1
|
Kalugotla G, Marmerstein V, Schriefer LA, Wang L, Morrison S, Perez LC, Schedl T, Pak SC, Baldridge MT. ATG-3 limits Orsay virus infection in C. elegans through regulation of collagen pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632696. [PMID: 39868230 PMCID: PMC11761658 DOI: 10.1101/2025.01.13.632696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of Caenorhabditis elegans. Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux. atg-3 mutants phenocopy rde-1 mutants, which have a defect in RNA interference (RNAi), in susceptibility to Orsay virus infection and transcriptional response to infection. However, atg-3 mutants do not exhibit defects in RNAi. Additionally, atg-3 limits viral infection at a post-entry step, similar to rde-1 mutants. Differential expression analysis using RNA sequencing revealed that antiviral sqt-2, which encodes a collagen trimer protein, is depleted in naïve and infected atg-3 mutants, as well as in infected WT animals, as are numerous other collagen genes. These data suggest that ATG-3 has a role in collagen organization pathways that function in antiviral defense in C. elegans.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Morrison
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis Casorla Perez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Cheddadi R, Yermilli V, Gamra I, Davies J, Tanner S, Martin C. Intestinal Development and Gut Disease: Contributions From the Caenorhabditis elegans Model. J Surg Res 2024:S0022-4804(24)00717-0. [PMID: 39730237 DOI: 10.1016/j.jss.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/29/2024]
Abstract
The mammalian intestine is a highly organized and complex system essential for nutrient absorption, immune response, and homeostasis. Disruptions in its development can lead to various gut diseases, ranging from congenital anomalies to inflammatory and neoplastic disorders. Caenorhabditis elegans (C elegans) has emerged as a valuable model organism for studying intestinal development and gut diseases due to its genetic tractability and transparent body. This review explores the significant contributions of C elegans research to our understanding of intestinal biology, examining historical milestones, anatomical and physiological insights, and its utility in modeling gut diseases and drug discovery. We also draw comparative insights into mammalian systems and propose future research directions. The findings highlight the potential of C elegans as an essential model system for advancing our knowledge of intestinal development and its implications for human health.
Collapse
Affiliation(s)
- Riadh Cheddadi
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Venkata Yermilli
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Irene Gamra
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Davies
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Scott Tanner
- Division of Natural Sciences & Engineering, University of South Carolina, Upstate, Valley Falls, South Carolina
| | - Colin Martin
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
3
|
Zhou Y, Chen H, Zhong W, Tao YJ. Collagen and actin network mediate antiviral immunity against Orsay virus in C. elegans intestinal cells. PLoS Pathog 2024; 20:e1011366. [PMID: 38190406 PMCID: PMC10798621 DOI: 10.1371/journal.ppat.1011366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/19/2024] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
C. elegans is a free-living nematode that is widely used as a small animal model for studying fundamental biological processes and disease mechanisms. Since the discovery of the Orsay virus in 2011, C. elegans also holds the promise of dissecting virus-host interaction networks and innate antiviral immunity pathways in an intact animal. Orsay virus primarily targets the worm intestine, causing enlarged intestinal lumen as well as visible changes to infected cells such as liquefaction of cytoplasm and convoluted apical border. Previous studies of Orsay virus identified that C. elegans is able to mount antiviral responses by DRH-1/RIG-I mediated RNA interference and Intracellular Pathogen Response, a uridylyltransferase that destabilizes viral RNAs by 3' end uridylation, and ubiquitin protein modifications and turnover. To comprehensively search for novel antiviral pathways in C. elegans, we performed genome-wide RNAi screens by bacterial feeding using existing bacterial RNAi libraries covering 94% of the entire genome. Out of the 106 potential antiviral gene hits identified, we investigated those in three new pathways: collagens, actin remodelers, and epigenetic regulators. By characterizing Orsay virus infection in RNAi and mutant worms, our results indicate that collagens likely form a physical barrier in intestine cells to inhibit viral infection by preventing Orsay virus entry. Furthermore, evidence suggests that actin remodeling proteins (unc-34, wve-1 and wsp-1) and chromatin remodelers (nurf-1 and isw-1) exert their antiviral activities by regulating the intestinal actin (act-5), a critical component of the terminal web which likely function as another physical barrier to prevent Orsay infection.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Hanqiao Chen
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Weiwei Zhong
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Yizhi Jane Tao
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
4
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
5
|
Pickett MA, Sallee MD, Cote L, Naturale VF, Akpinaroglu D, Lee J, Shen K, Feldman JL. Separable mechanisms drive local and global polarity establishment in the Caenorhabditiselegans intestinal epithelium. Development 2022; 149:dev200325. [PMID: 36264257 PMCID: PMC9845746 DOI: 10.1242/dev.200325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Apico-basolateral polarization is essential for epithelial cells to function as selective barriers and transporters, and to provide mechanical resilience to organs. Epithelial polarity is established locally, within individual cells to establish distinct apical, junctional and basolateral domains, and globally, within a tissue where cells coordinately orient their apico-basolateral axes. Using live imaging of endogenously tagged proteins and tissue-specific protein depletion in the Caenorhabditiselegans embryonic intestine, we found that local and global polarity establishment are temporally and genetically separable. Local polarity is initiated prior to global polarity and is robust to perturbation. PAR-3 is required for global polarization across the intestine but local polarity can arise in its absence, as small groups of cells eventually established polarized domains in PAR-3-depleted intestines in a HMR-1 (E-cadherin)-dependent manner. Despite the role of PAR-3 in localizing PKC-3 to the apical surface, we additionally found that PAR-3 and PKC-3/aPKC have distinct roles in the establishment and maintenance of local and global polarity. Taken together, our results indicate that different mechanisms are required for local and global polarity establishment in vivo.
Collapse
Affiliation(s)
- Melissa A. Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biological Sciences, San Jose State University, San Jose, CA 95112, USA
| | - Maria D. Sallee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren Cote
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Joo Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
6
|
Bidaud-Meynard A, Demouchy F, Nicolle O, Pacquelet A, Suman SK, Plancke CN, Robin FB, Michaux G. High-resolution dynamic mapping of the C. elegans intestinal brush border. Development 2021; 148:dev200029. [PMID: 34704594 PMCID: PMC10659032 DOI: 10.1242/dev.200029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
The intestinal brush border is made of an array of microvilli that increases the membrane surface area for nutrient processing, absorption and host defense. Studies on mammalian cultured epithelial cells have uncovered some of the molecular players and physical constraints required to establish this apical specialized membrane. However, the building and maintenance of a brush border in vivo has not yet been investigated in detail. Here, we combined super-resolution imaging, transmission electron microscopy and genome editing in the developing nematode Caenorhabditis elegans to build a high-resolution and dynamic localization map of known and new brush border markers. Notably, we show that microvilli components are dynamically enriched at the apical membrane during microvilli outgrowth and maturation, but become highly stable once microvilli are built. This new toolbox will be instrumental for understanding the molecular processes of microvilli growth and maintenance in vivo, as well as the effect of genetic perturbations, notably in the context of disorders affecting brush border integrity.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Flora Demouchy
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Anne Pacquelet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Shashi Kumar Suman
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Camille N Plancke
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - François B Robin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
7
|
Riga A, Cravo J, Schmidt R, Pires HR, Castiglioni VG, van den Heuvel S, Boxem M. Caenorhabditis elegans LET-413 Scribble is essential in the epidermis for growth, viability, and directional outgrowth of epithelial seam cells. PLoS Genet 2021; 17:e1009856. [PMID: 34673778 PMCID: PMC8570498 DOI: 10.1371/journal.pgen.1009856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large. Most cells in multicellular organisms are organized along a directional axis of cell polarity. One protein that is important for this polarized organization is the conserved polarity regulator Scribble. This protein has several functions, including forming the basolateral domains of cells, promoting the formation of cell junctions, and promoting cell migration. How Scribble performs these functions is not fully understood. In this paper we study the role of Scribble during larval development of the small nematode Caenorhabditis elegans using an inducible protein degradation system. We show that Scribble, called LET-413 in C. elegans, is essential in the epidermal epithelium for animal development, as depletion of LET-413 in only this tissue blocks growth. We also demonstrate that LET-413 is required for the polarized outgrowth of an epithelial cell type called the seam cells, a process resembling cell migration. Finally, we show that one major function of LET-413 in seam cell outgrowth is the localization of the junctional component Discs large (DLG-1), which we demonstrate is also essential for this process. Our data thus uncover multiple essential functions for LET-413 in larval development and provide new insights into how the directional outgrowth of epithelial seam cells is controlled.
