1
|
Wint R, Cleary MD. Transfer RNA Levels Are Tuned to Support Differentiation During Drosophila Neurogenesis. Genes (Basel) 2024; 15:1602. [PMID: 39766869 PMCID: PMC11675937 DOI: 10.3390/genes15121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to the differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation in Drosophila larval brains. METHODS We quantified tRNA abundance in neural progenitor-biased and neuron-biased brains using the hydrotRNA-seq method. These tRNA data were combined with cell type-specific mRNA decay measurements and transcriptome profiles in order to model how tRNA abundance affects mRNA stability and translation efficiency. RESULTS We found that (1) tRNA abundance is largely constant between neural progenitors and neurons but significant variation exists for 10 nuclear tRNA genes and 8 corresponding anticodon groups, (2) tRNA abundance correlates with codon-mediated mRNA decay in neuroblasts and neurons, but does not completely explain the different stabilizing or destabilizing effects of certain codons, and (3) changes in tRNA levels support a shift in translation optimization from a program supporting proliferation to a program supporting differentiation. CONCLUSIONS These findings reveal coordination between tRNA expression and codon usage in transcripts that regulate neural development.
Collapse
Affiliation(s)
| | - Michael D. Cleary
- Quantitative and Systems Biology Graduate Program, Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
| |
Collapse
|
2
|
Shweta, Sharma K, Shakarad M, Agrawal N, Maurya SK. Drosophila glial system: an approach towards understanding molecular complexity of neurodegenerative diseases. Mol Biol Rep 2024; 51:1146. [PMID: 39532789 DOI: 10.1007/s11033-024-10075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Glia is pivotal in regulating neuronal stem cell proliferation, functioning, and nervous system homeostasis, significantly influencing neuronal health and disorders. Dysfunction in glial activity is a key factor in the development and progression of brain pathology. However, a deeper understanding of the intricate nature of glial cells and their diverse role in neurological disorders is still required. To this end, we conducted data mining to retrieve literature from PubMed and Google Scholar using the keywords: glia, Drosophila, neurodegeneration, and mammals. The retrieved literature was manually screened and used to comprehensively understand and present the different glial types in Drosophila, i.e., perineurial, subperineurial, cortex, astrocyte-like and ensheathing glia, their relevance with mammalian counterparts, mainly microglia and astrocytes, and their potential to reveal complex neuron-glial molecular networks in managing neurodegenerative processes.
Collapse
Affiliation(s)
- Shweta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Agrawal
- Fly Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Ma Z, Wang W, Yang X, Rui M, Wang S. Glial ferritin maintains neural stem cells via transporting iron required for self-renewal in Drosophila. eLife 2024; 13:RP93604. [PMID: 39255019 PMCID: PMC11386955 DOI: 10.7554/elife.93604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Stem cell niche is critical for regulating the behavior of stem cells. Drosophila neural stem cells (Neuroblasts, NBs) are encased by glial niche cells closely, but it still remains unclear whether glial niche cells can regulate the self-renewal and differentiation of NBs. Here, we show that ferritin produced by glia, cooperates with Zip13 to transport iron into NBs for the energy production, which is essential to the self-renewal and proliferation of NBs. The knockdown of glial ferritin encoding genes causes energy shortage in NBs via downregulating aconitase activity and NAD+ level, which leads to the low proliferation and premature differentiation of NBs mediated by Prospero entering nuclei. More importantly, ferritin is a potential target for tumor suppression. In addition, the level of glial ferritin production is affected by the status of NBs, establishing a bicellular iron homeostasis. In this study, we demonstrate that glial cells are indispensable to maintain the self-renewal of NBs, unveiling a novel role of the NB glial niche during brain development.
Collapse
Affiliation(s)
- Zhixin Ma
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Wenshu Wang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Xiaojing Yang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Menglong Rui
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Su Wang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
4
|
Wint R, Cleary MD. Transfer RNA levels are tuned to support differentiation during Drosophila neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611608. [PMID: 39282315 PMCID: PMC11398488 DOI: 10.1101/2024.09.06.611608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation by quantifying tRNA abundance in neural progenitor-biased and neuron-biased Drosophila larval brains. We found that tRNA profiles are largely consistent between progenitor-biased and neuron-biased brains but significant variation occurs for 10 cytoplasmic isodecoders (individual tRNA genes) and this establishes differential tRNA levels for 8 anticodon groups. We used these tRNA data to investigate relationships between tRNA abundance, codon optimality-mediated mRNA decay, and translation efficiency in progenitors and neurons. Our data reveal that tRNA levels strongly correlate with codon optimality-mediated mRNA decay within each cell type but generally do not explain differences in stabilizing versus destabilizing codons between cell types. Regarding translation efficiency, we found that tRNA expression in neural progenitors preferentially supports translation of mRNAs whose products are in high demand in progenitors, such as those associated with protein synthesis. In neurons, tRNA expression shifts to disfavor translation of proliferation-related transcripts and preferentially support translation of transcripts tied to neuron-specific functions like axon pathfinding and synapse formation. Overall, our analyses reveal that changes in tRNA levels along the neural differentiation axis support optimal gene expression in progenitors and neurons.
