1
|
Edens BM, Bronner ME. Making developmental sense of the senses, their origin and function. Curr Top Dev Biol 2024; 159:132-167. [PMID: 38729675 DOI: 10.1016/bs.ctdb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
2
|
Bruet E, Amarante-Silva D, Gorojankina T, Creuzet S. The Emerging Roles of the Cephalic Neural Crest in Brain Development and Developmental Encephalopathies. Int J Mol Sci 2023; 24:9844. [PMID: 37372994 DOI: 10.3390/ijms24129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The neural crest, a unique cell population originating from the primitive neural field, has a multi-systemic and structural contribution to vertebrate development. At the cephalic level, the neural crest generates most of the skeletal tissues encasing the developing forebrain and provides the prosencephalon with functional vasculature and meninges. Over the last decade, we have demonstrated that the cephalic neural crest (CNC) exerts an autonomous and prominent control on the development of the forebrain and sense organs. The present paper reviews the primary mechanisms by which CNC can orchestrate vertebrate encephalization. Demonstrating the role of the CNC as an exogenous source of patterning for the forebrain provides a novel conceptual framework with profound implications for understanding neurodevelopment. From a biomedical standpoint, these data suggest that the spectrum of neurocristopathies is broader than expected and that some neurological disorders may stem from CNC dysfunctions.
Collapse
Affiliation(s)
- Emmanuel Bruet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Diego Amarante-Silva
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Tatiana Gorojankina
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| |
Collapse
|
3
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
4
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
5
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
6
|
Hovland AS, Rothstein M, Simoes-Costa M. Network architecture and regulatory logic in neural crest development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1468. [PMID: 31702881 DOI: 10.1002/wsbm.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
The neural crest is an ectodermal cell population that gives rise to over 30 cell types during vertebrate embryogenesis. These stem cells are formed at the border of the developing central nervous system and undergo extensive migration before differentiating into components of multiple tissues and organs. Neural crest formation and differentiation is a multistep process, as these cells transition through sequential regulatory states before adopting their adult phenotype. Such changes are governed by a complex gene regulatory network (GRN) that integrates environmental and cell-intrinsic inputs to regulate cell identity. Studies of neural crest cells in a variety of vertebrate models have elucidated the function and regulation of dozens of the molecular players that are part of this network. The neural crest GRN has served as a platform to explore the molecular control of multipotency, cell differentiation, and the evolution of vertebrates. In this review, we employ this genetic program as a stepping-stone to explore the architecture and the regulatory principles of developmental GRNs. We also discuss how modern genomic approaches can further expand our understanding of genetic networks in this system and others. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates Developmental Biology > Lineages Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Austin S Hovland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
7
|
Abstract
Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
8
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
De Bellard ME, Ortega B, Sao S, Kim L, Herman J, Zuhdi N. Neuregulin-1 is a chemoattractant and chemokinetic molecule for trunk neural crest cells. Dev Dyn 2018. [PMID: 29516589 DOI: 10.1002/dvdy.24625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Trunk neural crest cells migrate rapidly along characteristic pathways within the developing vertebrate embryo. Proper trunk neural crest cell migration is necessary for the morphogenesis of much of the peripheral nervous system, melanocytes, and the adrenal medulla. Numerous molecules help guide trunk neural crest cell migration throughout the early embryo. RESULTS The trophic factor NRG1 is a chemoattractant through in vitro chemotaxis assays and in vivo silencing via a DN-erbB receptor. Interestingly, we also observed changes in migratory responses consistent with a chemokinetic effect of NRG1 in trunk neural crest velocity. CONCLUSIONS NRG1 is a trunk neural crest cell chemoattractant and chemokinetic molecule. Developmental Dynamics 247:888-902, 2018.. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Blanca Ortega
- Biology Department, California State University Northridge, Northridge, California
| | - Sothy Sao
- Biology Department, California State University Northridge, Northridge, California
| | - Lino Kim
- Biology Department, California State University Northridge, Northridge, California
| | - Joshua Herman
- Biology Department, California State University Northridge, Northridge, California
| | - Nora Zuhdi
- Biology Department, California State University Northridge, Northridge, California
| |
Collapse
|
10
|
McLennan R, Bailey CM, Schumacher LJ, Teddy JM, Morrison JA, Kasemeier-Kulesa JC, Wolfe LA, Gogol MM, Baker RE, Maini PK, Kulesa PM. DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion. J Cell Biol 2017; 216:3339-3354. [PMID: 28811280 PMCID: PMC5626539 DOI: 10.1083/jcb.201612169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion in a manner consistent with the inhibition of BMP signaling. Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we test the function of differential screening-selected gene aberrant in neuroblastoma (DAN), a bone morphogenetic protein (BMP) antagonist we detected by analysis of the chick cranial mesoderm. Our analysis shows that, before neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, and then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells in vivo and in vitro, respectively. In vivo loss of function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Collectively, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with the inhibition of BMP signaling.