Collapse
Affiliation(s)
- Amalia Riga
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Helena R. Pires
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Victoria G. Castiglioni
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sander van den Heuvel
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Remmelzwaal S, Geisler F, Stucchi R, van der Horst S, Pasolli M, Kroll JR, Jarosinska OD, Akhmanova A, Richardson CA, Altelaar M, Leube RE, Ramalho JJ, Boxem M. BBLN-1 is essential for intermediate filament organization and apical membrane morphology. Curr Biol 2021; 31:2334-2346.e9. [PMID: 33857431 DOI: 10.1016/j.cub.2021.03.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 01/07/2023]
Abstract
Epithelial tubes are essential components of metazoan organ systems that control the flow of fluids and the exchange of materials between body compartments and the outside environment. The size and shape of the central lumen confer important characteristics to tubular organs and need to be carefully controlled. Here, we identify the small coiled-coil protein BBLN-1 as a regulator of lumen morphology in the C. elegans intestine. Loss of BBLN-1 causes the formation of bubble-shaped invaginations of the apical membrane into the cytoplasm of intestinal cells and abnormal aggregation of the subapical intermediate filament (IF) network. BBLN-1 interacts with IF proteins and localizes to the IF network in an IF-dependent manner. The appearance of invaginations is a result of the abnormal IF aggregation, indicating a direct role for the IF network in maintaining lumen homeostasis. Finally, we identify bublin (BBLN) as the mammalian ortholog of BBLN-1. When expressed in the C. elegans intestine, BBLN recapitulates the localization pattern of BBLN-1 and can compensate for the loss of BBLN-1 in early larvae. In mouse intestinal organoids, BBLN localizes subapically, together with the IF protein keratin 8. Our results therefore may have implications for understanding the role of IFs in regulating epithelial tube morphology in mammals.
Collapse
Affiliation(s)
- Sanne Remmelzwaal
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Suzanne van der Horst
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Milena Pasolli
- Cell Biology, Neurobiology and Biophysics, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Jason R Kroll
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Olga D Jarosinska
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - João J Ramalho
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Mike Boxem
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
9
|
Ramalho JJ, Sepers JJ, Nicolle O, Schmidt R, Cravo J, Michaux G, Boxem M. C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during Caenorhabditiselegans development. Development 2020; 147:dev188011. [PMID: 32586975 PMCID: PMC10755404 DOI: 10.1242/dev.188011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2023]
Abstract
ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.
Collapse
Affiliation(s)
- João J Ramalho
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
10
|
Geisler F, Coch RA, Richardson C, Goldberg M, Bevilacqua C, Prevedel R, Leube RE. Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function. Sci Rep 2020; 10:3142. [PMID: 32081918 PMCID: PMC7035338 DOI: 10.1038/s41598-020-59791-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The abundance and diversity of intermediate filaments (IFs) in the C. elegans intestine indicate important contributions to intestinal function and organismal wellbeing. Fluorescent IF reporters localize below the actin-rich brush border and are highly enriched in the lumen-enveloping endotube, which is attached to the C. elegans apical junction. Mapping intestinal viscoelasticity by contact-free Brillouin microscopy reveals that the IF-rich endotube is positioned at the interface between the stiff brush border and soft cytoplasm suggesting a mechanical buffering function to deal with the frequent luminal distortions occurring during food intake and movement. In accordance, depletion of IFB-2, IFC-2 and IFD-2 leads to intestinal lumen dilation although depletion of IFC-1, IFD-1 and IFP-1 do not. Ultrastructural analyses of loss of function mutants further show that IFC-2 mutants have a rarefied endotube and IFB-2 mutants lack an endotube altogether. Remarkably, almost all IFB-2- and IFC-2-deficient animals develop to fertile adults. But developmental retardation, reduced brood size, altered survival and increased sensitivity to microbial toxin, osmotic and oxidative stress are seen in both mutants albeit to different degrees. Taken together, we propose that individual intestinal IF polypeptides contribute in different ways to endotube morphogenesis and cooperate to cope with changing environments.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Min H, Kim JS, Ahn J, Shim YH. Gliadin Intake Causes Disruption of the Intestinal Barrier and an Increase in Germ Cell Apoptosis in A Caenorhabditis Elegans Model. Nutrients 2019; 11:E2587. [PMID: 31717869 PMCID: PMC6893585 DOI: 10.3390/nu11112587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Gliadin is a major protein component of gluten and causes gluten toxicity through intestinal stress. We previously showed that gliadin intake induces oxidative stress in the intestine and reduces fertility in a Caenorhabditis elegans model. To elucidate the possible link between intestinal stress and reproduction, changes in the intestine and germ cells of C. elegans after gliadin intake were examined at the molecular level. Gliadin intake increased reactive oxygen species (ROS) production in the intestine, decreased intestinal F-actin levels, and increased germ cell apoptosis. These gliadin-triggered effects were suppressed by antioxidant treatment. These results suggest that ROS production in the intestine induced by gliadin intake causes disruption of intestinal integrity and increases germ cell apoptosis. Gliadin-induced germ cell apoptosis (GIGA) was suppressed by depletion of cep-1, ced-13, egl-1, or mpk-1. However, HUS-1 was not activated, suggesting that GIGA is activated through the mitogen-activated protein kinase (MAPK) pathway and is CEP-1-dependent but is a separate pathway from that controlling the DNA damage response. Taken together, our results suggest that gliadin causes intestinal barrier disruption through ROS production and interacts with the germ cells to reduce fertility through GIGA.
Collapse
Affiliation(s)
- Hyemin Min
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji-Sun Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Jeollabuk-do 55365, Korea; (J.-S.K.); (J.A.)
| | - Jiyun Ahn
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Jeollabuk-do 55365, Korea; (J.-S.K.); (J.A.)
