1
|
Skoczynski K, Kraus A, Daniel C, Büttner-Herold M, Amann K, Schiffer M, Hermann K, Herrnberger-Eimer L, Tamm ER, Buchholz B. The extracellular matrix protein fibronectin promotes metanephric kidney development. Pflugers Arch 2024; 476:963-974. [PMID: 38563997 PMCID: PMC11139724 DOI: 10.1007/s00424-024-02954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.
Collapse
Affiliation(s)
- Kathrin Skoczynski
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Hermann
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
3
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
5
|
Kim JM, Jo Y, Jung JW, Park K. A mechanogenetic role for the actomyosin complex in branching morphogenesis of epithelial organs. Development 2021; 148:dev.190785. [PMID: 33658222 DOI: 10.1242/dev.190785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/19/2021] [Indexed: 11/20/2022]
Abstract
The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.
Collapse
Affiliation(s)
- Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ju Won Jung
- Department of Dentistry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
6
|
Belanger MC, Anbaei P, Dunn AF, Kinman AW, Pompano RR. Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Anal Chem 2020; 92:15255-15262. [PMID: 33201681 PMCID: PMC7864589 DOI: 10.1021/acs.analchem.0c03625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissues are an exciting frontier for bioanalytical chemistry, one in which spatial distribution is just as important as total content. Intact tissue preserves the native cellular and molecular organization and the cell-cell contacts found in vivo. Live tissue, in particular, offers the potential to analyze dynamic events in a spatially resolved manner, leading to fundamental biological insights and translational discoveries. In this Perspective, we provide a tutorial on the four fundamental challenges for the bioanalytical chemist working in living tissue samples as well as best practices for mitigating them. The challenges include (i) the complexity of the sample matrix, which contributes myriad interfering species and causes nonspecific binding of reagents; (ii) hindered delivery and mixing; (iii) the need to maintain physiological conditions; and (iv) tissue reactivity. This framework is relevant to a variety of methods for spatially resolved chemical analysis, including optical imaging, inserted sensors and probes such as electrodes, and surface analyses such as sensing arrays. The discussion focuses primarily on ex vivo tissues, though many considerations are relevant in vivo as well. Our goal is to convey the exciting potential of analytical chemistry to contribute to understanding the functions of live, intact tissues.
Collapse
Affiliation(s)
- Maura C. Belanger
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Austin F. Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Andrew W.L. Kinman
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| |
Collapse
|
7
|
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs. Curr Top Dev Biol 2020; 143:37-74. [PMID: 33820625 DOI: 10.1016/bs.ctdb.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tubular networks, such as the vascular and respiratory systems, transport liquids and gases in multicellular organisms. The basic units of these organs are tubes formed by single or multiple cells enclosing a luminal cavity. The formation and maintenance of correctly sized and shaped lumina are fundamental steps in organogenesis and are essential for organismal homeostasis. Therefore, understanding how cells generate, shape and maintain lumina is crucial for understanding normal organogenesis as well as the basis of pathological conditions. Lumen formation involves polarized membrane trafficking, cytoskeletal dynamics, and the influence of intracellular as well as extracellular mechanical forces, such as cortical tension, luminal pressure or blood flow. Various tissue culture and in vivo model systems, ranging from MDCK cell spheroids to tubular organs in worms, flies, fish, and mice, have provided many insights into the molecular and cellular mechanisms underlying lumenogenesis and revealed key factors that regulate the size and shape of cellular tubes. Moreover, the development of new experimental and imaging approaches enabled quantitative analyses of intracellular dynamics and allowed to assess the roles of cellular and tissue mechanics during tubulogenesis. However, how intracellular processes are coordinated and regulated across scales of biological organization to generate properly sized and shaped tubes is only beginning to be understood. Here, we review recent insights into the molecular, cellular and physical mechanisms underlying lumen formation during organogenesis. We discuss how these mechanisms control lumen formation in various model systems, with a special focus on the morphogenesis of tubular organs in Drosophila.
Collapse
|
8
|
The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat 2020; 233:151610. [PMID: 33065247 DOI: 10.1016/j.aanat.2020.151610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
The journey of life, from primordial protoplasm to a complex vertebrate form, is a tale of survival against incessant alterations in climate, surface topography, food chain, and chemistry of the external environment. Kidneys present with an ensemble embodiment of the adaptations devised by diverse life-forms to cope with such challenges and maintain a chemical equilibrium of water and solutes, both in and outside the body. This minireview revisits renal evolution utilizing the classic: From Fish to Philosopher; the story of our internal environment, by Prof. Homer W. Smith (1895-1962) as a template. Prof. Smith's views exemplified the invention of glomeruli, or its abolishment, as a mechanism to filter water. Moreover, with the need to preserve water, as in reptiles, the loop of Henle was introduced to concentrate urine. When compared to smaller mammals, the larger ones, albeit having loops of Henle of similar lengths, demonstrated a distinct packing of the nephrons in kidneys. Moreover, the renal portal system degenerated in mammals, while still present in other vertebrates. This account will present with a critique of the current concepts of renal evolution while examining how various other factors, including the ones that we know more about now, such as genetic factors, synchronize to achieve renal development. Finally, it will try to assess the validity of ideas laid by Prof. Smith with the knowledge that we possess now, and understand the complex architecture that evolution has imprinted on the kidneys during its struggle to survive over epochs.