Collapse
Affiliation(s)
| | - Caleb M Bailey
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID
| | - Linus J Schumacher
- Department of Life Sciences, Imperial College London, London, England, UK
| | | | | | | | | | | | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, England, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, England, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
11
|
Shyamala K, Yanduri S, Girish HC, Murgod S. Neural crest: The fourth germ layer. J Oral Maxillofac Pathol 2015; 19:221-9. [PMID: 26604500 PMCID: PMC4611932 DOI: 10.4103/0973-029x.164536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The neural crest cells (NCCs), a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC) has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells.
Collapse
Affiliation(s)
- K Shyamala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sarita Yanduri
- Department of Oral and Maxillofacial Pathology, DAPMRV Dental College and Hospital, J P Nagar, Bengaluru, Karnataka, India
| | - HC Girish
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sanjay Murgod
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| |
Collapse
|
12
|
Steventon B, Mayor R, Streit A. Neural crest and placode interaction during the development of the cranial sensory system. Dev Biol 2014; 389:28-38. [PMID: 24491819 PMCID: PMC4439187 DOI: 10.1016/j.ydbio.2014.01.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/19/2014] [Accepted: 01/25/2014] [Indexed: 01/13/2023]
Abstract
In the vertebrate head, the peripheral components of the sensory nervous system are derived from two embryonic cell populations, the neural crest and cranial sensory placodes. Both arise in close proximity to each other at the border of the neural plate: neural crest precursors abut the future central nervous system, while placodes originate in a common preplacodal region slightly more lateral. During head morphogenesis, complex events organise these precursors into functional sensory structures, raising the question of how their development is coordinated. Here we review the evidence that neural crest and placode cells remain in close proximity throughout their development and interact repeatedly in a reciprocal manner. We also review recent controversies about the relative contribution of the neural crest and placodes to the otic and olfactory systems. We propose that a sequence of mutual interactions between the neural crest and placodes drives the coordinated morphogenesis that generates functional sensory systems within the head.
Collapse
Affiliation(s)
- Ben Steventon
- Department of Developmental and Stem Cell Biology, Insitut Pasteur, France
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King׳s College London, London, UK.
| |
Collapse
|
13
|
Bohnsack BL, Kahana A. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Dev Biol 2013; 373:300-9. [PMID: 23165295 PMCID: PMC3534885 DOI: 10.1016/j.ydbio.2012.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 01/17/2023]
Abstract
Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.
