1
|
Takeuchi R, Takechi M, Namangkalakul W, Ninomiya Y, Furutera T, Aoto K, Koyabu D, Adachi N, Hayashi K, Okabe M, Iseki S. The role of sonic hedgehog signaling in the oropharyngeal epithelium during jaw development. Congenit Anom (Kyoto) 2025; 65:e70001. [PMID: 39727066 DOI: 10.1111/cga.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shhf/f). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1. Isl1-Cre; Shhf/f mice exhibited a complete loss of lower jaw components and a malformed upper jaw with defects in the cranial base and secondary palate. Massive cell death was observed in the mandibular process at embryonic day (E) 9.5 and E10.5, while mild cell death was observed in the lambdoidal region (the fusion area in the maxillary, lateral nasal, and medial nasal processes) at E10.5. An RNA-seq analysis revealed that Satb2, a gene involved in cell survival during jaw formation, was downregulated in the lambdoidal region in Isl1-Cre; Shhf/f mice. These results suggest that Shh expression in the FEZ is required for cell survival and skeletogenesis in the lambdoidal region during the development of the upper jaw and that the developmental control governed by SHH signaling is different between upper and lower jaws.
Collapse
Affiliation(s)
- Rika Takeuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Dentistry and Oral Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Masaki Takechi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Worachat Namangkalakul
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Youichirou Ninomiya
- Research Center for Medical Bigdata, Research Organization of Information and Systems, National Institute of Informatics, Tokyo, Japan
| | - Toshiko Furutera
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazushi Aoto
- Central Laboratory, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Koyabu
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Katsuhiko Hayashi
- Department of Dentistry and Oral Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Welsh IC, Feiler ME, Lipman D, Mormile I, Hansen K, Percival CJ. Palatal segment contributions to midfacial anterior-posterior growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560703. [PMID: 37873353 PMCID: PMC10592893 DOI: 10.1101/2023.10.03.560703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic. A detailed ontogenetic study of these relationships is important because palatal segment growth is a critical aspect of normal midfacial growth, can produce dysmorphology when altered, and is a likely basis for evolutionary differences in upper jaw morphology. We completed a combined whole mount gene expression and morphometric analysis of normal murine palatal segment growth dynamics and resulting upper jaw morphology. Our results demonstrated that the first formed palatal ruga (ruga 1), found just posterior to the RGZ, maintained an association with important nasal, neurovascular and palatal structures throughout early midfacial development. This suggested that these features are positioned at a proximal source of embryonic midfacial directional growth. Our detailed characterization of midfacial morphogenesis revealed a one-to-one relationship between palatal segments and upper jaw bones during the earliest stages of palatal elongation. Growth of the maxillary anlage within the anterior secondary palate is uniquely coupled to RGZ-driven morphogenesis. This may help drive the unequaled proportional elongation of the anterior secondary palate segment prior to palatal shelf fusion. Our results also demonstrated that the future maxillary-palatine suture, approximated by the position of ruga 1 and consistently associated with the palatine anlage, formed predominantly via the posterior differentiation of the maxilla within the expanding anterior secondary palate. Our ontogenetic analysis provides a novel and detailed picture of the earliest spatiotemporal dynamics of intramembranous midfacial skeletal specification and differentiation within the context of the surrounding palatal segment AP elongation and associated rugae formation.
Collapse
Affiliation(s)
- Ian C. Welsh
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Maria E. Feiler
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11790
| | - Danika Lipman
- Department of Cell Biology and Anatomy, University of Calgary
| | - Isabel Mormile
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11790
| | - Karissa Hansen
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143
| | | |
Collapse
|
3
|
Wahdini SI, Idamatussilmi F, Pramanasari R, Prawoto AN, Wungu CDK, Putri IL, Gunadi. Genotype-phenotype associations in microtia: a systematic review. Orphanet J Rare Dis 2024; 19:152. [PMID: 38594752 PMCID: PMC11003020 DOI: 10.1186/s13023-024-03142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Microtia is a congenital ear malformation that can occur as isolated microtia or as part of a syndrome. The etiology is currently poorly understood, although there is strong evidence that genetics has a role in the occurrence of microtia. This systematic review aimed to determine the genes involved and the abnormalities in microtia patients' head and neck regions. METHODS We used seven search engines to search all known literature on the genetic and phenotypic variables associated with the development or outcome of microtia. The identified publications were screened and selected based on inclusion and exclusion criteria and assessed for methodological quality using the Joanna Briggs Institute (JBI) critical appraisal tools. We found 40 papers in this systematic review with phenotypic data in microtia involving 1459 patients and 30 articles containing genetic data involved in microtia. RESULT The most common accompanying phenotype of all microtia patients was external ear canal atresia, while the most common head and neck abnormalities were the auricular, mental, and oral regions. The most common syndrome found was craniofacial microsomia syndrome. In the syndromic microtia group, the most common genes were TCOF1 (43.75%), SIX2 (4.69%), and HSPA9 (4.69%), while in the non-syndromic microtia group, the most frequently found gene was GSC exon 2 (25%), FANCB (16.67%), HOXA2 (8.33%), GSC exon 3 (8.33%), MARS1 (8.33%), and CDT1 (8.33%). CONCLUSIONS Our systematic review shows some genes involved in the microtia development, including TCOF1, SIX2, HSPA9, GSC exon 2, FANCB, HOXA2, GSC exon 3, MARS1, and CDT1 genes. We also reveal a genotype-phenotype association in microtia. In addition, further studies with more complete and comprehensive data are needed, including patients with complete data on syndromes, phenotypes, and genotypes.
Collapse
Affiliation(s)
- Siti Isya Wahdini
- Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fina Idamatussilmi
- Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada /Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Rachmaniar Pramanasari
- Plastic Reconstructive and Aesthetic Surgery Department, Faculty of Medicine, Airlangga University/Airlangga University Hospital, Surabaya, East Java, Indonesia
| | - Almas Nur Prawoto
- Plastic Reconstructive and Aesthetic Surgery Department, Faculty of Medicine, Airlangga University/Airlangga University Hospital, Surabaya, East Java, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Indri Lakhsmi Putri
- Plastic Reconstructive and Aesthetic Surgery Department, Faculty of Medicine, Airlangga University/Airlangga University Hospital, Surabaya, East Java, Indonesia
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery, Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
4
|
Tophkhane SS, Richman JM. Tissues and signals with true organizer properties in craniofacial development. Curr Top Dev Biol 2023; 157:67-82. [PMID: 38556459 DOI: 10.1016/bs.ctdb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Transplantation experiments have shown that a true organizer provides instructive signals that induce and pattern ectopic structures in the responding tissue. Here, we review craniofacial experiments to identify tissues with organizer properties and signals with organizer properties. In particular, we evaluate whether transformation of identity took place in the mesenchyme. Using these stringent criteria, we find the strongest evidence for the avian foregut ectoderm. Transplanting a piece of quail foregut endoderm to a host chicken embryo caused ectopic beaks to form derived from chicken mesenchyme. The beak identity, whether upper or lower as well as orientation, was controlled by the original anterior-posterior position of the donor endoderm. There is also good evidence that the nasal pit is necessary and sufficient for lateral nasal patterning. Finally, we review signals that have organizer properties on their own without the need for tissue transplants. Mouse germline knockouts of the endothelin pathway result in transformation of identity of the mandible into a maxilla. Application of noggin-soaked beads to post-migratory neural crest cells transforms maxillary identity. This suggests that endothelin or noggin rich ectoderm could be organizers (not tested). In conclusion, craniofacial, neural crest-derived mesenchyme is competent to respond to tissues with organizer properties, also originating in the head. In future, we can exploit such well defined systems to dissect the molecular changes that ultimately lead to patterning of the upper and lower jaw.
