1
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
2
|
Molendijk J, Blazev R, Mills RJ, Ng YK, Watt KI, Chau D, Gregorevic P, Crouch PJ, Hilton JBW, Lisowski L, Zhang P, Reue K, Lusis AJ, Hudson JE, James DE, Seldin MM, Parker BL. Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function. eLife 2022; 11:e82951. [PMID: 36472367 PMCID: PMC9833826 DOI: 10.7554/elife.82951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.
Collapse
Affiliation(s)
- Jeffrey Molendijk
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | | | - Yaan-Kit Ng
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Kevin I Watt
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Daryn Chau
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - James BW Hilton
- Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Leszek Lisowski
- Children's Medical Research Institute, University of SydneySydneyAustralia
- Military Institute of MedicineWarszawaPoland
| | - Peixiang Zhang
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Karen Reue
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Aldons J Lusis
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los AngelesLos AngelesUnited States
| | - James E Hudson
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, School of Medical Science, University of SydneySydneyAustralia
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
- Centre for Muscle Research, University of MelbourneMelbourneAustralia
| |
Collapse
|
3
|
Xu G, Huang Z, Sheng J, Gao X, Wang X, Garcia JQ, Wei G, Liu D, Gong J. FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish. Exp Neurol 2021; 348:113944. [PMID: 34896115 DOI: 10.1016/j.expneurol.2021.113944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor binding protein 3 (Fgfbp3) have been known to be crucial for the process of neural proliferation, differentiation, migration, and adhesion. However, the specific role and the molecular mechanisms of fgfbp3 in regulating the development of motor neurons remain unclear. In this study, we have investigated the function of fgfbp3 in morphogenesis and regeneration of motor neuron in zebrafish. Firstly, we found that fgfbp3 was localized in the motor neurons and loss of fgfbp3 caused the significant decrease of the length and branching number of the motor neuron axons, which could be partially rescued by fgfbp3 mRNA injection. Moreover, the fgfbp3 knockdown (KD) embryos demonstrated similar defects of motor neurons as identified in fgfbp3 knockout (KO) embryos. Furthermore, we revealed that the locomotion and startle response of fgfbp3 KO embryos were significantly restricted, which were partially rescued by the fgfbp3 overexpression. In addition, fgfbp3 KO remarkably compromised axonal regeneration of motor neurons after injury. Lastly, the malformation of motor neurons in fgfbp3 KO embryos was rescued by overexpressing drd1b or neurod6a, respectively, which were screened by transcriptome sequencing. Taken together, our results provide strong cellular and molecular evidence that fgfbp3 is crucial for the axonal morphogenesis and regeneration of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Guangmin Xu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Gao
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Warga RM, Kane DA. Probing Cadherin Interactions in Zebrafish with E- and N-Cadherin Missense Mutants. Genetics 2018; 210:1391-1409. [PMID: 30361324 PMCID: PMC6283153 DOI: 10.1534/genetics.118.301692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Cadherins are cell adhesion molecules that regulate numerous adhesive interactions during embryonic development and adult life. Consistent with these functions, when their expression goes astray cells lose their normal adhesive properties resulting in defective morphogenesis, disease, and even metastatic cancer. In general, classical cadherins exert their effect by homophilic interactions via their five characteristic extracellular (EC) repeats. The EC1 repeat provides the mechanism for cadherins to dimerize with each other whereas the EC2 repeat may facilitate dimerization. Less is known about the other EC repeats. Here, we show that a zebrafish missense mutation in the EC5 repeat of N-cadherin is a dominant gain-of-function mutation and demonstrate that this mutation alters cell adhesion almost to the same degree as a zebrafish missense mutation in the EC1 repeat of N-cadherin. We also show that zebrafish E- and N-cadherin dominant gain-of-function missense mutations genetically interact. Perturbation of cell adhesion in embryos that are heterozygous mutant at both loci is similar to that observed in single homozygous mutants. Introducing an E-cadherin EC5 missense allele into the homozygous N-cadherin EC1 missense mutant more radically affects morphogenesis, causing synergistic phenotypes consistent with interdependent functions being disrupted. Our studies indicate that a functional EC5 repeat is critical for cadherin-mediated cell affinity, suggesting that its role may be more important than previously thought. These results also suggest the possibility that E- and N-cadherin have heterophilic interactions during early morphogenesis of the embryo; interactions that might help balance the variety of cell affinities needed during embryonic development.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| | - Donald A Kane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
5
|
Gong J, Wang X, Zhu C, Dong X, Zhang Q, Wang X, Duan X, Qian F, Shi Y, Gao Y, Zhao Q, Chai R, Liu D. Insm1a Regulates Motor Neuron Development in Zebrafish. Front Mol Neurosci 2017; 10:274. [PMID: 28894416 PMCID: PMC5581358 DOI: 10.3389/fnmol.2017.00274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Insulinoma-associated1a (insm1a) is a zinc-finger transcription factor playing a series of functions in cell formation and differentiation of vertebrate central and peripheral nervous systems and neuroendocrine system. However, its roles on the development of motor neuron have still remained uncovered. Here, we provided evidences that insm1a was a vital regulator of motor neuron development, and provided a mechanistic understanding of how it contributes to this process. Firstly, we showed the localization of insm1a in spinal cord, and primary motor neurons (PMNs) of zebrafish embryos by in situ hybridization, and imaging analysis of transgenic reporter line Tg(insm1a: mCherry)ntu805. Then we demonstrated that the deficiency of insm1a in zebrafish larvae lead to the defects of PMNs development, including the reduction of caudal primary motor neurons (CaP), and middle primary motor neurons (MiP), the excessive branching of motor axons, and the disorganized distance between adjacent CaPs. Additionally, knockout of insm1 impaired motor neuron differentiation in the spinal cord. Locomotion analysis showed that swimming activity was significantly reduced in the insm1a-null zebrafish. Furthermore, we showed that the insm1a loss of function significantly decreased the transcript levels of both olig2 and nkx6.1. Microinjection of olig2 and nkx6.1 mRNA rescued the motor neuron defects in insm1a deficient embryos. Taken together, these data indicated that insm1a regulated the motor neuron development, at least in part, through modulation of the expressions of olig2 and nkx6.1.