Collapse
Affiliation(s)
- Brenda L. Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor MI
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor MI
| |
Collapse
|
14
|
McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2012; 373:244-57. [PMID: 23123967 DOI: 10.1016/j.ydbio.2012.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 01/13/2023]
Abstract
Neural crest cells are highly migratory cells that give rise to many derivatives including peripheral ganglia, craniofacial structures and melanocytes. Neural crest cells migrate along defined pathways to their target sites, interacting with each other and their environment as they migrate. Cell adhesion molecules are critical during this process. In this review we discuss the expression and function of cell adhesion molecules during the process of neural crest migration, in particular cadherins, integrins, members of the immunoglobulin superfamily of cell adhesion molecules, and the proteolytic enzymes that cleave these cell adhesion molecules. The expression and function of these cell adhesion molecules and proteases are compared across neural crest emigrating from different axial levels, and across different species of vertebrates.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia.
| | | | | |
Collapse
|
15
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
16
|
Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: new rules for an old road. Dev Biol 2010; 344:543-54. [PMID: 20399765 PMCID: PMC2914193 DOI: 10.1016/j.ydbio.2010.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
The neural crest serve as an excellent model to better understand mechanisms of embryonic cell migration. Cell tracing studies have shown that cranial neural crest cells (CNCCs) emerge from the dorsal neural tube in a rostrocaudal manner and are spatially distributed along stereotypical, long distance migratory routes to precise targets in the head and branchial arches. Although the CNCC migratory pattern is a beautifully choreographed and programmed invasion, the underlying orchestration of molecular events is not well known. For example, it is still unclear how single CNCCs react to signals that direct their choice of direction and how groups of CNCCs coordinate their interactions to arrive at a target in an ordered manner. In this review, we discuss recent cellular and molecular discoveries of the CNCC migratory pattern. We focus on events from the time when CNCCs encounter the tissue adjacent to the neural tube and their travel through different microenvironments and into the branchial arches. We describe the patterning of discrete cell migratory streams that emerge from the hindbrain, rhombomere (r) segments r1-r7, and the signals that coordinate directed migration. We propose a model that attempts to unify many complex events that establish the CNCC migratory pattern, and based on this model we integrate information between cranial and trunk neural crest development.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
17
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
18
|
Ladher RK, O'Neill P, Begbie J. From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 2010; 137:1777-85. [PMID: 20460364 DOI: 10.1242/dev.040055] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inner ear and the epibranchial ganglia constitute much of the sensory system in the caudal vertebrate head. The inner ear consists of mechanosensory hair cells, their neurons, and structures necessary for sound and balance sensation. The epibranchial ganglia are knots of neurons that innervate and relay sensory signals from several visceral organs and the taste buds. Their development was once thought to be independent, in line with their independent functions. However, recent studies indicate that both systems arise from a morphologically distinct common precursor domain: the posterior placodal area. This review summarises recent studies into the induction, morphogenesis and innervation of these systems and discusses lineage restriction and cell specification in the context of their common origin.
Collapse
Affiliation(s)
- Raj K Ladher
- RIKEN Center for Developmental Biology, Chuoku, Kobe 650-0047, Japan.
| | | | | |
Collapse
|
19
|
Abraira VE, Satoh T, Fekete DM, Goodrich LV. Vertebrate Lrig3-ErbB interactions occur in vitro but are unlikely to play a role in Lrig3-dependent inner ear morphogenesis. PLoS One 2010; 5:e8981. [PMID: 20126551 PMCID: PMC2813878 DOI: 10.1371/journal.pone.0008981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes. Methodology/Principal Findings Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis. Conclusions/Significance Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo.
