1
|
Zeldich E, Rajkumar S. Identity and Maturity of iPSC-Derived Oligodendrocytes in 2D and Organoid Systems. Cells 2024; 13:674. [PMID: 38667289 PMCID: PMC11049552 DOI: 10.3390/cells13080674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oligodendrocytes originating in the brain and spinal cord as well as in the ventral and dorsal domains of the neural tube are transcriptomically and functionally distinct. These distinctions are also reflected in the ultrastructure of the produced myelin, and the susceptibility to myelin-related disorders, which highlights the significance of the choice of patterning protocols in the differentiation of induced pluripotent stem cells (iPSCs) into oligodendrocytes. Thus, our first goal was to survey the different approaches applied to the generation of iPSC-derived oligodendrocytes in 2D culture and in organoids, as well as reflect on how these approaches pertain to the regional and spatial fate of the generated oligodendrocyte progenitors and myelinating oligodendrocytes. This knowledge is increasingly important to disease modeling and future therapeutic strategies. Our second goal was to recap the recent advances in the development of oligodendrocyte-enriched organoids, as we explore their relevance to a regional specification alongside their duration, complexity, and maturation stages of oligodendrocytes and myelin biology. Finally, we discuss the shortcomings of the existing protocols and potential future explorations.
Collapse
Affiliation(s)
- Ella Zeldich
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Neurophotonics Center, Boston University, Boston, MA 02115, USA
| | - Sandeep Rajkumar
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Maniou E, Farah F, Marshall AR, Crane-Smith Z, Krstevski A, Stathopoulou A, Greene NDE, Copp AJ, Galea GL. Caudal Fgfr1 disruption produces localised spinal mis-patterning and a terminal myelocystocele-like phenotype in mice. Development 2023; 150:dev202139. [PMID: 37756583 PMCID: PMC10617625 DOI: 10.1242/dev.202139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice. Here, we document equivalent morphology of the caudal-most closing posterior neuropore (PNP) in mice and humans. Closure 5 forms in a region of active FGF signalling, and pharmacological FGF receptor blockade impairs its formation in cultured mouse embryos. Conditional genetic deletion of Fgfr1 in caudal embryonic tissues with Cdx2Cre diminishes neuroepithelial proliferation, impairs Closure 5 formation and delays PNP closure. After closure, the distal NT of Fgfr1-disrupted embryos dilates to form a fluid-filled sac overlying ventrally flattened spinal cord. This phenotype resembles terminal myelocystocele. Histological analysis reveals regional and progressive loss of SHH- and FOXA2-positive ventral NT domains, resulting in OLIG2 labelling of the ventral-most NT. The OLIG2 domain is also subsequently lost, eventually producing a NT that is entirely positive for the dorsal marker PAX3. Thus, a terminal myelocystocele-like phenotype can arise after completion of NT closure with localised spinal mis-patterning caused by disruption of FGFR1 signalling.
Collapse
Affiliation(s)
- Eirini Maniou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Faduma Farah
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Abigail R. Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Zoe Crane-Smith
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrea Krstevski
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D. E. Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J. Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L. Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
3
|
Masson MA, Nait-Oumesmar B. Emerging concepts in oligodendrocyte and myelin formation, inputs from the zebrafish model. Glia 2023; 71:1147-1163. [PMID: 36645033 DOI: 10.1002/glia.24336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS), which are derived from OL precursor cells. Myelin insulates axons allowing the saltatory conduction of action potentials and also provides trophic and metabolic supports to axons. Interestingly, oligodendroglial cells have the capacity to sense neuronal activity, which regulates myelin sheath formation via the vesicular release of neurotransmitters. Neuronal activity-dependent regulation of myelination is mediated by specialized interaction between axons and oligodendroglia, involving both synaptic and extra-synaptic modes of communications. The zebrafish has provided key advantages for the study of the myelination process in the CNS. External development and transparent larval stages of this vertebrate specie combined with the existence of several transgenic reporter lines provided key advances in oligodendroglial cell biology, axo-glial interactions and CNS myelination. In this publication, we reviewed and discussed the most recent knowledge on OL development and myelin formation, with a focus on mechanisms regulating these fundamental biological processes in the zebrafish. Especially, we highlighted the critical function of axons and oligodendroglia modes of communications and calcium signaling in myelin sheath formation and growth. Finally, we reviewed the relevance of these knowledge's in demyelinating diseases and drug discovery of pharmacological compounds favoring myelin regeneration.
Collapse
Affiliation(s)
- Mary-Amélie Masson
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Brahim Nait-Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
5
|
Somaiya RD, Huebschman NA, Chaunsali L, Sabbagh U, Carrillo GL, Tewari BP, Fox MA. Development of astrocyte morphology and function in mouse visual thalamus. J Comp Neurol 2022; 530:945-962. [PMID: 34636034 PMCID: PMC8957486 DOI: 10.1002/cne.25261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
The rodent visual thalamus has served as a powerful model to elucidate the cellular and molecular mechanisms that underlie sensory circuit formation and function. Despite significant advances in our understanding of the role of axon-target interactions and neural activity in orchestrating circuit formation in visual thalamus, the role of non-neuronal cells, such as astrocytes, is less clear. In fact, we know little about the transcriptional identity and development of astrocytes in mouse visual thalamus. To address this gap in knowledge, we studied the expression of canonical astrocyte molecules in visual thalamus using immunostaining, in situ hybridization, and reporter lines. While our data suggests some level of heterogeneity of astrocytes in different nuclei of the visual thalamus, the majority of thalamic astrocytes appeared to be labeled in Aldh1l1-EGFP mice. This led us to use this transgenic line to characterize the neonatal and postnatal development of these cells in visual thalamus. Our data show that not only have the entire cohort of astrocytes migrated into visual thalamus by eye-opening but they also have acquired their adult-like morphology, even while retinogeniculate synapses are still maturing. Furthermore, ultrastructural, immunohistochemical, and functional approaches revealed that by eye-opening, thalamic astrocytes ensheathe retinogeniculate synapses and are capable of efficient uptake of glutamate. Taken together, our results reveal that the morphological, anatomical, and functional development of astrocytes in visual thalamus occurs prior to eye-opening and the emergence of experience-dependent visual activity.