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Pickett MA, Naturale VF, Feldman JL. A Polarizing Issue: Diversity in the Mechanisms Underlying Apico-Basolateral Polarization In Vivo. Annu Rev Cell Dev Biol 2019; 35:285-308. [PMID: 31461314 DOI: 10.1146/annurev-cellbio-100818-125134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polarization along an apico-basolateral axis is a hallmark of epithelial cells and is essential for their selective barrier and transporter functions, as well as for their ability to provide mechanical resiliency to organs. Loss of polarity along this axis perturbs development and is associated with a wide number of diseases. We describe three steps involved in polarization: symmetry breaking, polarity establishment, and polarity maintenance. While the proteins involved in these processes are highly conserved among epithelial tissues and species, the execution of these steps varies widely and is context dependent. We review both theoretical principles underlying these steps and recent work demonstrating how apico-basolateral polarity is established in vivo in different tissues, highlighting how developmental and physiological contexts play major roles in the execution of the epithelial polarity program.
Collapse
Affiliation(s)
- Melissa A Pickett
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Victor F Naturale
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
13
|
Bidaud-Meynard A, Nicolle O, Heck M, Le Cunff Y, Michaux G. A V0-ATPase-dependent apical trafficking pathway maintains the polarity of the intestinal absorptive membrane. Development 2019; 146:dev174508. [PMID: 31110027 PMCID: PMC7376742 DOI: 10.1242/dev.174508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Intestine function relies on the strong polarity of intestinal epithelial cells and the array of microvilli forming a brush border at their luminal pole. Combining a genetic RNA interference (RNAi) screen with in vivo super-resolution imaging in the Caenorhabditiselegans intestine, we found that the V0 sector of the vacuolar ATPase (V0-ATPase) controls a late apical trafficking step, involving Ras-related protein 11 (RAB-11)+ endosomes and the N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) synaptosome-associated protein 29 (SNAP-29), and is necessary to maintain the polarized localization of both apical polarity modules and brush border proteins. We show that the V0-ATPase pathway also genetically interacts with glycosphingolipids and clathrin in enterocyte polarity maintenance. Finally, we demonstrate that silencing of the V0-ATPase fully recapitulates the severe structural, polarity and trafficking defects observed in enterocytes from individuals with microvillus inclusion disease (MVID) and use this new in vivo MVID model to follow the dynamics of microvillus inclusions. Thus, we describe a new function for V0-ATPase in apical trafficking and epithelial polarity maintenance and the promising use of the C. elegans intestine as an in vivo model to better understand the molecular mechanisms of rare genetic enteropathies.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Markus Heck
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Yann Le Cunff
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
14
|
Bonello TT, Peifer M. Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol 2018; 218:742-756. [PMID: 30598480 PMCID: PMC6400555 DOI: 10.1083/jcb.201810103] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical-basal polarity and epithelial integrity in Drosophila melanogaster It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
15
|
Yuan W, Zhou Y, Fan Y, Tao YJ, Zhong W. Orsay δ Protein Is Required for Nonlytic Viral Egress. J Virol 2018; 92:e00745-18. [PMID: 29743360 PMCID: PMC6026750 DOI: 10.1128/jvi.00745-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Nonenveloped gastrointestinal viruses, such as human rotavirus, can exit infected cells from the apical surface without cell lysis. The mechanism of such nonlytic exit is poorly understood. The nonenveloped Orsay virus is an RNA virus infecting the intestine cells of the nematode Caenorhabditis elegans Dye staining results suggested that Orsay virus exits from the intestine of infected worms in a nonlytic manner. Therefore, the Orsay virus-C. elegans system provides an excellent in vivo model to study viral exit. The Orsay virus genome encodes three proteins: RNA-dependent RNA polymerase, capsid protein (CP), and a nonstructural protein, δ. δ can also be expressed as a structural CP-δ fusion. We generated an ATG-to-CTG mutant virus that had a normal CP-δ fusion but could not produce free δ due to the lack of the start codon. This mutant virus showed a viral exit defect without obvious phenotypes in other steps of viral infection, suggesting that δ is involved in viral exit. Ectopically expressed free δ localized near the apical membrane of intestine cells in C. elegans and colocalized with ACT-5, an intestine-specific actin that is a component of the terminal web. Orsay virus infection rearranged ACT-5 apical localization. Reduction of the ACT-5 level via RNA interference (RNAi) significantly exacerbated the viral exit defect of the δ mutant virus, suggesting that δ and ACT-5 functionally interact to promote Orsay virus exit. Together, these data support a model in which the viral δ protein interacts with the actin network at the apical side of host intestine cells to mediate the polarized, nonlytic egress of Orsay virus.IMPORTANCE An important step of the viral life cycle is how viruses exit from host cells to spread to other cells. Certain nonenveloped viruses can exit cultured cells in nonlytic ways; however, such nonlytic exit has not been demonstrated in vivo In addition, it is not clear how such nonlytic exit is achieved mechanistically in vivo Orsay virus is a nonenveloped RNA virus that infects the intestine cells of the nematode C. elegans It is currently the only virus known to naturally infect C. elegans Using this in vivo model, we show that the δ protein encoded by Orsay virus facilitates the nonlytic exit of the virus, possibly by interacting with host actin on the apical side of worm intestine cells.
Collapse
Affiliation(s)
- Wang Yuan
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Ying Zhou
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yanlin Fan
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Weiwei Zhong
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
16
|
Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in Caenorhabditis elegans. Genetics 2018; 210:637-652. [PMID: 29945901 DOI: 10.1534/genetics.118.301078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
The excretory canals of Caenorhabditis elegans are a model for understanding the maintenance of apical morphology in narrow single-celled tubes. Light and electron microscopy shows that mutants in exc-2 start to form canals normally, but these swell to develop large fluid-filled cysts that lack a complete terminal web at the apical surface, and accumulate filamentous material in the canal lumen. Here, whole-genome sequencing and gene rescue show that exc-2 encodes intermediate filament protein IFC-2 EXC-2/IFC-2 protein, fluorescently tagged via clustered regularly interspaced short palindromic repeats/Cas9, is located at the apical surface of the canals independently of other intermediate filament proteins. EXC-2 is also located in several other tissues, though the tagged isoforms are not seen in the larger intestinal tube. Tagged EXC-2 binds via pulldown to intermediate filament protein IFA-4, which is also shown to line the canal apical surface. Overexpression of either protein results in narrow but shortened canals. These results are consistent with a model whereby three intermediate filaments in the canals-EXC-2, IFA-4, and IFB-1-restrain swelling of narrow tubules in concert with actin filaments that guide the extension and direction of tubule outgrowth, while allowing the tube to bend as the animal moves.
Collapse
|
17
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
18
|
Spickard EA, Joshi PM, Rothman JH. The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs. FEBS Lett 2018; 592:838-851. [PMID: 29334121 DOI: 10.1002/1873-3468.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
In animal embryos, cells transition from a multipotential state, with the capacity to adopt multiple fates, into an irreversible, committed state of differentiation. This multipotency-to-commitment transition (MCT) is evident from experiments in which cell fate is reprogrammed by transcription factors for cell type-specific differentiation, as has been observed extensively in Caenorhabditis elegans. Although factors that direct differentiation into each of the three germ layer types cannot generally reprogram cells after the MCT in this animal, transcription factors for endoderm development are able to do so in multiple differentiated cell types. In one case, these factors can redirect the development of an entire organ in the process of "transorganogenesis". Natural transdifferentiation also occurs in a small number of differentiated cells during normal C. elegans development. We review these reprogramming and transdifferentiation events, highlighting the cellular and developmental contexts in which they occur, and discuss common themes underlying direct cell lineage reprogramming. Although certain aspects may be unique to the model system, growing evidence suggests that some mechanisms are evolutionarily conserved and may shed light on cellular plasticity and disease in humans.