Collapse
Affiliation(s)
- Victoria E. Abraira
- Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takunori Satoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Lisa V. Goodrich
- Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
McLennan R, Teddy JM, Kasemeier-Kulesa JC, Romine MH, Kulesa PM. Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Dev Biol 2009; 339:114-25. [PMID: 20036652 DOI: 10.1016/j.ydbio.2009.12.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/21/2009] [Accepted: 12/16/2009] [Indexed: 01/13/2023]
Abstract
The neural crest is an excellent model to study embryonic cell migration, since cell behaviors can be studied in vivo with advanced optical imaging and molecular intervention. What is unclear is how molecular signals direct neural crest cell (NCC) migration through multiple microenvironments and into specific targets. Here, we tested the hypothesis that the invasion of cranial NCCs, specifically the rhombomere 4 (r4) migratory stream into branchial arch 2 (ba2), is due to chemoattraction through neuropilin-1-vascular endothelial growth factor (VEGF) interactions. We found that the spatio-temporal expression pattern of VEGF in the ectoderm correlated with the NCC migratory front. RT-PCR analysis of the r4 migratory stream showed that ba2 tissue expressed VEGF and r4 NCCs expressed VEGF receptor 2. When soluble VEGF receptor 1 (sVEGFR1) was injected distal to the r4 migratory front, to bind up endogenous VEGF, NCCs failed to completely invade ba2. Time-lapse imaging revealed that cranial NCCs were attracted to ba2 tissue or VEGF sources in vitro. VEGF-soaked beads or VEGF-expressing cells placed adjacent to the r4 migratory stream caused NCCs to divert from stereotypical pathways and move towards an ectopic VEGF source. Our results suggest a model in which NCC entry and invasion of ba2 is dependent on chemoattractive signaling through neuropilin-1-VEGF interactions.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
21
|
DICKERSON JW, HEMMERLE AM, NUMAN S, LUNDGREN KH, SEROOGY KB. Decreased expression of ErbB4 and tyrosine hydroxylase mRNA and protein in the ventral midbrain of aged rats. Neuroscience 2009; 163:482-9. [PMID: 19505538 PMCID: PMC2755587 DOI: 10.1016/j.neuroscience.2009.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Decreased availability or efficacy of neurotrophic factors may underlie an increased susceptibility of mesencephalic dopaminergic cells to age-related degeneration. Neuregulins (NRGs) are pleotrophic growth factors for many cell types, including mesencephalic dopamine cells in culture and in vivo. The functional NRG receptor ErbB4 is expressed by virtually all midbrain dopamine neurons. To determine if levels of the NRG receptor are maintained during aging in the dopaminergic ventral mesencephalon, expression of ErbB4 mRNA and protein was examined in young (3 months), middle-aged (18 months), and old (24-25 months) Brown Norway/Fischer 344 F1 rats. ErbB4 mRNA levels in the substantia nigra pars compacta (SNpc), but not the adjacent ventral tegmental area (VTA) or subtantia nigra pars lateralis (SNl), were significantly reduced in the middle-aged and old animals when compared to young rats. Protein expression of ErbB4 in the ventral midbrain was significantly decreased in the old rats when compared to the young rats. Expression of tyrosine hydroxylase (TH) mRNA levels was significantly reduced in the old rats when compared to young animals in the SNpc, but not in the VTA or SNI. TH protein levels in the ventral midbrain were also decreased in the old animals when compared to the young animals. These data demonstrate a progressive decline of ErbB4 expression, coinciding with a loss of the dopamine-synthesizing enzyme TH, in the ventral midbrain of aged rats, particularly in the SNpc. These findings may implicate a role for diminished NRG/ErbB4 trophic support in dopamine-related neurodegenerative disorders of aging such as Parkinson's disease.
Collapse
Affiliation(s)
- J. W. DICKERSON
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - A. M. HEMMERLE
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - S. NUMAN
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - K. H. LUNDGREN
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - K. B. SEROOGY
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
22
|
Liu W, Volpe MAV, Zscheppang K, Nielsen HC, Dammann CEL. ErbB4 regulates surfactant synthesis and proliferation in adult rat pulmonary epithelial cells. Exp Lung Res 2009; 35:29-47. [PMID: 19191103 DOI: 10.1080/01902140802395757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ErbB4 is a predominant heterodimer for other ErbB receptors in late fetal lung development where it participates in regulating type II cell surfactant synthesis. To further elucidate the role of ErbB4 in pulmonary alveolar epithelial cell function, the authors hypothesized that ErbB4 participates in maintaining adult lung type II cell homeostasis. The authors used small interfering RNA (siRNA) to down-regulate endogenous, ErbB4 receptors in the adult rat lung epithelial L2 cell line and measured neuregulin 1beta (NRG1beta)-, and fibroblast conditioned medium (FCM)-induced effects on L2 cell surfactant phospholipid synthesis and proliferation. Under control conditions, total and phosphorylated ErbB4 were significantly increased after both NRG1beta and FCM treatment, as were surfactant phospholipids synthesis and cell proliferation. Down-regulation of ErbB4 with siRNA reduced stimulation of NRG1beta- and FCM-induced ErbB4 phosphorylation, decreased endogenous surfactant phospholipid synthesis, and blocked NRG1beta- and FCM-stimulated surfactant phospholipid synthesis. NRG1beta- and FCM-induced cell proliferation was not affected. The authors conclude that ErbB4 participates in maintaining adult lung alveolar epithelial cell surfactant synthesis and proliferation with development-specific functions.