Collapse
Affiliation(s)
- Rachana D. Somaiya
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Natalie A. Huebschman
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Neuroscience Department, Ohio Wesleyan University, Delaware, OH 43015
| | - Lata Chaunsali
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience Graduate Program, Virginia Tech, Blacksburg, VA 24061
| | - Ubadah Sabbagh
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Gabriela L. Carrillo
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Bhanu P. Tewari
- Neuroscience Department, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
6
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
7
|
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Front Mol Neurosci 2022; 15:827275. [PMID: 35370542 PMCID: PMC8965007 DOI: 10.3389/fnmol.2022.827275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are a group of potent morphogens which are critical for the patterning, development, and function of the central nervous system. The appropriate function of the BMP pathway depends on its interaction with other signaling pathways involved in neural differentiation, leading to synergistic or antagonistic effects and ultimately favorable biological outcomes. These opposite or cooperative effects are observed when BMP interacts with fibroblast growth factor (FGF), cytokines, Notch, Sonic Hedgehog (Shh), and Wnt pathways to regulate the impact of BMP-induced signaling in neural differentiation. Herein, we review the cross-talk between BMP signaling and the prominent signaling pathways involved in neural differentiation, emphasizing the underlying basic molecular mechanisms regarding the process of neural differentiation. Knowing these cross-talks can help us to develop new approaches in regenerative medicine and stem cell based therapy. Recently, cell therapy has received significant attention as a promising treatment for traumatic or neurodegenerative diseases. Therefore, it is important to know the signaling pathways involved in stem cell differentiation toward neural cells. Our better insight into the cross-talk of signaling pathways during neural development would improve neural differentiation within in vitro tissue engineering approaches and pre-clinical practices and develop futuristic therapeutic strategies for patients with neurological disease.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University, Mashhad, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Gingrich EC, Case K, Garcia ADR. A subpopulation of astrocyte progenitors defined by Sonic hedgehog signaling. Neural Dev 2022; 17:2. [PMID: 35027088 PMCID: PMC8759290 DOI: 10.1186/s13064-021-00158-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The molecular signaling pathway, Sonic hedgehog (Shh), is critical for the proper development of the central nervous system. The requirement for Shh signaling in neuronal and oligodendrocyte development in the developing embryo are well established. However, Shh activity is found in discrete subpopulations of astrocytes in the postnatal and adult brain. Whether Shh signaling plays a role in astrocyte development is not well understood. METHODS Here, we use a genetic inducible fate mapping approach to mark and follow a population of glial progenitor cells expressing the Shh target gene, Gli1, in the neonatal and postnatal brain. RESULTS In the neonatal brain, Gli1-expressing cells are found in the dorsolateral corner of the subventricular zone (SVZ), a germinal zone harboring astrocyte progenitor cells. Our data show that these cells give rise to half of the cortical astrocyte population, demonstrating their substantial contribution to the cellular composition of the cortex. Further, these data suggest that the cortex harbors astrocytes from different lineages. Gli1 lineage astrocytes are distributed across all cortical layers, positioning them for broad influence over cortical circuits. Finally, we show that Shh activity recurs in mature astrocytes in a lineage-independent manner, suggesting cell-type dependent roles of the pathway in driving astrocyte development and function. CONCLUSION These data identify a novel role for Shh signaling in cortical astrocyte development and support a growing body of evidence pointing to astrocyte heterogeneity.
Collapse
Affiliation(s)
- Ellen C Gingrich
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Drexel University, 3245 Chestnut St. PISB 422, Philadelphia, PA, 19104, USA
| | - Kendra Case
- Drexel University, 3245 Chestnut St. PISB 422, Philadelphia, PA, 19104, USA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - A Denise R Garcia
- Drexel University, 3245 Chestnut St. PISB 422, Philadelphia, PA, 19104, USA.
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
9
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
10
|
Scott K, O'Rourke R, Winkler CC, Kearns CA, Appel B. Temporal single-cell transcriptomes of zebrafish spinal cord pMN progenitors reveal distinct neuronal and glial progenitor populations. Dev Biol 2021; 479:37-50. [PMID: 34303700 PMCID: PMC8410680 DOI: 10.1016/j.ydbio.2021.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Ventral spinal cord progenitor cells, which express the basic helix loop helix transcription factor Olig2, sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Following specification some OPCs differentiate as myelinating oligodendrocytes while others persist as OPCs. Though a considerable amount of work has described the molecular profiles that define motor neurons, OPCs, and oligodendrocytes, less is known about the progenitors that produce them. To identify the developmental origins and transcriptional profiles of motor neurons and OPCs, we performed single-cell RNA sequencing on isolated pMN cells from embryonic zebrafish trunk tissue at stages that encompassed motor neurogenesis, OPC specification, and initiation of oligodendrocyte differentiation. Downstream analyses revealed two distinct pMN progenitor populations: one that appears to produce neurons and one that appears to produce OPCs. This latter population, called Pre-OPCs, is marked by expression of GS Homeobox 2 (gsx2), a gene that encodes a homeobox transcription factor. Using fluorescent in situ hybridizations, we identified gsx2-expressing Pre-OPCs in the spinal cord prior to expression of canonical OPC marker genes. Our data therefore reveal heterogeneous gene expression profiles among pMN progenitors, supporting prior fate mapping evidence.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA; Cell Biology, Stem Cells and Development Training Program, Colorado, 80045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA
| | - Caitlin C Winkler
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA; RNA Bioscience Initiative and Department of Biochemistry and Molecular Genetics, Colorado, 80045, USA
| | - Christina A Kearns
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA; Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG. Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther 2021; 21:1411-1427. [PMID: 33830863 DOI: 10.1080/14712598.2021.1914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Traumatic Spinal Cord Injury (SCI) results from primary physical injury to the spinal cord, which initiates a secondary cascade of neural cell death. Current therapeutic approaches can attenuate the consequences of the primary and secondary events, but do not address the degenerative aspects of SCI. Transplantation of neural stem/progenitor cells (NPCs) for the replacement of the lost/damaged neural cells is suggested here as a regenerative approach that is complementary to current therapeutics.Areas Covered: This review addresses how neurons, oligodendrocytes, and astrocytes are impacted by traumatic SCI, and how current research in regenerative-NPC therapeutics aims to restore their functionality. Methods used to enhance graft survival, as well as bias progenitor cells towards neuronal, oligodendrogenic, and astroglia lineages are discussed.Expert Opinion: Despite an NPC's ability to differentiate into neurons, oligodendrocytes, and astrocytes in the transplant environment, their potential therapeutic efficacy requires further optimization prior to translation into the clinic. Considering the temporospatial identity of NPCs could promote neural repair in region specific injuries throughout the spinal cord. Moreover, understanding which cells are targeted by NPC-derived myelinating cells can help restore physiologically-relevant myelin patterns. Finally, the duality of astrocytes is discussed, outlining their context-dependent importance in the treatment of SCI.
Collapse
Affiliation(s)
- William Brett McIntyre
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Paredes I, Vieira JR, Shah B, Ramunno CF, Dyckow J, Adler H, Richter M, Schermann G, Giannakouri E, Schirmer L, Augustin HG, Ruiz de Almodóvar C. Oligodendrocyte precursor cell specification is regulated by bidirectional neural progenitor-endothelial cell crosstalk. Nat Neurosci 2021; 24:478-488. [PMID: 33510480 PMCID: PMC8411877 DOI: 10.1038/s41593-020-00788-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
Neural-derived signals are crucial regulators of CNS vascularization. However, whether the vasculature responds to these signals by means of elongating and branching or in addition by building a feedback response to modulate neurodevelopmental processes remains unknown. In this study, we identified bidirectional crosstalk between the neural and the vascular compartment of the developing CNS required for oligodendrocyte precursor cell specification. Mechanistically, we show that neural progenitor cells (NPCs) express angiopoietin-1 (Ang1) and that this expression is regulated by Sonic hedgehog. We demonstrate that NPC-derived Ang1 signals to its receptor, Tie2, on endothelial cells to induce the production of transforming growth factor beta 1 (TGFβ1). Endothelial-derived TGFβ1, in turn, acts as an angiocrine molecule and signals back to NPCs to induce their commitment toward oligodendrocyte precursor cells. This work demonstrates a true bidirectional collaboration between NPCs and the vasculature as a critical regulator of oligodendrogenesis.