Collapse
Affiliation(s)
- Shruti S Tophkhane
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Joy M Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Iyyanar PPR, Qin C, Adhikari N, Liu H, Hu YC, Jiang R, Lan Y. Developmental origin of the mammalian premaxilla. Dev Biol 2023; 503:1-9. [PMID: 37524195 PMCID: PMC10528123 DOI: 10.1016/j.ydbio.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The evolution of jaws has played a major role in the success of vertebrate expansion into a wide variety of ecological niches. A fundamental, yet unresolved, question in craniofacial biology is about the origin of the premaxilla, the most distal bone present in the upper jaw of all amniotes. Recent reports have suggested that the mammalian premaxilla is derived from embryonic maxillary prominences rather than the frontonasal ectomesenchyme as previously shown in studies of chicken embryos. However, whether mammalian embryonic frontonasal ectomesenchyme contributes to the premaxillary bone has not been investigated and a tool to trace the contributions of the frontonasal ectomesenchyme to facial structures in mammals is lacking. The expression of the Alx3 gene is activated highly specifically in the frontonasal ectomesenchyme, but not in the maxillary mesenchyme, from the beginning of facial morphogenesis in mice. Here, we report the generation and characterization of a novel Alx3CreERT2 knock-in mouse line that express tamoxifen-inducible Cre DNA recombinase from the Alx3 locus. Tamoxifen treatment of Alx3CreERT2/+;Rosa26mTmG/+ embryos at E7.5, E8.5, E9.5, and E10.5, each induced specific labeling of the embryonic medial nasal and lateral nasal mesenchyme but not the maxillary mesenchyme. Lineage tracing of Alx3CreERT2-labeled frontonasal mesenchyme from E9.5 to E16.5 clearly showed that the frontonasal mesenchyme cells give rise to the osteoblasts generating the premaxillary bone. Furthermore, we characterize a Dlx1-Cre BAC transgenic mouse line that expresses Cre activity in the embryonic maxillary but not the frontonasal mesenchyme and show that the Dlx1-Cre labeled embryonic maxillary mesenchyme cells contribute to the maxillary bone as well as the soft tissues lateral to both the premaxillary and maxillary bones but not to the premaxillary bone. These results clearly demonstrate the developmental origin of the premaxillary bone from embryonic frontonasal ectomesenchyme cells in mice and confirm the evolutionary homology of the premaxilla across amniotes.
Collapse
Affiliation(s)
- Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chuanqi Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education Key Laboratory of Oral Biomedicine, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Nirpesh Adhikari
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Koyabu D. Evolution, conservatism and overlooked homologies of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220081. [PMID: 37183902 PMCID: PMC10184252 DOI: 10.1098/rstb.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/22/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, studies integrating palaeontology, embryology and experimental developmental biology have markedly altered our homological understanding of the mammalian skull. Indeed, new evidence suggests that we should revisit and restructure the conventional anatomical terminology applied to the components of the mammalian skull. Notably, these are classical problems that have remained unresolved since the ninteenth century. In this review, I offer perspectives on the overlooked problems associated with the homology, development, and conservatism of the mammalian skull, aiming to encourage future studies in these areas. I emphasise that ossification patterns, bone fusion, cranial sutures and taxon-specific neomorphic bones in the skull are virtually unexplored, and further studies would improve our homological understanding of the mammalian skull. Lastly, I highlight that overlooked bones may exist in the skull that are not yet known to science and suggest that further search is needed. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
7
|
Higashiyama H, Koyabu D, Kurihara H. Evolution of the therian face through complete loss of the premaxilla. Evol Dev 2023; 25:103-118. [PMID: 36017615 DOI: 10.1111/ede.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 01/13/2023]
Abstract
The anatomical framework of the jawbones is highly conserved among most of the Osteichthyes, including the tetrapods. However, our recent study suggested that the premaxilla, the rostralmost upper jaw bone, was rearranged during the evolution of therian mammals, being replaced by the septomaxilla at least in the lateral part. In the present study, to understand more about the process of evolution from the ancestral upper jaw to the therian face, we re-examined the development of the therian premaxilla (incisive bone). By comparing mouse, bat, goat, and cattle fetuses, we confirmed that the therian premaxilla has dual developmental origins, the lateral body and the palatine process. This dual development is widely conserved among the therian mammals. Cell-lineage-tracing experiments using Dlx1-CreERT2 mice revealed that the palatine process arises in the ventral part of the premandibular domain, where the nasopalatine nerve distributes, whereas the lateral body develops from the maxillary prominence in the domain of the maxillary nerve. Through comparative analysis using various tetrapods, we concluded that the palatine process should not be considered part of the ancestral premaxilla. It rather corresponds to the anterior region of the vomerine bone of nonmammalian tetrapods. Thus, the present findings indicate that the true premaxilla was completely lost during the evolution of the therian mammals, resulting in the establishment of the unique therian face as an evolutionary novelty. Reconsideration of the homological framework of the cranial skeleton based on the topographical relationships of the ossification center during embryonic development is warranted.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Chen J, Yao Y, Wang X, Wang Y, Li T, Du J. Chloroquine regulates the proliferation and apoptosis of palate development on mice embryo by activating P53 through blocking autophagy in vitro. In Vitro Cell Dev Biol Anim 2022; 58:558-570. [PMID: 35947289 DOI: 10.1007/s11626-022-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022]
Abstract
Cleft lip and palate is one of the most frequent congenital developmental defects. Autophagy is a highly conserved process of cell self-degradation in eukaryotes, involving multiple biological processes in which chloroquine (CQ) is the most common inhibitor. However, whether CQ affects and how it affects palate development is unknown. Mouse embryonic palatal cells (MEPCs) were treated with CQ to observe cell viability, apoptosis, migration, osteogenic differentiation by cell proliferation assay, flow cytometric analysis, scratch assay, and alizarin red staining. PI staining was used to measure cell cycle distribution. Immunofluorescence (IF) assay and transmission electron microscopy were used to detect autophagosomes. The autophagy-related factors (LC3 and P62), apoptosis-related markers (P53, caspase-3 cleaved caspase-3, BAX, and BCL-2), and cell cycle-related proteins (P21, CDK2, CDK4, cyclin D1, and cyclin E) were all measured by western blot. CQ inhibited the proliferation of MEPCs by arresting the G0/G1 phase of the cell cycle in a concentration- and time-dependent manner with cell cycle-related proteins P21 upregulated and CDK2, CDK4, cyclin D1, and cyclin E downregulated. Then we detected CQ also induced cell apoptosis in a dose-dependent manner by decreasing the BCL-2/BAX ratio and increasing cleaved caspase-3. Next, it was investigated that migration and osteogenesis of MEPCs decreased with CQ treatment in a dose-dependent manner. Meanwhile, CQ blocked the autophagy pathway by upregulating LC3II and P62 expressions which activated the P53 pathway. CQ activates P53 which affects MEPC biological characteristics by changing the proliferation and apoptosis of MEPCs through inhibiting autophagy.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yaxia Yao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Tianli Li
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
9
|
Guo H, Bai X, Wang X, Qiang J, Sha T, Shi Y, Zheng K, Yang Z, Shi C. Development and regeneration of periodontal supporting tissues. Genesis 2022; 60:e23491. [PMID: 35785409 DOI: 10.1002/dvg.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Periodontal tissues, including gingiva, cementum, periodontal ligament, and alveolar bone, play important roles in oral health. Under physiological conditions, periodontal tissues surround and support the teeth, maintaining the stability of the teeth and distributing the chewing forces. However, under pathological conditions, with the actions of various pathogenic factors, the periodontal tissues gradually undergo some irreversible changes, that is, gingival recession, periodontal ligament rupture, periodontal pocket formation, alveolar bone resorption, eventually leading to the loosening and even loss of the teeth. Currently, the regenerations of the periodontal tissues are still challenging. Therefore, it is necessary to study the development of the periodontal tissues, the principles and processes of which can be used to develop new strategies for the regeneration of periodontal tissues. This review summarizes the development of periodontal tissues and current strategies for periodontal healing and regeneration.