Collapse
Affiliation(s)
- Washa Liu
- Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
23
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
24
|
Abstract
In the anterior vertebrate head, a population of neural crest cells (NCCs) migrates to the periocular mesenchyme and makes critical contributions to the developing eye and orbit. Improper migration and differentiation of these NCCs have been implicated in human diseases such as congenital glaucoma and anterior segment dysgenesis syndromes. The mechanisms by which these cells migrate to their target tissues within and around the eye are not well understood. We present a fate map of zebrafish diencephalic and mesencephalic NCC contributions to the eye and orbit. The fate map closely resembles that in chick and mice, demonstrating evolutionary conservation. To gain insight into the mechanisms of anterior NCC guidance, we used the eyeless mutant chokh/rx3. We show that, in chokh mutants, dorsal anterior NCC migration is severely disorganized. Time-lapse analysis shows that NCCs have significantly reduced migration rates and directionality in chokh mutants.
Collapse
Affiliation(s)
- Tobias Langenberg
- Department of Zoology and Anatomy, University of Wisconsin, Madison, Wisconsin
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin
| | - Joseph A. Wszalek
- Department of Zoology and Anatomy, University of Wisconsin, Madison, Wisconsin
| | - Mary C. Halloran
- Department of Zoology and Anatomy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
25
|
Kulesa PM, Teddy JM, Stark DA, Smith SE, McLennan R. Neural crest invasion is a spatially-ordered progression into the head with higher cell proliferation at the migratory front as revealed by the photoactivatable protein, KikGR. Dev Biol 2008; 316:275-87. [PMID: 18328476 PMCID: PMC3501347 DOI: 10.1016/j.ydbio.2008.01.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/03/2008] [Accepted: 01/15/2008] [Indexed: 01/17/2023]
Abstract
Neural crest cell (NCC) invasion is a complex sculpting of individual cells into organized migratory streams that lead to organ development along the vertebrate axis. Key to our understanding of how molecular mechanisms modulate the NCC migratory pattern is information about cell behaviors, yet it has been challenging to selectively mark and analyze migratory NCCs in a living embryo. Here, we apply an innovative in vivo strategy to investigate chick NCC behaviors within the rhombomere 4 (r4) migratory stream by combining photoactivation of KikGR and confocal time-lapse analysis of H2B-mRFP1 transfected NCCs. We find that the spatial order of r4 NCC emergence translates into a distal-to-proximal invasion of the 2nd branchial arch. Lead and trailing NCCs display similar average cell speeds and directionalities. Surprisingly, we find that lead NCCs proliferate along the migratory route and grow to outnumber trailing NCCs by nearly 3 to 1. A simple, cell-based computational model reproduces the r4 NCC migratory pattern and predicts the invasion order can be disrupted by slower, less directional lead cells or by environmental noise. Our results suggest a model in which NCC behaviors maintain a spatially-ordered invasion of the branchial arches with differences in cell proliferation between the migratory front and trailing NCCs.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA.