Collapse
Affiliation(s)
- Rhondene Wint
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Michael D. Cleary
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| |
Collapse
|
5
|
Clayworth K, Gilbert M, Auld V. Cell Biology Techniques for Studying Drosophila Peripheral Glial Cells. Cold Spring Harb Protoc 2024; 2024:pdb.top108159. [PMID: 37399179 DOI: 10.1101/pdb.top108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Glial cells are essential for the proper development and functioning of the peripheral nervous system (PNS). The ability to study the biology of glial cells is therefore critical for our ability to understand PNS biology and address PNS maladies. The genetic and proteomic pathways underlying vertebrate peripheral glial biology are understandably complex, with many layers of redundancy making it sometimes difficult to study certain facets of PNS biology. Fortunately, many aspects of vertebrate peripheral glial biology are conserved with those of the fruit fly, Drosophila melanogaster With simple and powerful genetic tools and fast generation times, Drosophila presents an accessible and versatile model for studying the biology of peripheral glia. We introduce here three techniques for studying the cell biology of peripheral glia of Drosophila third-instar larvae. With fine dissection tools and common laboratory reagents, third-instar larvae can be dissected, with extraneous tissues removed, revealing the central nervous system (CNS) and PNS to be processed using a standard immunolabeling protocol. To improve the resolution of peripheral nerves in the z-plane, we describe a cryosectioning method to achieve 10- to 20-µm thick coronal sections of whole larvae, which can then be immunolabeled using a modified version of standard immunolabeling techniques. Finally, we describe a proximity ligation assay (PLA) for detecting close proximity between two proteins-thus inferring protein interaction-in vivo in third-instar larvae. These methods, further described in our associated protocols, can be used to improve our understanding of Drosophila peripheral glia biology, and thus our understanding of PNS biology.
Collapse
Affiliation(s)
- Katherine Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vanessa Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
6
|
Contreras EG, Kautzmann S, Klämbt C. The Drosophila blood-brain barrier invades the nervous system in a GPCR-dependent manner. Front Cell Neurosci 2024; 18:1397627. [PMID: 38846639 PMCID: PMC11153769 DOI: 10.3389/fncel.2024.1397627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The blood-brain barrier (BBB) represents a crucial interface between the circulatory system and the brain. In Drosophila melanogaster, the BBB is composed of perineurial and subperineurial glial cells. The perineurial glial cells are small mitotically active cells forming the outermost layer of the nervous system and are engaged in nutrient uptake. The subperineurial glial cells form occluding septate junctions to prevent paracellular diffusion of macromolecules into the nervous system. To address whether the subperineurial glia just form a simple barrier or whether they establish specific contacts with both the perineurial glial cells and inner central nervous system (CNS) cells, we undertook a detailed morphological analysis. Using genetically encoded markers alongside with high-resolution laser scanning confocal microscopy and transmission electron microscopy, we identified thin cell processes extending into the perineurial layer and into the CNS cortex. Interestingly, long cell processes were observed reaching the glia ensheathing the neuropil of the central brain. GFP reconstitution experiments highlighted multiple regions of membrane contacts between subperineurial and ensheathing glia. Furthermore, we identify the G-protein-coupled receptor (GPCR) Moody as negative regulator of the growth of subperineurial cell processes. Loss of moody triggered a massive overgrowth of subperineurial cell processes into the CNS cortex and, moreover, affected the polarized localization of the xenobiotic transporter Mdr65. Finally, we found that GPCR signaling, but not septate junction formation, is responsible for controlling membrane overgrowth. Our findings support the notion that the Drosophila BBB is able to bridge the communication gap between circulation and synaptic regions of the brain by long cell processes.
Collapse
Affiliation(s)
| | | | - Christian Klämbt
- Multiscale Imaging Center, Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Yadav V, Mishra R, Das P, Arya R. Cut homeodomain transcription factor is a novel regulator of growth and morphogenesis of cortex glia niche around neural cells. Genetics 2024; 226:iyad173. [PMID: 37751321 PMCID: PMC11491519 DOI: 10.1093/genetics/iyad173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Cortex glia in Drosophila central nervous system form a niche around neural cells for necessary signals to establish cross talk with their surroundings. These cells grow and expand their thin processes around neural cell bodies. Although essential for the development and function of the nervous system, how these cells make extensive and intricate connected networks remains largely unknown. In this study, we show that Cut, a homeodomain transcription factor, directly regulates the fate of the cortex glia, impacting neural stem cell (NSC) homeostasis. Focusing on the thoracic ventral nerve cord, we found that Cut is required for the normal growth and development of cortex glia and timely increase in DNA content through endocycle to later divide via acytokinetic mitosis. Knockdown of Cut in cortex glia significantly reduces the growth of cellular processes, the network around NSCs, and their progeny's cell bodies. Conversely, overexpression of Cut induces overall growth of the main processes at the expense of side ones. Whereas the Cut knockdown slows down the timely increase of DNA, the Cut overexpression results in a significant increase in nuclear size and volume and a 3-fold increase in DNA content of cortex glia. Further, we note that constitutively high Cut also interfered with nuclei separation during acytokinetic mitosis. Since the cortex glia form syncytial networks around neural cells, the finding identifies Cut as a novel regulator of glial growth and variant cell cycles to support a functional nervous system.