Collapse
Affiliation(s)
- Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xueying Bai
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaoling Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yan Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
10
|
Pellerin P, Tonello C, da Silva Freitas R, Tang XJ, Alonso N. Tessier's Cleft Number 6 Revisited: A Series of 26 new Cases and Literature Review of 44. Cleft Palate Craniofac J 2022:10556656221086459. [PMID: 35285292 DOI: 10.1177/10556656221086459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To fix a gray zone left in Tessier's classification of rare clefts with cleft 6 and to give a more comprehensive description of cleft 6 anatomy. DESIGN The material used for the research was a series of 26 clinical cases of patients with assessed cleft 6 and 44 cases found out of a literature review with enough data to be useful. The 70 cases were cross-examined by the authors. STUDY SETTING The authors are senior craniofacial surgeons working in high-case load department from university centers where the patients are documented and receive primary as well as secondary treatment and follow-up. PATIENTS The patients were selected out of the series of craniofacial deformities taken care of by the authors' department as rare clefts. MAIN OUTCOME We describe the full spectrum of cleft 6 as an autonomous entity that could present itself in three subtypes: 6a is the most proximal and could be associated with cleft 8. The subtype 6b is medial toward the zygomatic arch and frequently associated with a bone and teeth appendage (frequently described as a "maxillary duplication"). The subtype 6C goes toward the external ear between the helix crus and the auditory meatus. CONCLUSIONS The Tessier's opinion is that Treacher Collins syndrome was the association of clefts 6, 7, and 8 and is no longer sustainable in the light of modern genetics. Most of the cleft 6 are misdiagnosed in the literature.
Collapse
Affiliation(s)
| | - Cristiano Tonello
- Cirurgia Craniofacial HRAC-USP, Curso de Medicina, da Universidade de São Paulo, Bauru, Brazil
| | | | - Xiao Jun Tang
- 74698Plastic Surgery Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nivaldo Alonso
- Cirurgia Craniofacial HRAC-USP, Curso de Medicina, da Universidade de São Paulo, Bauru, Brazil
| |
Collapse
|
11
|
Dobreva MP, Camacho J, Abzhanov A. Time to synchronize our clocks: Connecting developmental mechanisms and evolutionary consequences of heterochrony. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:87-106. [PMID: 34826199 DOI: 10.1002/jez.b.23103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heterochrony, defined as a change in the timing of developmental events altering the course of evolution, was first recognized by Ernst Haeckel in 1866. Haeckel's original definition was meant to explain the observed parallels between ontogeny and phylogeny, but the interpretation of his work became a source of controversy over time. Heterochrony took its modern meaning following the now classical work in the 1970-80s by Steven J. Gould, Pere Alberch, and co-workers. Predicted and described heterochronic scenarios emphasize the many ways in which developmental changes can influence evolution. However, while important examples of heterochrony detected with comparative morphological methods have multiplied, the more mechanistic understanding of this phenomenon lagged conspicuously behind. Considering the rapid progress in imaging and molecular tools available now for developmental biologists, this review aims to stress the need to take heterochrony research to the next level. It is time to synchronize the different levels of heterochrony research into a single analysis flow: from studies on organismal-level morphology to cells to molecules and genes, using complementary techniques. To illustrate how to achieve a more comprehensive understanding of phyletic morphological diversification associated with heterochrony, we discuss several recent case studies at various phylogenetic scales that combine morphological, cellular, and molecular analyses. Such a synergistic approach offers to more fully integrate phylogenetic and ontogenetic dimensions of the fascinating evolutionary phenomenon of heterochrony.
Collapse
Affiliation(s)
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
12
|
The effects of altered BMP4 signaling in first branchial-arch-derived murine embryonic orofacial tissues. Int J Oral Sci 2021; 13:40. [PMID: 34845186 PMCID: PMC8630201 DOI: 10.1038/s41368-021-00142-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/27/2022] Open
Abstract
The first branchial arch (BA1), which is derived from cranial neural crest (CNC) cells, gives rise to various orofacial tissues. Cre mice are widely used for the determination of CNC and exploration of gene functions in orofacial development. However, there is a lack of Cre mice specifically marked BA1's cells. Pax2-Cre allele was previously generated and has been widely used in the field of inner ear development. Here, by compounding Pax2-Cre and R26R-mTmG mice, we found a specific expression pattern of Pax2+ cells that marked BA1's mesenchymal cells and the BA1-derivatives. Compared to Pax2-Cre; R26R-mTmG allele, GFP+ cells were abundantly found both in BA1 and second branchial arch in Wnt1-Cre;R26R-mTmG mice. As BMP4 signaling is required for orofacial development, we over-activated Bmp4 by using Pax2-Cre; pMes-BMP4 strain. Interestingly, our results showed bilateral hyperplasia between the upper and lower teeth. We also compare the phenotypes of Wnt1-Cre; pMes-BMP4 and Pax2-Cre; pMes-BMP4 strains and found severe deformation of molar buds, palate, and maxilla-mandibular bony structures in Wnt1-Cre; pMes-BMP4 mice; however, the morphology of these orofacial organs were comparable between controls and Pax2-Cre; pMes-BMP4 mice except for bilateral hyperplastic tissues. We further explore the properties of the hyperplastic tissue and found it is not derived from Runx2+ cells but expresses Msx1, and probably caused by abnormal cell proliferation and altered expression pattern of p-Smad1/5/8. In sum, our findings suggest altering BMP4 signaling in BA1-specific cell lineage may lead to unique phenotypes in orofacial regions, further hinting that Pax2-Cre mice could be a new model for genetic manipulation of BA1-derived organogenesis in the orofacial region.
Collapse
|
13
|
Mammalian face as an evolutionary novelty. Proc Natl Acad Sci U S A 2021; 118:2111876118. [PMID: 34716275 PMCID: PMC8673075 DOI: 10.1073/pnas.2111876118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The anterior end of the mammalian face is characteristically composed of a semimotile nose, not the upper jaw as in other tetrapods. Thus, the therian nose is covered ventrolaterally by the "premaxilla," and the osteocranium possesses only a single nasal aperture because of the absence of medial bony elements. This stands in contrast to those in other tetrapods in whom the premaxilla covers the rostral terminus of the snout, providing a key to understanding the evolution of the mammalian face. Here, we show that the premaxilla in therian mammals (placentals and marsupials) is not entirely homologous to those in other amniotes; the therian premaxilla is a composite of the septomaxilla and the palatine remnant of the premaxilla of nontherian amniotes (including monotremes). By comparing topographical relationships of craniofacial primordia and nerve supplies in various tetrapod embryos, we found that the therian premaxilla is predominantly of the maxillary prominence origin and associated with mandibular arch. The rostral-most part of the upper jaw in nonmammalian tetrapods corresponds to the motile nose in therian mammals. During development, experimental inhibition of primordial growth demonstrated that the entire mammalian upper jaw mostly originates from the maxillary prominence, unlike other amniotes. Consistently, cell lineage tracing in transgenic mice revealed a mammalian-specific rostral growth of the maxillary prominence. We conclude that the mammalian-specific face, the muzzle, is an evolutionary novelty obtained by overriding ancestral developmental constraints to establish a novel topographical framework in craniofacial mesenchyme.
Collapse
|
14
|
Danescu A, Rens EG, Rehki J, Woo J, Akazawa T, Fu K, Edelstein-Keshet L, Richman JM. Symmetry and fluctuation of cell movements in neural crest-derived facial mesenchyme. Development 2021; 148:dev.193755. [PMID: 33757991 PMCID: PMC8126411 DOI: 10.1242/dev.193755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
In the face, symmetry is established when bilateral streams of neural crest cells leave the neural tube at the same time, follow identical migration routes and then give rise to the facial prominences. However, developmental instability exists, particularly surrounding the steps of lip fusion. The causes of instability are unknown but inability to cope with developmental fluctuations are a likely cause of congenital malformations, such as non-syndromic orofacial clefts. Here, we tracked cell movements over time in the frontonasal mass, which forms the facial midline and participates in lip fusion, using live-cell imaging of chick embryos. Our mathematical examination of cell velocity vectors uncovered temporal fluctuations in several parameters, including order/disorder, symmetry/asymmetry and divergence/convergence. We found that treatment with a Rho GTPase inhibitor completely disrupted the temporal fluctuations in all measures and blocked morphogenesis. Thus, we discovered that genetic control of symmetry extends to mesenchymal cell movements and that these movements are of the type that could be perturbed in asymmetrical malformations, such as non-syndromic cleft lip. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Live imaging of the chick embryo face followed by mathematical analysis of mesenchymal cell tracks captures novel fluctuations between states of order/disorder as well as symmetry/asymmetry, revealing developmental instabilities that are part of normal morphogenesis.