Collapse
Affiliation(s)
- Jie Gong
- School of Life Science, Nantong UniversityNantong, China
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Chenwen Zhu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Qinxin Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Xiaoning Wang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Xuchu Duan
- School of Life Science, Nantong UniversityNantong, China
| | - Fuping Qian
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Yunwei Shi
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong UniversityNantong, China
| |
Collapse
|
6
|
Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis. PLoS Genet 2016; 12:e1006440. [PMID: 27855159 PMCID: PMC5147773 DOI: 10.1371/journal.pgen.1006440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/21/2016] [Indexed: 01/30/2023] Open
Abstract
During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator.
Collapse
|
7
|
Barton R, Khakbaz P, Bera I, Klauda JB, Iovine MK, Berger BW. Interplay of Specific Trans- and Juxtamembrane Interfaces in Plexin A3 Dimerization and Signal Transduction. Biochemistry 2016; 55:4928-38. [PMID: 27508400 DOI: 10.1021/acs.biochem.6b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plexins are transmembrane proteins that serve as guidance receptors during angiogenesis, lymphangiogenesis, neuronal development, and zebrafish fin regeneration, with a putative role in cancer metastasis. Receptor dimerization or clustering, induced by extracellular ligand binding but modulated in part by the plexin transmembrane (TM) and juxtamembrane (JM) domains, is thought to drive plexin activity. Previous studies indicate that isolated plexin TM domains interact through a conserved, small-x3-small packing motif, and the cytosolic JM region interacts through a hydrophobic heptad repeat; however, the roles and interplay of these regions in plexin signal transduction remain unclear. Using an integrated experimental and simulation approach, we find disruption of the small-x3-small motifs in the Danio rerio Plexin A3 TM domain enhances dimerization of the TM-JM domain by enhancing JM-mediated dimerization. Furthermore, mutations of the cytosolic JM heptad repeat that disrupt dimerization do so even in the presence of TM domain mutations. However, mutations to the small-x3-small TM interfaces also disrupt Plexin A3 signaling in a zebrafish axonal guidance assay, indicating the importance of this TM interface in signal transduction. Collectively, our experimental and simulation results demonstrate that multiple TM and JM interfaces exist in the Plexin A3 homodimer, and these interfaces independently regulate dimerization that is important in Plexin A3 signal transduction.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Pouyan Khakbaz
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Indrani Bera
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States.,Biophysics Program, University of Maryland , College Park, Maryland 20742-2431, United States
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Bryan W Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States.,Program in Bioengineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
8
|
Planchart A, Mattingly CJ, Allen D, Ceger P, Casey W, Hinton D, Kanungo J, Kullman SW, Tal T, Bondesson M, Burgess SM, Sullivan C, Kim C, Behl M, Padilla S, Reif DM, Tanguay RL, Hamm J. Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX 2016; 33:435-452. [PMID: 27328013 PMCID: PMC5270630 DOI: 10.14573/altex.1601281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We alsoreview many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Carolyn J. Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Patricia Ceger
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jyotshna Kanungo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Seth W. Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Tamara Tal
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Maria Bondesson
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | | | - Con Sullivan
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Carol Kim
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Mamta Behl
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David M. Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Jon Hamm
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Banerjee S, Hayer K, Hogenesch JB, Granato M. Zebrafish foxc1a drives appendage-specific neural circuit development. Development 2015; 142:753-62. [PMID: 25670796 DOI: 10.1242/dev.115816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural connectivity between the spinal cord and paired appendages is key to the superior locomotion of tetrapods and aquatic vertebrates. In contrast to nerves that innervate axial muscles, those innervating appendages converge at a specialized structure, the plexus, where they topographically reorganize before navigating towards their muscle targets. Despite its importance for providing appendage mobility, the genetic program that drives nerve convergence at the plexus, as well as the functional role of this convergence, are not well understood. Here, we show that in zebrafish the transcription factor foxc1a is dispensable for trunk motor nerve guidance but is required to guide spinal nerves innervating the pectoral fins, equivalent to the tetrapod forelimbs. In foxc1a null mutants, instead of converging with other nerves at the plexus, pectoral fin nerves frequently bypass the plexus. We demonstrate that foxc1a expression in muscle cells delineating the nerve path between the spinal cord and the plexus region restores convergence at the plexus. By labeling individual fin nerves, we show that mutant nerves bypassing the plexus enter the fin at ectopic positions, yet innervate their designated target areas, suggesting that motor axons can select their appropriate fin target area independently of their migration through the plexus. Although foxc1a mutants display topographically correct fin innervation, mutant fin muscles exhibit a reduction in the levels of pre- and postsynaptic structures, concomitant with reduced pectoral fin function. Combined, our results reveal foxc1a as a key player in the development of connectivity between the spinal cord and paired appendages, which is crucial for appendage mobility.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katharina Hayer
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Barton R, Palacio D, Iovine MK, Berger BW. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction. PLoS One 2015; 10:e0116368. [PMID: 25565389 PMCID: PMC4286236 DOI: 10.1371/journal.pone.0116368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 01/24/2023] Open
Abstract
Plexins (plxns) are transmembrane (TM) receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM) for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET²) suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F) are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L) are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.