Collapse
Affiliation(s)
- Erik A Spickard
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| |
Collapse
|
19
|
Liu H, Wang S, Hang W, Gao J, Zhang W, Cheng Z, Yang C, He J, Zhou J, Chen J, Shi A. LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling. J Cell Biol 2017; 217:299-314. [PMID: 29079669 PMCID: PMC5748983 DOI: 10.1083/jcb.201705136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
RAB-10 is a master regulator of endocytic recycling in polarized epithelial cells. Liu et al. identify LET-413, the Caenorhabditis elegans homolog of Scrib/Erbin, as a RAB-5 effector that is required for the DENN-4–mediated activation of RAB-10 and the control of membrane expansion in the C. elegans intestine. RAB-10/Rab10 is a master regulator of endocytic recycling in epithelial cells. To better understand the regulation of RAB-10 activity, we sought to identify RAB-10(GDP)–interacting proteins. One novel RAB-10(GDP)–binding partner that we identified, LET-413, is the Caenorhabditis elegans homologue of Scrib/Erbin. Here, we focus on the mechanistic role of LET-413 in the regulation of RAB-10 within the C. elegans intestine. We show that LET-413 is a RAB-5 effector and colocalizes with RAB-10 on endosomes, and the overlap of LET-413 with RAB-10 is RAB-5 dependent. Notably, LET-413 enhances the interaction of DENN-4 with RAB-10(GDP) and promotes DENN-4 guanine nucleotide exchange factor activity toward RAB-10. Loss of LET-413 leads to cytosolic dispersion of the RAB-10 effectors TBC-2 and CNT-1. Finally, we demonstrate that the loss of RAB-10 or LET-413 results in abnormal overextensions of lateral membrane. Hence, our studies indicate that LET-413 is required for DENN-4–mediated RAB-10 activation, and the LET-413–assisted RAB-5 to RAB-10 cascade contributes to the integrity of C. elegans intestinal epithelia.
Collapse
Affiliation(s)
- Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun He
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Abstract
Microsporidia comprise a phylum of obligate intracellular pathogens related to fungi that infect virtually all animals. Recently, the nematode Caenorhabditis elegans has been developed as a convenient model for studying microsporidia infection in a whole-animal host through the identification and characterization of a natural microsporidian pathogen of this commonly studied laboratory organism. The C. elegans natural microsporidian pathogen is named Nematocida parisii, and it causes a lethal intestinal infection in C. elegans. Comparison of the genomes of N. parisii and its closely related species Nematocida sp. 1, together with the genomes of other microsporidian species, has provided insight into the evolutionary events that led to the emergence of the large, specialized microsporidia phylum. Cell biology studies of N. parisii infection in C. elegans have shown how N. parisii restructures host intestinal cells and, in particular, how it hijacks host exocytosis for nonlytic exit to facilitate transmission. Recent results also show how the host responds to infection with ubiquitin-mediated responses, and how a natural variant of C. elegans is able to clear N. parisii infection, but only during early life. Altogether, these studies provide insight into the mechanisms of microsporidia pathogenesis using a whole-animal host.
Collapse
|
21
|
Von Stetina SE, Liang J, Marnellos G, Mango SE. Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Mol Biol Cell 2017; 28:2042-2065. [PMID: 28539408 PMCID: PMC5509419 DOI: 10.1091/mbc.e16-09-0644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
During embryo morphogenesis, minor epithelia are generated after, and then form bridges between, major epithelia (e.g., epidermis and gut). In Caenorhabditis elegans, this delay is regulated by four proteins that control production and localization of polarity proteins: the pioneer factor PHA-4/FoxA, kinesin ZEN-4/MKLP1, its partner CYK-4/MgcRacGAP, and PAR-6. To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Jennifer Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Georgios Marnellos
- Informatics and Scientific Applications, Science Division, Faculty of Arts and Sciences, Harvard University, Cambridge; MA 02138
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| |
Collapse
|
22
|
Hannich JT, Mellal D, Feng S, Zumbuehl A, Riezman H. Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chem Sci 2017; 8:3676-3686. [PMID: 30155209 PMCID: PMC6094178 DOI: 10.1039/c6sc04831e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Sphingolipids are bio-active metabolites that show structural diversity among eukaryotes. They are essential for growth of all eukaryotic cells but when produced in an uncontrolled manner can lead to cell death and pathologies including auto-immune reactions, cancer, diabetes and neurodegeneration. Caenorhabditis elegans is an important genetic model organism both to find new drug-targets against parasitic nematodes and to study the conserved roles of sphingolipids in animals like their essential functions in very basic cellular processes ranging from maintenance of cell polarity and mitochondrial repair to growth and survival. C. elegans produces sphingoid bases which are structurally distinct from those of other animals as both iso- and anteiso-branched species have been reported. Using metabolic labeling we show that most worm sphingoid bases are iso-branched. We have synthesized the nematode-specific C17 iso-branched sphinganine and its 1-deoxy analogue and could show that both the iso-branch and the 1-hydroxyl group are essential to form functional nematode sphingolipids which are needed to maintain intestinal function. The organism specificity was examined by complementation experiments in Saccharomyces cerevisiae yeast cells lacking sphingoid base synthesis. We found that iso-branched sphingoid base did not support growth of mutant cells and was toxic to wild type yeast. 1-Deoxy sphingolipids have been linked to the hereditary disease HSAN1A and other metabolic disorders including diabetes. We found that in C. elegans the 1-deoxy analogue cannot rescue the intestinal phenotype caused by sphingoid base depletion. In fact, in wild-type animals with normal sphingoid base biosynthesis, exogenous 1-deoxy analogue had a disruptive effect on apical cytoskeletal organization of intestinal cells indicating that atypical bases can interfere with normal sphingolipid function.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Denia Mellal
- Department of Chemistry , University of Fribourg , CH-1700 Fribourg , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Suihan Feng
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Andreas Zumbuehl
- Department of Chemistry , University of Fribourg , CH-1700 Fribourg , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Howard Riezman
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| |
Collapse
|
23
|
Maduro MF. Gut development in C. elegans. Semin Cell Dev Biol 2017; 66:3-11. [PMID: 28065852 DOI: 10.1016/j.semcdb.2017.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
The midgut (intestine) of the nematode, C. elegans, is a tube consisting of 20 cells that arises from a single embryonic precursor. Owing to its comparatively simple anatomy and the advantages inherent to the C. elegans system, the gut has been used as a model for organogenesis for more than 25 years. In this review, the salient features of C. elegans gut development are described from the E progenitor through to the 20-cell intestine. The core gene regulatory network that drives specification of the gut, and other genes with roles in organogenesis, lumen morphogenesis and the cell cycle, are also described. Questions for future work are posed.