Collapse
Affiliation(s)
- Adrian Danescu
- Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Elisabeth G Rens
- Department of Mathematics, University of British Columbia, 1986 Mathematics Road, Vancouver, V6T 1Z2, Canada
| | - Jaspreet Rehki
- Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Johnathan Woo
- Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Takashi Akazawa
- Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Katherine Fu
- Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, 1986 Mathematics Road, Vancouver, V6T 1Z2, Canada
| | - Joy M Richman
- Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
15
|
Jomaa J, Martínez-Vargas J, Essaili S, Haider N, Abramyan J. Disconnect between the developing eye and craniofacial prominences in the avian embryo. Mech Dev 2020; 161:103596. [PMID: 32044294 DOI: 10.1016/j.mod.2020.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
In the amniote embryo, the upper jaw and nasal cavities form through coordinated outgrowth and fusion of craniofacial prominences. Adjacent to the embryonic prominences are the developing eyes, which abut the maxillary and lateral nasal prominences. The embryos of extant sauropsids (birds and nonavian reptiles) develop particularly large eyes in comparison to mammals, leading researchers to propose that the developing eye may facilitate outgrowth of prominences towards the midline in order to aid prominence fusion. To test this hypothesis, we performed unilateral and bilateral ablation of the developing eyes in chicken embryos, with the aim of evaluating subsequent prominence formation and fusion. Our analyses revealed minor interaction between the developing craniofacial prominences and the eyes, inconsequential to the fusion of the upper beak. At later developmental stages, the skull exhibited only localized effects from missing eyes, while geometric morphometrics revealed minimal effect on overall shape of the upper jaw when it develops without eyes. Our results indicate that the substantial size of the developing eyes in the chicken embryo exert little influence over the fusion of the craniofacial prominences, despite their effect on the size and shape of maxillary prominences and components of the skull.
Collapse
Affiliation(s)
- Jamil Jomaa
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | | | - Shadya Essaili
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Nida Haider
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA.
| |
Collapse
|
16
|
Tahir AM, Jilich M, Trinh DC, Cannata G, Barberis F, Zoppi M. Architecture and design of a robotic mastication simulator for interactive load testing of dental implants and the mandible. J Prosthet Dent 2019; 122:389.e1-389.e8. [PMID: 31547954 DOI: 10.1016/j.prosdent.2019.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
STATEMENT OF PROBLEM Determination of interactive loading between a dental prosthesis and the host mandible is essential for implant prosthodontics and to preserve bone. PURPOSE The purpose of this study was to develop and evaluate a robotic mastication simulator to replicate the human mastication force cycle to record the required interactive loading using specifically designed force sensors. MATERIAL AND METHODS This robotic mastication simulator incorporated a Stewart parallel kinematic mechanism (PKM) controlled in the force-control loop. The hydraulically operated PKM executed the wrench operation, which consisted of the combined effect of forces and moments exhibited by the mastication process. Principal design features of this robotic simulator included PKM kinematic modeling, static force analysis to realize the masticatory wrench characteristics, and the architecture of its hydraulic system. Additionally, the design of a load-sensing element for the mandible and implant interaction was also incorporated. This element facilitated the quantification of the load distribution between implants and the host bone during the masticatory operation produced by the PKM. These loading tests were patient-specific and required separate artificial mandibular models for each patient. RESULTS The simulation results demonstrated that the robotic PKM could replicate human mastication. These results validated the hydraulic system modeling for the required range of masticatory movements and effective forces of the PKM end-effector. The overall structural design of the robotic mastication simulator presented the integration of the PKM and its hydraulic system with the premeditated load-recording mechanism. CONCLUSIONS The developed system facilitated the teeth-replacement procedure. The PKM accomplished the execution of mastication cycle involving 6 degrees of freedom, enabling any translation and rotation in sagittal, horizontal, and vertical planes. The mechanism can simulate the human mastication cycle and has a force application range of up to 2000 N. The designed load-sensing element can record interactive forces within the range of 200 N to 2000 N with fast response and high sensitivity to produce a robotic mastication simulator with custom-made modules.
Collapse
Affiliation(s)
- Ahmad Mahmood Tahir
- Research Scientist, Mechanics, Measurements and Robotics (MMR), DIME-PMAR Robotics Group, University of Genoa, Genoa, Italy.
| | - Michal Jilich
- Research Scientist, DIME-PMAR Robotics Group, University of Genoa, Genoa, Italy
| | - Duc Cuong Trinh
- Research Scientist, DIME-PMAR Robotics Group, University of Genoa, Genoa, Italy
| | - Giorgio Cannata
- Associate Professor, The Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Fabrizio Barberis
- Associate Professor, The Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| | - Matteo Zoppi
- Associate Professor, DIME-PMAR Robotics Group, University of Genoa, Genova, Italy
| |
Collapse
|
17
|
Wu Z, Rao Y, Zhang S, Kim EJ, Oki S, Harada H, Cheung M, Jung HS. Cis-control of Six1 expression in neural crest cells during craniofacial development. Dev Dyn 2019; 248:1264-1272. [PMID: 31464047 DOI: 10.1002/dvdy.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/01/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Six1 is a transcriptional factor that plays an important role in embryonic development. Mouse and chick embryos deficient for Six1 have multiple craniofacial anomalies in the facial bones and cartilages. Multiple Six1 enhancers have been identified, but none of them has been reported to be active in the maxillary and mandibular process. RESULTS We studied two Six1 enhancers in the chick neural crest tissues during craniofacial development. We showed that two evolutionarily conserved enhancers, Six1E1 and Six1E2, act synergistically. Neither Six1E1 nor Six1E2 alone can drive enhancer reporter signal in the maxillary or mandibular processes. However, their combination, Six1E, showed robust enhancer activity in these tissues. Similar reporter signal can also be driven by the mouse homolog of Six1E. Mutations of multiple conserved transcriptional factor binding sites altered the enhancer activity of Six1E, especially mutation of the LIM homeobox binding site, dramatically reduced the enhancer activity, implying that the Lhx protein family be an important regulator of Six1 expression. CONCLUSION This study, for the first time, described the synergistic activation of two Six1 enhancers in the maxillary and mandibular processes and will facilitate more detailed studies of the regulation of Six1 in craniofacial development.
Collapse
Affiliation(s)
- Zhaoming Wu
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yanxia Rao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sushan Zhang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Shinya Oki
- Department of Basic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidemitsu Harada
- Department of Anatomy, Division of Developmental Biology & Regenerative Medicine, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba, Iwate, Japan
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
18
|
Barske L, Rataud P, Behizad K, Del Rio L, Cox SG, Crump JG. Essential Role of Nr2f Nuclear Receptors in Patterning the Vertebrate Upper Jaw. Dev Cell 2018; 44:337-347.e5. [PMID: 29358039 PMCID: PMC5801120 DOI: 10.1016/j.devcel.2017.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023]
Abstract
The jaw is central to the extensive variety of feeding and predatory behaviors across vertebrates. The bones of the lower but not upper jaw form around an early-developing cartilage template. Whereas Endothelin1 patterns the lower jaw, the factors that specify upper-jaw morphology remain elusive. Here, we identify Nuclear Receptor 2f genes (Nr2fs) as enriched in and required for upper-jaw formation in zebrafish. Combinatorial loss of Nr2fs transforms maxillary components of the upper jaw into lower-jaw-like structures. Conversely, nr2f5 misexpression disrupts lower-jaw development. Genome-wide analyses reveal that Nr2fs repress mandibular gene expression and early chondrogenesis in maxillary precursors. Rescue of lower-jaw defects in endothelin1 mutants by reducing Nr2f dosage further demonstrates that Nr2f expression must be suppressed for normal lower-jaw development. We propose that Nr2fs shape the upper jaw by protecting maxillary progenitors from early chondrogenesis, thus preserving cells for later osteogenesis.