Collapse
Affiliation(s)
- Rachael Barton
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danica Palacio
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Bryan W. Berger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
11
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
12
|
Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish. PLoS One 2013; 8:e54071. [PMID: 23349787 PMCID: PMC3549987 DOI: 10.1371/journal.pone.0054071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch morphogenesis by destabilizing membrane protrusions before the growth cone completes navigation into the synaptic target field.
Collapse
|
13
|
Abstract
Differences between the left and right sides of the brain are present in many animal species. For instance, in humans the left cerebral hemisphere is largely responsible for language and tool use and the right for processing spatial information. Zebrafish have prominent left-right asymmetries in their epithalamus that have been associated with differential left and right eye use and navigational behavior. In wild-type (WT) zebrafish embryos, Nodal pathway genes are expressed in the left side of the pineal anlage. Shortly thereafter, a parapineal organ forms to the left of the pineal. The parapineal organ causes differences in gene expression, neuropil density, and connectivity of the left and right habenula nuclei. In embryos that have an open neural tube, such as embryos that are deficient in Nodal signaling or the cell adhesion protein N-cadherin, the left and right sides of the developing epithalamus remain separated from one another. We find that the brains of these embryos often become left isomerized: both sides of the brain develop morphology and gene expression patterns that are characteristic of the left side. However, other aspects of epithalamic development, such as differentiation of specific neuronal cell types, are intact. We propose that there is a mechanism in embryos with closed neural tubes that prevents both sides from developing like the left side. This mechanism fails when the two sides of the epithalamus are widely separated from one another, suggesting that it is dependent upon a signaling protein with limited range.
Collapse
|
14
|
Becker TS, Rinkwitz S. Zebrafish as a genomics model for human neurological and polygenic disorders. Dev Neurobiol 2012; 72:415-28. [PMID: 21465670 DOI: 10.1002/dneu.20888] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whole exome sequencing and, to a lesser extent, genome-wide association studies, have provided unprecedented advances in identifying genes and candidate genomic regions involved in the development of human disease. Further progress will come from sequencing the entire genome of multiple patients and normal controls to evaluate overall mutational burden and disease risk. A major challenge will be the interpretation of the resulting data and distinguishing true pathogenic mutations from rare benign variants.While in model organisms such as the zebrafish,mutants are sought that disrupt the function of individual genes, human mutations that cause, or are associated with, the development of disease, are often not acting in a Mendelian fashion, are frequently of small effect size, are late onset, and may reside in noncoding parts of the genome. The zebrafish model is uniquely poised for understanding human coding- and noncoding variants because of its sequenced genome, a large body of knowledge on gene expression and function, rapid generation time, and easy access to embryos. A critical advantage is the ease of zebrafish transgenesis, both for the testing of human regulatory DNA driving expression of fluorescent reporter proteins, and the expression of mutated disease-associated human proteins in specific neurons to rapidly model aspects of neurological disorders. The zebrafish affords progress both through its model genome and it is rapidly developing transparent model vertebrate embryo.
Collapse
Affiliation(s)
- Thomas S Becker
- Sydney Medical School, University of Sydney, Camperdown, Australia.
| | | |
Collapse
|
15
|
Ruparelia AA, Zhao M, Currie PD, Bryson-Richardson RJ. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Hum Mol Genet 2012; 21:4073-83. [PMID: 22706277 DOI: 10.1093/hmg/dds231] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myofibrillar myopathies are a group of muscle disorders characterized by the disintegration of skeletal muscle fibers and formation of sarcomeric protein aggregates. All the proteins known to be involved in myofibrillar myopathies localize to a region of the sarcomere known as the Z-disk, the site at which defects are first observed. Given the common cellular phenotype observed in this group of disorders, it is thought that there is a common mechanism of pathology. Mutations in filamin C, which has several proposed roles in the development and function of skeletal muscle, can result in filamin-related myofibrillar myopathy. The lack of a suitable animal model system has limited investigation into the mechanism of pathology in this disease and the role of filamin C in muscle development. Here, we characterize stretched out (sot), a zebrafish filamin Cb mutant, together with targeted knockdown of zebrafish filamin Ca, revealing fiber dissolution and formation of protein aggregates strikingly similar to those seen in filamin-related myofibrillar myopathies. Through knockdown of both zebrafish filamin C homologues, we demonstrate that filamin C is not required for fiber specification and that fiber damage is a consequence of muscle activity. The remarkable similarities in the myopathology between our models and filamin-related myofibrillar myopathy makes them suitable for the study of these diseases and provides unique opportunities for the investigation of the function of filamin C in muscle and development of therapies.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | | | | |
Collapse
|
16
|
Brusés JL. N-cadherin regulates primary motor axon growth and branching during zebrafish embryonic development. J Comp Neurol 2012; 519:1797-815. [PMID: 21452216 DOI: 10.1002/cne.22602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type-specific pathway selection. Analysis of N-cadherin mutants (cdh2(hi3644Tg) ) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ∼40% of the somitic hemisegments and an ∼150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point that abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to stall abnormally at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin-depleted embryos, the majority of primary motor axons innervated their appropriate myotomal territories, indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 661610, USA.
| |
Collapse
|
17
|
Crossing the border: molecular control of motor axon exit. Int J Mol Sci 2011; 12:8539-61. [PMID: 22272090 PMCID: PMC3257087 DOI: 10.3390/ijms12128539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022] Open
Abstract
Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS) neurons, motor neurons (MNs) project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs). In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord. Notably, specialized neural crest cell derivatives, referred to as Boundary Cap (BC) cells, pre-figure and demarcate MEPs in vertebrates. Surprisingly, however, BC cells are not required for MN axon exit, but rather restrict MN cell bodies from ectopically migrating along their axons out of the CNS. Here, we describe the small set of studies that have addressed motor axon exit in Drosophila and vertebrates, and discuss our fragmentary knowledge of the mechanisms, which guide motor axons out of the CNS.
