acid and that other signals in addition to Gbx1 were required for epidermal mucous transdifferentiation.
Collapse
Affiliation(s)
- Akiko Obinata
- Department of Physiological Chemistry II, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan
| | | |
Collapse
|
11
|
Lin J, Luo J, Redies C. Differential regional expression of multiple ADAMs during feather bud formation. Dev Dyn 2011; 240:2142-52. [DOI: 10.1002/dvdy.22703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 01/02/2023] Open
|
12
|
Gordon CT, Brinas IML, Rodda FA, Bendall AJ, Farlie PG. Role of Dlx genes in craniofacial morphogenesis: Dlx2 influences skeletal patterning by inducing ectomesenchymal aggregation in ovo. Evol Dev 2011; 12:459-73. [PMID: 20883215 DOI: 10.1111/j.1525-142x.2010.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dlx homeodomain transcription factors are expressed in neural crest-derived mesenchyme of the pharyngeal arches and are required for patterning of the craniofacial skeleton. However, the cellular and molecular mechanisms by which Dlx factors control skeletogenesis in the facial primordia are unclear. We have investigated the function of Dlx2 and Dlx5 by sustained misexpression in ovo. We find that RCAS-Dlx2- and RCAS-Dlx5-infected avian embryos exhibit very similar patterns of local, stereotypical changes in skeletal development in the upper jaw. The changes include ectopic dermal bone along the jugal arch, and ectopic cartilages that develop between the quadrate and the trabecula. The ectopic cartilage associated with the trabecula is reminiscent of a normally occurring element in this region in some bird taxa. Analysis of the distribution of RCAS-Dlx2-infected cells suggests that Dlx2 induces aggregation of undifferentiated mesenchyme, which subsequently develops into the ectopic skeletal elements. Comparison of infected embryos with restricted or widespread misexpression, and of embryos in which Dlx genes were delivered to migratory or postmigratory neural crest, indicate that there are limited regions of competence in which the ectopic elements can arise. The site-specific differentiation program that the aggregates undergo may be dependent on local environmental signals. Our results suggest that Dlx factors mediate localization of ectomesenchymal subpopulations within the pharyngeal arches and in doing so define where skeletogenic condensations will arise. Consequently, variation in Dlx expression or activity may have influenced the morphology of jaw elements during vertebrate evolution.
Collapse
Affiliation(s)
- Christopher T Gordon
- Craniofacial Development Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | | | |
Collapse
|
13
|
Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish. EvoDevo 2011; 2:1. [PMID: 21205289 PMCID: PMC3024246 DOI: 10.1186/2041-9139-2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 01/04/2011] [Indexed: 01/03/2023] Open
Abstract
Background Cichlid fishes have undergone rapid, expansive evolutionary radiations that are manifested in the diversification of their trophic morphologies, tooth patterning and coloration. Understanding the molecular mechanisms that underlie the cichlids' unique patterns of evolution requires a thorough examination of genes that pattern the neural crest, from which these diverse phenotypes are derived. Among those genes, the homeobox-containing Dlx gene family is of particular interest since it is involved in the patterning of the brain, jaws and teeth. Results In this study, we characterized the dlx genes of an African cichlid fish, Astatotilapia burtoni, to provide a baseline to later allow cross-species comparison within Cichlidae. We identified seven dlx paralogs (dlx1a, -2a, -4a, -3b, -4b, -5a and -6a), whose orthologies were validated with molecular phylogenetic trees. The intergenic regions of three dlx gene clusters (dlx1a-2a, dlx3b-4b, and dlx5a-6a) were amplified with long PCR. Intensive cross-species comparison revealed a number of conserved non-coding elements (CNEs) that are shared with other percomorph fishes. This analysis highlighted additional lineage-specific gains/losses of CNEs in different teleost fish lineages and a novel CNE that had previously not been identified. Our gene expression analyses revealed overlapping but distinct expression of dlx orthologs in the developing brain and pharyngeal arches. Notably, four of the seven A. burtoni dlx genes, dlx2a, dlx3b, dlx4a and dlx5a, were expressed in the developing pharyngeal teeth. Conclusion This comparative study of the dlx genes of A. burtoni has deepened our knowledge of the diversity of the Dlx gene family, in terms of gene repertoire, expression patterns and non-coding elements. We have identified possible cichlid lineage-specific changes, including losses of a subset of dlx expression domains in the pharyngeal teeth, which will be the targets of future functional studies.