Collapse
Affiliation(s)
- Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pauline Rataud
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kasra Behizad
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Del Rio
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Samuel G Cox
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Percival CJ, Green R, Roseman CC, Gatti DM, Morgan JL, Murray SA, Donahue LR, Mayeux JM, Pollard KM, Hua K, Pomp D, Marcucio R, Hallgrímsson B. Developmental constraint through negative pleiotropy in the zygomatic arch. EvoDevo 2018; 9:3. [PMID: 29423138 PMCID: PMC5787316 DOI: 10.1186/s13227-018-0092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous analysis suggested that the relative contribution of individual bones to regional skull lengths differ between inbred mouse strains. If the negative correlation of adjacent bone lengths is associated with genetic variation in a heterogeneous population, it would be an example of negative pleiotropy, which occurs when a genetic factor leads to opposite effects in two phenotypes. Confirming negative pleiotropy and determining its basis may reveal important information about the maintenance of overall skull integration and developmental constraint on skull morphology. RESULTS We identified negative correlations between the lengths of the frontal and parietal bones in the midline cranial vault as well as the zygomatic bone and zygomatic process of the maxilla, which contribute to the zygomatic arch. Through gene association mapping of a large heterogeneous population of Diversity Outbred (DO) mice, we identified a quantitative trait locus on chromosome 17 driving the antagonistic contribution of these two zygomatic arch bones to total zygomatic arch length. Candidate genes in this region were identified and real-time PCR of the maxillary processes of DO founder strain embryos indicated differences in the RNA expression levels for two of the candidate genes, Camkmt and Six2. CONCLUSIONS A genomic region underlying negative pleiotropy of two zygomatic arch bones was identified, which provides a mechanism for antagonism in component bone lengths while constraining overall zygomatic arch length. This type of mechanism may have led to variation in the contribution of individual bones to the zygomatic arch noted across mammals. Given that similar genetic and developmental mechanisms may underlie negative correlations in other parts of the skull, these results provide an important step toward understanding the developmental basis of evolutionary variation and constraint in skull morphology.
Collapse
Affiliation(s)
| | - Rebecca Green
- Alberta Children’s Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB Canada
- The McCaig Bone and Joint Institute, University of Calgary, Calgary, AB Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Charles C. Roseman
- Program in Ecology Evolution and Conservation Biology, University of Illinois, Urbana, IL USA
| | | | | | | | | | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC USA
| | - Ralph Marcucio
- The Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF School of Medicine, San Francisco, CA USA
| | - Benedikt Hallgrímsson
- Alberta Children’s Hospital Institute for Child and Maternal Health, University of Calgary, Calgary, AB Canada
- The McCaig Bone and Joint Institute, University of Calgary, Calgary, AB Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
20
|
Fish JL. Evolvability of the vertebrate craniofacial skeleton. Semin Cell Dev Biol 2017; 91:13-22. [PMID: 29248471 DOI: 10.1016/j.semcdb.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
The skull is a vertebrate novelty. Morphological adaptations of the skull are associated with major evolutionary transitions, including the shift to a predatory lifestyle and the ability to masticate while breathing. These adaptations include the chondrocranium, dermatocranium, articulated jaws, primary and secondary palates, internal choanae, the middle ear, and temporomandibular joint. The incredible adaptive diversity of the vertebrate skull indicates an underlying bauplan that promotes evolvability. Comparative studies in craniofacial development suggest that the craniofacial bauplan includes three secondary organizers, two that are bilaterally placed at the Hinge of the developing jaw, and one situated in the midline of the developing face (the FEZ). These organizers regulate tissue interactions between the cranial neural crest, the neuroepithelium, and facial and pharyngeal epithelia that regulate the development and evolvability of the craniofacial skeleton.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of Massachusetts Lowell, Department of Biological Sciences, 198 Riverside St., Olsen Hall 619, Lowell, MA 01854, U.S.A..
| |
Collapse
|
21
|
Gai Z, Yu X, Zhu M. The Evolution of the Zygomatic Bone From Agnatha to Tetrapoda. Anat Rec (Hoboken) 2017; 300:16-29. [PMID: 28000409 DOI: 10.1002/ar.23512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/23/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022]
Abstract
Establishing the homology of the zygomatic or jugal bone and tracing its origin and early evolution represents a complex issue because of large morphological gaps between various groups of vertebrates. Using recent paleontological findings, we discuss the deep homology of the zygomatic or jugal bone in stem gnathostomes (placoderms) and examine its homology and modifications in crown gnathostomes (acanthodians, chondrichthyans and osteichthyans). The discovery of the placoderm Entelognathus from the Silurian of China (∼423 million years ago) established that the large dermal plates in placoderms and osteichthyans are homologous. In Entelognathus, the jugal was joined by a new set of bones (premaxilla, maxilla, and lachrymal), marking the first appearance of the typical vertebrate face found in tetrapods including humans. In non-Entelognathus placoderms, the jugal (homologized with the suborbital plate) occupied most of the cheek region and covered the palatoquadrate laterally. In antiarch placoderms (the most basal jawed vertebrates), the jugal (represented by the ventrally positioned mental plate) functioned as part of the upper jaw. In osteichthyans, the preopercular arose as a novel bone and separated the jugal from the opercular in piscine osteichthyans. A single bone in basal osteichthyans, the preopercular may have divided into two or three elements (the preopercular, the squamosal and/or the quadratojugal) in several later osteichthyan groups. Subsequent modifications of the jugal in the fish-tetrapod transition (its enlargement leading to its contact with the quadratojugal and the separation of the squamosal from the maxilla) brought the vertebrate face to the typical model we see in living tetrapods. Anat Rec, 300:16-29, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhikun Gai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaobo Yu
- Department of Biological Sciences, Kean University, Union, New Jersey
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences, Beijing, 100044, China
| |
Collapse
|
22
|
Heuzé Y, Kawasaki K, Schwarz T, Schoenebeck JJ, Richtsmeier JT. Developmental and Evolutionary Significance of the Zygomatic Bone. Anat Rec (Hoboken) 2017; 299:1616-1630. [PMID: 27870340 PMCID: PMC5111587 DOI: 10.1002/ar.23449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023]
Abstract
The zygomatic bone is derived evolutionarily from the orbital series. In most modern mammals the zygomatic bone forms a large part of the face and usually serves as a bridge that connects the facial skeleton to the neurocranium. Our aim is to provide information on the contribution of the zygomatic bone to variation in midfacial protrusion using three samples; humans, domesticated dogs, and monkeys. In each case, variation in midface protrusion is a heritable trait produced by one of three classes of transmission: localized dysmorphology associated with single gene dysfunction, selective breeding, or long‐term evolution from a common ancestor. We hypothesize that the shape of the zygomatic bone reflects its role in stabilizing the connection between facial skeleton and neurocranium and consequently, changes in facial protrusion are more strongly reflected by the maxilla and premaxilla. Our geometric morphometric analyses support our hypothesis suggesting that the shape of the zygomatic bone has less to do with facial protrusion. By morphometrically dissecting the zygomatic bone we have determined a degree of modularity among parts of the midfacial skeleton suggesting that these components have the ability to vary independently and thus can evolve differentially. From these purely morphometric data, we propose that the neural crest cells that are fated to contribute to the zygomatic bone experience developmental cues that distinguish them from the maxilla and premaxilla. The spatiotemporal and molecular identity of the cues that impart zygoma progenitors with their identity remains an open question that will require alternative data sets. Anat Rec, 299:1616–1630, 2016. © 2016 The Authors The Anatomical Record Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yann Heuzé
- UMR5199 PACEA, Bordeaux Archaeological Sciences Cluster of Excellence, Université De Bordeaux
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Tobias Schwarz
- Department of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Jeffrey J Schoenebeck
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA
| |
Collapse
|
23
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
24
|
Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dyn 2016; 246:28-40. [PMID: 27756109 DOI: 10.1002/dvdy.24465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Syngnathia is a congenital craniofacial disorder characterized by bony or soft tissue fusion of upper and lower jaws. Previous studies suggested some causative signals, such as Foxc1 or Bmp4, cause the disruption of maxillomandibular identity, but their location and the interactive signals involved remain unexplored. We wanted to examine the embryonic origin of syngnathia based on the assumption that it may be located at the separation between the maxillary and mandibular processes. This region, known as the maxillomandibular junction (MMJ), is involved in segregation of cranial neural crest-derived mesenchyme into the presumptive upper and lower jaws. RESULTS Here we investigated the role of Fgf, Bmp, and retinoid signaling during development of MMJ in chicken embryos. By changing the levels of these signals with bead implants, we induced syngnathia with microstomia on the treated side, which showed increased Barx1 and neural cell adhesion molecule (NCAM) expression. Redistribution of proliferating cells was also observed at the proximal region to maxillary and mandibular arch around MMJ. CONCLUSIONS We propose that interactive molecular signaling by Fgfs, Bmps, and retinoids around MMJ is required for normal separation of the maxilla and mandible, as well as the proper positioning of beak commissure during early facial morphogenesis. Developmental Dynamics 246:28-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae-Jin Park
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Zhenngu Piao
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical College, GuangZhou City, China
| | - Sang-Hwy Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
25
|
Zhu M, Ahlberg PE, Pan Z, Zhu Y, Qiao T, Zhao W, Jia L, Lu J. A Silurian maxillate placoderm illuminates jaw evolution. Science 2016; 354:334-336. [DOI: 10.1126/science.aah3764] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 11/03/2022]
|
26
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
McCord CL, Westneat MW. Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea). Mol Phylogenet Evol 2016; 94:397-409. [DOI: 10.1016/j.ympev.2015.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
28
|
Abramyan J, Richman JM. Recent insights into the morphological diversity in the amniote primary and secondary palates. Dev Dyn 2015; 244:1457-68. [PMID: 26293818 PMCID: PMC4715671 DOI: 10.1002/dvdy.24338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