Collapse
Affiliation(s)
- Isidora Paredes
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - José Ricardo Vieira
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carla F Ramunno
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Dyckow
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Adler
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Melanie Richter
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Geza Schermann
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Evangelia Giannakouri
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Zhang H, Younsi A, Zheng G, Tail M, Harms AK, Roth J, Hatami M, Skutella T, Unterberg A, Zweckberger K. Sonic Hedgehog modulates the inflammatory response and improves functional recovery after spinal cord injury in a thoracic contusion-compression model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1509-1520. [PMID: 33704579 DOI: 10.1007/s00586-021-06796-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury to the central nervous system (CNS). We, therefore, investigated the effects of intrathecal Shh-administration in the subacute phase after thoracic spinal cord injury (SCI) on secondary injury processes in rats. METHODS Twenty-one Wistar rats were subjected to thoracic clip-contusion/compression SCI at T9. Animals were randomized into three treatment groups (Shh, Vehicle, Sham). Seven days after SCI, osmotic pumps were implanted for seven-day continuous intrathecal administration of Shh. Basso, Beattie and Bresnahan (BBB) score, Gridwalk test and bodyweight were weekly assessed. Animals were sacrificed six weeks after SCI and immunohistological analyses were conducted. The results were compared between groups and statistical analysis was performed (p < 0.05 was considered significant). RESULTS The intrathecal administration of Shh led to significantly increased polarization of macrophages toward the anti-inflammatory M2-phenotype, significantly decreased T-lymphocytic invasion and significantly reduced resident microglia six weeks after the injury. Reactive astrogliosis was also significantly reduced while changes in size of the posttraumatic cyst as well as the overall macrophagic infiltration, although reduced, remained insignificant. Finally, with the administration of Shh, gain of bodyweight (216.6 ± 3.65 g vs. 230.4 ± 5.477 g; p = 0.0111) and BBB score (8.2 ± 0.2 vs. 5.9 ± 0.7 points; p = 0.0365) were significantly improved compared to untreated animals six weeks after SCI as well. CONCLUSION Intrathecal Shh-administration showed neuroprotective effects with attenuated neuroinflammation, reduced astrogliosis and improved functional recovery six weeks after severe contusion/compression SCI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
| | - Guoli Zheng
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Mohamed Tail
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Anna-Kathrin Harms
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Judith Roth
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Maryam Hatami
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Heidelberg, INF 307, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Klaus Zweckberger
- Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Danesin C, Darche-Gabinaud R, Escalas N, Bouguetoch V, Cochard P, Al Oustah A, Ohayon D, Glise B, Soula C. Sulf2a controls Shh-dependent neural fate specification in the developing spinal cord. Sci Rep 2021; 11:118. [PMID: 33420239 PMCID: PMC7794431 DOI: 10.1038/s41598-020-80455-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specification of ventral progenitors. More specifically, Sulf2a prevents Olig2 progenitors to activate high-threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specification in Shh target cells, provides direct evidence of non-redundant functions of Sulfs in the developing spinal cord.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France.
| | - Romain Darche-Gabinaud
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Nathalie Escalas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Vanessa Bouguetoch
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Philippe Cochard
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Amir Al Oustah
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - David Ohayon
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Bruno Glise
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| | - Cathy Soula
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS (UMR 5547), Toulouse, France
| |
Collapse
|
15
|
Scott K, O'Rourke R, Gillen A, Appel B. Prdm8 regulates pMN progenitor specification for motor neuron and oligodendrocyte fates by modulating the Shh signaling response. Development 2020; 147:dev191023. [PMID: 32680935 PMCID: PMC7473643 DOI: 10.1242/dev.191023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8, which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Austin Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| |
Collapse
|
16
|
Starikov L, Kottmann AH. Diminished Ventral Oligodendrocyte Precursor Generation Results in the Subsequent Over-production of Dorsal Oligodendrocyte Precursors of Aberrant Morphology and Function. Neuroscience 2020; 450:15-28. [PMID: 32450295 DOI: 10.1016/j.neuroscience.2020.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) arise sequentially first from a ventral and then from a dorsal precursor domain at the end of neurogenesis during spinal cord development. Whether the sequential production of OPCs is of physiological significance has not been examined. Here we show that ablating Shh signaling from nascent ventricular zone derivatives and partially from the floor plate results in a severe diminishment of ventral derived OPCs but normal numbers of motor neurons in the postnatal spinal cord. In the absence of ventral vOPCs, dorsal dOPCs populate the entire spinal cord resulting in an increased OPC density in the ventral horns. These OPCs take on an altered morphology, do not participate in the removal of excitatory vGlut1 synapses from injured motor neurons, and exhibit morphological features similar to those found in the vicinity of motor neurons in the SOD1 mouse model of Amyotrophic Lateral Sclerosis (ALS). Our data indicate that vOPCs prevent dOPCs from invading ventral spinal cord laminae and suggest that vOPCs have a unique ability to communicate with injured motor neurons.
Collapse
Affiliation(s)
- Lev Starikov
- City University of New York School of Medicine (CSOM) at City College of New York, Dept. of Molecular, Cellular and Biomedical Sciences, New York City, NY 10031, USA; City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York City, NY 10016, USA
| | - Andreas H Kottmann
- City University of New York School of Medicine (CSOM) at City College of New York, Dept. of Molecular, Cellular and Biomedical Sciences, New York City, NY 10031, USA; City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York City, NY 10016, USA.
| |
Collapse
|
17
|
Ravanelli AM, Kearns CA, Powers RK, Wang Y, Hines JH, Donaldson MJ, Appel B. Sequential specification of oligodendrocyte lineage cells by distinct levels of Hedgehog and Notch signaling. Dev Biol 2018; 444:93-106. [PMID: 30347186 DOI: 10.1016/j.ydbio.2018.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023]
Abstract
During development of the central nervous system oligodendrocyte precursor cells (OPCs) give rise to both myelinating oligodendrocytes and NG2 glia, which are the most proliferative cells in the adult mammalian brain. NG2 glia retain characteristics of OPCs, and some NG2 glia produce oligodendrocytes, but many others persist throughout adulthood. Why some OPCs differentiate as oligodendrocytes during development whereas others persist as OPCs and acquire characteristics of NG2 glia is not known. Using zebrafish spinal cord as a model, we found that OPCs that differentiate rapidly as oligodendrocytes and others that remain as OPCs arise in sequential waves from distinct neural progenitors. Additionally, oligodendrocyte and persistent OPC fates are specified during a defined critical period by small differences in Shh signaling and Notch activity, which modulates Shh signaling response. Thus, our data indicate that OPCs fated to produce oligodendrocytes or remain as OPCs during development are specified as distinct cell types, raising the possibility that the myelinating potential of OPCs is set by graded Shh signaling activity.
Collapse
Affiliation(s)
- Andrew M Ravanelli
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christina A Kearns
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rani K Powers
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yuying Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jacob H Hines
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maranda J Donaldson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bruce Appel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Farreny MA, Agius E, Bel-Vialar S, Escalas N, Khouri-Farah N, Soukkarieh C, Danesin C, Pituello F, Cochard P, Soula C. FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord. Neural Dev 2018. [PMID: 29519242 PMCID: PMC5842613 DOI: 10.1186/s13064-018-0100-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs). Results Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord. Conclusion Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.