Collapse
|
18
|
Chalasani K, Brewster RM. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube. Mol Biol Cell 2011; 22:1505-15. [PMID: 21389116 PMCID: PMC3084673 DOI: 10.1091/mbc.e10-08-0675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.
Collapse
Affiliation(s)
- Kavita Chalasani
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
19
|
Yang D, Lauridsen H, Buels K, Chi LH, La Du J, Bruun DA, Olson JR, Tanguay RL, Lein PJ. Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior. Toxicol Sci 2011; 121:146-59. [PMID: 21346248 DOI: 10.1093/toxsci/kfr028] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCPy) alter spatiotemporal patterns of axonal growth in vivo. Static waterborne exposure to CPFO, but not CPF or TCPy, at concentrations ≥ 0.03 μM from 24- to 72-h post fertilization significantly inhibited acetylcholinesterase, and high-performance liquid chromatography detected significantly more TCPy in zebrafish exposed to 0.1 μM CPFO versus 1.0 μM CPF. These data suggest that zebrafish lack the metabolic enzymes to activate CPF during these early developmental stages. Consistent with this, CPFO, but not CPF, significantly inhibited axonal growth of sensory neurons, primary motoneurons, and secondary motoneurons at concentrations ≥ 0.1 μM. Secondary motoneurons were the most sensitive to axonal growth inhibition by CPFO, which was observed at concentrations that did not cause mortality, gross developmental defects, or aberrant somatic muscle differentiation. CPFO effects on axonal growth correlated with adverse effects on touch-induced swimming behavior, suggesting the functional relevance of these structural changes. These data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of CPF and demonstrate the relevance of zebrafish as a model for studying OP developmental neurotoxicity.
Collapse
Affiliation(s)
- Dongren Yang
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The nervous system can generate rhythms of various frequencies; on the low-frequency side, we have the circuits regulating circadian rhythms with a 24-h period, while on the high-frequency side we have the motor circuits that underlie flight in a hummingbird. Given the ubiquitous nature of rhythms, it is surprising that we know very little of the cellular and molecular mechanisms that produce them in the embryos and of their potential role during the development of neuronal circuits. Recently, zebrafish has been developed as a vertebrate model to study the genetics of neural development. Zebrafish offer several advantages to the study of nervous system development including optical and electrophysiological analysis of neuronal activity even at the earliest embryonic stages. This unique combination of physiology and genetics in the same animal model has led to insights into the development of neuronal networks. This chapter reviews work on the development of zebrafish motor rhythms and speculates on birth and maturation of the circuits that produce them.
Collapse
|
21
|
Cao P, Hanai JI, Tanksale P, Imamura S, Sukhatme VP, Lecker SH. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J 2009; 23:2844-54. [PMID: 19406843 DOI: 10.1096/fj.08-128843] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Statins are widely used to treat hypercholesterolemia but can lead to a number of side effects in muscle, including rhabdomyolysis. Our recent findings implicated the induction of atrogin-1, a gene required for the development of muscle atrophy, in statin-induced muscle damage. Since statins inhibit many biochemical reactions besides cholesterol synthesis, we sought to define the statin-inhibited pathways responsible for atrogin-1 expression and muscle damage. We report here that lovastatin-induced atrogin-1 expression and muscle damage in cultured mouse myotubes and zebrafish can be prevented in the presence of geranylgeranol but not farnesol. Further, inhibitors of the transfer of geranylgeranyl isoprene units to protein targets cause statin muscle damage and atrogin-1 induction in cultured cells and in fish. These findings support the concept that dysfunction of small GTP-binding proteins lead to statin-induced muscle damage since these molecules require modification by geranylgeranyl moieties for their cellular localization and activity. Collectively, our animal and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be regulated by novel signaling pathways.
Collapse
Affiliation(s)
- Peirang Cao
- Renal Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hilario JD, Rodino-Klapac LR, Wang C, Beattie CE. Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo. Dev Biol 2008; 326:190-200. [PMID: 19059233 DOI: 10.1016/j.ydbio.2008.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Semaphorins are a large class of proteins that function throughout the nervous system to guide axons. It had previously been shown that Semaphorin 5A (Sema5A) was a bifunctional axon guidance cue for mammalian midbrain neurons. We found that zebrafish sema5A was expressed in myotomes during the period of motor axon outgrowth. To determine whether Sema5A functioned in motor axon guidance, we knocked down Sema5A, which resulted in two phenotypes: a delay in motor axon extension into the ventral myotome and aberrant branching of these motor axons. Both phenotypes were rescued by injection of full-length rat Sema5A mRNA. However, adding back RNA encoding the sema domain alone significantly rescued the branching phenotype in sema5A morphants. Conversely, adding back RNA encoding the thrombospondin repeat (TSR) domain alone into sema5A morphants exclusively rescued delay in ventral motor axon extension. Together, these data show that Sema5A is a bifunctional axon guidance cue for vertebrate motor axons in vivo. The TSR domain promotes growth of developing motor axons into the ventral myotome whereas the sema domain mediates repulsion and keeps these motor axons from branching into surrounding myotome regions.
Collapse
Affiliation(s)
- Jona D Hilario
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
23
|
Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish. Toxicol Appl Pharmacol 2008; 237:29-40. [PMID: 18694773 DOI: 10.1016/j.taap.2008.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
Abstract
Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.