Collapse
Affiliation(s)
- Morris F Maduro
- Biology Department, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
24
|
|
25
|
Geisler F, Gerhardus H, Carberry K, Davis W, Jorgensen E, Richardson C, Bossinger O, Leube RE. A novel function for the MAP kinase SMA-5 in intestinal tube stability. Mol Biol Cell 2016; 27:3855-3868. [PMID: 27733627 PMCID: PMC5170608 DOI: 10.1091/mbc.e16-02-0099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
In vivo evidence links SMA-5 to the maintenance of the apical domain in the Caenorhabditis elegans intestine. sma-5 mutations induce morphological and biochemical changes of the intermediate filament system, demonstrating the close relationship between posttranslational modification and structural integrity of the evolutionarily conserved intestinal cytoskeleton. Intermediate filaments are major cytoskeletal components whose assembly into complex networks and isotype-specific functions are still largely unknown. Caenorhabditis elegans provides an excellent model system to study intermediate filament organization and function in vivo. Its intestinal intermediate filaments localize exclusively to the endotube, a circumferential sheet just below the actin-based terminal web. A genetic screen for defects in the organization of intermediate filaments identified a mutation in the catalytic domain of the MAP kinase 7 orthologue sma-5(kc1). In sma-5(kc1) mutants, pockets of lumen penetrate the cytoplasm of the intestinal cells. These membrane hernias increase over time without affecting epithelial integrity and polarity. A more pronounced phenotype was observed in the deletion allele sma-5(n678) and in intestine-specific sma-5(RNAi). Besides reduced body length, an increased time of development, reduced brood size, and reduced life span were observed in the mutants, indicating compromised food uptake. Ultrastructural analyses revealed that the luminal pockets include the subapical cytoskeleton and coincide with local thinning and gaps in the endotube that are often enlarged in other regions. Increased intermediate filament phosphorylation was detected by two-dimensional immunoblotting, suggesting that loss of SMA-5 function leads to reduced intestinal tube stability due to altered intermediate filament network phosphorylation.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Harald Gerhardus
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Katrin Carberry
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Erik Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
26
|
Coch RA, Leube RE. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells 2016; 5:E32. [PMID: 27429003 PMCID: PMC5040974 DOI: 10.3390/cells5030032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine.
Collapse
Affiliation(s)
- Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany.
| |
Collapse
|
27
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
28
|
Jahnel O, Hoffmann B, Merkel R, Bossinger O, Leube RE. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine. Methods Enzymol 2015; 568:681-706. [PMID: 26795489 DOI: 10.1016/bs.mie.2015.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is commonly accepted that intermediate filaments have an important mechanical function. This function relies not only on intrinsic material properties but is also determined by dynamic interactions with other cytoskeletal filament systems, distinct cell adhesion sites, and cellular organelles which are fine-tuned by multiple signaling pathways. While aspects of these properties and processes can be studied in vitro, their full complexity can only be understood in a viable tissue context. Yet, suitable and easily accessible model systems for monitoring tissue mechanics at high precision are rare. We show that the dissected intestine of the genetic model organism Caenorhabditis elegans fulfills this requirement. The 20 intestinal cells, which are arranged in an invariant fashion, are characterized by a dense subapical mesh of intermediate filaments that are attached to the C. elegans apical junction. We present procedures to visualize details of the characteristic intermediate filament-junctional complex arrangement in living animals. We then report on methods to prepare intestines with a fully intact intermediate filament cytoskeleton and detail procedures to assess their viability. A dual micropipette assay is described to measure mechanical properties of the dissected intestine while monitoring the spatial arrangement of the intermediate filament system. Advantages of this approach are (i) the high reproducibility of measurements because of the uniform architecture of the intestine and (ii) the high degree of accessibility allowing not only mechanical manipulation of an intact tissue but also control of culture medium composition and addition of drugs as well as visualization of cell structures. With this method, examination of worms carrying mutations in the intermediate filament system, its interacting partners and its regulators will become feasible.
Collapse
Affiliation(s)
- Oliver Jahnel
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Jülich, Germany
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
29
|
Block DHS, Twumasi-Boateng K, Kang HS, Carlisle JA, Hanganu A, Lai TYJ, Shapira M. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans. PLoS Genet 2015; 11:e1005265. [PMID: 26016853 PMCID: PMC4446034 DOI: 10.1371/journal.pgen.1005265] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/06/2015] [Indexed: 12/28/2022] Open
Abstract
GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity.
Collapse
Affiliation(s)
- Dena H. S. Block
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Kwame Twumasi-Boateng
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Graduate Group in Microbiology, University of California Berkeley, Berkeley, California, United States of America
| | - Hae Sung Kang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jolie A. Carlisle
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexandru Hanganu
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ty Yu-Jen Lai
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Graduate Group in Microbiology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Quantitative proteome analysis of Caenorhabditis elegans upon exposure to nematicidal Bacillus thuringiensis. J Proteomics 2014; 113:337-50. [PMID: 25452134 DOI: 10.1016/j.jprot.2014.09.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022]
Abstract
UNLABELLED Caenorhabditis elegans can be infected by a plethora of pathogens, most of them are also pathogenic for humans. Consequently, the nematode has emerged as a powerful surrogate host to model microbial human infectious diseases in a non-vertebrate, for the study of innate immunity and host-pathogen interactions. Signaling cascades are well investigated that face bacterial or fungal pathogens. We analyzed the downstream processes of these cascades, i.e. the differential expression of effector and regulatory molecules due to a microbial challenge with a pathogenic strain of the bacterium Bacillus thuringiensis (Bt) in comparison to a non-pathogenic Bt strain. The protein abundance profile of the nematode was studied by quantitative proteomics using iTRAQ labeling and 2D-LC-MS analysis. We developed (i) a novel method for the preparation of defined C. elegans samples; (ii) a pooling strategy for fractions in 2D-LC separation schemes; and (iii) an isobaric labeling scheme reducing the number of necessary LC-MS experiments. More than 3,600 proteins were quantified, 288 of which showed altered abundances, implicating protein classes such as lectins, lysozymes, and transthyretin-like proteins to be involved in the nematode innate immune defense. A number of gene products previously only identified by transcriptomic profiling could be verified at the protein level. Moreover, several other protein classes such as proteases, proteins related to autophagy and apoptosis, structural proteins, and proteins involved in chromatin organization were detected. The results provide an overview of the physiological response towards a pathogen at protein level in the important model organism C. elegans, giving insights into highly complex host-pathogen interactions. BIOLOGICAL SIGNIFICANCE This study identified system-wide effects of Bt intoxication on C. elegans at protein level, expanding the catalogue of immune effectors potentially acting towards the pathogen, and provide verification for numerous gene products implicated in previous transcriptomic studies. The data present evidence in support of both a general defense response as well as a specific reaction against the Bt toxin within the nematode. The described findings will also contribute to a deeper understanding of host-microbe interaction in other organisms, including humans, and may provide key information that touches far reaching aspects of coevolutionary processes.