Collapse
|
14
|
Role for TGF-beta superfamily signaling in telencephalic GABAergic neuron development. J Neurodev Disord 2009; 2:48-60. [PMID: 20339443 PMCID: PMC2834772 DOI: 10.1007/s11689-009-9035-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/12/2009] [Indexed: 12/02/2022] Open
Abstract
Signaling mechanisms mediated by the Transforming Growth Factor-β (TGF-β) superfamily regulate a variety of developmental processes. Here we show that components of both bone morphogenetic protein/growth differentiation factor and TGF-β/activin/Nodal branches of TGF-β superfamily signaling are expressed in the developing subpallium. Furthermore, Smad proteins, transcriptional effectors of TGF-β signaling, are co-expressed and physically interact in the basal ganglia with Dlx homeodomain transcription factors, which are critical regulators of the differentiation, migration and survival of telencephalic GABAergic neurons. We also show that Dlx and Smad proteins localize to promoters/enhancers of a number of common telencephalic genes in vivo and that Smad proteins co-activate transcription with Dlx family members, except with certain mutated human DLX proteins identified in autistic individuals. In agreement with these observations, expression of dominant-negative Smads in the developing basal ganglia phenocopies the cell migration defects observed in Dlx1/2-deficient mice. Together, these results suggest that TGF-β superfamily signaling plays a role in telencephalic GABAergic neuron development through functional interactions with Dlx transcription factors.
Collapse
|
15
|
Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D. BMP2 and BMP7 play antagonistic roles in feather induction. Development 2008; 135:2797-805. [PMID: 18635609 DOI: 10.1242/dev.018341] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feathers, like hairs, first appear as primordia consisting of an epidermal placode associated with a dermal condensation that is necessary for the continuation of their differentiation. Previously, the BMPs have been proposed to inhibit skin appendage formation. We show that the function of specific BMPs during feather development is more complex. BMP2 and BMP7, which are expressed in both the epidermis and the dermis, are involved in an antagonistic fashion in regulating the formation of dermal condensations, and thus are both necessary for subsequent feather morphogenesis. BMP7 is expressed earlier and functions as a chemoattractant that recruits cells into the condensation, whereas BMP2 is expressed later, and leads to an arrest of cell migration, likely via its modulation of the EIIIA fibronectin domain and alpha4 integrin expression. Based on the observed cell proliferation, chemotaxis and the timing of BMP2 and BMP7 expression, we propose a mathematical model, a reaction-diffusion system, which not only simulates feather patterning, but which also can account for the negative effects of excess BMP2 or BMP7 on feather formation.
Collapse
Affiliation(s)
- Frederic Michon
- Equipe Ontogenèse et Cellules Souches du Tégument, Centre de Recherche INSERM UJF - U823, Institut Albert Bonniot, Site Santé, La Tronche, BP170, 38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
16
|
Wu W, Xu R, Xiao L, Xu H, Gao G. Expression of the β-Catenin Gene in the Skin of Embryonic Geese During Feather Bud Development. Poult Sci 2008; 87:204-11. [DOI: 10.3382/ps.2007-00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Michon F, Charveron M, Dhouailly D. Dermal condensation formation in the chick embryo: requirement for integrin engagement and subsequent stabilization by a possible notch/integrin interaction. Dev Dyn 2007; 236:755-68. [PMID: 17279577 DOI: 10.1002/dvdy.21080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, feathers appear first as primordia consisting of an epidermal placode associated with a dermal condensation. When 7-day chick embryo dorsal skin fragments showing three rows of feather primordia are cultured, they undergo a complete reorganization, which involves the down-regulation of morphogenetic genes and dispersal of dermal fibroblasts, leading to the disappearance of primordia. This loss of organisation is followed by de novo differentiation events. We have used this model to study potential factors involved in the formation of dermal condensations. Activation of Integrins by extracellular Manganese or intracellular Calcium prevents the initial disappearance of the dermal condensations. New primordia formation occurs even after inhibition of the Notch pathway albeit with some fusion between primordia. In conclusion, dermal fibroblast migration requires beta1-Integrin whereas the stability of dermal condensations could depend on Notch/Integrin interaction.