Collapse
Affiliation(s)
- Marie-Amélie Farreny
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Nathalie Escalas
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Nagham Khouri-Farah
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Chadi Soukkarieh
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Philippe Cochard
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France.
| |
Collapse
|
19
|
Hashimoto H, Jiang W, Yoshimura T, Moon KH, Bok J, Ikenaka K. Strong sonic hedgehog signaling in the mouse ventral spinal cord is not required for oligodendrocyte precursor cell (OPC) generation but is necessary for correct timing of its generation. Neurochem Int 2017; 119:178-183. [PMID: 29122585 DOI: 10.1016/j.neuint.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
In the mouse neural tube, sonic hedgehog (Shh) secreted from the floor plate (FP) and the notochord (NC) regulates ventral patterning of the neural tube, and later is essential for the generation of oligodendrocyte precursor cells (OPCs). During early development, the NC is adjacent to the neural tube and induces ventral domains in it, including the FP. In the later stage of development, during gliogenesis in the spinal cord, the pMN domain receives strong Shh signaling input. While this is considered to be essential for the generation of OPCs, the actual role of this strong input in OPC generation remains unclear. Here we studied OPC generation in bromi mutant mice which show abnormal ciliary structure. Shh signaling occurs within cilia and has been reported to be weak in bromi mutants. At E11.5, accumulation of Patched1 mRNA, a Shh signaling reporter, is observed in the pMN domain of wild type but not bromi mutants, whereas expression of Gli1 mRNA, another Shh reporter, disappeared. Thus, Shh signaling input to the pMN domain at E12.5 was reduced in bromi mutant mice. In these mutants, induction of the FP structure was delayed and its size was reduced compared to wild type mice. Furthermore, while the p3 and pMN domains were induced, the length of the Nkx2.2-positive region and the number of Olig2-positive cells decreased. The number of OPCs was also significantly decreased in the E12.5 and E14.5 bromi mutant spinal cord. In contrast, motor neuron (MN) production, detected by HB9 expression, significantly increased. It is likely that the transition from MN production to OPC generation in the pMN domain is impaired in bromi mutant mice. These results suggest that strong Shh input to the pMN domain is not required for OPC generation but is essential for producing a sufficient number of OPCs.
Collapse
Affiliation(s)
- Hirokazu Hashimoto
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Wen Jiang
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Kyeong-Hye Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
20
|
Danesin C, Soula C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J Dev Biol 2017; 5:jdb5020004. [PMID: 29615562 PMCID: PMC5831764 DOI: 10.3390/jdb5020004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| |
Collapse
|
21
|
Zhang Z, Li Z, Deng W, He Q, Wang Q, Shi W, Chen Q, Yang W, Spector M, Gong A, Yu J, Xu X. Ectoderm mesenchymal stem cells promote differentiation and maturation of oligodendrocyte precursor cells. Biochem Biophys Res Commun 2016; 480:727-733. [PMID: 27983986 DOI: 10.1016/j.bbrc.2016.10.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022]
Abstract
Many neurological diseases are closely associated with demyelination caused by pathological changes of oligodendrocytes. Although intrinsic remyelination occurs after injury, the regeneration efficiency of myelinating oligodendrocytes remains to be improved. Herein, we reported an initiative finding of employing a valuable cell source, namely neural crest-derived ectoderm mesenchymal stem cells (EMSCs), for promoting oligodendrocyte differentiation and maturation by co-culturing oligodendrocyte precursor cells (OPCs) with the EMSCs. The results demonstrated that the OPCs/EMSCs co-culture could remarkably increase the number and length of oligodendrocyte processes in comparison with the mono-cultured OPCs and non-contact OPCs/EMSCs transwell culture. Furthermore, the inhibition experiments revealed that the EMSCs-produced soluble factor Sonic hedgehog, gap junction protein connexin 43 and extracellular matrix molecule laminin accounted for the promoted OPC differentiation since inhibiting the function of anyone of the three proteins led to substantial retraction of processes and detachment of oligodendrocytes. Altogether, OPCs/EMSCs co-culture system could be a paradigmatic approach for promoting differentiation and maturation of oligodendrocytes, and EMSCs will be a promising cell source for the treatment of neurological diseases caused by oligodendrocyte death and demyelination.
Collapse
Affiliation(s)
- Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China
| | - Zhengnan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China
| | - Wenwen Deng
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Qinghua He
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Qiang Wang
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Wentao Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China
| | - Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China
| | - Wenjing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China
| | - Myron Spector
- Department of Orthopedic Surgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China
| | - Jiangnan Yu
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Ximing Xu
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China.
| |
Collapse
|
22
|
Traiffort E, Zakaria M, Laouarem Y, Ferent J. Hedgehog: A Key Signaling in the Development of the Oligodendrocyte Lineage. J Dev Biol 2016; 4:jdb4030028. [PMID: 29615592 PMCID: PMC5831774 DOI: 10.3390/jdb4030028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023] Open
Abstract
The Hedgehog morphogen aroused an enormous interest since it was characterized as an essential signal for ventral patterning of the spinal cord two decades ago. The pathway is notably implicated in the initial appearance of the progenitors of oligodendrocytes (OPCs), the glial cells of the central nervous system which after maturation are responsible for axon myelination. In accordance with the requirement for Hedgehog signaling in ventral patterning, the earliest identifiable cells in the oligodendrocyte lineage are derived from the ventral ventricular zone of the developing spinal cord and brain. Here, we present the current knowledge about the involvement of Hedgehog signaling in the strict spatial and temporal regulation which characterizes the initiation and progression of the oligodendrocyte lineage. We notably describe the ability of the Hedgehog signaling to tightly orchestrate the appearance of specific combinations of genes in concert with other pathways. We document the molecular mechanisms controlling Hedgehog temporal activity during OPC specification. The contribution of the pathway to aspects of OPC development different from their specification is also highlighted especially in the optic nerve. Finally, we report the data demonstrating that Hedgehog signaling-dependency is not a universal situation for oligodendrocyte generation as evidenced in the dorsal spinal cord in contrast to the dorsal forebrain.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Mary Zakaria
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Yousra Laouarem
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Julien Ferent
- IRCM, Molecular Biology of Neural Development, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada.
| |
Collapse
|
23
|
Abstract
Oligodendrocyte precursor cells (OPCs) originate in the ventricular zones (VZs) of the brain and spinal cord and migrate throughout the developing central nervous system (CNS) before differentiating into myelinating oligodendrocytes (OLs). It is not known whether OPCs or OLs from different parts of the VZ are functionally distinct. OPCs persist in the postnatal CNS, where they continue to divide and generate myelinating OLs at a decreasing rate throughout adult life in rodents. Adult OPCs respond to injury or disease by accelerating their cell cycle and increasing production of OLs to replace lost myelin. They also form synapses with unmyelinated axons and respond to electrical activity in those axons by generating more OLs and myelin locally. This experience-dependent "adaptive" myelination is important in some forms of plasticity and learning, for example, motor learning. We review the control of OL lineage development, including OL population dynamics and adaptive myelination in the adult CNS.
Collapse
Affiliation(s)
- Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, WBSB 1001, Baltimore, Maryland 21205
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
24
|
Jia Y, Wu D, Zhang R, Shuang W, Sun J, Hao H, An Q, Liu Q. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats. Neurosci Lett 2014; 573:46-51. [PMID: 24837681 DOI: 10.1016/j.neulet.2014.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/06/2014] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans.