Collapse
|
31
|
Saegusa K, Sato M, Sato K, Nakajima-Shimada J, Harada A, Sato K. Caenorhabditis elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Mol Biol Cell 2014; 25:3095-3104. [PMID: 25143409 PMCID: PMC4196862 DOI: 10.1091/mbc.e13-09-0530] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 11/11/2022] Open
Abstract
Intestinal epithelial cells have unique apical membrane structures, known as microvilli, that contain bundles of actin microfilaments. In this study, we report that Caenorhabditis elegans cytosolic chaperonin containing TCP-1 (CCT) is essential for proper formation of microvilli in intestinal cells. In intestinal cells of cct-5(RNAi) animals, a substantial amount of actin is lost from the apical area, forming large aggregates in the cytoplasm, and the apical membrane is deformed into abnormal, bubble-like structures. The length of the intestinal microvilli is decreased in these animals. However, the overall actin protein levels remain relatively unchanged when CCT is depleted. We also found that CCT depletion causes a reduction in the tubulin levels and disorganization of the microtubule network. In contrast, the stability and localization of intermediate filament protein IFB-2, which forms a dense filamentous network underneath the apical surface, appears to be superficially normal in CCT-deficient cells, suggesting substrate specificity of CCT in the folding of filamentous cytoskeletons in vivo. Our findings demonstrate physiological functions of CCT in epithelial cell morphogenesis using whole animals.
Collapse
Affiliation(s)
- Keiko Saegusa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Katsuya Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
32
|
Riddle MR, Weintraub A, Nguyen KCQ, Hall DH, Rothman JH. Transdifferentiation and remodeling of post-embryonic C. elegans cells by a single transcription factor. Development 2013; 140:4844-9. [PMID: 24257624 DOI: 10.1242/dev.103010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Terminally differentiated post-mitotic cells are generally considered irreversibly developmentally locked, i.e. incapable of being reprogrammed in vivo into entirely different cell types. We found that brief expression of a single transcription factor, the ELT-7 GATA factor, can convert the identity of fully differentiated, highly specialized non-endodermal cells of the pharynx into fully differentiated intestinal cells in intact larvae and adult Caenorhabditis elegans. Stable expression of intestine-specific molecular markers parallels loss of markers for the original differentiated pharynx state; hence, there is no apparent requirement for a dedifferentiated intermediate during the transdifferentiation process. Based on high-resolution morphological characteristics, the transdifferentiated cells become remodeled to resemble typical intestinal cells at the level of both the cell surface and internal organelles. Thus, post-mitotic cells, though terminally differentiated, remain plastic to transdifferentiation across germ layer lineage boundaries and can be remodeled to adopt the characteristics of a new cell identity without removal of inhibitory factors. Our findings establish a simple model to investigate how cell context influences forced transdifferentiation of mature cells.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Molecular, Cellular and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
33
|
Liu D, Shi M, Duan C, Chen H, Hu Y, Yang Z, Duan H, Guo N. Downregulation of Erbin in Her2-overexpressing breast cancer cells promotes cell migration and induces trastuzumab resistance. Mol Immunol 2013; 56:104-12. [DOI: 10.1016/j.molimm.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
|
34
|
Szumowski SC, Estes KA, Troemel ER. Preparing a discreet escape: Microsporidia reorganize host cytoskeleton prior to non-lytic exit from C. elegans intestinal cells. WORM 2013; 1:207-11. [PMID: 24058850 PMCID: PMC3670220 DOI: 10.4161/worm.20501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
Abstract
Intracellular pathogens commonly invade and replicate inside of intestinal cells and exit from these cells is a crucial step in pathogen transmission. For convenience, studies of intracellular pathogens are often conducted using in vitro cell culture systems, which unfortunately lack important features of polarized, intact intestinal epithelial cells. The nematode C. elegans provides a tractable system to study intracellular pathogens in vivo, where features of differentiated epithelial cells are easily visualized. In a recent paper, we used C. elegans as a host organism to study the exit strategy of Nematocida parisii, a naturally occurring intracellular pathogen in the microsporidia phylum. We showed that N. parisii remodels the C. elegans host cytoskeleton, and then exits host cells in an actin-dependent, non-lytic fashion. These findings illuminate key details about the transmission of microsporidia, which are poorly understood but ubiquitous pathogens. More generally, these findings have implications for exit strategies used by other intracellular pathogens that also infect epithelial cells.
Collapse
Affiliation(s)
- Suzannah C Szumowski
- Division of Biological Sciences; Section of Cell and Developmental Biology; University of California San Diego; La Jolla, CA USA
| | | | | |
Collapse
|
35
|
Simske JS. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans. Tissue Barriers 2013; 1:e25502. [PMID: 24665403 PMCID: PMC3879130 DOI: 10.4161/tisb.25502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023] Open
Abstract
The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.
Collapse
|
36
|
Kitaoka S, Morielli AD, Zhao FQ. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells. PLoS One 2013; 8:e68475. [PMID: 23826391 PMCID: PMC3691140 DOI: 10.1371/journal.pone.0068475] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 06/05/2013] [Indexed: 11/28/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS), that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT), we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km) of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01), indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue) mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.
Collapse
Affiliation(s)
- Shun Kitaoka
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, Vermont, United States of America
| | - Anthony D. Morielli
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
37
|
Patel FB, Soto MC. WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia. Dev Biol 2013; 377:319-32. [PMID: 23510716 DOI: 10.1016/j.ydbio.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in Caenorhabditis elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
Collapse
Affiliation(s)
- Falshruti B Patel
- Department of Pathology and Laboratory Medicine, UMDNJ--Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
38
|
Hagiwara K, Nagamori S, Umemura YM, Ohgaki R, Tanaka H, Murata D, Nakagomi S, Nomura KH, Kage-Nakadai E, Mitani S, Nomura K, Kanai Y. NRFL-1, the C. elegans NHERF orthologue, interacts with amino acid transporter 6 (AAT-6) for age-dependent maintenance of AAT-6 on the membrane. PLoS One 2012; 7:e43050. [PMID: 22916205 PMCID: PMC3419730 DOI: 10.1371/journal.pone.0043050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 07/18/2012] [Indexed: 12/11/2022] Open
Abstract
The NHERF (Na(+)/H(+) exchanger regulatory factor) family has been proposed to play a key role in regulating transmembrane protein localization and retention at the plasma membrane. Due to the high homology between the family members, potential functional compensations have been a concern in sorting out the function of individual NHERF numbers. Here, we studied C. elegans NRFL-1 (C01F6.6) (nherf-like protein 1), the sole C. elegans orthologue of the NHERF family, which makes worm a model with low genetic redundancy of NHERF homologues. Integrating bioinformatic knowledge of C. elegans proteins into yeast two-hybrid scheme, we identified NRFL-1 as an interactor of AAT-6, a member of the C. elegans AAT (amino acid transporter) family. A combination of GST pull-down assay, localization study, and co-immunoprecipitation confirmed the binding and characterized the PDZ interaction. AAT-6 localizes to the luminal membrane even in the absence of NRFL-1 when the worm is up to four-day old. A fluorescence recovery after photobleaching (FRAP) analysis suggested that NRFL-1 immobilizes AAT-6 at the luminal membrane. When the nrfl-1 deficient worm is six-day or older, in contrast, the membranous localization of AAT-6 is not observed, whereas AAT-6 tightly localizes to the membrane in worms with NRFL-1. Sorting out the in vivo functions of the C. elegans NHERF protein, we found that NRFL-1, a PDZ-interactor of AAT-6, is responsible for the immobilization and the age-dependent maintenance of AAT-6 on the intestinal luminal membrane.