Collapse
|
9
|
Mae SI, Ryosaka M, Sakamoto S, Matsuse K, Nozaki A, Igami M, Kabai R, Watanabe A, Osafune K. Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential. Cell Rep 2020; 32:107963. [DOI: 10.1016/j.celrep.2020.107963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
|
10
|
O’Grady BJ, Balikov DA, Lippmann ES, Bellan LM. Spatiotemporal Control of Morphogen Delivery to Pattern Stem Cell Differentiation in Three-Dimensional Hydrogels. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2019; 51:e97. [PMID: 31756050 PMCID: PMC6876696 DOI: 10.1002/cpsc.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Morphogens are biological molecules that alter cellular identity and behavior across both space and time. During embryonic development, morphogen spatial localization can be confined to small volumes in a single tissue or permeate throughout an entire organism, and the temporal effects of morphogens can range from fractions of a second to several days. In most cases, morphogens are presented as a gradient to adjacent cells within tissues to pattern cell fate. As such, to appropriately model development and build representative multicellular architectures in vitro, it is vital to recapitulate these gradients during stem cell differentiation. However, the ability to control morphogen presentation within in vitro systems remains challenging. Here, we describe an innovative platform using channels patterned within thick, three-dimensional hydrogels that deliver multiple morphogens to embedded cells, thereby demonstrating exquisite control over both spatial and temporal variations in morphogen presentation. This generalizable approach should have broad utility for researchers interested in patterning in vitro tissue structures. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brian J. O’Grady
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
- BJO and DAB contributed equally to this work as co-first authors
| | - Daniel A. Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- BJO and DAB contributed equally to this work as co-first authors
| | - Ethan S. Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- ESL and LMB contributed equally to this work as co-senior authors
| | - Leon M. Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- ESL and LMB contributed equally to this work as co-senior authors
| |
Collapse
|
11
|
Hsu KS, Otsu W, Li Y, Wang HC, Chen S, Tsang SH, Chuang JZ, Sung CH. CLIC4 regulates late endosomal trafficking and matrix degradation activity of MMP14 at focal adhesions in RPE cells. Sci Rep 2019; 9:12247. [PMID: 31439888 PMCID: PMC6706427 DOI: 10.1038/s41598-019-48438-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation in the extracellular matrix (ECM) microenvironment surrounding the retinal pigment epithelium (RPE) has been implicated in the etiology of proliferative vitreoretinopathy and age-related macular degeneration. The regulation of ECM remodeling by RPE cells is not well understood. We show that membrane-type matrix metalloproteinase 14 (MMP14) is central to ECM degradation at the focal adhesions in human ARPE19 cells. The matrix degradative activity, but not the assembly, of the focal adhesion is regulated by chloride intracellular channel 4 (CLIC4). CLIC4 is co-localized with MMP14 in the late endosome. CLIC4 regulates the proper sorting of MMP14 into the lumen of the late endosome and its proteolytic activation in lipid rafts. CLIC4 has the newly-identified “late domain” motif that binds to MMP14 and to Tsg101, a component of the endosomal sorting complex required for transport (ESCRT) complex. Unlike the late domain mutant CLIC4, wild-type CLIC4 can rescue the late endosomal sorting defect of MMP14. Finally, CLIC4 knockdown inhibits the apical secretion of MMP2 in polarized human RPE monolayers. These results, taken together, demonstrate that CLIC4 is a novel matrix microenvironment modulator and a novel regulator for late endosomal cargo sorting. Moreover, the late endosomal sorting of MMP14 actively regulates its surface activation in RPE cells.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Surgery, Colorectal Service and Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wataru Otsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Yao Li
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Heuy-Ching Wang
- Ocular Trauma Task Area, US Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, TX, San Antonio, USA
| | - Shuibing Chen
- Department of Surgery and Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA. .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
O'Grady B, Balikov DA, Wang JX, Neal EK, Ou YC, Bardhan R, Lippmann ES, Bellan LM. Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater Sci 2019; 7:1358-1371. [PMID: 30778445 PMCID: PMC6485939 DOI: 10.1039/c8bm01199k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The process of cell differentiation in a developing embryo is influenced by numerous factors, including various biological molecules whose presentation varies dramatically over space and time. These morphogens regulate cell fate based on concentration profiles, thus creating discrete populations of cells and ultimately generating large, complex tissues and organs. Recently, several in vitro platforms have attempted to recapitulate the complex presentation of extrinsic signals found in nature. However, it has been a challenge to design versatile platforms that can dynamically control morphogen gradients over extended periods of time. To address some of these issues, we introduce a platform using channels patterned in hydrogels to deliver multiple morphogens to cells in a 3D scaffold, thus creating a spectrum of cell phenotypes based on the resultant morphogen gradients. The diffusion coefficient of a common small molecule morphogen, retinoic acid (RA), was measured within our hydrogel platform using Raman spectroscopy and its diffusion in our platform's geometry was modeled using finite element analysis. The predictive model of spatial gradients was validated in a cell-free hydrogel, and temporal control of morphogen gradients was then demonstrated using a reporter cell line that expresses green fluorescent protein in the presence of RA. Finally, the utility of this approach for regulating cell phenotype was demonstrated by generating opposing morphogen gradients to create a spectrum of mesenchymal stem cell differentiation states.
Collapse
Affiliation(s)
- Brian O'Grady
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang H, Bagherie-Lachidan M, Badouel C, Enderle L, Peidis P, Bremner R, Kuure S, Jain S, McNeill H. FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling. Dev Cell 2019; 48:780-792.e4. [PMID: 30853441 DOI: 10.1016/j.devcel.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Abstract
FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4-/- kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4-/- kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.
Collapse
Affiliation(s)
- Hongtao Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mazdak Bagherie-Lachidan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Caroline Badouel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse 31062, France
| | - Leonie Enderle
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Philippos Peidis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satu Kuure
- GM-unit at Laboratory Animal Centre, HiLIFE and Medicum, University of Helsinki, Helsinki 00014, Finland
| | - Sanjay Jain
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Benedetti V, Brizi V, Guida P, Tomasoni S, Ciampi O, Angeli E, Valbusa U, Benigni A, Remuzzi G, Xinaris C. Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery. EBioMedicine 2018; 33:253-268. [PMID: 30049385 PMCID: PMC6085557 DOI: 10.1016/j.ebiom.2018.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
The lack of engineering systems able to faithfully reproduce complex kidney structures in vitro has made it difficult to efficiently model kidney diseases and development. Using polydimethylsiloxane (PDMS) scaffolds and a kidney-derived cell line we developed a system to rapidly engineer custom-made 3D tubules with typical renal epithelial properties. This system was successfully employed to engineer patient-specific tubules, to model polycystic kidney disease (PKD) and test drug efficacy, and to identify a potential new pharmacological treatment. By optimizing our system we constructed functional ureteric bud (UB)-like tubules from human induced pluripotent stem cells (iPSCs), and identified a combination of growth factors that induces budding morphogenesis like embryonic kidneys do. Finally, we applied this assay to investigate budding defects in UB-like tubules derived from a patient with a PAX2 mutation. Our system enables the modeling of human kidney disease and development, drug testing and discovery, and lays the groundwork for engineering anatomically correct kidney tissues in vitro and developing personalized medicine applications.