Collapse
|
24
|
Hanai JI, Cao P, Tanksale P, Imamura S, Koshimizu E, Zhao J, Kishi S, Yamashita M, Phillips PS, Sukhatme VP, Lecker SH. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Invest 2008; 117:3940-51. [PMID: 17992259 DOI: 10.1172/jci32741] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 09/05/2007] [Indexed: 01/10/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, a key enzyme in cholesterol synthesis, and are widely used to treat hypercholesterolemia. These drugs can lead to a number of side effects in muscle, including muscle fiber breakdown; however, the mechanisms of muscle injury by statins are poorly understood. We report that lovastatin induced the expression of atrogin-1, a key gene involved in skeletal muscle atrophy, in humans with statin myopathy, in zebrafish embryos, and in vitro in murine skeletal muscle cells. In cultured mouse myotubes, atrogin-1 induction following lovastatin treatment was accompanied by distinct morphological changes, largely absent in atrogin-1 null cells. In zebrafish embryos, lovastatin promoted muscle fiber damage, an effect that was closely mimicked by knockdown of zebrafish HMG-CoA reductase. Moreover, atrogin-1 knockdown in zebrafish embryos prevented lovastatin-induced muscle injury. Finally, overexpression of PGC-1alpha, a transcriptional coactivator that induces mitochondrial biogenesis and protects against the development of muscle atrophy, dramatically prevented lovastatin-induced muscle damage and abrogated atrogin-1 induction both in fish and in cultured mouse myotubes. Collectively, our human, animal, and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be a critical mediator of the muscle damage induced by statins.
Collapse
Affiliation(s)
- Jun-ichi Hanai
- Renal Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Recent work in teleosts has renewed interest in the dermomyotome, which was initially characterized in the late 19th century. We review the evidence for the teleost dermomyotome, comparing it to the more well-characterized amniote dermomyotome. We discuss primary myotome morphogenesis, the relationship between the primary myotome and the dermomyotome, the differentiation of axial muscle, appendicular muscle, and dermis from the dermomyotome, and the signaling molecules that regulate myotome growth from myogenic precursors within the dermomyotome. The recognition of a dermomyotome in teleosts provides a new perspective on teleost muscle growth, as well as a fruitful approach to understanding the vertebrate dermomyotome.
Collapse
Affiliation(s)
- Frank Stellabotte
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
27
|
Harrington MJ, Hong E, Fasanmi O, Brewster R. Cadherin-mediated adhesion regulates posterior body formation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:130. [PMID: 18045497 PMCID: PMC2231375 DOI: 10.1186/1471-213x-7-130] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/28/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND The anterior-posterior axis of the vertebrate embryo undergoes a dramatic elongation during early development. Convergence and extension of the mesoderm, occurring during gastrulation, initiates the narrowing and lengthening of the embryo. However the lengthening of the axis continues during post-gastrula stages in the tailbud region, and is thought to involve convergent extension movements as well as other cell behaviors specific to posterior regions. RESULTS We demonstrate here, using a semi-dominant N-cadherin allele, that members of the classical cadherin subfamily of cell-cell adhesion molecules are required for tailbud elongation in the zebrafish. In vivo imaging of cell behaviors suggests that the extension of posterior axial mesodermal cells is impaired in embryos that carry the semi-dominant N-cadherin allele. This defect most likely results from a general loss of cell-cell adhesion in the tailbud region. Consistent with these observations, N-cadherin is expressed throughout the tailbud during post-gastrulation stages. In addition, we show that N-cadherin interacts synergistically with vang-like 2, a member of the non-canonical Wnt signaling/planar cell polarity pathway, to mediate tail morphogenesis. CONCLUSION We provide the first evidence here that N-cadherin and other members of the classical cadherin subfamily function in parallel with the planar cell polarity pathway to shape the posterior axis during post-gastrulation stages. These findings further highlight the central role that adhesion molecules play in the cellular rearrangements that drive morphogenesis in vertebrates and identify classical cadherins as major contributors to tail development.
Collapse
Affiliation(s)
- Michael J Harrington
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
| | | | | | | |
Collapse
|
28
|
Aquilina-Beck A, Ilagan K, Liu Q, Liang JO. Nodal signaling is required for closure of the anterior neural tube in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2007; 7:126. [PMID: 17996054 PMCID: PMC2214732 DOI: 10.1186/1471-213x-7-126] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 11/08/2007] [Indexed: 02/08/2023]
Abstract
Background Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish. Results We find that the neural tube in the presumptive forebrain fails to close in zebrafish Nodal signaling mutants. For instance, the cells that will give rise to the pineal organ fail to move from the lateral edges of the neural plate to the midline of the diencephalon. The open neural tube in Nodal signaling mutants may be due in part to reduced function of N-cadherin, a cell adhesion molecule expressed in the neural tube and required for neural tube closure. N-cadherin expression and localization to the membrane are reduced in fish that lack Nodal signaling. Further, N-cadherin mutants and morphants have a pineal phenotype similar to that of mutants with deficiencies in the Nodal pathway. Overexpression of an activated form of the TGFβ Type I receptor Taram-A (Taram-A*) cell autonomously rescues mesendoderm formation in fish with a severe decrease in Nodal signaling. We find that overexpression of Taram-A* also corrects their open neural tube defect. This suggests that, as in mammals, the mesoderm and endoderm have an important role in regulating closure of the anterior neural tube of zebrafish. Conclusion This work helps establish a role for Nodal signals in neurulation, and suggests that defects in Nodal signaling could underlie human neural tube defects such as exencephaly, a fatal condition characterized by an open neural tube in the anterior brain.