The assembly of the upper jaw is a pivotal moment in the embryonic development of amniotes. The upper jaw forms from the fusion of the maxillary, medial nasal, and lateral nasal prominences, resulting in an intact upper lip/beak and nasal cavities; together called the primary palate. This process of fusion requires a balance of proper facial prominence shape and positioning to avoid craniofacial clefting, whilst still accommodating the vast phenotypic diversity of adult amniotes. As such, variation in craniofacial ontogeny is not tolerated beyond certain bounds. For clarity, we discuss primary palatogenesis of amniotes into in two categories, according to whether the nasal and oral cavities remain connected throughout ontogeny or not. The transient separation of these cavities occurs in mammals and crocodilians, while remaining connected in birds, turtles and squamates. In the latter group, the craniofacial prominences fuse around a persistent choanal groove that connects the nasal and oral cavities. Subsequently, all lineages except for turtles, develop a secondary palate that ultimately completely or partially separates oral and nasal cavities. Here, we review the shared, early developmental events and highlight the points at which development diverges in both primary and secondary palate formation.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver BC, CANADA
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver BC, CANADA
| |
Collapse
|
29
|
Trinh LA, Fraser SE. Imaging the Cell and Molecular Dynamics of Craniofacial Development: Challenges and New Opportunities in Imaging Developmental Tissue Patterning. Curr Top Dev Biol 2015; 115:599-629. [PMID: 26589939 DOI: 10.1016/bs.ctdb.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the vertebrate head requires cell-cell and tissue-tissue interactions between derivatives of the three germ layers to coordinate morphogenetic movements in four dimensions (4D: x, y, z, t). The high spatial and temporal resolution offered by optical microscopy has made it the main imaging modularity for capturing the molecular and cellular dynamics of developmental processes. In this chapter, we highlight the challenges and new opportunities provided by emerging technologies that enable dynamic, high-information-content imaging of craniofacial development. We discuss the challenges of varying spatial and temporal scales encountered from the biological and technological perspectives. We identify molecular and fluorescence imaging technology that can provide solutions to some of the challenges. Application of the techniques described within this chapter combined with considerations of the biological and technical challenges will aid in formulating the best image-based studies to extend our understanding of the genetic and environmental influences underlying craniofacial anomalies.
Collapse
Affiliation(s)
- Le A Trinh
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Scott E Fraser
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
30
|
He F, Soriano P. Sox10ER(T2) CreER(T2) mice enable tracing of distinct neural crest cell populations. Dev Dyn 2015; 244:1394-403. [PMID: 26250625 DOI: 10.1002/dvdy.24320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neural crest cells play an important role in craniofacial morphogenesis and many other developmental processes. The formation of neural crest cells (NCCs) in vivo is a highly dynamic process and remains to be fully understood. RESULTS To investigate the spatiotemporal patterning of NCCs in vivo, we have generated Sox10ER(T2) CreER(T2) (SECE) mice, a transgenic line driving inducible Cre expression in NCCs. Inducing Cre activity at different stages triggered reporter expression in distinct NCC populations in SECE; R26R mice. By optimizing the timing and dosage of tamoxifen administration, we controlled Cre expression specifically in cranial NCCs. Using this approach, we demonstrate an important role for PDGFRα in cranial NCCs mitosis within the mandibular processes. Further reducing Cre activity within the cranial NCCs of SECE; R26R embryos revealed that SECE labels preferentially progenitors of medial nasal process (MNP) rather than the lateral nasal process (LNP), before their formation from the frontonasal prominence (FNP). CONCLUSIONS Our results indicate that NCCs are formed sequentially from rostral to caudal regions along the neural tube. These findings also suggest that NCCs within the FNP become specified regionally and genetically before they divide into MNP and LNP.
Collapse
Affiliation(s)
- Fenglei He
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Bhullar BAS, Morris ZS, Sefton EM, Tok A, Tokita M, Namkoong B, Camacho J, Burnham DA, Abzhanov A. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 2015; 69:1665-77. [PMID: 25964090 DOI: 10.1111/evo.12684] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 12/17/2022]
Abstract
The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak.
Collapse
Affiliation(s)
- Bhart-Anjan S Bhullar
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138. .,Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Anatomy 306, Chicago, Illinois, 60637. .,Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut, 06520. .,Peabody Museum of Natural History, Yale University, P.O. Box 208109, New Haven, Connecticut, 06520.
| | - Zachary S Morris
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Elizabeth M Sefton
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138.,Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts, 02138
| | - Atalay Tok
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Bumjin Namkoong
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Jasmin Camacho
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - David A Burnham
- Biodiversity Institute and Natural History Museum, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, Kansas, 66045
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138. .,Current address: Department of Life Sciences, Imperial College London, Silwood Park Campus Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom. .,Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.
| |
Collapse
|
32
|
Abramyan J, Thivichon-Prince B, Richman JM. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat 2015; 226:420-33. [PMID: 25904546 DOI: 10.1111/joa.12291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
The amniote primary palate encompasses the upper lip and the nasal cavities. During embryonic development, the primary palate forms from the fusion of the maxillary, medial nasal and lateral nasal prominences. In mammals, as the primary palate fuses, the nasal and oral cavities become completely separated. Subsequently, the tissue demarcating the future internal nares (choanae) thins and becomes the bucconasal membrane, which eventually ruptures and allows for the essential connection of the oral and nasal cavities to form. In reptiles (including birds), the other major amniote group, primary palate ontogeny is poorly studied with respect to prominence fusion, especially the formation of a bucconasal membrane. Using 3D optical projection tomography, we found that the prominences that initiate primary palate formation are similar between mammals and crocodilians but distinct from turtles and lizards, which are in turn similar to each other. Chickens are distinct from all non-avian lineages and instead resemble human embryos in this aspect. The majority of reptiles maintain a communication between the oral and nasal cavities via the choanae during primary palate formation. However, crocodiles appear to have a transient separation between the oral and nasal cavities. Furthermore, the three lizard species examined here, exhibit temporary closure of their external nares via fusion of the lateral nasal prominences with the frontonasal mass, subsequently reopening them just before hatching. The mechanism of the persistent choanal opening was examined in chicken embryos. The mesenchyme posterior/dorsal to the choana had a significant decline in proliferation index, whereas the mesenchyme of the facial processes remained high. This differential proliferation allows the choana to form a channel between the oral and nasal cavities as the facial prominences grow and fuse around it. Our data show that primary palate ontogeny has been modified extensively to support the array of morphological diversity that has evolved among amniotes.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Beatrice Thivichon-Prince
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
34
|
Yamanaka A, Iwai H, Uemura M, Goto T. Patterning of mammalian heterodont dentition within the upper and lower jaws. Evol Dev 2015; 17:127-38. [PMID: 25801220 DOI: 10.1111/ede.12116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian heterodont dentition is differentiated into incisors, canines, premolars, and molars in the mesial-distal direction, in both the upper and lower jaws. Although all the lower teeth are rooted in the mandible, the upper incisors are rooted in the premaxilla and the upper canine and the teeth behind it are in the maxilla. The present study uncovers ontogenetic backgrounds to these shared and differing mesiodistal patterns of the upper and lower dentition. To this end, we examined the dentition development of the house shrew, Suncus murinus, instead of the rodent model animals because the dentition of this primitive eutherian species includes all the tooth classes, and no toothless diastema region. In the shrew, the upper incisor-forming region extended over the medial nasal prominence and the mesial part of the maxillary prominence. Consequently, the maxillary and mandibular prominences were in a mirror-image relationship in terms of the mesiodistally differentiated tooth-forming regions and of the complementary gene expression pattern, with Bmp4 in the mesial and Fgf8 in the distal regions. This suggests shared molecular mechanisms regulating tooth class differentiation between the upper and lower jaws. However, the premaxillary bone appeared within the mesenchyme of the medial nasal prominence, but grew distally beyond the former epithelial boundary with the maxillary prominence to form, finally, the incisive (premaxillary-maxillary) suture just mesial to the canine. Therefore, the developmental locations of the upper incisors are not inconsistent with the classical osteological criterion of the upper canine by comparative odontologists.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | | | | | | |
Collapse
|
35
|
Jourdeuil KA, Hammer CL, Franz-Odendaal TA. A comparative analysis of chick culturing methods on skeletogenesis. Anat Rec (Hoboken) 2015; 298:810-9. [PMID: 25641825 DOI: 10.1002/ar.23117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/23/2014] [Indexed: 01/19/2023]
Abstract
Chick embryos are desirable models for the study of developmental biology. Despite this, there are very few studies that examine the effect of different culturing methods on skeletogenesis, specifically, intramembranous and endochondral bones. This study presents a detailed description of these effects by comparing two different culturing methods: windowed (in the shell) eggs and ex-ovo or shell-less culturing to normal development. Using whole mount bone staining, we determined that there is no significant difference in the length of the ossified region of intramembranous and endochondral bones in control versus window cultured embryos. However, these bones are significantly underossified in shell-less embryos. Shell-less embryos also exhibit abnormalities in endochondral bones. Intramembranous bones, interestingly, are morphologically normal in shell-less embryos. This study provides the first detailed description of ossification in window (in-ovo) and shell-less (ex-ovo) cultured embryos compared with controls (in-ovo). Patterning of the skeleton is unaffected regardless of culturing method. We conclude that studies involving endochondral bones should not utilise shell-less culturing methods. This data has been lacking in the literature and will serve as an important resource for those using cultured chick embryos in the study of skeletogenesis.