Collapse
Affiliation(s)
- Valentina Benedetti
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Valerio Brizi
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Patrizia Guida
- Nanomed Laboratories, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| | - Susanna Tomasoni
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Osele Ciampi
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Elena Angeli
- Nanomed Laboratories, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| | - Ugo Valbusa
- Nanomed Laboratories, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Christodoulos Xinaris
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| |
Collapse
|
15
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
16
|
Spurlin JW, Nelson CM. Building branched tissue structures: from single cell guidance to coordinated construction. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0527. [PMID: 28348257 DOI: 10.1098/rstb.2015.0527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Branched networks are ubiquitous throughout nature, particularly found in tissues that require large surface area within a restricted volume. Many tissues with a branched architecture, such as the vasculature, kidney, mammary gland, lung and nervous system, function to exchange fluids, gases and information throughout the body of an organism. The generation of branched tissues requires regulation of branch site specification, initiation and elongation. Branching events often require the coordination of many cells to build a tissue network for material exchange. Recent evidence has emerged suggesting that cell cooperativity scales with the number of cells actively contributing to branching events. Here, we compare mechanisms that regulate branching, focusing on how cell cohorts behave in a coordinated manner to build branched tissues.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Minuth W. Reading First Coordinates from the Nephrogenic Zone in Human Fetal Kidney. Nephron Clin Pract 2017; 138:137-146. [DOI: 10.1159/000481441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023] Open
|
18
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
19
|
Kondo T, Kitano-Amahori Y, Nagai H, Mino M, Takeshita A, Kusakabe KT, Okada T. Effects of maternal subtotal nephrectomy on the development of the fetal kidney: A morphometric study. Congenit Anom (Kyoto) 2015; 55:178-82. [PMID: 26036181 DOI: 10.1111/cga.12116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/28/2015] [Indexed: 01/14/2023]
Abstract
The present study was designed to explore if maternal subtotal (5/6) nephrectomy affects the development of fetal rat kidneys using morphometric methods and examining whether there are any apoptotic changes in the fetal kidney. To generate 5/6 nephrectomized model rats, animals underwent 2/3 left nephrectomy on gestation day (GD) 5 and total right nephrectomy on GD 12. The fetal kidneys were examined on GDs 16 and 22. A significant decrease in fetal body weight resulting from maternal 5/6 nephrectomy was observed on GD 16, and a significant decrease in fetal renal weight and fetal body weight caused by maternal nephrectomy was observed on GD 22. Maternal 5/6 nephrectomy induced a significant increase in glomerular number, proximal tubular length, and total proximal tubular volume of fetuses on GD 22. Maternal 5/6 nephrectomy resulted in an increase in the number of apoptotic cells in the metanephric mesenchyme of the kidney on GD 16, and in the collecting tubules on GD 22. These findings suggest that maternal 5/6 nephrectomy stimulates the development of the fetal kidney while suppressing fetal growth.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| | - Yoko Kitano-Amahori
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| | - Hiroaki Nagai
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| | - Masaki Mino
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| | - Ai Takeshita
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| | - Ken Takeshi Kusakabe
- Department of Veterinary Anatomy, Faculty of Common Veterinary Medicine, University of Yamaguchi, Yoshida, Japan
| | - Toshiya Okada
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
20
|
Organ In Vitro Culture: What Have We Learned about Early Kidney Development? Stem Cells Int 2015; 2015:959807. [PMID: 26078765 PMCID: PMC4452498 DOI: 10.1155/2015/959807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
When Clifford Grobstein set out to study the inductive interaction between tissues in the developing embryo, he developed a method that remained important for the study of renal development until now. From the late 1950s on, in vitro cultivation of the metanephric kidney became a standard method. It provided an artificial environment that served as an open platform to study organogenesis. This review provides an introduction to the technique of organ culture, describes how the Grobstein assay and its variants have been used to study aspects of mesenchymal induction, and describes the search for natural and chemical inducers of the metanephric mesenchyme. The review also focuses on renal development, starting with ectopic budding of the ureteric bud, ureteric bud branching, and the generation of the nephron and presents the search for stem cells and renal progenitor cells that contribute to specific structures and tissues during renal development. It also presents the current use of Grobstein assay and its modifications in regenerative medicine and tissue engineering today. Together, this review highlights the importance of ex vivo kidney studies as a way to acquire new knowledge, which in the future can and will be implemented for developmental biology and regenerative medicine applications.