Collapse
Affiliation(s)
- Vaishali Yadav
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ramkrishna Mishra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
8
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
9
|
Bertrand M, Szeremeta F, Hervouet-Coste N, Sarou-Kanian V, Landon C, Morisset-Lopez S, Decoville M. An adult Drosophila glioma model to highlight metabolic dysfunctions and evaluate the role of the serotonin 5-HT 7 receptor as a potential therapeutic target. FASEB J 2023; 37:e23230. [PMID: 37781977 DOI: 10.1096/fj.202300783rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Gliomas account for 50% of brain cancers and are therefore the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed, but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Drosophila glioma models established in larvae and adults are useful to identify new genes and signaling pathways involved in glioma progression. Here, we used a Drosophila glioma model in adults, to characterize metabolic disturbances associated with glioma and assess the consequences of 5-HT7 R expression on glioma development. First, by using in vivo magnetic resonance imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induces brain enlargement. Then, we explored altered cellular metabolism by using high-resolution magic angle spinning NMR and 1 H-13 C heteronuclear single quantum coherence solution states. Discriminant metabolites identified highlight the rewiring of metabolic pathways in glioma and associated cachexia phenotypes. Finally, the expression of 5-HT7 R in this adult model attenuates phenotypes associated with glioma development. Collectively, this whole-animal approach in Drosophila allowed us to provide several rapid and robust phenotype readouts, such as enlarged brain volume and glioma-associated cachexia, as well as to determine the metabolic pathways involved in glioma genesis and finally to confirm the interest of the 5-HT7 R in the treatment of glioma.
Collapse
Affiliation(s)
- Marylène Bertrand
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | | | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation-CEMHTI-CNRS UPR 3079, Orléans, France
| | - Céline Landon
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | - Martine Decoville
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
- UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| |
Collapse
|
10
|
Banach-Latapy A, Rincheval V, Briand D, Guénal I, Spéder P. Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila. PLoS Biol 2023; 21:e3002352. [PMID: 37943883 PMCID: PMC10635556 DOI: 10.1371/journal.pbio.3002352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.
Collapse
Affiliation(s)
- Agata Banach-Latapy
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | | | - David Briand
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
11
|
Rapti G. Regulation of axon pathfinding by astroglia across genetic model organisms. Front Cell Neurosci 2023; 17:1241957. [PMID: 37941606 PMCID: PMC10628440 DOI: 10.3389/fncel.2023.1241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023] Open
Abstract
Glia and neurons are intimately associated throughout bilaterian nervous systems, and were early proposed to interact for patterning circuit assembly. The investigations of circuit formation progressed from early hypotheses of intermediate guideposts and a "glia blueprint", to recent genetic and cell manipulations, and visualizations in vivo. An array of molecular factors are implicated in axon pathfinding but their number appears small relatively to circuit complexity. Comprehending this circuit complexity requires to identify unknown factors and dissect molecular topographies. Glia contribute to both aspects and certain studies provide molecular and functional insights into these contributions. Here, I survey glial roles in guiding axon navigation in vivo, emphasizing analogies, differences and open questions across major genetic models. I highlight studies pioneering the topic, and dissect recent findings that further advance our current molecular understanding. Circuits of the vertebrate forebrain, visual system and neural tube in zebrafish, mouse and chick, the Drosophila ventral cord and the C. elegans brain-like neuropil emerge as major contexts to study glial cell functions in axon navigation. I present astroglial cell types in these models, and their molecular and cellular interactions that drive axon guidance. I underline shared principles across models, conceptual or technical complications, and open questions that await investigation. Glia of the radial-astrocyte lineage, emerge as regulators of axon pathfinding, often employing common molecular factors across models. Yet this survey also highlights different involvements of glia in embryonic navigation or pioneer axon pathfinding, and unknowns in the molecular underpinnings of glial cell functions. Future cellular and molecular investigations should complete the comprehensive view of glial roles in circuit assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol 2023; 11:1063843. [PMID: 37051466 PMCID: PMC10083403 DOI: 10.3389/fcell.2023.1063843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
The past 15–20 years has seen a remarkable shift in our understanding of astrocyte contributions to central nervous system (CNS) function. Astrocytes have emerged from the shadows of neuroscience and are now recognized as key elements in a broad array of CNS functions. Astrocytes comprise a substantial fraction of cells in the human CNS. Nevertheless, fundamental questions surrounding their basic biology remain poorly understood. While recent studies have revealed a diversity of essential roles in CNS function, from synapse formation and function to blood brain barrier maintenance, fundamental mechanisms of astrocyte development, including their expansion, migration, and maturation, remain to be elucidated. The coincident development of astrocytes and synapses highlights the need to better understand astrocyte development and will facilitate novel strategies for addressing neurodevelopmental and neurological dysfunction. In this review, we provide an overview of the current understanding of astrocyte development, focusing primarily on mammalian astrocytes and highlight outstanding questions that remain to be addressed. We also include an overview of Drosophila glial development, emphasizing astrocyte-like glia given their close anatomical and functional association with synapses. Drosophila offer an array of sophisticated molecular genetic tools and they remain a powerful model for elucidating fundamental cellular and molecular mechanisms governing astrocyte development. Understanding the parallels and distinctions between astrocyte development in Drosophila and vertebrates will enable investigators to leverage the strengths of each model system to gain new insights into astrocyte function.