Collapse
Affiliation(s)
- Karyn A Jourdeuil
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada; Department of Biology, Mount Saint Vincent University, Halifax, NS, Canada
| | | | | |
Collapse
|
36
|
Frisdal A, Trainor PA. Development and evolution of the pharyngeal apparatus. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:403-18. [PMID: 25176500 DOI: 10.1002/wdev.147] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023]
Abstract
The oral or pharyngeal apparatus facilitates the dual functions of respiration and feeding. It develops during embryogenesis from transient structures called pharyngeal arches (PAs), which comprise a reiterated series of outgrowths on the lateral side of the head. The PAs and their segmental arrangement are highly conserved throughout evolution from invertebrate chordates such as amphioxus, through to vertebrate agnathans including avians, squamates, and mammals. The structural organization of the PAs is also highly conserved and involves contributions from each of the three primary endoderm, mesoderm, and ectoderm germ layers. The endoderm is particularly important for PA formation and segmentation and also plays a critical role in tissue-specific differentiation. The ectoderm gives rise to neural crest cells (NCC) which provide an additional layer of complexity to PA development and differentiation in vertebrates compared to invertebrate chordates that do not possess NCC. Collectively, the PAs give rise to much of the neurovasculature and musculoskeletal systems in the head and neck. The complexity of development renders the pharyngeal apparatus prone to perturbation and subsequently the pathogenesis of birth defects. Hence it is important to understand the signals and mechanisms that govern the development and evolution of the pharyngeal complex.
Collapse
Affiliation(s)
- Aude Frisdal
- Stowers Institute for Medical Research, Kansas City, MO, USA; University Pierre and Marie Curie, Paris, France
| | | |
Collapse
|
37
|
Geetha-Loganathan P, Nimmagadda S, Fu K, Richman JM. Avian facial morphogenesis is regulated by c-Jun N-terminal kinase/planar cell polarity (JNK/PCP) wingless-related (WNT) signaling. J Biol Chem 2014; 289:24153-67. [PMID: 25008326 DOI: 10.1074/jbc.m113.522003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wingless-related proteins (WNTs) regulate extension of the central axis of the vertebrate embryo (convergent extension) as well as morphogenesis of organs such as limbs and kidneys. Here, we asked whether WNT signaling directs facial morphogenesis using a targeted approach in chicken embryos. WNT11 is thought to mainly act via β-catenin-independent pathways, and little is known about its role in craniofacial development. RCAS::WNT11 retrovirus was injected into the maxillary prominence, and the majority of embryos developed notches in the upper beak or the equivalent of cleft lip. Three-dimensional morphometric analysis revealed that WNT11 prevented lengthening of the maxillary prominence, which was due in part to decreased proliferation. We next determined, using a series of luciferase reporters, that WNT11 strongly induced JNK/planar cell polarity signaling while repressing the β-catenin-mediated pathway. The activation of the JNK-ATF2 reporter was mediated by the DEP domain of Dishevelled. The impacts of altered signaling on the mesenchyme were assessed by implanted Wnt11- or Wnt3a-expressing cells (activates β-catenin pathway) into the maxillary prominence or by knocking down endogenous WNT11 with RNAi. Host cells were attracted to Wnt11 donor cells. In contrast, cells exposed to Wnt3a or the control cells did not migrate. Cells in which endogenous WNT11 was knocked down were more oriented and shorter than those exposed to exogenous WNT11. The data suggest that JNK/planar cell polarity WNT signaling operates in the face to regulate several morphogenetic events leading to lip fusion.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- From the Department of Oral Health Sciences, Life Sciences Institute, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Suresh Nimmagadda
- From the Department of Oral Health Sciences, Life Sciences Institute, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Katherine Fu
- From the Department of Oral Health Sciences, Life Sciences Institute, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Joy M Richman
- From the Department of Oral Health Sciences, Life Sciences Institute, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
38
|
Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect. Dev Biol 2014; 391:170-81. [PMID: 24785830 DOI: 10.1016/j.ydbio.2014.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/01/2023]
Abstract
Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.
Collapse
|
39
|
Young NM, Hu D, Lainoff AJ, Smith FJ, Diaz R, Tucker AS, Trainor PA, Schneider RA, Hallgrímsson B, Marcucio RS. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 2014; 141:1059-63. [PMID: 24550113 PMCID: PMC3929406 DOI: 10.1242/dev.099994] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/11/2013] [Indexed: 01/30/2023]
Abstract
A central issue in biology concerns the presence, timing and nature of phylotypic periods of development, but whether, when and why species exhibit conserved morphologies remains unresolved. Here, we construct a developmental morphospace to show that amniote faces share a period of reduced shape variance and convergent growth trajectories from prominence formation through fusion, after which phenotypic diversity sharply increases. We predict in silico the phenotypic outcomes of unoccupied morphospaces and experimentally validate in vivo that observed convergence is not due to developmental limits on variation but instead from selection against novel trajectories that result in maladaptive facial clefts. These results illustrate how epigenetic factors such as organismal geometry and shape impact facial morphogenesis and alter the locus of adaptive selection to variation in later developmental events.