Collapse
|
21
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
22
|
Minuth WW, Denk L. When morphogenetic proteins encounter special extracellular matrix and cell-cell connections at the interface of the renal stem/progenitor cell niche. Anat Cell Biol 2015; 48:1-9. [PMID: 25806116 PMCID: PMC4371175 DOI: 10.5115/acb.2015.48.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/30/2015] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Reciprocal exchange of morphogenetic proteins between epithelial and mesenchymal cells in a stem/progenitor cell niche results in formation of a nephron. To maintain diffusion of morphogenetic proteins, it is assumed that a close contact exists between involved cells. However, recent publications underline that both types of stem/progenitor cells are separated by a striking interface. To explore this microarchitecture in detail, neonatal rabbit kidneys were fixed in traditional glutaraldehyde (GA) solution for transmission electron microscopy. For contrast enhancing specimens were fixed in GA solution including cupromeronic blue, ruthenium red or tannic acid. To record same perspectives, embedded blocks of parenchyma were cut in exactly orientated vertical and transverse planes to lining collecting ducts. Electron microscopy of specimens fixed by traditional GA solution illustrates a spatial separation of stem/progenitor cells and an unobstrusively looking interface. In contrast, advanced fixation of specimens in GA solution including cupromeronic blue, ruthenium red and tannic acid unmasks earlier not visible extracellular matrix. In addition, projections of mesenchymal cells covered by matrix cross the interface to contact epithelial cells. Surprisingly, the end of a mesenchymal cell projection does not dangle but is enclosed in a fitting sleeve and connected via tunneling nanotubes with the plasma membrane of an epithelial cell. Regarding this complex ensemble the question is to what extent illustrated cell-cell connections and extracellular matrix are involved in communication and transmission of morphogenetic proteins during induction of a nephron.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Lucia Denk
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Khairallah H, El Andalousi J, Simard A, Haddad N, Chen YH, Hou J, Ryan AK, Gupta IR. Claudin-7, -16, and -19 during mouse kidney development. Tissue Barriers 2014; 2:e964547. [PMID: 25610756 DOI: 10.4161/21688362.2014.964547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Members of the claudin family of tight junction proteins are critical for establishing epithelial barriers and for the regulation of paracellular transport. To understand their roles during kidney development, we first performed RT-PCR analyses and determined that 23 claudin family members were expressed in embryonic day (E) 13.5 mouse kidneys. Based on their developmental expression and phenotypes in mouse models, we hypothesized that 3 claudin members could affect nephron formation during kidney development. Using whole mount in situ hybridization and immunohistochemistry, we demonstrated that Claudin-7 (Cldn7) was expressed in the nephric duct, the emerging ureteric bud, and in tubules derived from ureteric bud branching morphogenesis. In contrast, Claudin-16 (Cldn16) and Claudin-19 (Cldn19) were expressed at later stages of kidney development in immature renal tubules that become the Loop of Henle. To determine if a loss of these claudins would perturb kidney development, we examined newborn kidneys from mutant mouse models lacking Cldn7 or Cldn16. In both models, we noted no evidence for any congenital renal malformation and quantification of nephron number did not reveal a decrease in nephron number when compared to wildtype littermates. In summary, Cldn7, Cldn16, and Cldn19 are expressed in different epithelial lineages during kidney development. Mice lacking Cldn7 or Cldn16 do not have defects in de novo nephron formation, and this suggests that these claudins primarily function to regulate paracellular transport in the mature nephron.
Collapse
Affiliation(s)
- Halim Khairallah
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada
| | - Jasmine El Andalousi
- The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada
| | - Annie Simard
- The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada
| | - Nicholas Haddad
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University ; Greenville, NC USA
| | - Jianghui Hou
- Washington University Renal Division ; St. Louis, MO USA
| | - Aimee K Ryan
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada ; The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada ; Department of Pediatrics; McGill University ; Montreal, Quebec, Canada
| | - Indra R Gupta
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada ; The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada ; Department of Pediatrics; McGill University ; Montreal, Quebec, Canada
| |
Collapse
|
24
|
Weavers H, Skaer H. Tip cells: master regulators of tubulogenesis? Semin Cell Dev Biol 2014; 31:91-9. [PMID: 24721475 PMCID: PMC4071413 DOI: 10.1016/j.semcdb.2014.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Single tip cells or groups of leading cells develop at the forefront of growing tissues. Tip cells regulate tubule growth and morphogenesis. Tip cells develop distinctive patterns of gene expression and specialised characteristics. Tip cells are required for health and may be involved in the progression of cancer.
The normal development of an organ depends on the coordinated regulation of multiple cell activities. Focusing on tubulogenesis, we review the role of specialised cells or groups of cells that are selected from within tissue primordia and differentiate at the outgrowing tips or leading edge of developing tubules. Tip or leading cells develop distinctive patterns of gene expression that enable them to act both as sensors and transmitters of intercellular signalling. This enables them to explore the environment, respond to both tissue intrinsic signals and extrinsic cues from surrounding tissues and to regulate the behaviour of their neighbours, including the setting of cell fate, patterning cell division, inducing polarity and promoting cell movement and cell rearrangements by neighbour exchange. Tip cells are also able to transmit mechanical tension to promote tissue remodelling and, by interacting with the extracellular matrix, they can dictate migratory pathways and organ shape. Where separate tubular structures fuse to form networks, as in the airways of insects or the vascular system of vertebrates, specialised fusion tip cells act to interconnect disparate elements of the developing network. Finally, we consider their importance in the maturation of mature physiological function and in the development of disease.
Collapse
Affiliation(s)
- Helen Weavers
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | - Helen Skaer
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
25
|
Relevance of ureteric bud development and branching to tissue engineering, regeneration and repair in acute and chronic kidney disease. Curr Opin Organ Transplant 2014; 19:153-61. [DOI: 10.1097/mot.0000000000000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:693-713. [PMID: 22942910 DOI: 10.1002/wdev.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian kidney, which at maturity contains thousands of nephrons joined to a highly branched collecting duct (CD) system, is an important model system for studying the development of a complex organ. Furthermore, congenital anomalies of the kidney and urinary tract, often resulting from defects in ureteric bud branching morphogenesis, are relatively common human birth defects. Kidney development is initiated by interactions between the nephric duct and the metanephric mesenchyme, leading to the outgrowth and repeated branching of the ureteric bud epithelium, which gives rise to the entire renal CD system. Meanwhile, signals from the ureteric bud induce the mesenchyme cells to form the nephron epithelia. This review focuses on development of the CD system, with emphasis on the mouse as an experimental system. The major topics covered include the origin and development of the nephric duct, formation of the ureteric bud, branching morphogenesis of the ureteric bud, and elongation of the CDs. The signals, receptors, transcription factors, and other regulatory molecules implicated in these processes are discussed. In addition, our current knowledge of cellular behaviors that are controlled by these genes and underlie development of the collecting system is reviewed.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Packard A, Georgas K, Michos O, Riccio P, Cebrian C, Combes AN, Ju A, Ferrer-Vaquer A, Hadjantonakis AK, Zong H, Little MH, Costantini F. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 2013; 27:319-30. [PMID: 24183650 DOI: 10.1016/j.devcel.2013.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Although development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term "mitosis-associated cell dispersal." Premitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; although one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis.