Collapse
Affiliation(s)
- Kathryn M. Markey
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | | | - Jana Smuts
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - A. Denise R. Garcia
- Department of Biology, Drexel University, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- *Correspondence: A. Denise R. Garcia,
| |
Collapse
|
13
|
Veselkina ER, Trostnikov MV, Roshina NV, Pasyukova EG. The Effect of the Tau Protein on D. melanogaster Lifespan Depends on GSK3 Expression and Sex. Int J Mol Sci 2023; 24:2166. [PMID: 36768490 PMCID: PMC9916465 DOI: 10.3390/ijms24032166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The microtubule-associated conserved protein tau has attracted significant attention because of its essential role in the formation of pathological changes in the nervous system, which can reduce longevity. The study of the effects caused by tau dysfunction and the molecular mechanisms underlying them is complicated because different forms of tau exist in humans and model organisms, and the changes in protein expression can be multidirectional. In this article, we show that an increase in the expression of the main isoform of the Drosophila melanogaster tau protein in the nervous system has differing effects on lifespan depending on the sex of individuals but has no effect on the properties of the nervous system, in particular, the synaptic activity and distribution of another microtubule-associated protein, Futsch, in neuromuscular junctions. Reduced expression of tau in the nervous system does not affect the lifespan of wild-type flies, but it does increase the lifespan dramatically shortened by overexpression of the shaggy gene encoding the GSK3 (Glycogen Synthase Kinase 3) protein kinase, which is one of the key regulators of tau phosphorylation levels. This effect is accompanied by the normalization of the Futsch protein distribution impaired by shaggy overexpression. The results presented in this article demonstrate that multidirectional changes in tau expression can lead to effects that depend on the sex of individuals and the expression level of GSK3.
Collapse
Affiliation(s)
- Ekaterina R. Veselkina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Mikhail V. Trostnikov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Natalia V. Roshina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena G. Pasyukova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
14
|
Goupil A, Heinen JP, Salame R, Rossi F, Reina J, Pennetier C, Simon A, Skorski P, Louzao A, Bardin AJ, Basto R, Gonzalez C. Illuminati: a form of gene expression plasticity in Drosophila neural stem cells. Development 2022; 149:282932. [PMID: 36399062 PMCID: PMC9845751 DOI: 10.1242/dev.200808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
Abstract
While testing for genome instability in Drosophila as reported by unscheduled upregulation of UAS-GFP in cells that co-express GAL80 and GAL4, we noticed that, as expected, background levels were low in most developing tissues. However, GFP-positive clones were frequent in the larval brain. Most of these clones originated from central brain neural stem cells. Using imaging-based approaches and genome sequencing, we show that these unscheduled clones do not result from chromosome loss or mutations in GAL80. We have named this phenomenon 'Illuminati'. Illuminati is strongly enhanced in brat tumors and is also sensitive to environmental conditions such as food content and temperature. Illuminati is suppressed by Su(var)2-10, but it is not significantly affected by several modifiers of position effect variegation or Gal4::UAS variegation. We conclude that Illuminati identifies a previously unknown type of functional instability that may have important implications in development and disease.
Collapse
Affiliation(s)
- Alix Goupil
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Jan Peter Heinen
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Riham Salame
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Fabrizio Rossi
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Carole Pennetier
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Anthony Simon
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France
| | - Patricia Skorski
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75005 Paris, France
| | - Anxela Louzao
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Allison J. Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75005 Paris, France
| | - Renata Basto
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, 75005 Paris, France,Authors for correspondence (; )
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), Cell Division Laboratory, Cancer Science Programme, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain,Authors for correspondence (; )
| |
Collapse
|
15
|
Davis J, Kolaski E, Babcock DT. Vexed mutations promote degeneration of dopaminergic neurons through excessive activation of the innate immune response. NPJ Parkinsons Dis 2022; 8:147. [PMID: 36323700 PMCID: PMC9630459 DOI: 10.1038/s41531-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
The hallmark of Parkinson's disease (PD) is the loss of dopaminergic (DA) neurons in the brain. However, little is known about why DA neurons are selectively vulnerable to PD. We previously completed a screen identifying genes associated with the progressive degeneration of DA neurons. Here we describe the role of a previously uncharacterized gene, CG42339, in the loss of DA neurons using Drosophila Melanogaster. CG42339 mutants display a progressive loss of DA neurons and locomotor dysfunction, along with an accumulation of advanced glycation end products (AGEs) in the brain. Based on this phenotype, we refer to CG42339 as vexed. We demonstrate that vexed is specifically required within cortex glia to maintain neuronal viability. Loss of vexed function results in excessive activation of the innate immune response in the brain, leading to loss of DA neurons. We show that activation of the innate immune response leads to increased nitric oxide signaling and accumulation of AGEs, which ultimately result in neurodegeneration. These results provide further insight into the relationship between the role of the immune response in the central nervous system and how this impacts neuronal viability.