Collapse
Affiliation(s)
- Yijia Jia
- Department of Orthopaedics, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, PR China
| | - Dou Wu
- Department of Orthopaedics, Dayi Hospital of Shanxi Medical University, Taiyuan 030032, PR China
| | - Ruiping Zhang
- Department of Radiology, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, PR China
| | - Weibing Shuang
- Department of Urology, First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, PR China
| | - Jiping Sun
- Department of Orthopaedics, Dayi Hospital of Shanxi Medical University, Taiyuan 030032, PR China
| | - Haihu Hao
- Department of Orthopaedics, Dayi Hospital of Shanxi Medical University, Taiyuan 030032, PR China
| | - Qijun An
- Department of Orthopaedics, Dayi Hospital of Shanxi Medical University, Taiyuan 030032, PR China
| | - Qiang Liu
- Department of Orthopaedics, Dayi Hospital of Shanxi Medical University, Taiyuan 030032, PR China.
| |
Collapse
|
25
|
Al Oustah A, Danesin C, Khouri-Farah N, Farreny MA, Escalas N, Cochard P, Glise B, Soula C. Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development 2014; 141:1392-403. [PMID: 24595292 DOI: 10.1242/dev.101717] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.
Collapse
Affiliation(s)
- Amir Al Oustah
- University of Toulouse, Center for Developmental Biology, UMR 5547 CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lindsly C, Gonzalez-Islas C, Wenner P. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons. PLoS One 2014; 9:e94559. [PMID: 24733046 PMCID: PMC3986094 DOI: 10.1371/journal.pone.0094559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/18/2014] [Indexed: 12/03/2022] Open
Abstract
Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.
Collapse
Affiliation(s)
- Casie Lindsly
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, United States of America
| | - Carlos Gonzalez-Islas
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, United States of America
| | - Peter Wenner
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Francius C, Harris A, Rucchin V, Hendricks TJ, Stam FJ, Barber M, Kurek D, Grosveld FG, Pierani A, Goulding M, Clotman F. Identification of multiple subsets of ventral interneurons and differential distribution along the rostrocaudal axis of the developing spinal cord. PLoS One 2013; 8:e70325. [PMID: 23967072 PMCID: PMC3744532 DOI: 10.1371/journal.pone.0070325] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023] Open
Abstract
The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Timothy J. Hendricks
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Floor J. Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Melissa Barber
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dorota Kurek
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank G. Grosveld
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
- * E-mail:
| |
Collapse
|
28
|
Sulfatase 1 promotes the motor neuron-to-oligodendrocyte fate switch by activating Shh signaling in Olig2 progenitors of the embryonic ventral spinal cord. J Neurosci 2013; 32:18018-34. [PMID: 23238718 DOI: 10.1523/jneurosci.3553-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing ventral spinal cord, motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) are sequentially generated from a common pool of neural progenitors included in the so-called pMN domain characterized by Olig2 expression. Here, we establish that the secreted Sulfatase 1 (Sulf1) is a major component of the mechanism that causes these progenitors to stop producing MNs and change their fate to generate OPCs. We show that specification of OPCs is severely affected in sulf1-deficient mouse embryos. This defect does not rely on abnormal patterning of the spinal cord or failure in maintenance of pMN progenitors at the onset of OPC specification. Instead, the efficiency of OPC induction is reduced, only few Olig2 progenitors are recruited to generate OPCs, meanwhile they continue to produce MNs beyond the normal timing of the neuroglial switch. Using the chicken embryo, we show that Sulf1 activity is required precisely at the stage of the MN-to-OPC fate switch. Finally, we bring arguments supporting the view that Sulf1 controls the level of Sonic Hedgehog (Shh) signaling activity, behaving as an enhancer rather than an obligatory component in the Shh pathway. Our study provides additional insights into the temporal control of Olig2 progenitor cell fate change by the identification of Sulf1 as an extracellular timing signal in the ventral spinal cord.
Collapse
|
29
|
Shahi MH, Rey JA, Castresana JS. The sonic hedgehog-GLI1 signaling pathway in brain tumor development. Expert Opin Ther Targets 2012; 16:1227-38. [PMID: 22992192 DOI: 10.1517/14728222.2012.720975] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The sonic hedgehog (Shh) pathway is a regulatory network involved in development and cancer. Proteins like Ptch, SMO, and Gli are central to the Shh pathway. Other proteins like HHIP, SUFU, Bmi-1, Cyclin D2, Plakoglobin, PAX6, Nkx2.2, and SFRP1 are not so well understood in Shh regulation as Gli-1 downstream target genes. AREAS COVERED In this review we try to explain the Shh pathway components and their role in development and cancer, mainly of the brain. A summary of each of the proteins is presented together with an overview of their involvement in cancer. EXPERT OPINION Genetic alterations of the Shh pathway have been detected in cancer stem cells, a subgroup of tumor cells implicated in the origin and maintenance of tumors, being responsible for cancer recurrence and chemotherapy resistance. Cancer stem cells constitute a novel target for biomedical researchers. Specifically, the Shh pathway is being explored as a new opportunity for targeted therapies against tumors. Therefore, a better knowledge of every of the regulators of the Shh pathway is needed.
Collapse
Affiliation(s)
- Mehdi H Shahi
- University of California, Department of Pharmacology, Davis, CA, USA
| | | | | |
Collapse
|
30
|
Oyallon J, Apitz H, Miguel-Aliaga I, Timofeev K, Ferreira L, Salecker I. Regulation of locomotion and motoneuron trajectory selection and targeting by the Drosophila homolog of Olig family transcription factors. Dev Biol 2012; 369:261-76. [PMID: 22796650 PMCID: PMC3464432 DOI: 10.1016/j.ydbio.2012.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/12/2023]
Abstract
During the development of locomotion circuits it is essential that motoneurons with distinct subtype identities select the correct trajectories and target muscles. In vertebrates, the generation of motoneurons and myelinating glia depends on Olig2, one of the five Olig family bHLH transcription factors. We investigated the so far unknown function of the single Drosophila homolog Oli. Combining behavioral and genetic approaches, we demonstrate that oli is not required for gliogenesis, but plays pivotal roles in regulating larval and adult locomotion, and axon pathfinding and targeting of embryonic motoneurons. In the embryonic nervous system, Oli is primarily expressed in postmitotic progeny, and in particular, in distinct ventral motoneuron subtypes. oli mediates axonal trajectory selection of these motoneurons within the ventral nerve cord and targeting to specific muscles. Genetic interaction assays suggest that oli acts as part of a conserved transcription factor ensemble including Lim3, Islet and Hb9. Moreover, oli is expressed in postembryonic leg-innervating motoneuron lineages and required in glutamatergic neurons for walking. Finally, over-expression of vertebrate Olig2 partially rescues the walking defects of oli-deficient flies. Thus, our findings reveal a remarkably conserved role of Drosophila Oli and vertebrate family members in regulating motoneuron development, while the steps that require their function differ in detail.
Collapse
Affiliation(s)
- Justine Oyallon
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Tien AC, Tsai HH, Molofsky AV, McMahon M, Foo LC, Kaul A, Dougherty JD, Heintz N, Gutmann DH, Barres BA, Rowitch DH. Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 2012; 139:2477-87. [PMID: 22675209 DOI: 10.1242/dev.077214] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Expansion of astrocyte populations in the central nervous system is characteristic of evolutionarily more complex organisms. However, regulation of mammalian astrocyte precursor proliferation during development remains poorly understood. Here, we used Aldh1L1-GFP to identify two morphologically distinct types of proliferative astrocyte precursors: radial glia (RG) in the ventricular zone and a second cell type we call an 'intermediate astrocyte precursor' (IAP) located in the mantle region of the spinal cord. Astrogenic RG and IAP cells proliferated in a progressive ventral-to-dorsal fashion in a tight window from embryonic day 13.5 until postnatal day 3, which correlated precisely with the pattern of active ERK signalling. Conditional loss of BRAF function using BLBP-cre resulted in a 20% decrease in astrocyte production, whereas expression of activated BRAFV600E resulted in astrocyte hyperproliferation. Interestingly, BRAFV600E mitogenic effects in astrocytes were restricted, in part, by the function of p16INK4A-p19(ARF), which limited the temporal epoch for proliferation. Together, these findings suggest that astrocyte precursor proliferation involves distinct RG and IAP cells; is subjected to temporal and spatial control; and depends in part on BRAF signalling at early stages of mammalian spinal cord development.