Collapse
Affiliation(s)
- Adam Packard
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Denis Menshykau
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| |
Collapse
|
29
|
Menshykau D, Iber D. Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism. Phys Biol 2013; 10:046003. [PMID: 23770927 DOI: 10.1088/1478-3975/10/4/046003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor-RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor-ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor-ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor-ligand systems. We propose that ligand-receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes.
Collapse
Affiliation(s)
- Denis Menshykau
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, Switzerland
| | | |
Collapse
|
30
|
Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013; 24:830-3. [PMID: 23726156 DOI: 10.1016/j.copbio.2013.04.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is critically important for many cellular processes including growth, differentiation, survival, and morphogenesis. Cells remodel and reshape the ECM by degrading and reassembling it, playing an active role in sculpting their surrounding environment and directing their own phenotypes. Both mechanical and biochemical molecules influence ECM dynamics in multiple ways; by releasing small bioactive signaling molecules, releasing growth factors stored within the ECM, eliciting structural changes to matrix proteins which expose cryptic sites and by degrading matrix proteins directly. The dynamic reciprocal communication between cells and the ECM plays a fundamental roll in tissue development, homeostasis, and wound healing.
Collapse
Affiliation(s)
- Kelly C Clause
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | | |
Collapse
|
31
|
Mori H, Lo AT, Inman JL, Alcaraz J, Ghajar CM, Mott JD, Nelson CM, Chen CS, Zhang H, Bascom JL, Seiki M, Bissell MJ. Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1. Development 2013; 140:343-52. [PMID: 23250208 DOI: 10.1242/dev.084236] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epithelial cell invasion through the extracellular matrix (ECM) is a crucial step in branching morphogenesis. The mechanisms by which the mammary epithelium integrates cues from the ECM with intracellular signaling in order to coordinate invasion through the stroma to make the mammary tree are poorly understood. Because the cell membrane-bound matrix metalloproteinase Mmp14 is known to play a key role in cancer cell invasion, we hypothesized that it could also be centrally involved in integrating signals for mammary epithelial cells (MECs) to navigate the collagen 1 (CL-1)-rich stroma of the mammary gland. Expression studies in nulliparous mice that carry a NLS-lacZ transgene downstream of the Mmp14 promoter revealed that Mmp14 is expressed in MECs at the tips of the branches. Using both mammary organoids and 3D organotypic cultures, we show that MMP activity is necessary for invasion through dense CL-1 (3 mg/ml) gels, but dispensable for MEC branching in sparse CL-1 (1 mg/ml) gels. Surprisingly, however, Mmp14 without its catalytic activity was still necessary for branching. Silencing Mmp14 prevented cell invasion through CL-1 and disrupted branching altogether; it also reduced integrin β1 (Itgb1) levels and attenuated MAPK signaling, disrupting Itgb1-dependent invasion/branching within CL-1 gels. FRET imaging revealed that Mmp14 associates directly with Itgb1. We identified a domain of Mmp14 that is required for modulating the levels of Itgb1, MEC signaling and the rate of invasion within CL-1. These results shed light on hitherto undescribed non-proteolytic activities of Mmp14 that are necessary for the Itgb1-dependent biochemical and mechanical signals that regulate branching in the mammary epithelium.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Daley WP, Yamada KM. Cell–ECM Interactions and the Regulation of Epithelial Branching Morphogenesis. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Dynamic Image-Based Modelling of Kidney Branching Morphogenesis. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY 2013. [DOI: 10.1007/978-3-642-40708-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Nigam SK, Wu W, Bush KT. Organogenesis forum lecture: In vitro kidney development, tissue engineering and systems biology. Organogenesis 2012; 4:137-43. [PMID: 19279725 DOI: 10.4161/org.4.3.6498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/05/2008] [Indexed: 12/20/2022] Open
Abstract
Renal replacement therapy (i.e., kidney transplantation) represents the optimal treatment for end-stage renal disease (a condition which is expected to increase in prevalence). However, the demand for transplantable kidneys currently outpaces the availability of donor kidneys, a situation not expected to improve in the foreseeable future. An alternative route to cadaveric or living-related donors would be to engineer kidneys for allograft transplantation from cells based on concepts derived from current understanding of normal kidney development. Although the use of cells for this purpose remains hypothetical, recent research from our laboratory has provided strong evidence that implantation of kidney-like tissue bioengineered from the recombination of in vitro culture systems which model discrete aspects of kidney development (i.e., cell culture, isolated WD, isolated UB and isolated MM) is possible. These recent findings are discussed here. Pathway based system biology approaches to understanding the mechanism(s) of kidney development are also discussed, particularly in the setting of this novel and seemingly powerful xeno-based tissue engineering strategy.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Medicine, School of Medicine; University of California; San Diego, La Jolla, California USA
| | | | | |
Collapse
|
35
|
Dickinson DJ, Robinson DN, Nelson WJ, Weis WI. α-catenin and IQGAP regulate myosin localization to control epithelial tube morphogenesis in Dictyostelium. Dev Cell 2012; 23:533-46. [PMID: 22902739 DOI: 10.1016/j.devcel.2012.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/01/2012] [Accepted: 06/13/2012] [Indexed: 12/20/2022]
Abstract
Apical actomyosin activity in animal epithelial cells influences tissue morphology and drives morphogenetic movements during development. The molecular mechanisms leading to myosin II accumulation at the apical membrane and its exclusion from other membranes are poorly understood. We show that in the nonmetazoan Dictyostelium discoideum, myosin II localizes apically in tip epithelial cells that surround the stalk, and constriction of this epithelial tube is required for proper morphogenesis. IQGAP1 and its binding partner cortexillin I function downstream of α- and β-catenin to exclude myosin II from the basolateral cortex and promote apical accumulation of myosin II. Deletion of IQGAP1 or cortexillin compromises epithelial morphogenesis without affecting cell polarity. These results reveal that apical localization of myosin II is a conserved morphogenetic mechanism from nonmetazoans to vertebrates and identify a hierarchy of proteins that regulate the polarity and organization of an epithelial tube in a simple model organism.