Collapse
Affiliation(s)
- Kohei Hagiwara
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- School of Medicine, Osaka University, Osaka, Japan
| | - Shushi Nagamori
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro M. Umemura
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidekazu Tanaka
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Saya Nakagomi
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuko H. Nomura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Biological Sciences, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Kazuya Nomura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
- Department of Biological Sciences, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
39
|
Carberry K, Wiesenfahrt T, Geisler F, Stöcker S, Gerhardus H, Überbach D, Davis W, Jorgensen E, Leube RE, Bossinger O. The novel intestinal filament organizer IFO-1 contributes to epithelial integrity in concert with ERM-1 and DLG-1. Development 2012; 139:1851-62. [PMID: 22510987 DOI: 10.1242/dev.075788] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nematode Caenorhabditis elegans is an excellent model system in which to study in vivo organization and function of the intermediate filament (IF) system for epithelial development and function. Using a transgenic ifb-2::cfp reporter strain, a mutagenesis screen was performed to identify mutants with aberrant expression patterns of the IF protein IFB-2, which is expressed in a dense network at the subapical endotube just below the microvillar brush border of intestinal cells. Two of the isolated alleles (kc2 and kc3) were mapped to the same gene, which we refer to as ifo-1 (intestinal filament organizer). The encoded polypeptide colocalizes with IF proteins and F-actin in the intestine. The apical localization of IFO-1 does not rely on IFB-2 but is dependent on LET-413, a basolateral protein involved in apical junction assembly and maintenance of cell polarity. In mutant worms, IFB-2 and IFC-2 are mislocalized in cytoplasmic granules and accumulate in large aggregates at the C. elegans apical junction (CeAJ) in a DLG-1-dependent fashion. Electron microscopy reveals loss of the prominent endotube and disordered but still intact microvilli. Semiquantitative fluorescence microscopy revealed a significant decrease of F-actin, suggesting a general role of IFO-1 in cytoskeletal organization. Furthermore, downregulation of the cytoskeletal organizer ERM-1 and the adherens junction component DLG-1, each of which leads to F-actin reduction on its own, induces a novel synthetic phenotype in ifo-1 mutants resulting in disruption of the lumen. We conclude that IFO-1 is a multipurpose linker between different cytoskeletal components of the C. elegans intestinal terminal web and contributes to proper epithelial tube formation.
Collapse
Affiliation(s)
- Katrin Carberry
- Institute of Molecular and Cellular Anatomy (MOCA), RWTH Aachen University, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells. PLoS Pathog 2011; 7:e1002227. [PMID: 21949650 PMCID: PMC3174248 DOI: 10.1371/journal.ppat.1002227] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/06/2011] [Indexed: 02/06/2023] Open
Abstract
The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo. The intestine is a common site for invasion by pathogens, but little is known about how pathogens exit out of live intestinal cells in order to spread and propagate. One group of parasites that often invades the intestine is the microsporidia, which comprise a phylum of over 1200 fungal-like species that can cause disease in humans, as well as in agriculturally significant organisms such as fish, silkworm and honey bee. Here, we investigated a natural microsporidian infection in live intestinal cells of the roundworm C. elegans. We discovered a novel exit strategy used by microsporidia to restructure the cytoskeleton of intestinal cells, involving relocalization of actin and reorganization of a structure called the terminal web, which may be a barrier to exit. In addition, we found that despite large numbers of parasites exiting out of intestinal cells, this process does not cause cells to burst. Our findings indicate that microsporidia, which are completely dependent on their hosts for replication, have evolved a regulated and non-damaging mechanism of exit that shares similarities with strategies used by evolutionarily distant bacterial pathogens. This study provides new insights into the methods by which pathogens restructure live intestinal cells to facilitate their spread and propagation.
Collapse
|
42
|
Abstract
In the last decade, the claudin family of integral membrane proteins has been identified as the major protein component of the tight junctions in all vertebrates. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Subsequently, claudin homologues have been identified in invertebrates, including Drosophila and Caenorhabditis elegans. Recent studies demonstrate that the C. elegans claudins, clc-1 to clc-5, and similar proteins in the greater PMP22/EMP/claudin/calcium channel γ subunit family, including nsy-1-nsy-4 and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in some cases play roles similar to those traditionally assigned to their vertebrate homologues. These include regulating cell adhesion and passage of small molecules through the paracellular space. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how core claudin protein function can be modified to serve various specific roles at regions of cell-cell contact in metazoans.
Collapse
|
43
|
Maduzia LL, Yu E, Zhang Y. Caenorhabditis elegans galectins LEC-6 and LEC-10 interact with similar glycoconjugates in the intestine. J Biol Chem 2010; 286:4371-81. [PMID: 21115491 PMCID: PMC3039406 DOI: 10.1074/jbc.m110.188581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Galectins are a family of metazoan proteins that show binding to various β-galactoside-containing glycans. Because of a lack of proper tools, the interaction of galectins with their specific glycan ligands in the cells and tissues are largely unknown. We have investigated the localization of galectin ligands in Caenorhabditis elegans using a novel technology that relies on the high binding specificity between galectins and their endogenous ligands. Fluorescently labeled recombinant galectin fusions are found to bind to ligands located in diverse tissues including the intestine, pharynx, and the rectal valve. Consistent with their role as galactoside-binding proteins, the interaction with their ligands is inhibited by galactose or lactose. Two of the galectins, LEC-6 and LEC-10, recognize ligands that co-localize along the intestinal lumen. The ligands for LEC-6 and LEC-10 are absent in three glycosylation mutants bre-1, fut-8, and galt-1, which have been shown to be required to synthesize the Gal-β1,4-Fuc modifications of the core N-glycans unique to C. elegans and several other invertebrates. Both galectins pull down the same set of glycoproteins in a manner dependent on the presence of these carbohydrate modifications. Endogenous LEC-6 and LEC-10 are expressed in the intestinal cells, but they are localized to different subcellular compartments that do not appear to overlap with each other or with the location of their glycan targets. An altered subcellular distribution of these ligands is found in mutants lacking both galectins. These results suggest a model where LEC-6 and LEC-10 interact with glycoproteins through specific glycans to regulate their cellular fate.
Collapse
Affiliation(s)
- Lisa L Maduzia
- New England Biolabs, Inc, Ipswich, Massachusetts 01938, USA
| | | | | |
Collapse
|
44
|
The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 2010; 11:144-50. [PMID: 21055481 DOI: 10.1016/j.gep.2010.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 11/22/2022]
Abstract
The neurexin superfamily is a group of transmembrane molecules mediating cell-cell contacts and generating specialized membranous domains in polarized epithelial and nerves cells. We describe here the domain organization and expression of the entire, core neurexin superfamily in the nematode Caenorhabditis elegans, which is composed of three family members. One of the superfamily members, nrx-1, is an ortholog of vertebrate neurexin, the other two, itx-1 and nlr-1, are orthologs of the Caspr subfamily of neurexin-like genes. Based on reporter gene analysis, we find that nrx-1 is exclusively expressed in most if not all cells of the nervous system and localizes to presynaptic specializations. itx-1 and nrx-1 reporter genes are expressed in non-overlapping patterns within and outside the nervous system. ITX-1 protein co-localizes with β-G-spectrin to a subapical domain within intestinal cells. These studies provide a starting point for further functional analysis of this family of proteins.