Collapse
Affiliation(s)
- Allisan Aquilina-Beck
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
29
|
Warga RM, Kane DA. A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev Biol 2007; 310:211-25. [PMID: 17826762 DOI: 10.1016/j.ydbio.2007.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/26/2007] [Accepted: 06/28/2007] [Indexed: 11/19/2022]
Abstract
Cell adhesion molecules mediate numerous developmental processes necessary for the segregation and organization of tissues. Here we show that the zebrafish biber (bib) mutant encodes a dominant allele at the N-cadherin locus. When knocked down with antisense oligonucleotides, bib mutants phenocopy parachute (pac) null alleles, demonstrating that bib is a gain-of-function mutation. The mutant phenotype disrupts normal cell-cell contacts throughout the mesoderm as well as the ectoderm. During gastrulation stages, cells of the mesodermal germ layer converge slowly; during segmentation stages, the borders between paraxial and axial tissues are irregular and somite borders do not form; later, myotomes are fused. During neurulation, the neural tube is disorganized. Although weaker, all traits present in bib mutants were found in pac mutants. When the distribution of N-cadherin mRNA was analyzed to distinguish mesodermal from neuroectodermal expression, we found that N-cadherin is strongly expressed in the yolk cell and hypoblast in the early gastrula, just preceding the appearance of the bib mesodermal defects. Only later is N-cadherin expressed in the anlage of the CNS, where it is found as a radial gradient in the forming neural plate. Hence, besides a well-established role in neural and somite morphogenesis, N-cadherin is essential for morphogenesis of the mesodermal germ layer during gastrulation.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | |
Collapse
|
30
|
Tanaka H, Maeda R, Shoji W, Wada H, Masai I, Shiraki T, Kobayashi M, Nakayama R, Okamoto H. Novel mutations affecting axon guidance in zebrafish and a role for plexin signalling in the guidance of trigeminal and facial nerve axons. Development 2007; 134:3259-69. [PMID: 17699608 DOI: 10.1242/dev.004267] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In zebrafish embryos, the axons of the posterior trigeminal (Vp) and facial (VII) motoneurons project stereotypically to a small number of target muscles derived from the first and second branchial arches (BA1, BA2). Use of the Islet1 (Isl1)-GFP transgenic line enabled precise real-time observations of the growth cone behaviour of the Vp and VII motoneurons within BA1 and BA2. Screening for N-ethyl-N-nitrosourea-induced mutants identified seven distinct mutations affecting different steps in the axonal pathfinding of these motoneurons. The class 1 mutations caused severe defasciculation and abnormal pathfinding in both Vp and VII motor axons before they reached their target muscles in BA1. The class 2 mutations caused impaired axonal outgrowth of the Vp motoneurons at the BA1-BA2 boundary. The class 3 mutation caused impaired axonal outgrowth of the Vp motoneurons within the target muscles derived from BA1 and BA2. The class 4 mutation caused retraction of the Vp motor axons in BA1 and abnormal invasion of the VII motor axons in BA1 beyond the BA1-BA2 boundary. Time-lapse observations of the class 1 mutant, vermicelli (vmc), which has a defect in the plexin A3 (plxna3) gene, revealed that Plxna3 acts with its ligand Sema3a1 for fasciculation and correct target selection of the Vp and VII motor axons after separation from the common pathways shared with the sensory axons in BA1 and BA2, and for the proper exit and outgrowth of the axons of the primary motoneurons from the spinal cord.
Collapse
Affiliation(s)
- Hideomi Tanaka
- Laboratory for Developmental Gene Regulation, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Palaisa KA, Granato M. Analysis of zebrafish sidetracked mutants reveals a novel role for Plexin A3 in intraspinal motor axon guidance. Development 2007; 134:3251-7. [PMID: 17699603 DOI: 10.1242/dev.007112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the earliest guidance decisions for spinal cord motoneurons occurs when pools of motoneurons orient their growth cones towards a common, segmental exit point. In contrast to later events, remarkably little is known about the molecular mechanisms underlying intraspinal motor axon guidance. In zebrafish sidetracked (set) mutants, motor axons exit from the spinal cord at ectopic positions. By single-cell labeling and time-lapse analysis we show that motoneurons with cell bodies adjacent to the segmental exit point properly exit from the spinal cord, whereas those farther away display pathfinding errors. Misguided growth cones either orient away from the endogenous exit point, extend towards the endogenous exit point but bypass it or exit at non-segmental, ectopic locations. Furthermore, we show that sidetracked acts cell autonomously in motoneurons. Positional cloning reveals that sidetracked encodes Plexin A3, a semaphorin guidance receptor for repulsive guidance. Finally, we show that sidetracked (plexin A3) plays an additional role in motor axonal morphogenesis. Together, our data genetically identify the first guidance receptor required for intraspinal migration of pioneering motor axons and implicate the well-described semaphorin/plexin signaling pathway in this poorly understood process. We propose that axonal repulsion via Plexin A3 is a major driving force for intraspinal motor growth cone guidance.