Collapse
Affiliation(s)
- An-Chi Tien
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Howard Hughes Medical Institute, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lowry N, Goderie SK, Lederman P, Charniga C, Gooch MR, Gracey KD, Banerjee A, Punyani S, Silver J, Kane RS, Stern JH, Temple S. The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials 2012; 33:2892-901. [DOI: 10.1016/j.biomaterials.2011.12.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/27/2011] [Indexed: 01/08/2023]
|
33
|
Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, Prochiantz A. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Development 2011; 138:4991-5001. [PMID: 22028031 DOI: 10.1242/dev.066282] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeoprotein transcription factors play fundamental roles in development, ranging from embryonic polarity to cell differentiation and migration. Research in recent years has underscored the physiological importance of homeoprotein intercellular transfer in eye field development, axon guidance and retino-tectal patterning, and visual cortex plasticity. Here, we have used the embryonic chick neural tube to investigate a possible role for homeoprotein Pax6 transfer in oligodendrocyte precursor cell (OPC) migration. We report the extracellular expression of Pax6 and the effects of gain and loss of extracellular Pax6 activity on OPCs. Open book cultures with recombinant Pax6 protein or Pax6 blocking antibodies, as well as in ovo gene transfer experiments involving expression of secreted Pax6 protein or secreted Pax6 antibodies, provide converging evidences that OPC migration is promoted by extracellular Pax6. The paracrine effect of Pax6 on OPC migration is thus a new example of direct non-cell autonomous homeoprotein activity.
Collapse
Affiliation(s)
- Elizabeth Di Lullo
- Collège de France, Center for Interdisciplinary Research in Biology, 11 place Marcelin Berthelot, Paris F-75005, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Szuchet S, Nielsen JA, Lovas G, Domowicz MS, de Velasco JM, Maric D, Hudson LD. The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype. Eur J Neurosci 2011; 34:1906-22. [PMID: 22132705 DOI: 10.1111/j.1460-9568.2011.07922.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oligodendrocytes--best known for assembling central nervous system myelin--can be categorized as precursors, myelin-forming cells and non-myelinating perineuronal cells. Perineuronal oligodendrocytes have been well characterized morphologically and ultrastructurally, but knowledge about their function remains scanty. It has been proposed that perineuronal oligodendrocytes support neurons and, following injury, transform into myelin-synthesizing cells. Recent findings implicating perineuronal oligodendrocytes in cytoarchitectural abnormalities in the prefrontal cortex of schizophrenia and other psychiatric disorders shed new light on these cells. We have obtained the genetic signature of perineuronal oligodendrocytes by identifying gene expression differences between oligodendrocyte subpopulations using cell-specific tags, microarray technology, quantitative time-resolved polymerase chain reaction and bioinformatics tools. We show that perineuronal cells are the progeny of oligodendrocyte progenitors and, hence, are members of the oligodendrocyte lineage. Physiologically they exhibit a novel phenotype. Their expression of PDGFR-αβ and its growth factor ligand PDGF-CC sets them apart from members of their lineage as this receptor precludes their response to the same growth factors that act on myelinating cells. Their coordinate expression and context-specific usage of transcription factors Olig2, Ascl1 and Pax6, together with the prominent presence of transcription factors Pea3, Lhx2 and Otx2--not hitherto linked to the oligodendrocyte lineage--suggested a cell with features that blur the boundary between a neuron and a glial cell. But they also maintain a reservoir of untranslated transcripts encoding major myelin proteins presumably for a demyelinating episode. This first molecular characterization of perineuronal oligodendrocytes revealed the striking difference between the myelinating and non-myelinating phenotypes.
Collapse
Affiliation(s)
- Sara Szuchet
- Department of Neurology, 5841 S Maryland Ave., The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH. Myelin Regeneration: A Recapitulation of Development? Annu Rev Neurosci 2011; 34:21-43. [DOI: 10.1146/annurev-neuro-061010-113629] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen P.J. Fancy
- Departments of Pediatrics and Neurosurgery, Eli and Edyth Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
| | - Jonah R. Chan
- Department of Neurology, University of California, San Francisco, California 94143
| | - Sergio E. Baranzini
- Department of Neurology, University of California, San Francisco, California 94143
| | - Robin J.M. Franklin
- MRC Center for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - David H. Rowitch
- Departments of Pediatrics and Neurosurgery, Eli and Edyth Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
- Division of Neonatology, University of California, San Francisco, California 94143;
| |
Collapse
|
36
|
Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472:51-6. [PMID: 21475194 DOI: 10.1038/nature09941] [Citation(s) in RCA: 1448] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/17/2011] [Indexed: 12/20/2022]
Abstract
Balanced organogenesis requires the orchestration of multiple cellular interactions to create the collective cell behaviours that progressively shape developing tissues. It is currently unclear how individual, localized parts are able to coordinate with each other to develop a whole organ shape. Here we report the dynamic, autonomous formation of the optic cup (retinal primordium) structure from a three-dimensional culture of mouse embryonic stem cell aggregates. Embryonic-stem-cell-derived retinal epithelium spontaneously formed hemispherical epithelial vesicles that became patterned along their proximal-distal axis. Whereas the proximal portion differentiated into mechanically rigid pigment epithelium, the flexible distal portion progressively folded inward to form a shape reminiscent of the embryonic optic cup, exhibited interkinetic nuclear migration and generated stratified neural retinal tissue, as seen in vivo. We demonstrate that optic-cup morphogenesis in this simple cell culture depends on an intrinsic self-organizing program involving stepwise and domain-specific regulation of local epithelial properties.
Collapse
|
37
|
Zhang X, Santuccione A, Leung C, Marino S. Differentiation of postnatal cerebellar glial progenitors is controlled by Bmi1 through BMP pathway inhibition. Glia 2011; 59:1118-31. [PMID: 21544870 DOI: 10.1002/glia.21184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 04/05/2011] [Indexed: 11/07/2022]
Abstract
Bmi1 is a polycomb group (Pc-G) protein involved in heritable gene repression, maintenance of cell identity, and proliferation. During the development of the central nervous system, Bmi1 is crucial for self-renewal of neural stem cells and for proliferation of neuronal (granule cell) progenitors of the cerebellum. Here, we use loss of function mouse models and in vitro assays--granule cell cultures and glial-neuronal co-cultures--to show that Bmi1 plays a crucial role in specification of glial progenitors during postnatal cerebellar development. Moreover, we demonstrate in in vitro assays that Bmi1 exerts this novel function through repression of BMP pathway and that this is independent of its known role in mediating the cellular response to Shh signaling. Thus modulation of Bmi1 expression in glial progenitors may represent a key event in determining the differentiation potential of these cells.