Collapse
Affiliation(s)
- Daniel J Dickinson
- Program in Cancer Biology, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
36
|
Qi Y, Tian X, Liu J, Han Y, Graham AM, Simon MC, Penninger JM, Carmeliet P, Li S. Bnip3 and AIF cooperate to induce apoptosis and cavitation during epithelial morphogenesis. ACTA ACUST UNITED AC 2012; 198:103-14. [PMID: 22753893 PMCID: PMC3392936 DOI: 10.1083/jcb.201111063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis during epithelial lumen formation is mediated by hypoxia-induced expression of the proapoptotic protein Bnip3, which is promoted by AIF-mediated reactive oxygen species production and HIF-2α stabilization. Apoptosis is an essential step in cavitation during embryonic epithelial morphogenesis, but its mechanisms are largely unknown. In this paper, we used embryonic stem cell–differentiated embryoid bodies (EBs) as a model and found that Bnip3 (Bcl-2/adenovirus E1B 19-kD interacting protein), a BH3-only proapoptotic protein, was highly up-regulated during cavitation in a hypoxia-dependent manner. Short hairpin RNA silencing of Bnip3 inhibited apoptosis of the core cells and delayed cavitation. We show that the Bnip3 up-regulation was mediated mainly by hypoxia-inducible factor (HIF)–2. Ablation of HIF-2α or HIF-1β, the common β subunit of HIF-1 and -2, suppressed Bnip3 up-regulation and inhibited apoptosis and cavitation. We further show that apoptosis-inducing factor (AIF) cooperated with Bnip3 to promote lumen clearance. Bnip3 silencing in AIF-null EBs nearly blocked apoptosis and cavitation. Moreover, AIF also regulated Bnip3 expression through mitochondrial production of reactive oxygen species and consequent HIF-2α stabilization. These results uncover a mechanism of cavitation through hypoxia-induced apoptosis of the core cells mediated by HIFs, Bnip3, and AIF.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Surgery, University of Medicine and Dentistry New Jersey Robert Wood Johnson Medical School, New Brunswick, NJ 08093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim HY, Nelson CM. Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 2012; 8:56-64. [PMID: 22609561 DOI: 10.4161/org.19813] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Chemical and Biological Engineering, Princeton University; Princeton, NJ USA
| | | |
Collapse
|
38
|
Velagapudi C, Nilsson RP, Lee MJ, Burns HS, Ricono JM, Arar M, Barnes VL, Abboud HE, Barnes JL. Reciprocal induction of simple organogenesis by mouse kidney progenitor cells in three-dimensional co-culture. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:819-30. [PMID: 22138298 DOI: 10.1016/j.ajpath.2011.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/12/2011] [Accepted: 11/01/2011] [Indexed: 10/14/2022]
Abstract
Kidney development is regulated by a coordinated reciprocal induction of metanephric mesenchymal (MM) and ureteric bud (UB) cells. Here, established MM and UB progenitor cell lines were recombined in three-dimensional Matrigel implants in SCID mice. Differentiation potential was examined for changes in phenotype, organization, and the presence of specialized proteins using immunofluorescence and bright-field and electron microscopy. Both cell types, when grown alone, did not develop into specialized structures. When combined, the cells organized into simple organoid structures of polarized epithelia with lumens surrounded by capillary-like structures. Tracker experiments indicated the UB cells formed the tubuloid structures, and the MM cells were the source of the capillary-like cells. The epithelial cells stained positive for pancytokeratin, the junctional complex protein ZO-1, collagen type IV, as well as UB and collecting duct markers, rearranged during transfection (RET), Dolichos biflorus lectin, EndoA cytokeratin, and aquaporin 2. The surrounding cells expressed α-smooth muscle actin, vimentin, platelet endothelial cell adhesion molecule 1 (PECAM), and aquaporin 1, a marker of vasculogenesis. The epithelium exhibited apical vacuoles, microvilli, junctional complexes, and linear basement membranes. Capillary-like structures showed endothelial features with occasional pericytes. UB cell epithelialization was augmented in the presence of MM cell-derived conditioned medium, glial-derived neurotrophic factor (GDNF), hepatocyte growth factor (HGF), or fibronectin. MM cells grown in the presence of UB-derived conditioned medium failed to undergo differentiation. However, UB cell-derived conditioned medium induced MM cell migration. These studies indicate that tubulogenesis and vasculogenesis can be partially recapitulated by recombining individual MM and UB cell lineages, providing a new model system to study organogenesis ex vivo.
Collapse
Affiliation(s)
- Chakradhar Velagapudi
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Haddad N, Andalousi JE, Khairallah H, Yu M, Ryan AK, Gupta IR. The tight junction protein claudin-3 shows conserved expression in the nephric duct and ureteric bud and promotes tubulogenesis in vitro. Am J Physiol Renal Physiol 2011; 301:F1057-65. [DOI: 10.1152/ajprenal.00497.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The claudin family of proteins is required for the formation of tight junctions that are contact points between epithelial cells. Although little is known of the cellular events by which epithelial cells of the ureteric bud form tubules and branch, tubule formation is critical for kidney development. We hypothesize that if claudin-3 (Cldn3) is expressed within tight junctions of the ureteric bud, this will affect ureteric bud cell shape and tubule formation. Using transmission electron microscopy, we identified tight junctions within epithelial cells of the ureteric bud. Whole mount in situ hybridization and immunoassays were performed in the mouse and chick and demonstrated that Cldn3 transcript and protein were expressed in the nephric duct, the ureteric bud, and its derivatives at critical time points during tubule formation and branching. Mouse inner medullary collecting duct cells (mIMCD-3) form tubules when seeded in a type I collagen matrix and were found to coexpress CLDN3 and the tight junction marker zonula occludens-1 in the cell membrane. When these cells were stably transfected with Cldn3 fused to the enhanced green fluorescent protein reporter, multiple clones showed a significant increase in tubule formation compared with controls ( P < 0.05) due in part to an increase in cell proliferation ( P < 0.01). Cldn3 may therefore promote tubule formation and expansion of the ureteric bud epithelium.