Collapse
Affiliation(s)
- Jacinta Davis
- grid.259029.50000 0004 1936 746XDepartment of Biological Sciences, Lehigh University, Bethlehem, PA USA
| | - Elizabeth Kolaski
- grid.259029.50000 0004 1936 746XDepartment of Biological Sciences, Lehigh University, Bethlehem, PA USA
| | - Daniel T. Babcock
- grid.259029.50000 0004 1936 746XDepartment of Biological Sciences, Lehigh University, Bethlehem, PA USA
| |
Collapse
|
16
|
Sami JD, Spitale RC, Cleary MD. mRNAs encoding neurodevelopmental regulators have equal N6-methyladenosine stoichiometry in Drosophila neuroblasts and neurons. Neural Dev 2022; 17:9. [PMID: 36243726 PMCID: PMC9571443 DOI: 10.1186/s13064-022-00166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in metazoans and is particularly abundant in the central nervous system. The extent to which m6A is dynamically regulated and whether m6A contributes to cell type-specific mRNA metabolism in the nervous system, however, is largely unknown. To address these knowledge gaps, we mapped m6A and measured mRNA decay in neural progenitors (neuroblasts) and neurons of the Drosophila melanogaster larval brain. We identified 867 m6A targets; 233 of these are novel and preferentially encode regulators of neuroblast proliferation, cell fate-specification and synaptogenesis. Comparison of the neuroblast and neuron m6A transcriptomes revealed that m6A stoichiometry is largely uniform; we did not find evidence of neuroblast-specific or neuron-specific m6A modification. While m6A stoichiometry is constant, m6A targets are significantly less stable in neuroblasts than in neurons, potentially due to m6A-independent stabilization in neurons. We used in vivo quantitative imaging of m6A target proteins in Mettl3 methyltransferase null brains and Ythdf m6A reader overexpressing brains to assay metabolic effects of m6A. Target protein levels decreased in Mettl3 null brains and increased in Ythdf overexpressing brains, supporting a previously proposed model in which m6A enhances translation of target mRNAs. We conclude that m6A does not directly regulate mRNA stability during Drosophila neurogenesis but is rather deposited on neurodevelopmental transcripts that have intrinsic low stability in order to augment protein output.
Collapse
Affiliation(s)
- Josephine D Sami
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA, USA
| | - Michael D Cleary
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA.
| |
Collapse
|
17
|
Rujano MA, Briand D, Ðelić B, Marc J, Spéder P. An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche in Drosophila. Nat Commun 2022; 13:4999. [PMID: 36008397 PMCID: PMC9411534 DOI: 10.1038/s41467-022-32685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stem cells (NSCs) live in an intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of a glial niche to investigate acquisition of architectural complexity. Cortex glia (CG) in Drosophila regulate neurogenesis and build a reticular structure around NSCs. We first show that individual CG cells grow tremendously to ensheath several NSC lineages, employing elaborate proliferative mechanisms which convert these cells into syncytia rich in cytoplasmic bridges. CG syncytia further undergo homotypic cell-cell fusion, using defined cell surface receptors and actin regulators. Cellular exchange is however dynamic in space and time. This atypical cell fusion remodels cellular borders, restructuring the CG syncytia. Ultimately, combined growth and fusion builds the multi-level architecture of the niche, and creates a modular, spatial partition of the NSC population. Our findings provide insights into how a niche forms and organises while developing intimate contacts with a stem cell population.
Collapse
Affiliation(s)
| | | | - Bojana Ðelić
- Institut Pasteur, CNRS UMR3738, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Cell Division and Neurogenesis, Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France
| | - Julie Marc
- Institut Pasteur, CNRS UMR3738, Paris, France
| | | |
Collapse
|
18
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022; 15:883358. [PMID: 35514431 PMCID: PMC9063566 DOI: 10.3389/fnmol.2022.883358] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.
Collapse
Affiliation(s)
- Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Haley E. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Robert M. Eppler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| |
Collapse
|
20
|
de Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/progenitor cell division. Curr Biol 2022; 32:2174-2188.e3. [DOI: 10.1016/j.cub.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023]
|
21
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Pogodalla N, Winkler B, Klämbt C. Glial Tiling in the Insect Nervous System. Front Cell Neurosci 2022; 16:825695. [PMID: 35250488 PMCID: PMC8891220 DOI: 10.3389/fncel.2022.825695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.
Collapse
|
23
|
Drosophila ß Heavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021; 12:6357. [PMID: 34737284 PMCID: PMC8569210 DOI: 10.1038/s41467-021-26462-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Collapse
|
24
|
The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the Drosophila Blood-Brain Barrier. J Neurosci 2021; 41:6430-6448. [PMID: 34210781 PMCID: PMC8318086 DOI: 10.1523/jneurosci.0452-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as “brain sparing.” However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood–brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood–brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood–brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain. SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.