Collapse
Affiliation(s)
- Xinyu Zhang
- Blizard Institute of Cell and Molecular Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | | | | | | |
Collapse
|
38
|
Myelin Restoration: Progress and Prospects for Human Cell Replacement Therapies. Arch Immunol Ther Exp (Warsz) 2011; 59:179-93. [DOI: 10.1007/s00005-011-0120-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/17/2010] [Indexed: 12/12/2022]
|
39
|
Young KM, Mitsumori T, Pringle N, Grist M, Kessaris N, Richardson WD. An Fgfr3-iCreER(T2) transgenic mouse line for studies of neural stem cells and astrocytes. Glia 2010; 58:943-53. [PMID: 20155815 PMCID: PMC6329446 DOI: 10.1002/glia.20976] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The lack of markers for astrocytes, particularly gray matter astrocytes, significantly hinders research into their development and physiological properties. We previously reported that fibroblast growth factor receptor 3 (Fgfr3) is expressed by radial precursors in the ventricular zone of the embryonic neural tube and subsequently by differentiated astrocytes in gray and white matter. Here, we describe an Fgfr3-iCreER(T2) phage artificial chromosome transgenic mouse line that allows efficient tamoxifen-induced Cre recombination in Fgfr3-expressing cells, including radial glial cells in the embryonic neural tube and both fibrous and protoplasmic astrocytes in the mature central nervous system. This mouse strain will therefore be useful for studies of normal astrocyte biology and their responses to CNS injury or disease. In addition, Fgfr3-iCreER(T2) drives Cre recombination in all neurosphere-forming stem cells in the adult spinal cord and at least 90% of those in the adult forebrain subventricular zone. We made use of this to show that there is continuous accumulation of all major interneuron subtypes in the olfactory bulb (OB) from postnatal day 50 (P50) until at least P230 ( approximately 8 months of age). It therefore seems likely that adult-born interneurons integrate into existing circuitry and perform long-term functions in the adult OB.
Collapse
Affiliation(s)
- Kaylene M Young
- The Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Agius E, Decker Y, Soukkarieh C, Soula C, Cochard P. Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord. Dev Biol 2010; 344:611-20. [PMID: 20488175 DOI: 10.1016/j.ydbio.2010.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/03/2010] [Accepted: 05/12/2010] [Indexed: 11/18/2022]
Abstract
In the vertebrate central nervous system (CNS), astrocytes are the most abundant and functionally diverse glial cell population. However, the mechanisms underlying their specification and differentiation are still poorly understood. In this study, we have defined spatially and temporally the origin of astrocytes and studied the role of BMPs in astrocyte development in the embryonic chick spinal cord. Using explant cultures, we show that astrocyte precursors started migrating out of the neuroepithelium in the mantle layer from E5, and that the dorsal-most level of the neuroepithelium, from the roof plate to the dl3 level, did not generate GFAP-positive astrocytes. Using a variety of early astrocyte markers together with functional analyses, we show that dorsal-most progenitors displayed a potential for astrocyte production but that dorsally-derived BMP signalling, possibly mediated through BMP receptor 1B, promoted neuronal specification instead. BMP treatment completely prevented astrocyte development from intermediate spinal cord explants at E5, whereas it promoted it at E6. Such an abrupt change in the response of this tissue to BMP signalling could be correlated to the onset of new foci of BMP activity and enhanced expression of BMP receptor 1A, suggesting that BMP signalling could promote astrocyte development in this region.
Collapse
Affiliation(s)
- Eric Agius
- Centre de Biologie du Développement, UMR5547 CNRS/UPS, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | |
Collapse
|
41
|
Rivera FJ, Steffenhagen C, Kremer D, Kandasamy M, Sandner B, Couillard-Despres S, Weidner N, Küry P, Aigner L. Deciphering the oligodendrogenic program of neural progenitors: cell intrinsic and extrinsic regulators. Stem Cells Dev 2010; 19:595-606. [PMID: 19938982 DOI: 10.1089/scd.2009.0293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the developing and adult CNS, neural stem/progenitor cells (NSPCs) and oligodendroglial progenitor cells (OPCs) follow an oligodendrogenic process with the aim of myelinating axons. This process is to a high degree regulated by an oligodendrogenic program (OPr) composed of intrinsic and extrinsic factors that modulate the different steps required for NSPCs to differentiate into myelinating oligodendrocytes. Even though NSPCs and OPCs are present in the diseased CNS and have the capacity to generate oligodendrocytes, sparse remyelination of axons constitutes a major constraint in therapies toward multiple sclerosis (MS) and spinal cord injury (SCI). Lack of pro-oligodendrogenic factors and presence of anti-oligodendrogenic activities are thought to be the main reasons for this limitation. Thus, molecular and cellular strategies aiming at remyelination and at targeting such pro- and anti-oligodendrogenic mechanisms are currently under investigation. The present review summarizes the current knowledge on the OPr; it implements our own findings on mesenchymal stem cell-derived pro-oligodendroglial factors and on the role of p57/kip2 in oligodendroglial differentiation. Moreover, it describes molecular and cellular approaches for the development of future therapies toward remyelination.
Collapse
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch. Biochem Biophys Res Commun 2009; 390:1114-20. [DOI: 10.1016/j.bbrc.2009.08.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/13/2022]
|
43
|
Genethliou N, Panayiotou E, Panayi H, Orford M, Mean R, Lapathitis G, Malas S. Spatially distinct functions of PAX6 and NKX2.2 during gliogenesis in the ventral spinal cord. Biochem Biophys Res Commun 2009; 382:69-73. [PMID: 19258013 DOI: 10.1016/j.bbrc.2009.02.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 02/23/2009] [Indexed: 11/17/2022]
Abstract
During ventral spinal cord (vSC) development, the p3 and pMN progenitor domain boundary is thought to be maintained by cross-repressive interactions between NKX2.2 and PAX6. Using loss-of-function analysis during the neuron-glial fate switch we show that the identity of the p3 domain is not maintained by the repressive function of NKX2.2 on Pax6 expression, even in the absence of NKX2.9. We further show that NKX2.2 is necessary to induce the expression of Slit1 and Sulfatase 1 (Sulf1) in the vSC in a PAX6-independent manner. Conversely, we show that PAX6 regulates Sulf1/Slit1 expression in the vSC in an NKX2.2/NKX6.1-independent manner. Consequently, deregulation of Sulf1 expression in Pax6-mutant embryos has stage-specific implications on neural patterning, associated with enhancement of Sonic Hedgehog activity. On the other hand, deregulation of Slit1 expression in gliogenic neural progenitors leads to changes in Astrocyte subtype identity. These data provide important insights into specific functions of PAX6 and NKX2.2 during glial cell specification that have so far remained largely unexplored.
Collapse
Affiliation(s)
- Nicholas Genethliou
- The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios 2370, Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Low density lipoprotein receptor-related protein, megalin, is a multifunctional lipoproptein receptor expressed by absorptive epithelia for endocytosis of numerous ligands. Megalin is widely expressed during embryonic life and is essential for development of the nervous system as evidenced by severe forebrain abnormalities in megalin (-/-). Here, we investigated the influence of megalin deficiency on prenatal spinal cord development in mice. In contrast to wild-type mice, cells expressing Olig2 and NG2, that is, oligodendroglial precursor cells, are absent from embryonic stage E16 in megalin (-/-) mice. At the end of prenatal development, there is a failure in vertebral development, and the number of astrocytes are markedly reduced in megalin (-/-) mice. These findings indicate that megalin is essential in astro-oligodendroglial interactions during development of the spinal cord.