Collapse
Affiliation(s)
| | - Jasmine El Andalousi
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | | | - Melissa Yu
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | - Aimee K. Ryan
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | - Indra R. Gupta
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| |
Collapse
|
40
|
Tsau C, Ito M, Gromova A, Hoffman MP, Meech R, Makarenkova HP. Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling. Development 2011; 138:3307-17. [PMID: 21750040 DOI: 10.1242/dev.066241] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lacrimal gland (LG) develops through branching morphogenesis and produces secretions, including tears, that lubricate and protect the ocular surface. Despite the prevalence of LG disorders such as dry eye, relatively little is known about the regulation of LG development. In this study, we show that the homeobox transcription factor Barx2 is highly expressed in conjunctival epithelium, eyelids and ocular [lacrimal, harderian (HG), and meibomian (MG)] glands and is necessary for normal ocular gland and eyelid development. Barx2(-/-) mice show defective LG morphogenesis, absence of the HG, and defects in MG and eyelid fusion. Ex vivo antisense assays confirm the requirement for Barx2 in LG bud elongation and branching. Gene expression profiles reveal decreased expression of several adhesion and matrix remodeling molecules in Barx2(-/-) LGs. In culture, Barx2 regulates expression of matrix metalloproteinases (MMPs) and epithelial cell migration through the extracellular matrix. Fibroblast growth factors are crucial regulators of LG development and we show that Barx2 is required for Fgf10-induced LG bud elongation and that both Barx2 and Fgf10 cooperate in the regulation of MMPs. Together, these data suggest a mechanism for the effects of loss of Barx2 on ocular gland development. Intriguingly, salivary glands that also express a high level of Barx2 develop normally in Barx2(-/-) mice and do not show altered levels of MMPs. Thus, the function of Barx2 is specific to ocular gland development. Based on our data, we propose a functional network involving Barx2, Fgf10 and MMPs that plays an essential role in regulating branching morphogenesis of the ocular glands.
Collapse
Affiliation(s)
- Cindy Tsau
- The Neurosciences Institute, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
41
|
Song R, Preston G, Yosypiv IV. Angiotensin II stimulates in vitro branching morphogenesis of the isolated ureteric bud. Mech Dev 2011; 128:359-67. [PMID: 21820050 DOI: 10.1016/j.mod.2011.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 12/19/2022]
Abstract
Mutations in the renin-angiotensin system (RAS) genes are associated with congenital anomalies of the kidney and urinary tract (CAKUT). As angiotensin (Ang) II, the principal effector peptide growth factor of the RAS, stimulates ureteric bud (UB) branching in whole intact embryonic (E) metanephroi, defects in UB morphogenesis may be causally linked to CAKUT observed under conditions of disrupted RAS. In the present study, using the isolated intact UB (iUB) assay, we tested the hypothesis that Ang II stimulates UB morphogenesis by directly acting on the UB, identified Ang II target genes in the iUB by microarray and examined the effect of Ang II on UB cell migration in vitro. We show that isolated E11.5 mouse iUBs express Ang II AT(1) and AT(2) receptor mRNA. Treatment of E11.5 iUBs grown in collagen matrix gels with Ang II (10(-5)M) increases the number of iUB tips after 48h of culture compared to control (4.8±0.4 vs. 2.4±0.2, p<0.01). A number of genes required for UB branching as well as novel genes whose role in UB development is currently unknown are targets of Ang II signaling in the iUB. In addition, Ang II increases UB cell migration (346±5.1 vs. 275±4.4, p<0.01) in vitro. In summary, Ang II stimulates UB cell migration and directly induces morphogenetic response in the iUB. We conclude that Ang II-regulated genes in the iUB may be important mediators of Ang II-induced UB branching. We hypothesize that Ang II-dependent cell movements play an important role in UB branching morphogenesis.
Collapse
Affiliation(s)
- Renfang Song
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
42
|
Abstract
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.
Collapse
Affiliation(s)
- Thomas J Carroll
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
43
|
Costantini F. GDNF/Ret signaling and renal branching morphogenesis: From mesenchymal signals to epithelial cell behaviors. Organogenesis 2011; 6:252-62. [PMID: 21220964 DOI: 10.4161/org.6.4.12680] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signaling by GDNF through the Ret receptor tyrosine kinase is required for the normal growth and morphogenesis of the ureteric bud (UB) during kidney development. Recent studies have sought to understand the precise role of Ret signaling in this process, and the specific responses of UB cells to GDNF. Surprisingly, the requirement for Gdnf and Ret was largely relieved by removing the negative regulator Spry1, revealing unexpected functional overlap between GDNF and FGF10. However, the kidneys that developed without Gdnf/Ret and Spry1 displayed significant branching abnormalities, suggesting a unique role for GDNF in fine-tuning UB branching. GDNF/Ret signaling alters patterns of gene expression in UB tip cells, and one critical event is upregulation of the ETS transcription factors Etv4 and Etv5. Mice lacking Etv4 and Etv5 fail to develop kidneys. Thus, these genes represent key components of a regulatory network downstream of Ret. Studies of chimeric embryos in which a subset of cells lack either Ret, Etv4/5 or Spry1 have revealed an important role for this pathway in cell movement. Ret signaling, via Etv4 and Etv5, promotes competitive cell rearrangements in the nephric duct, in which the cells with the highest level of Ret signaling preferentially migrate to form the first ureteric bud tip.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
44
|
Abstract
Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
45
|
Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, Nigam SK. Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Dev Biol 2011; 356:19-27. [PMID: 21600196 DOI: 10.1016/j.ydbio.2011.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).