Collapse
|
25
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
26
|
Dong Q, Zavortink M, Froldi F, Golenkina S, Lam T, Cheng LY. Glial Hedgehog signalling and lipid metabolism regulate neural stem cell proliferation in Drosophila. EMBO Rep 2021; 22:e52130. [PMID: 33751817 DOI: 10.15252/embr.202052130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023] Open
Abstract
The final size and function of the adult central nervous system (CNS) are determined by neuronal lineages generated by neural stem cells (NSCs) in the developing brain. In Drosophila, NSCs called neuroblasts (NBs) reside within a specialised microenvironment called the glial niche. Here, we explore non-autonomous glial regulation of NB proliferation. We show that lipid droplets (LDs) which reside within the glial niche are closely associated with the signalling molecule Hedgehog (Hh). Under physiological conditions, cortex glial Hh is autonomously required to sustain niche chamber formation. Upon FGF-mediated cortex glial overgrowth, glial Hh non-autonomously activates Hh signalling in the NBs, which in turn disrupts NB cell cycle progression and its ability to produce neurons. Glial Hh's ability to signal to NB is further modulated by lipid storage regulator lipid storage droplet-2 (Lsd-2) and de novo lipogenesis gene fatty acid synthase 1 (Fasn1). Together, our data suggest that glial-derived Hh modified by lipid metabolism mechanisms can affect the neighbouring NB's ability to proliferate and produce neurons.
Collapse
Affiliation(s)
- Qian Dong
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Michael Zavortink
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Sofya Golenkina
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Tammy Lam
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
27
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
29
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
30
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
31
|
Hernandez E, MacNamee SE, Kaplan LR, Lance K, Garcia-Verdugo HD, Farhadi DS, Deer C, Lee SW, Oland LA. The astrocyte network in the ventral nerve cord neuropil of the Drosophila third-instar larva. J Comp Neurol 2020; 528:1683-1703. [PMID: 31909826 DOI: 10.1002/cne.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Abstract
Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits-the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron-glia interactions in this neuropil.
Collapse
Key Words
- RRID:Abcam Cat# ab6953, RRID:AB_955010
- RRID:BDSC Cat# 30125, RRID:BDSC_30125
- RRID:BDSC Cat# 38760, RRID:BDSC_38760
- RRID:BDSC Cat# 4775, RRID:BDSC_4775
- RRID:BDSC Cat# 5692, RRID:BDSC_5692
- RRID:BDSC Cat# 64085, RRID:BDSC_64085
- RRID:BDSC Cat# 6938, RRID:BDSC_6938
- RRID:Bio-rad Cat # MCA1360, RRID:AB_322378
- RRID:Cell Signaling Technology Cat # 3724, RRID:AB_1549585
- RRID:DSHB Cat# 1D4, RRID:AB_528235
- RRID:DSHB Cat# nc82, RRID:AB_2314866
- RRID:Jackson ImmunoResearch Labs Cat# 115-167-003, RRID:AB_2338709
- RRID:Molecular Probes Cat# 6455, RRID:AB_2314543
- RRID:Molecular Probes Cat# A-21236, RRID:AB_141725
- RRID:Novus Cat # NBP1-06712, RRID:AB_1625981
- RRID:Thermo Fisher Scientific Cat# A-11034, RRID:AB_2576217.
- glial cells
- neuron-glia interaction
Collapse
Affiliation(s)
- Ernesto Hernandez
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,University of Illinois at Chicago School of Medicine, Rockford, Illinois
| | - Sarah E MacNamee
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Inscopix, Palo Alto, California
| | - Leah R Kaplan
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Consortium for Science, Policy & Outcomes, Arizona State University, Washington, DC, Washington
| | - Kim Lance
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | | | - Dara S Farhadi
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Christine Deer
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Research Technologies Group, Data Visualization Team, University of Arizona, University Information Technology Service, Tucson, Arizona
| | - Si W Lee
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| |
Collapse
|
32
|
Endow SA, Miller SE, Ly PT. Mitochondria-enriched protrusions are associated with brain and intestinal stem cells in Drosophila. Commun Biol 2019; 2:427. [PMID: 31799429 PMCID: PMC6874589 DOI: 10.1038/s42003-019-0671-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Brain stem cells stop dividing in late Drosophila embryos and begin dividing again in early larvae after feeding induces reactivation. Quiescent neural stem cells (qNSCs) display an unusual cytoplasmic protrusion that is no longer present in reactivated NSCs. The protrusions join the qNSCs to the neuropil, brain regions that are thought to maintain NSCs in an undifferentiated state, but the function of the protrusions is not known. Here we show that qNSC protrusions contain clustered mitochondria that are likely maintained in position by slow forward-and-backward microtubule growth. Larvae treated with a microtubule-stabilizing drug show bundled microtubules and enhanced mitochondrial clustering in NSCs, together with reduced qNSC reactivation. We further show that intestinal stem cells contain mitochondria-enriched protrusions. The qNSC and intestinal stem-cell protrusions differ from previously reported cytoplasmic extensions by forming stem-cell-to-niche mitochondrial bridges that could potentially both silence genes and sense signals from the stem cell niche.