Collapse
Affiliation(s)
- Kelly A Palaisa
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
32
|
Fox MA, Sanes JR. Synaptotagmin I and II are present in distinct subsets of central synapses. J Comp Neurol 2007; 503:280-96. [PMID: 17492637 DOI: 10.1002/cne.21381] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synaptotagmin 1 and 2 (syt 1, syt 2) are synaptic vesicle-associated membrane proteins that act as calcium sensors for fast neurotransmitter release from presynaptic nerve terminals. Here we show that widely used monoclonal antibodies, mab 48 and znp-1, stain nerve terminals in multiple species and, in mouse, recognize syt 1 and syt 2, respectively. With these antibodies, we examined the synaptic localization of these synaptotagmin isoforms in the mouse central nervous system. Syt 1 and syt 2 are localized predominantly to different subsets of synapses in retina, hippocampus, cerebellum, and median nucleus of the trapezoid body (MNTB). In the MNTB, syt 1 and syt 2 are present in different presynaptic terminals on the same postsynaptic principal neuron. In retina, horizontal and OFF-bipolar cell terminals contain syt 2, whereas most other terminals contain syt 1. Syt 1 localization in the immature retina resembles that seen in adult; however, syt 2 localization appears strikingly different at perinatal ages and continues to change dramatically prior to eye opening. For example, starburst amacrine cells, which lack syt 2 in adult retina, transiently express syt 2 during the first 2 postnatal weeks. In addition to differences in spatial and temporal distribution, species-specific differences in synaptotagmin localization were observed in retina and cerebellum. The cell-, temporal-, and species-specific expression of synaptotagmin isoforms suggests that each may have distinct functions in neurotransmitter release.
Collapse
Affiliation(s)
- Michael A Fox
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
33
|
Feldner J, Reimer MM, Schweitzer J, Wendik B, Meyer D, Becker T, Becker CG. PlexinA3 restricts spinal exit points and branching of trunk motor nerves in embryonic zebrafish. J Neurosci 2007; 27:4978-83. [PMID: 17475806 PMCID: PMC6672091 DOI: 10.1523/jneurosci.1132-07.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pioneering primary motor axons in the zebrafish trunk are guided by multiple cues along their pathways. Plexins are receptor components for semaphorins that influence motor axon growth and path finding. We cloned plexinA3 in zebrafish and localized plexinA3 mRNA in primary motor neurons during axon outgrowth. Antisense morpholino knock-down led to substantial errors in motor axon growth. Errors comprised aberrant branching of primary motor nerves as well as additional exit points of axons from the spinal cord. Excessively branched and supernumerary nerves were found in both ventral and dorsal pathways of motor axons. The trunk environment and several other types of axons, including trigeminal axons, were not detectably affected by plexinA3 knock-down. RNA overexpression rescued all morpholino effects. Synergistic effects of combined morpholino injections indicate interactions of plexinA3 with semaphorin3A homologs. Thus, plexinA3 is a crucial receptor for axon guidance cues in primary motor neurons.
Collapse
Affiliation(s)
- Julia Feldner
- Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia
- Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| | - Michell M. Reimer
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - Jörn Schweitzer
- Institut für Biologie 1, Universität Freiburg, Freiburg, D-79104, Germany
| | - Björn Wendik
- Institut für Biologie 1, Universität Freiburg, Freiburg, D-79104, Germany
| | - Dirk Meyer
- Institut für Molekularbiologie, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria, and
| | - Thomas Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
- Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| | - Catherina G. Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
- Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| |
Collapse
|
34
|
Tsuiji H, Xu L, Schwartz K, Gumbiner BM. Cadherin conformations associated with dimerization and adhesion. J Biol Chem 2007; 282:12871-82. [PMID: 17347145 DOI: 10.1074/jbc.m611725200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate conformations of C-cadherin associated with functional activity and physiological regulation, we generated monoclonal antibodies (mAbs) that bind differentially to monomeric or dimeric forms. These mAbs recognize conformational epitopes at multiple sites along the C-cadherin ectodomain aside from the well known Trp-2-mediated dimer interface in the N-terminal EC1 domain. Group 1 mAbs, which bind monomer better than dimer and the Trp-2-mutated protein (W2A) better than wild type, recognize epitopes in EC4 or EC5. Dimerization of the W2A mutant protein via a C-terminal immunoglobulin Fc domain restored the dimeric mAb-binding properties to EC4-5 and partial homophilic binding activity but did not restore full cell adhesion activity. Group 2 and Group 3 mAbs, which bind dimer better than monomer and wild type better than W2A, recognize epitopes in EC1 and the interface between EC1 and EC2, respectively. None of the mAbs could distinguish between different physiological states of C-cadherin at the cell surface of either Xenopus embryonic cells or Colo 205 cultured cells, demonstrating that changes in dimerization do not underlie regulation of adhesion activity. On the cell surface the EC3-EC5 domains are much less accessible to mAb binding than EC1-EC2, suggesting that they are masked by the state of cadherin organization or by other molecules. Thus, the EC2-EC5 domains either reflect, or are involved in, cadherin dimerization and organization at the cell surface.
Collapse
Affiliation(s)
- Hitomi Tsuiji
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
35
|
Mann CJ, Hinits Y, Hughes SM. Comparison of neurolin (ALCAM) and neurolin-like cell adhesion molecule (NLCAM) expression in zebrafish. Gene Expr Patterns 2006; 6:952-63. [PMID: 16750657 DOI: 10.1016/j.modgep.2006.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/19/2006] [Accepted: 03/24/2006] [Indexed: 11/24/2022]
Abstract
Many immunoglobulin (Ig)-superfamily cell adhesion molecules influence skeletal muscle formation. In Drosophila, dumbfounded (duf/kirre), irreC, sticks and stones and hibris encode related Ig-family proteins expressed in subsets of neurons and muscle precursor cells. The family mediates cell migration, axon guidance and fusion of myoblasts. Despite the importance of these genes in invertebrate myogenesis, no obvious functional parallels are known in vertebrate myogenesis. Here we investigate the gene expression pattern and phylogenetic and protein-structural relationships of the duf-related molecules neurolin and neurolin-like cell adhesion molecule (NLCAM), members of the activated leukocyte cell adhesion molecule (ALCAM) sub-family of Ig-molecules. These proteins are among the closest to Duf/Kirre by sequence. During zebrafish development, neurolin is expressed in subsets of somite and muscle cells, heart and numerous sites of neuronal maturation. The new ALCAM-family member, NLCAM, appears to have arisen by duplication of neurolin/ALCAM. NLCAM is expressed widely during gastrulation, particularly in the nascent neural plate, but later becomes predominantly expressed in sites of muscle and nerve maturation and in the fin fold. The expression of each gene is often in groups of cells in similar parts of the embryo; for example, in the region of Rohon Beard neurons, trigeminal ganglion and fusing fast and migrating slow muscle fibres. However, expression can also be distinct and dynamic; for example, muscle pioneer fibres express neurolin but not NLCAM at high level. Both molecules are expressed in subsets of muscle precursors at times prior to fusion.