Collapse
Affiliation(s)
- Nathan M. Young
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Alexis J. Lainoff
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Francis J. Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raul Diaz
- Stowers Institute of Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Abigail S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, SE1 9RT, UK
| | - Paul A. Trainor
- Stowers Institute of Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
40
|
Inman KE, Purcell P, Kume T, Trainor PA. Interaction between Foxc1 and Fgf8 during mammalian jaw patterning and in the pathogenesis of syngnathia. PLoS Genet 2013; 9:e1003949. [PMID: 24385915 PMCID: PMC3868537 DOI: 10.1371/journal.pgen.1003949] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/25/2013] [Indexed: 02/05/2023] Open
Abstract
Syngnathia (bony fusion of the upper and lower jaw) is a rare human congenital condition, with fewer than sixty cases reported in the literature. Syngnathia typically presents as part of a complex syndrome comprising widespread oral and maxillofacial anomalies, but it can also occur in isolation. Most cartilage, bone, and connective tissue of the head and face is derived from neural crest cells. Hence, congenital craniofacial anomalies are often attributed to defects in neural crest cell formation, survival, migration, or differentiation. The etiology and pathogenesis of syngnathia however remains unknown. Here, we report that Foxc1 null embryos display bony syngnathia together with defects in maxillary and mandibular structures, and agenesis of the temporomandibular joint (TMJ). In the absence of Foxc1, neural crest cell derived osteogenic patterning is affected, as osteoblasts develop ectopically in the maxillary prominence and fuse with the dentary bone. Furthermore, we observed that the craniofacial musculature is also perturbed in Foxc1 null mice, which highlights the complex tissue interactions required for proper jaw development. We present evidence that Foxc1 and Fgf8 genetically interact and that Fgf8 dosage is associated with variation in the syngnathic phenotype. Together our data demonstrates that Foxc1 – Fgf8 signaling regulates mammalian jaw patterning and provides a mechanistic basis for the pathogenesis of syngnathia. Furthermore, our work provides a framework for understanding jaw patterning and the etiology of other congenital craniofacial anomalies, including temporomandibular joint agenesis. Approximately one-third of all babies born with congenital defects, exhibit malformations of the head and face. Anomalies can include cleft lip, cleft palate, and abnormal development of bones and muscles. Such defects result in significant infant mortality, as well as life-long physical and social consequences for patients. Improved repair and the development of prevention strategies requires a thorough understanding of the underlying genetic, molecular, and environmental factors that contribute to normal craniofacial development and the pathogenesis of disease. In this study, we report the first genetic model of syngnathia, a rare human craniofacial defect characterized by bony fusion of the upper and lower jaw. We discovered that Foxc1 is required for normal development of the bones and muscles of the jaw as well as the jaw joint. Our studies provide a mechanistic basis for understanding the cause of human syngnathia as well as the failure of jaw joint formation. Furthermore, our work enhances our knowledge of jaw development and may inform treatment strategies for patients with syngnathia and related craniofacial malformation conditions.
Collapse
Affiliation(s)
- Kimberly E. Inman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Patricia Purcell
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy & Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Higashiyama H, Kuratani S. On the maxillary nerve. J Morphol 2013; 275:17-38. [DOI: 10.1002/jmor.20193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe 650-0047 Japan
| |
Collapse
|
42
|
New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 2012; 371:121-35. [PMID: 22960284 DOI: 10.1016/j.ydbio.2012.08.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022]
Abstract
Patterning of the vertebrate facial skeleton involves the progressive partitioning of neural-crest-derived skeletal precursors into distinct subpopulations along the anteroposterior (AP) and dorsoventral (DV) axes. Recent evidence suggests that complex interactions between multiple signaling pathways, in particular Endothelin-1 (Edn1), Bone Morphogenetic Protein (BMP), and Jagged-Notch, are needed to pattern skeletal precursors along the DV axis. Rather than directly determining the morphology of individual skeletal elements, these signals appear to act through several families of transcription factors, including Dlx, Msx, and Hand, to establish dynamic zones of skeletal differentiation. Provocatively, this patterning mechanism is largely conserved from mouse and zebrafish to the jawless vertebrate, lamprey. This implies that the diversification of the vertebrate facial skeleton, including the evolution of the jaw, was driven largely by modifications downstream of a conversed pharyngeal DV patterning program.
Collapse
|
43
|
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 2012; 222:41-55. [PMID: 22500853 DOI: 10.1111/j.1469-7580.2012.01505.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
44
|
Zhang Y, Blackwell EL, McKnight MT, Knutsen GR, Vu WT, Ruest LB. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with hand2. Dev Dyn 2012; 241:924-40. [PMID: 22411303 DOI: 10.1002/dvdy.23776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factor Twist1 fulfills an essential function in neural crest cell formation, migration, and survival and is associated with the craniosynostic Saethre-Chotzen syndrome in humans. However, its functions during mandibular development, when it may interact with other bHLH transcription factors like Hand2, are unknown because mice homozygous for the Twist1 null mutation die in early embryogenesis. To determine the role of Twist1 during mandibular development, we used the Hand2-Cre transgene to conditionally inactivate the gene in the neural crest cells populating the mandibular pharyngeal arch. RESULTS The mutant mice exhibited a spectrum of craniofacial anomalies, including mandibular hypoplasia, altered middle ear development, and cleft palate. It appears that Twist1 is essential for the survival of the neural crest cells involved in the development of the mandibular ramal elements. Twist1 plays a role in molar development and cusp formation by participating in the reciprocal signaling needed for the formation of the enamel knot. This gene is also needed to control the ossification of the mandible, a redundant role shared with Hand2. CONCLUSION Twist1, along with Hand2, is essential for the proximodistal patterning and development of the mandible and ossification.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Biomedical Sciences, TAMHSC-Baylor College of Dentistry, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
46
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wada N, Nohno T, Kuratani S. Dual origins of the prechordal cranium in the chicken embryo. Dev Biol 2011; 356:529-40. [DOI: 10.1016/j.ydbio.2011.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/01/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
|
48
|
Putnová I, Odehnalová S, Horák V, Stehlík L, Míšek I, Lozanoff S, Buchtová M. Comparative morphology of normal and cleft minipigs demonstrates dual origin of incisors. Arch Oral Biol 2011; 56:1624-34. [PMID: 21752351 DOI: 10.1016/j.archoralbio.2011.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/07/2011] [Accepted: 06/12/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The incisors of the mammalian dental arch develop from tissues arising from separated facial prominences. These primordial craniofacial structures undergo complex morphogenetic processes as they merge and fuse in a time and space dependent fashion. However, local contributions of precursor facial prominences to the incisors that develop subsequently remain unknown. The purpose of this study was to characterize the development of all three deciduous upper rostral teeth in the pig (Sus scrofa f. domestica) for the identification of the likely facial prominence contributions to the incisors based on normal and pathological developmental relationships. DESIGN Embryonic minipigs were collected between gestational days 20-36 (E20-36), processed for histological analysis and subjected to computerized 3D modelling. The location and morphology of the incisors (i) in these specimens were characterized and compared between developmental stages. A second set of neonatal minipigs displaying cleft lip and/or cleft palate defects were also obtained and incisor locations and eruption patterns were morphologically examined. RESULTS Palate formation begins during the third week of gestation (E20) in the minipig with ossification of the premaxilla initiating soon afterwards (E24). The third incisor (i3) develops caudally to the contact seam formed by the fusion of the primary and secondary palates in normal embryos. All cleft animals displayed normal i3 and canine, on other hand, development of i1 and i2 was often disrupted similar to human. CONCLUSIONS Our observations suggest a dual embryonic origin of the incisors in minipigs with the first and second incisors originating from the frontonasal prominence whilst the third incisor forms from tissues derived from the maxillary prominence.
Collapse
Affiliation(s)
- Iveta Putnová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
49
|
Graf HL, Brueckner M, Troeger U, Hilbig H. Proliferation, apoptosis and expression of non-collagenous proteins: differences between the upper and the lower jaw bone in vitro. Cells Tissues Organs 2011; 195:244-51. [PMID: 21494024 DOI: 10.1159/000325156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 11/19/2022] Open
Abstract
One of the effects observed during several screening studies for osteocompatibility in vitro was that cells derived from the upper and lower jaw exhibited distinct differences regarding proliferation. Therefore, the aim of this study was to examine systematically whether a single osteoblast possesses abilities which are specific to the upper or lower jaw. Both human maxillary and mandibular bone samples without any clinical or radiographic evidence of pathology were obtained from 4 male donors aged between 40 and 45 years. Cells were cultured for up to 25 days to investigate in vitro development. Total and apoptotic cell numbers were estimated by image analysis. Cells were identified as bone-like cells using immunocytochemical determination of bone sialoprotein (BSP) and osteocalcin expression. The number of healthy cells was significantly higher for cells of the lower jaw compared to those of the upper jaw. The number of apoptotic cells showed an inverse pattern. The expression pattern of osseo-inductive BSP correlated with the proliferation rate of the cells. The pattern of osteocalcin expression was related to the number of apoptotic cells. Our findings are new but were anticipated regarding the well-known differences in the healing process around implants in the lower jaw versus the upper jaw. Additionally, a relationship between our results and some diseases of the lower/upper jaw seems obvious. Future work on cell responses to biomaterials should define the origin of the cells more precisely.
Collapse
Affiliation(s)
- Hans-Ludwig Graf
- Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
50
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|