Collapse
Affiliation(s)
- Frederic Michon
- Centre de Recherche INSERM-Institut Albert Bonniot U823, Ontogenesis and Stem Cell of the Tegument Team, Grenoble, France
| | | | | |
Collapse
|
18
|
Lin CM, Jiang TX, Widelitz RB, Chuong CM. Molecular signaling in feather morphogenesis. Curr Opin Cell Biol 2006; 18:730-41. [PMID: 17049829 PMCID: PMC4406286 DOI: 10.1016/j.ceb.2006.10.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/05/2006] [Indexed: 12/17/2022]
Abstract
The development and regeneration of feathers have gained much attention recently because of progress in the following areas. First, pattern formation. The exquisite spatial arrangement provides a simple model for decoding the rules of morphogenesis. Second, stem cell biology. In every molting, a few stem cells have to rebuild the entire epithelial organ, providing much to learn on how to regenerate an organ physiologically. Third, evolution and development ('Evo-Devo'). The discovery of feathered dinosaur fossils in China prompted enthusiastic inquiries about the origin and evolution of feathers. Progress has been made in elucidating feather morphogenesis in five successive phases: macro-patterning, micro-patterning, intra-bud morphogenesis, follicle morphogenesis and regenerative cycling.
Collapse
Affiliation(s)
- Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
19
|
Stock DW, Jackman WR, Trapani J. Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development 2006; 133:3127-37. [PMID: 16831836 DOI: 10.1242/dev.02459] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fossil record indicates that cypriniform fishes, a group including the zebrafish, lost oral teeth over 50 million years ago. Despite subsequent diversification of feeding modes, no cypriniform has regained oral teeth, suggesting the zebrafish as a model for studying the developmental genetic basis of evolutionary constraint. To investigate the mechanism of cypriniform tooth loss, we compared the oral expression of seven genes whose mammalian orthologs are involved in tooth initiation in the zebrafish and the Mexican tetra, Astyanax mexicanus, a related species retaining oral teeth. The most significant difference we found was an absence in zebrafish oral epithelium of expression of dlx2a and dlx2b, transcription factors that are expressed in early Astyanax odontogenic epithelium. Analysis of orthologous genes in the Japanese medaka (Oryzias latipes) and a catfish (Synodontis multipunctatus) suggests that expression was lost in cypriniforms, rather than gained in Astyanax. Treatment of Astyanax with an inhibitor of Fibroblast growth factor (Fgf) signaling produced a partial phenocopy of the zebrafish oral region, in that oral teeth, and expression of dlx2a and dlx2b, were lost, whereas shh and pitx2, genes whose expression is present in zebrafish oral epithelium, were unaffected. We hypothesize that a loss of Fgf signaling to oral epithelium was associated with cypriniform tooth loss.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | |
Collapse
|
20
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
21
|
Abstract
Members of the Dlx gene family play essential roles in the development of the zebrafish and mouse inner ear, but little is known regarding Dlx genes and avian inner ear development. We have examined the inner ear expression patterns of Dlx1, Dlx2, Dlx3, Dlx5, and Dlx6 during the first 7 days of chicken embryonic development. Dlx1 and Dlx2 expression was seen only in nonneuronal cells of the cochleovestibular ganglion and nerves from stage 21 to stage 32. Dlx3 marks the otic placode beginning at stage 9 and becomes limited to epithelium adjacent to the hindbrain as invagination of the placode begins. Dlx3 expression then resolves to the dorsal otocyst and gradually becomes limited to the endolymphatic sac by stage 30. Dlx5 and Dlx6 expression in the developing inner ear is first seen at stages 12 and 13, respectively, in the rim of the otic pit, before spreading throughout the dorsal otocyst. As morphogenesis proceeds, Dlx5 and Dlx6 expression is seen throughout the forming semicircular canals and endolymphatic structures. During later stages, both genes are seen to mark the distal surface of the forming canals and display expression complementary to that of BMP4 in the vestibular sensory regions. Dlx5 expression is also seen in the lagena macula and the cochlear and vestibular nerves by stage 30. These findings suggest important roles for Dlx genes in the vestibular and neural development of the avian inner ear.