| | | | | | | | | |
Collapse
|
26
|
Hoshino H, Uchida T, Otsuki T, Kawamoto S, Okubo K, Takeichi M, Chisaka O. Cornichon-like protein facilitates secretion of HB-EGF and regulates proper development of cranial nerves. Mol Biol Cell 2007; 18:1143-52. [PMID: 17229890 PMCID: PMC1839001 DOI: 10.1091/mbc.e06-08-0733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During their migration to the periphery, cranial neural crest cells (NCCs) are repulsed by an ErbB4-dependent cue(s) in the mesenchyme adjoining rhombomeres (r) 3 and 5, which are segmented hindbrain neuromeres. ErbB4 has many ligands, but which ligand functions in the above system has not yet been clearly determined. Here we found that a cornichon-like protein/cornichon homolog 2 (CNIL/CNIH2) gene was expressed in the developing chick r3 and r5. In a cell culture system, its product facilitated the secretion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), one of the ligands of ErbB4. When CNIL function was perturbed in chick embryos by forced expression of a truncated form of CNIL, the distribution of NCCs was affected, which resulted in abnormal nerve fiber connections among the cranial sensory ganglia. Also, knockdown of CNIL or HB-EGF with siRNAs yielded a similar phenotype. This phenotype closely resembled that of ErbB4 knockout mouse embryos. Because HB-EGF was uniformly expressed in the embryonic hindbrain, CNIL seems to confine the site of HB-EGF action to r3 and r5 in concert with ErbB4.
Collapse
Affiliation(s)
- Hideharu Hoshino
- *Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tsukasa Uchida
- *Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiaki Otsuki
- *Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shoko Kawamoto
- Research Information Research Division, National Institute of Informatics, Tokyo 101-8430, Japan
| | - Kousaku Okubo
- Laboratory for Gene Expression Analysis, Center for Information Biology, National Institute of Genetics, Shizuoka 411-8540, Japan; and
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Osamu Chisaka
- *Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
McLennan R, Kulesa PM. In vivo analysis reveals a critical role for neuropilin-1 in cranial neural crest cell migration in chick. Dev Biol 2006; 301:227-39. [PMID: 16959234 DOI: 10.1016/j.ydbio.2006.08.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 08/02/2006] [Accepted: 08/07/2006] [Indexed: 11/24/2022]
Abstract
The neural crest provides an excellent model system to study invasive cell migration, however it is still unclear how molecular mechanisms direct cells to precise targets in a programmed manner. We investigate the role of a potential guidance factor, neuropilin-1, and use functional knockdown assays, tissue transplantation and in vivo confocal time-lapse imaging to analyze changes in chick cranial neural crest cell migratory patterns. When neuropilin-1 function is knocked down in ovo, neural crest cells fail to fully invade the branchial arches, especially the 2nd branchial arch. Time-lapse imaging shows that neuropilin-1 siRNA transfected neural crest cells stop and collapse filopodia at the 2nd branchial arch entrances, but do not die. This phenotype is cell autonomous. To test the influence of population pressure and local environmental cues in driving neural crest cells to the branchial arches, we isochronically transplanted small subpopulations of DiI-labeled neural crest cells into host embryos ablated of neighboring, premigratory neural crest cells. Time-lapse confocal analysis reveals that the transplanted cells migrate in narrow, directed streams. Interestingly, with the reduction of neuropilin-1 function, neural crest cells still form segmental migratory streams, suggesting that initial neural crest cell migration and invasion of the branchial arches are separable processes.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
28
|
Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat 2005; 207:575-601. [PMID: 16313393 PMCID: PMC1571569 DOI: 10.1111/j.1469-7580.2005.00473.x] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2005] [Indexed: 12/20/2022] Open
Abstract
The embryonic head is populated by two robust mesenchymal populations, paraxial mesoderm and neural crest cells. Although the developmental histories of each are distinct and separate, they quickly establish intimate relations that are variably important for the histogenesis and morphogenesis of musculoskeletal components of the calvaria, midface and branchial regions. This review will focus first on the genesis and organization within nascent mesodermal and crest populations, emphasizing interactions that probably initiate or augment the establishment of lineages within each. The principal goal is an analysis of the interactions between crest and mesoderm populations, from their first contacts through their concerted movements into peripheral domains, particularly the branchial arches, and continuing to stages at which both the differentiation and the integrated three-dimensional assembly of vascular, connective and muscular tissues is evident. Current views on unresolved or contentious issues, including the relevance of head somitomeres, the processes by which crest cells change locations and constancy of cell-cell relations at the crest-mesoderm interface, are addressed.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca 14853, USA.