Collapse
|
45
|
Sommermann EM, Strohmaier KR, Maduro MF, Rothman JH. Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification→differentiation transition. Dev Biol 2010; 347:154-66. [PMID: 20807527 PMCID: PMC3142750 DOI: 10.1016/j.ydbio.2010.08.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/24/2010] [Accepted: 08/18/2010] [Indexed: 12/23/2022]
Abstract
The transition from specification of cell identity to the differentiation of cells into an appropriate and enduring state is critical to the development of embryos. Transcriptional profiling in Caenorhabditis elegans has revealed a large number of genes that are expressed in the fully differentiated intestine; however, no regulatory factor has been found to be essential to initiate their expression once the endoderm has been specified. These gut-expressed genes possess a preponderance of GATA factor binding sites and one GATA factor, ELT-2, fulfills the expected characteristics of a key regulator of these genes based on its persistent expression exclusively in the developing and differentiated intestine and its ability to bind these regulatory sites. However, a striking characteristic of elt-2(0) knockout mutants is that while they die shortly after hatching owing to an obstructed gut passage, they nevertheless contain a gut that has undergone complete morphological differentiation. We have discovered a second gut-specific GATA factor, ELT-7, that profoundly synergizes with ELT-2 to create a transcriptional switch essential for gut cell differentiation. ELT-7 is first expressed in the early endoderm lineage and, when expressed ectopically, is sufficient to activate gut differentiation in nonendodermal progenitors. elt-7 is transcriptionally activated by the redundant endoderm-specifying factors END-1 and -3, and its product in turn activates both its own expression and that of elt-2, constituting an apparent positive feedback system. While elt-7 loss-of-function mutants lack a discernible phenotype, simultaneous loss of both elt-7 and elt-2 results in a striking all-or-none block to morphological differentiation of groups of gut cells with a region-specific bias, as well as reduced or abolished gut-specific expression of a number of terminal differentiation genes. ELT-2 and -7 synergize not only in activation of gene expression but also in repression of a gene that is normally expressed in the valve cells, which immediately flank the termini of the gut tube. Our results point to a developmental strategy whereby positive feedback and cross-regulatory interactions between two synergistically acting regulatory factors promote a decisive and persistent transition of specified endoderm progenitors into the program of intestinal differentiation.
Collapse
Affiliation(s)
| | | | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
46
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
47
|
Achilleos A, Wehman AM, Nance J. PAR-3 mediates the initial clustering and apical localization of junction and polarity proteins during C. elegans intestinal epithelial cell polarization. Development 2010; 137:1833-42. [PMID: 20431121 DOI: 10.1242/dev.047647] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apicobasal polarity of epithelial cells is critical for organ morphogenesis and function, and loss of polarity can promote tumorigenesis. Most epithelial cells form when precursor cells receive a polarization cue, develop distinct apical and basolateral domains and assemble junctions near their apical surface. The scaffolding protein PAR-3 regulates epithelial cell polarity, but its cellular role in the transition from precursor cell to polarized epithelial cell has not been determined in vivo. Here, we use a targeted protein-degradation strategy to remove PAR-3 from C. elegans embryos and examine its cellular role as intestinal precursor cells become polarized epithelial cells. At initial stages of polarization, PAR-3 accumulates in cortical foci that contain E-cadherin, other adherens junction proteins, and the polarity proteins PAR-6 and PKC-3. Using live imaging, we show that PAR-3 foci move apically and cluster, and that PAR-3 is required to assemble E-cadherin into foci and for foci to accumulate at the apical surface. We propose that PAR-3 facilitates polarization by promoting the initial clustering of junction and polarity proteins that then travel and accumulate apically. Unexpectedly, superficial epidermal cells form apical junctions in the absence of PAR-3, and we show that PAR-6 has a PAR-3-independent role in these cells to promote apical junction maturation. These findings indicate that PAR-3 and PAR-6 function sequentially to position and mature apical junctions, and that the requirement for PAR-3 can vary in different types of epithelial cells.
Collapse
Affiliation(s)
- Annita Achilleos
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
48
|
Hoffmann M, Segbert C, Helbig G, Bossinger O. Intestinal tube formation in Caenorhabditis elegans requires vang-1 and egl-15 signaling. Dev Biol 2010; 339:268-79. [DOI: 10.1016/j.ydbio.2009.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
49
|
Carberry K, Wiesenfahrt T, Windoffer R, Bossinger O, Leube RE. Intermediate filaments in Caenorhabditis elegans. ACTA ACUST UNITED AC 2009; 66:852-64. [PMID: 19437512 DOI: 10.1002/cm.20372] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intermediate filaments (IFs) make up one of the three major fibrous cytoskeletal systems in metazoans. Numerous IF polypeptides are synthesized in cell type-specific combinations suggesting specialized functions. The review concentrates on IFs in the model organism Caenorhabditis elegans which carries great promise to elucidate the still unresolved mechanisms of IF assembly into complex networks and to determine IF function in a living organism. In contrast to Drosophila melanogaster, which lacks cytoplasmic IFs altogether, the nematode genome contains 11 genes coding for cytoplasmic IFs and only a single gene for a nuclear lamin. Its cytoplasmic IFs are expressed in developmentally and spatially defined patterns. As an example we present the case of the intestinal IFs which are abundant in the mechanically resilient endotube, a prominent feature of the C. elegans intestinal terminal web region. This IF-rich structure brings together all three cytoskeletal filaments that are integrated into a coherent entity by the C. elegans apical junction (CeAJ) thereby completely surrounding and stabilizing the intestinal lumen with its characteristic brush border. Concepts on the developmental establishment of the endotube in relation to polarization and its function for maintenance of epithelial integrity are discussed. Furthermore, possible connections of the cytoplasmic cytoskeleton to the nuclear lamin IFs and the importance of these links for nuclear positioning are summarized.
Collapse
Affiliation(s)
- Katrin Carberry
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
50
|
Kang J, Shin D, Yu JR, Lee J. Lats kinase is involved in the intestinal apical membrane integrity in the nematode Caenorhabditis elegans. Development 2009; 136:2705-15. [PMID: 19605499 DOI: 10.1242/dev.035485] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The roles of Lats kinases in the regulation of cell proliferation and apoptosis have been well established. Here we report new roles for Lats kinase in the integrity of the apical membrane structure. WTS-1, the C. elegans Lats homolog, localized primarily to the subapical region in the intestine. A loss-of-function mutation in wts-1 resulted in an early larval arrest and defects in the structure of the intestinal lumen. An electron microscopy study of terminally arrested wts-1 mutant animals revealed numerous microvilli-containing lumen-like structures within the intestinal cells. The wts-1 phenotype was not caused by cell proliferation or apoptosis defects. Instead, we found that the wts-1 mutant animals exhibited gradual mislocalization of apical actin and apical junction proteins, suggesting that wts-1 normally suppresses the formation of extra apical membrane structures. Heat-shock-driven pulse-chase expression experiments showed that WTS-1 regulates the localization of newly synthesized apical actins. RNAi of the exocyst complex genes suppressed the mislocalization phenotype of wts-1 mutation. Collectively, the data presented here suggest that Lats kinase plays important roles in the integrity of the apical membrane structure of intestinal cells.
Collapse
Affiliation(s)
- Junsu Kang
- Research Center for Functional Cellulomics, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|