Collapse
Affiliation(s)
- Sharyn A. Endow
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, 169857 Singapore
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| | - Phuong Thao Ly
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, 169857 Singapore
| |
Collapse
|
33
|
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia 2019; 67:2374-2398. [PMID: 31479171 PMCID: PMC6851788 DOI: 10.1002/glia.23691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC‐a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC‐a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss‐of‐function ClC‐a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC‐a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia‐mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.
Collapse
Affiliation(s)
- Haritz Plazaola-Sasieta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Qi Zhu
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Rios
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Estévez
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morey
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Programa de Biologia Integrativa, Barcelona, Spain
| |
Collapse
|
34
|
Weiss S, Melom JE, Ormerod KG, Zhang YV, Littleton JT. Glial Ca 2+signaling links endocytosis to K + buffering around neuronal somas to regulate excitability. eLife 2019; 8:44186. [PMID: 31025939 PMCID: PMC6510531 DOI: 10.7554/elife.44186] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Glial-neuronal signaling at synapses is widely studied, but how glia interact with neuronal somas to regulate their activity is unclear. Drosophila cortex glia are restricted to brain regions devoid of synapses, providing an opportunity to characterize interactions with neuronal somas. Mutations in the cortex glial NCKXzydeco elevate basal Ca2+, predisposing animals to seizure-like behavior. To determine how cortex glial Ca2+ signaling controls neuronal excitability, we performed an in vivo modifier screen of the NCKXzydeco seizure phenotype. We show that elevation of glial Ca2+ causes hyperactivation of calcineurin-dependent endocytosis and accumulation of early endosomes. Knockdown of sandman, a K2P channel, recapitulates NCKXzydeco seizures. Indeed, sandman expression on cortex glial membranes is substantially reduced in NCKXzydeco mutants, indicating enhanced internalization of sandman predisposes animals to seizures. These data provide an unexpected link between glial Ca2+ signaling and the well-known role of glia in K+ buffering as a key mechanism for regulating neuronal excitability.
Collapse
Affiliation(s)
- Shirley Weiss
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Jan E Melom
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Kiel G Ormerod
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yao V Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
35
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
36
|
Read RD. Pvr receptor tyrosine kinase signaling promotes post-embryonic morphogenesis, and survival of glia and neural progenitor cells in Drosophila. Development 2018; 145:dev.164285. [PMID: 30327326 DOI: 10.1242/dev.164285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022]
Abstract
Stem cells reside in specialized microenvironments, called niches, that regulate their development and the development of their progeny. However, the development and maintenance of niches are poorly understood. In the Drosophila brain, cortex glial cells provide a niche that promotes self-renewal and proliferation of neural stem cell-like cells (neuroblasts). In the central brain, neuroblasts and their progeny control post-embryonic morphogenesis of cortex glia through PDGF-like ligands, and this PDGFR receptor tyrosine kinase (RTK) signaling in cortex glia is required for expression of DE-cadherin, which sustains neuroblasts. Thus, through an RTK-dependent feed-forward loop, neuroblasts and their glial niche actively maintain each other. When the EGFR RTK is constitutively activated in cortex glia, they overexpress PDGF orthologs to stimulate autocrine PDGFR signaling, which uncouples their growth and survival from neuroblasts, and drives neoplastic glial transformation and elimination of neuroblasts. These results provide fundamental insights into glial development and niche regulation, and show that niche-neural stem cell feed-forward signaling becomes hijacked to drive neural tumorigenesis.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
38
|
Khatun S, Mandi M, Rajak P, Roy S. Interplay of ROS and behavioral pattern in fluoride exposed Drosophila melanogaster. CHEMOSPHERE 2018; 209:220-231. [PMID: 29936113 DOI: 10.1016/j.chemosphere.2018.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) is known to be associated with the process of aging and other health hazards. Organisms are compelled to compromise with body homeostasis when exposed to toxic substances. In the present study sodium fluoride (NaF) exposure (10-100 μgmL-1) to Drosophila melanogaster in the parental (P) generation leads to increase in adult mortality and alteration in male-female ratio in the P and F1 (1st Filial) generation. Post-treatment alterations in selected behavioral traits (crawling, embedding and climbing) were observed in larvae and adults. Altered behavioral pattern was found to be associated with reduced mitochondrial activity and decreased number of viable brain cells in treated individuals. Interestingly, higher cholinesterase activities in treated males in comparison to females demonstrate a definite sex bias in NaF-induced response. Hyper-activation of antioxidant enzyme like catalase and reduced superoxide dismutase (SOD) and glutathione-s-transferase (GST) activity indicate a shift in the oxidative status after fluoride exposure. Additionally, increase in lipid peroxidation suggests enhancement in ROS which is further validated through increment in protein carbonyl content. Hence, the observations of the present study propose behavioral alterations resulting from increased ROS after chronic exposure to sub-lethal concentrations of NaF in D. melanogaster.