Collapse
|
45
|
Lowry N, Goderie SK, Adamo M, Lederman P, Charniga C, Gill J, Silver J, Temple S. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Exp Neurol 2008; 209:510-22. [DOI: 10.1016/j.expneurol.2007.09.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/22/2007] [Indexed: 01/27/2023]
|
46
|
Kessaris N, Pringle N, Richardson WD. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos Trans R Soc Lond B Biol Sci 2008; 363:71-85. [PMID: 17282992 PMCID: PMC2605487 DOI: 10.1098/rstb.2006.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All the neurons and glial cells of the central nervous system are generated from the neuroepithelial cells in the walls of the embryonic neural tube, the 'embryonic neural stem cells'. The stem cells seem to be equivalent to the so-called 'radial glial cells', which for many years had been regarded as a specialized type of glial cell. These radial cells generate different classes of neurons in a position-dependent manner. They then switch to producing glial cells (oligodendrocytes and astrocytes). It is not known what drives the neuron-glial switch, although downregulation of pro-neural basic helix-loop-helix transcription factors is one important step. This drives the stem cells from a neurogenic towards a gliogenic mode. The stem cells then choose between developing as oligodendrocytes or astrocytes, of which there might be intrinsically different subclasses. This review focuses on the different extracellular signals and intracellular responses that influence glial generation and the choice between oligodendrocyte and astrocyte fates.
Collapse
Affiliation(s)
| | | | - William D Richardson
- Wolfson Institute for Biomedical Research and Department of Biology, University College LondonGower Street, London WC1E 6BT, UK
| |
Collapse
|
47
|
Cheng X, Wang Y, He Q, Qiu M, Whittemore SR, Cao Q. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells 2007; 25:3204-14. [PMID: 17872503 PMCID: PMC2742907 DOI: 10.1634/stemcells.2007-0284] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understanding the molecular mechanisms that regulate the differentiation of adult OPCs could lead to new therapeutic strategies to treat these disorders. In this study, we established a stable culture of adult spinal cord OPCs and developed a reliable in vitro protocol to induce their sequential differentiation. Adult OPCs expressed bone morphogenetic protein (BMP) type Ia, Ib, and II receptor subunits, which are required for BMP signal transduction. BMP2 and 4 promoted dose-dependent astrocyte differentiation of adult OPCs with concurrent suppression of OL differentiation. Treatment of OPCs with BMP2 and 4 increased ID4 expression and decreased the expression of olig1 and olig2. Overexpression of olig1 or olig2 blocked the astrocyte differentiation of adult OPCs induced by BMP2 and 4. Furthermore, overexpression of both olig1 and olig2, but not olig1 or olig2 alone, rescued OL differentiation from inhibition by BMP2 and 4. Our results demonstrated that downregulation of olig1 and olig2 is an important mechanism by which BMP2 and 4 inhibit OL differentiation of adult OPCs. These data suggest that blocking BMP signaling combined with olig1/2 overexpression could be a useful therapeutic strategy to enhance endogenous remyelination and facilitate functional recovery in CNS demyelinated disorders. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Xiaoxin Cheng
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yaping Wang
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anesthesiology, Second Xian-Ya Hospital of South Central University, Changsha, Hunan, People's Republic of China
| | - Qian He
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Mengsheng Qiu
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Qilin Cao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
48
|
Petryniak MA, Potter GB, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007; 55:417-33. [PMID: 17678855 PMCID: PMC2039927 DOI: 10.1016/j.neuron.2007.06.036] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Progenitors within the ventral telencephalon can generate GABAergic neurons and oligodendrocytes, but regulation of the neuron-glial switch is poorly understood. We investigated the combinatorial expression and function of Dlx1&2, Olig2, and Mash1 transcription factors in the ventral telencephalon. We show that Dlx homeobox transcription factors, required for GABAergic interneuron production, repress oligodendrocyte precursor cell (OPC) formation by acting on a common progenitor to determine neuronal versus oligodendroglial cell fate acquisition. We demonstrate that Dlx1&2 negatively regulate Olig2-dependant OPC formation and that Mash1 promotes OPC formation by restricting the number of Dlx+ progenitors. Progenitors transplanted from Dlx1&2 mutant ventral telencephalon into newborn wild-type mice do not produce neurons but differentiate into myelinating oligodendrocytes that survive into adulthood. Our results identify another role for Dlx genes as modulators of neuron versus oligodendrocyte development in the ventral embryonic forebrain.
Collapse
Affiliation(s)
- Magdalena A. Petryniak
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
| | - Gregory B. Potter
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
| | - David H. Rowitch
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
- Institute for Regeneration Medicine, Department of Neurological Surgery, UCSF
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
| |
Collapse
|
49
|
Spence JR, Aycinena JC, Del Rio-Tsonis K. Fibroblast growth factor-hedgehog interdependence during retina regeneration. Dev Dyn 2007; 236:1161-74. [PMID: 17385725 PMCID: PMC2587111 DOI: 10.1002/dvdy.21115] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The embryonic chick is able to regenerate the retina after it has been removed. We have previously shown that proliferating stem/progenitor cells present in the ciliary body/ciliary marginal zone (CB/CMZ) of the chick eye are responsible for regeneration, which can be induced by ectopic fibroblast growth factor-2 (FGF2) or Sonic hedgehog (Shh). Here, we reveal the mechanisms showing how FGF2 and Shh signaling are interdependent during retina regeneration. If the FGF pathway is inhibited, regeneration stimulated by Shh is inhibited. Likewise, if the Hedgehog pathway is inhibited, regeneration stimulated by FGF2 is inhibited. We examined early signaling events in the CB/CMZ and found that FGF2 or Shh induced a robust Erk phosphorylation during the early stages of retina regeneration. Shh also up-regulated the expression of several members of the FGF signaling pathway. We show that ectopic FGF2 or Shh overexpression increased the number of phosphohistone 3 (PH3)-positive cells in the CB/CMZ and inhibition of either pathway decreased the number of PH3-positive cells. Additionally, both FGF and Hh signaling are required for cell survival in the CB/CMZ, whereas Hh and not FGF signaling plays a role in maintaining the identity of the retinal progenitor population in this region. Combined, our results support a model where the FGF and Hedgehog pathways work together to stimulate retina regeneration.
Collapse
|
50
|
Soustelle L, Trousse F, Jacques C, Ceron J, Cochard P, Soula C, Giangrande A. Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord. Development 2007; 134:625-34. [PMID: 17215311 DOI: 10.1242/dev.02750] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although glial cells missing (gcm) genes are known as glial determinants in the fly embryo, the role of vertebrate orthologs in the central nervous system is still under debate. Here we show for the first time that the chicken ortholog of fly gcm (herein referred to as c-Gcm1), is expressed in early neuronal lineages of the developing spinal cord and is required for neural progenitors to differentiate as neurons. Moreover, c-Gcm1 overexpression is sufficient to trigger cell cycle exit and neuronal differentiation in neural progenitors. Thus, c-Gcm1 expression constitutes a crucial step in the developmental cascade that prompts progenitors to generate neurons: c-Gcm1 acts downstream of proneural (neurogenin) and progenitor (Sox1-3) factors and upstream of NeuroM neuronal differentiation factor. Strikingly, this neurogenic role is not specific to the vertebrate gene, as fly gcmand gcm2 are also sufficient to induce the expression of neuronal markers. Interestingly, the neurogenic role is restricted to post-embryonic stages and we identify two novel brain neuronal lineages expressing and requiring gcm genes. Finally, we show that fly gcm and the chick and mouse orthologs induce expression of neural markers in HeLa cells. These data, which demonstrate a conserved neurogenic role for Gcm transcription factors, call for a re-evaluation of the mode of action of these genes during evolution.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|