Collapse
Affiliation(s)
- Mita M Shah
- Department of Medicine (Division of Nephrology and Hypertension), University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Betaglycan is required for the establishment of nephron endowment in the mouse. PLoS One 2011; 6:e18723. [PMID: 21533152 PMCID: PMC3078907 DOI: 10.1371/journal.pone.0018723] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/08/2011] [Indexed: 01/24/2023] Open
Abstract
Betaglycan is an accessory receptor for the transforming growth factor-β (TGFβ) superfamily, many members of which play key roles in kidney development. The purpose of this study was to define the role of this co-receptor on fetal murine kidney development. Stereological examination of embryonic and adult betaglycan heterozygous kidneys revealed augmented nephron number relative to littermate controls. Fetal heterozygous kidneys exhibited accelerated ureteric branching, which correlated with augmented nephron development at embryonic day (e) 15.5. In contrast, betaglycan null kidneys exhibited renal hypoplasia from e13.5 and reduced nephron number at e15.5. Quantitative real-time PCR analysis of e11.5–e14.5 kidneys demonstrated that heterozygous kidneys exhibited a transient decrease in Bmp4 expression at e11.5 and a subsequent cascade of changes in the gene regulatory network that governs metanephric development, including significant increases in Pax2, Eya1, Gdnf, Ret, Wnt4, and Wt1 expression. Conversely, gene expression in null kidneys was normal until e13.5, when significant reductions were detected in the expression of Bmp4 as well as other key metanephric regulatory genes. Tgfb1 and Tgfb2 mRNA expression was down-regulated in both nulls and heterozygotes at e13.5 and e14.5. The opposing morphological and molecular phenotypes in betaglycan heterozygote and null mutants demonstrate that the levels of betaglycan must be tightly regulated for optimal kidney development.
Collapse
|
47
|
Receptor tyrosine kinases in kidney development. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:869281. [PMID: 21637383 PMCID: PMC3100575 DOI: 10.1155/2011/869281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/08/2011] [Accepted: 01/15/2011] [Indexed: 11/18/2022]
Abstract
The kidney plays a fundamental role in the regulation of arterial blood pressure and fluid/electrolyte homeostasis. As congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common human birth defects, improved understanding of the cellular and molecular mechanisms that lead to CAKUT is critical. Accumulating evidence indicates that aberrant signaling via receptor tyrosine kinases (RTKs) is causally linked to CAKUT. Upon activation by their ligands, RTKs dimerize, undergo autophosphorylation on specific tyrosine residues, and interact with adaptor proteins to activate intracellular signal transduction pathways that regulate diverse cell behaviours such as cell proliferation, survival, and movement. Here, we review the current understanding of role of RTKs and their downstream signaling pathways in the pathogenesis of CAKUT.
Collapse
|
48
|
Rosines E, Johkura K, Zhang X, Schmidt HJ, Decambre M, Bush KT, Nigam SK. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney. Tissue Eng Part A 2011; 16:2441-55. [PMID: 20214453 DOI: 10.1089/ten.tea.2009.0548] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The plausibility of constructing vascularized three-dimensional (3D) kidney tissue from cells was investigated. The kidney develops from mutual inductive interactions between cells of the ureteric bud (UB), derived from the Wolffian duct (WD), and the metanephric mesenchyme (MM). We found that isolated MMs were capable of inducing branching morphogenesis of the WD (an epithelial tube) in recombination cultures; suggesting that the isolated MM retains inductive capacity for WD-derived epithelial tubule cells other than those from the UB. Hanging drop aggregates of embryonic and adult renal epithelial cells from UB and mouse inner medullary collecting duct cell (IMCD) lines, which are ultimately of WD origin, were capable of inducing MM epithelialization and tubulogenesis with apparent connections (UB cells) and collecting duct-like tubules with lumens (IMCD). This supports the view that the collecting system can be constructed from certain epithelial cells (those ultimately of WD origin) when stimulated by MM. Although the functions of the MM could not be replaced by cultured mesenchymal cells, primary MM cells and one MM-derived cell line (BSN) produced factors that stimulate UB branching morphogenesis, whereas another, rat inducible metanephric mesenchyme (RIMM-18), supported WD budding as a feeder layer. This indicates that some MM functions can be recapitulated by cells. Although engineering of a kidney-like tissue from cultured cells alone remains to be achieved, these results suggest the feasibility of such an approach following the normal developmental progression of the UB and MM. Consistent with this notion, implants of kidney-like tissues constructed in vitro from recombinations of the UB and MM survived for over 5 weeks and achieved an apparently host-derived glomerular vasculature. Lastly, we addressed the issue of optimal macro- and micro-patterning of kidney-like tissue, which might be necessary for function of an organ assembled using a tissue engineering approach. To identify suitable conditions, 3D reconstructions of HoxB7-green fluorescent protein mouse rudiments (E12) cultured on a filter or suspended in a collagen gel (type I or type IV) revealed that type IV collagen 3D culture supports the deepest tissue growth (600 +/- 8 microm) and the largest kidney volume (0.22 +/- 0.02 mm(3)), and enabled the development of an umbrella-shaped collecting system such as occurs in vivo. Taken together with prior work (Rosines et al., 2007; Steer et al., 2002), these results support the plausibility of a developmental strategy for constructing and propagating vascularized 3D kidney-like tissues from recombinations of cultured renal progenitor cells and/or primordial tissue.
Collapse
Affiliation(s)
- Eran Rosines
- Department of Bioengineering, University of California , San Diego, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Pampaloni F, Stelzer EHK, Leicht S, Marcello M. Madin-Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3-D cultures. Proteomics 2010; 10:3394-413. [DOI: 10.1002/pmic.201000236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Gjorevski N, Nelson CM. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol (Camb) 2010; 2:424-34. [PMID: 20717570 DOI: 10.1039/c0ib00040j] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Spatial patterning of cell behaviors establishes the regional differences within tissues that collectively develop branched organs into their characteristic treelike shapes. Here we show that the pattern of branching morphogenesis of three-dimensional (3D) engineered epithelial tissues is controlled in part by gradients of endogenous mechanical stress. We used microfabrication to build model mammary epithelial tissues of defined geometry that branched in a stereotyped pattern when induced with growth factors. Branches initiated from sites of high mechanical stress within the tissues, as predicted numerically and measured directly using 3D traction force microscopy. Branch sites were defined by activation of focal adhesion kinase (FAK), inhibition of which disrupted morphogenesis. Stress, FAK activation, and branching were all altered by manipulating cellular contractility, matrix stiffness, intercellular cohesion and tissue geometry. These data suggest that the pattern and magnitude of mechanical stress across epithelial tissues cooperate with biochemical signals to specify branching pattern.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|