Collapse
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057-1922, USA
| | | | | |
Collapse
|
22
|
McKeown SJ, Newgreen DF, Farlie PG. Dlx2 over-expression regulates cell adhesion and mesenchymal condensation in ectomesenchyme. Dev Biol 2005; 281:22-37. [PMID: 15848386 DOI: 10.1016/j.ydbio.2005.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/23/2004] [Accepted: 02/01/2005] [Indexed: 01/05/2023]
Abstract
The Dlx family of homeodomain transcription factors have diverse roles in development including craniofacial morphogenesis and consists of 6 members with overlapping expression patterns. Dlx2 is expressed within the developing branchial arches in both the epithelium and mesenchyme and targeted deletion in mice has revealed roles in patterning and development of the craniofacial skeleton. Defects in Dlx2 null mice include skeletal anomalies of proximal branchial arch 1 derivatives while distal elements are largely spared indicating redundancy within the Dlx family. We have investigated the function of Dlx2 using in ovo electroporation and cell culture. Ectopic expression of Dlx2 within the neural tube beginning prior to emigration of neural crest cells at E1.25 drastically inhibits the migration of transfected cells and induces aggregation of transfected neuroepithelial cells within the neural tube at 24 h post-electroporation. By 48 h post-electroporation, the majority of transfected cells formed multicellular aggregates that were found adjacent to the basal side of the neural tube and very few Dlx2 expressing cells migrated to the level of the branchial arches. Similar results were obtained for Dlx5, suggesting these effects may be common to Dlx genes. Electroporation of the Dlx2 expression construct into branchial arch mesenchyme induced N-cadherin and NCAM, a dramatic increase in cell-cell adhesion relative to controls, and resulted in an increase in mesenchymal condensation. These results suggest a role for Dlx genes in regulating ectomesenchymal cell adhesion and supports the possibility that the skeletal dysmorphology seen in Dlx null mice may derive from abnormalities at the condensation stage.
Collapse
Affiliation(s)
- Sonja J McKeown
- Craniofacial Sciences Consortium, Murdoch Childrens Research Institute, Royal Children's Hospital and University of Melbourne, Parkville 3052, Victoria, Australia
| | | | | |
Collapse
|
23
|
Eames BF, Schneider RA. Quail-duck chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development. Development 2005; 132:1499-509. [PMID: 15728671 PMCID: PMC2835538 DOI: 10.1242/dev.01719] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The avian feather complex represents a vivid example of how a developmental module composed of highly integrated molecular and histogenic programs can become rapidly elaborated during the course of evolution. Mechanisms that facilitate this evolutionary diversification may involve the maintenance of plasticity in developmental processes that underlie feather morphogenesis. Feathers arise as discrete buds of mesenchyme and epithelium, which are two embryonic tissues that respectively form dermis and epidermis of the integument. Epithelial-mesenchymal signaling interactions generate feather buds that are neatly arrayed in space and time. The dermis provides spatiotemporal patterning information to the epidermis but precise cellular and molecular mechanisms for generating species-specific differences in feather pattern remain obscure. In the present study, we exploit the quail-duck chimeric system to test the extent to which the dermis regulates the expression of genes required for feather development. Quail and duck have distinct feather patterns and divergent growth rates, and we exchange pre-migratory neural crest cells destined to form the craniofacial dermis between them. We find that donor dermis induces host epidermis to form feather buds according to the spatial pattern and timetable of the donor species by altering the expression of members and targets of the Bone Morphogenetic Protein, Sonic Hedgehog and Delta/Notch pathways. Overall, we demonstrate that there is a great deal of spatiotemporal plasticity inherent in the molecular and histogenic programs of feather development, a property that may have played a generative and regulatory role throughout the evolution of birds.
Collapse
Affiliation(s)
- B. Frank Eames
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| |
Collapse
|
24
|
Jackman WR, Draper BW, Stock DW. Fgf signaling is required for zebrafish tooth development. Dev Biol 2004; 274:139-57. [PMID: 15355794 DOI: 10.1016/j.ydbio.2004.07.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/29/2004] [Accepted: 07/01/2004] [Indexed: 11/24/2022]
Abstract
We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme.
Collapse
Affiliation(s)
- William R Jackman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | |
Collapse
|