Collapse
Affiliation(s)
- Christopher J Mann
- MRC Centre for Developmental Neurobiology and Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
36
|
Hong E, Brewster R. N-cadherin is required for the polarized cell behaviors that drive neurulation in the zebrafish. Development 2006; 133:3895-905. [PMID: 16943271 DOI: 10.1242/dev.02560] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Through the direct analysis of cell behaviors, we address the mechanisms underlying anterior neural tube morphogenesis in the zebrafish and the role of the cell adhesion molecule N-cadherin (N-cad) in this process. We demonstrate that although the mode of neurulation differs at the morphological level between amphibians and teleosts, the underlying cellular mechanisms are conserved. Contrary to previous reports, the zebrafish neural plate is a multi-layered structure, composed of deep and superficial cells that converge medially while undergoing radial intercalation, to form a single cell-layered neural tube. Time-lapse recording of individual cell behaviors reveals that cells are polarized along the mediolateral axis and exhibit protrusive activity. In N-cad mutants, both convergence and intercalation are blocked. Moreover, although N-cad-depleted cells are not defective in their ability to form protrusions, they are unable to maintain them stably. Taken together, these studies uncover key cellular mechanisms underlying neural tube morphogenesis in teleosts, and reveal a role for cadherins in promoting the polarized cell behaviors that underlie cellular rearrangements and shape the vertebrate embryo.
Collapse
Affiliation(s)
- Elim Hong
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
37
|
|
38
|
Panzer JA, Gibbs SM, Dosch R, Wagner D, Mullins MC, Granato M, Balice-Gordon RJ. Neuromuscular synaptogenesis in wild-type and mutant zebrafish. Dev Biol 2006; 285:340-57. [PMID: 16102744 DOI: 10.1016/j.ydbio.2005.06.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/30/2022]
Abstract
Genetic screens for synaptogenesis mutants have been performed in many organisms, but few if any have simultaneously screened for defects in pre- and postsynaptic specializations. Here, we report the results of a small-scale genetic screen, the first in vertebrates, for defects in synaptogenesis. Using zebrafish as a model system, we identified seven mutants that affect different aspects of neuromuscular synapse formation. Many of these mutant phenotypes have not been previously reported in zebrafish and are distinct from those described in other organisms. Characterization of mutant and wild-type zebrafish, from the time that motor axons first arrive at target muscles through adulthood, has provided the new information about the cellular events that occur during neuromuscular synaptogenesis. These include insights into the formation and dispersal of prepatterned AChR clusters, the relationship between motor axon elongation and synapse size, and the development of precise appositions between presynaptic clusters of synaptic vesicles in nerve terminals and postsynaptic receptor clusters. In addition, we show that the mechanisms underlying synapse formation within the myotomal muscle itself are largely independent of those that underlie synapse formation at myotendinous junctions and that the outgrowth of secondary motor axons requires at least one cue not necessary for the outgrowth of primary motor axons, while other cues are required for both. One-third of the mutants identified in this screen did not have impaired motility, suggesting that many genes involved in neuromuscular synaptogenesis were missed in large scale motility-based screens. Identification of the underlying genetic defects in these mutants will extend our understanding of the cellular and molecular mechanisms that underlie the formation and function of neuromuscular and other synapses.
Collapse
Affiliation(s)
- Jessica A Panzer
- Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, 3610 Hamilton Walk, Philadelphia, PA 19104-6074, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
40
|
Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 2005; 15:1307-14. [PMID: 16109975 PMCID: PMC1199546 DOI: 10.1101/gr.4134305] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genetic screens in zebrafish (Danio rerio) have identified mutations that define the roles of hundreds of essential vertebrate genes. Genetic maps can link mutant phenotype with gene sequence by providing candidate genes for mutations and polymorphic genetic markers useful in positional cloning projects. Here we report a zebrafish genetic map comprising 4073 polymorphic markers, with more than twice the number of coding sequences localized in previously reported zebrafish genetic maps. We use this map in comparative studies to identify numerous regions of synteny conserved among the genomes of zebrafish, Tetraodon, and human. In addition, we use our map to analyze gene duplication in the zebrafish and Tetraodon genomes. Current evidence suggests that a whole-genome duplication occurred in the teleost lineage after it split from the tetrapod lineage, and that only a subset of the duplicates have been retained in modern teleost genomes. It has been proposed that differential retention of duplicate genes may have facilitated the isolation of nascent species formed during the vast radiation of teleosts. We find that different duplicated genes have been retained in zebrafish and Tetraodon, although similar numbers of duplicates remain in both genomes. Finally, we use comparative mapping data to address the proposal that the common ancestor of vertebrates had a genome consisting of 12 chromosomes. In a three-way comparison between the genomes of zebrafish, Tetraodon, and human, our analysis delineates the gene content for 11 of these 12 proposed ancestral chromosomes.
Collapse
Affiliation(s)
- Ian G Woods
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|