| | | |
Collapse
|
29
|
Yu HH, Moens CB. Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Dev Biol 2005; 280:373-85. [PMID: 15882579 DOI: 10.1016/j.ydbio.2005.01.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/19/2005] [Accepted: 01/28/2005] [Indexed: 12/20/2022]
Abstract
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs.
Collapse
Affiliation(s)
- Hung-Hsiang Yu
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
30
|
Kulesa PM, Lu CC, Fraser SE. Time-Lapse Analysis Reveals a Series of Events by Which Cranial Neural Crest Cells Reroute around Physical Barriers. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:255-65. [PMID: 16254414 DOI: 10.1159/000088129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Segmentation is crucial to the development of the vertebrate body plan. Underlying segmentation in the head is further revealed when cranial neural crest cells emerge from even numbered rhombomeres in the hindbrain to form three stereotypical migratory streams that lead to the peripheral branchial arches. To test the role of intrinsic versus extrinsic cues in influencing an individual cell's trajectory, we implanted physical barriers in the chick mesoderm, distal to emerging neural crest cell stream fronts. We analyzed the spatio-temporal dynamics as individual neural crest cells encountered and responded to the barriers, using time-lapse confocal imaging. We find the majority of neural crest cells reach the branchial arch destinations following a repeatable series of events by which the cells overcome the barriers. Even though the lead cells become temporarily blocked by a barrier, cells that follow from behind find a novel pathway around a barrier and become de novo leaders of a new stream. Surprisingly, quantitative analyses of cell trajectories show that cells that encounter an r3 barrier migrate significantly faster but less directly than cells that encounter an r4 barrier, which migrate normally. Interestingly, we also find that cells temporarily blocked by the barrier migrate slightly faster and change direction more often. In addition, we show that cells can be forced to migrate into normally repulsive territory. These results suggest that cranial neural crest cell trajectories are not intrinsically determined, that cells can respond to minor alterations in the environment and re-target a peripheral destination, and that both intrinsic and extrinsic cues are important in patterning.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
31
|
Teddy JM, Kulesa PM. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 2004; 131:6141-51. [PMID: 15548586 DOI: 10.1242/dev.01534] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proper assembly of craniofacial structures and the peripheral nervous system requires neural crest cells to emerge from the neural tube and navigate over long distances to the branchial arches. Cell and molecular studies have shed light on potential intrinsic and extrinsic cues, which, in combination,are thought to ensure the induction and specification of cranial neural crest cells. However, much less is known about how migrating neural crest cells interpret and integrate signals from the microenvironment and other neural crest cells to sort into and maintain the stereotypical pattern of three spatially segregated streams. Here, we explore the extent to which cranial neural crest cells use cell-to-cell and cell-environment interactions to pathfind. The cell membrane and cytoskeletal elements in chick premigratory neural crest cells were labeled in vivo. Three-dimensional reconstructions of migrating neural crest cells were then obtained using confocal static and time-lapse imaging. It was found that neural crest cells maintained nearly constant contact with other migrating neural crest cells, in addition to the microenvironment. Cells used lamellipodia or short, thin filopodia (1-2 μm wide) for local contacts (<20 μm). Non-local, long distance contact (up to 100 μm) was initiated by filopodia that extended and retracted, extended and tracked, or tethered two non-neighboring cells. Intriguingly, the cell-to-cell contacts often stimulated a cell to change direction in favor of a neighboring cell's trajectory. In summary, our results present in vivo evidence for local and long-range neural crest cell interactions, suggesting a possible role for these contacts in directional guidance.
Collapse
Affiliation(s)
- Jessica M Teddy
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|