Collapse
Affiliation(s)
- Salma Khatun
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India.
| | - Moutushi Mandi
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India
| | - Prem Rajak
- Post-Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, India
| | - Sumedha Roy
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan-713104, West Bengal, India.
| |
Collapse
|
39
|
Kunduri G, Turner-Evans D, Konya Y, Izumi Y, Nagashima K, Lockett S, Holthuis J, Bamba T, Acharya U, Acharya JK. Defective cortex glia plasma membrane structure underlies light-induced epilepsy in cpes mutants. Proc Natl Acad Sci U S A 2018; 115:E8919-E8928. [PMID: 30185559 PMCID: PMC6156639 DOI: 10.1073/pnas.1808463115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in Drosophila, owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase (cpes)-null mutants and fail to encapsulate the neuronal cell bodies in the Drosophila neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in cpes mutants and leads to the PSE phenotype.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | | | - Yutaka Konya
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nagashima
- Electron Microscopy Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Joost Holthuis
- Molecular Cell Biology Division, University of Osnabrück, 49074 Osnabrück, Germany
| | - Takeshi Bamba
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Usha Acharya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
40
|
Spéder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. eLife 2018; 7. [PMID: 29299997 PMCID: PMC5754201 DOI: 10.7554/elife.30413] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Successful neurogenesis requires adequate proliferation of neural stem cells (NSCs) and their progeny, followed by neuronal differentiation, maturation and survival. NSCs inhabit a complex cellular microenvironment, the niche, which influences their behaviour. To ensure sustained neurogenesis, niche cells must respond to extrinsic, environmental changes whilst fulfilling the intrinsic requirements of the neurogenic program and adapting their roles accordingly. However, very little is known about how different niche cells adjust their properties to such inputs. Here, we show that nutritional and NSC-derived signals induce the remodelling of Drosophila cortex glia, adapting this glial niche to the evolving needs of NSCs. First, nutrition-induced activation of PI3K/Akt drives the cortex glia to expand their membrane processes. Second, when NSCs emerge from quiescence to resume proliferation, they signal to glia to promote membrane remodelling and the formation of a bespoke structure around each NSC lineage. The remodelled glial niche is essential for newborn neuron survival.
Collapse
Affiliation(s)
- Pauline Spéder
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea H Brand
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Coutinho-Budd JC, Sheehan AE, Freeman MR. The secreted neurotrophin Spätzle 3 promotes glial morphogenesis and supports neuronal survival and function. Genes Dev 2017; 31:2023-2038. [PMID: 29138279 PMCID: PMC5733495 DOI: 10.1101/gad.305888.117] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 10/27/2022]
Abstract
Most glial functions depend on establishing intimate morphological relationships with neurons. Significant progress has been made in understanding neuron-glia signaling at synaptic and axonal contacts, but how glia support neuronal cell bodies is unclear. Here we explored the growth and functions of Drosophila cortex glia (which associate almost exclusively with neuronal cell bodies) to understand glia-soma interactions. We show that cortex glia tile with one another and with astrocytes to establish unique central nervous system (CNS) spatial domains that actively restrict glial growth, and selective ablation of cortex glia causes animal lethality. In an RNAi-based screen, we identified αSNAP (soluble NSF [N-ethylmalemeide-sensitive factor] attachment protein α) and several components of vesicle fusion and recycling machinery as essential for the maintenance of cortex glial morphology and continued contact with neurons. Interestingly, loss of the secreted neurotrophin Spätzle 3 (Spz3) phenocopied αSNAP phenotypes, which included loss of glial ensheathment of neuron cell bodies, increased neuronal cell death, and defects in animal behavior. Rescue experiments suggest that Spz3 can exert these effects only over very short distances. This work identifies essential roles for glial ensheathment of neuronal cell bodies in CNS homeostasis as well as Spz3 as a novel signaling factor required for maintenance of cortex glial morphology and neuron-glia contact.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| |
Collapse
|
42
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|
43
|
Lim NR, Shohayeb B, Zaytseva O, Mitchell N, Millard SS, Ng DCH, Quinn LM. Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase AURKA Are Essential for Drosophila Brain Growth. Stem Cell Reports 2017. [PMID: 28625535 PMCID: PMC5511370 DOI: 10.1016/j.stemcr.2017.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged. In contrast, glial lineage-specific WDR62 depletion significantly decreased brain volume. Moreover, loss of function in glia not only decreased the glial population but also non-autonomously caused neuroblast loss. We further demonstrated that WDR62 controls brain growth through lineage-specific interactions with master mitotic signaling kinase, AURKA. Depletion of AURKA in neuroblasts drives brain overgrowth, which was suppressed by WDR62 co-depletion. In contrast, glial-specific depletion of AURKA significantly decreased brain volume, which was further decreased by WDR62 co-depletion. Thus, dissecting relative contributions of MCPH factors to individual neural lineages will be critical for understanding complex diseases such as microcephaly.
Collapse
Affiliation(s)
- Nicholas R Lim
- School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4067, Australia
| | - Olga Zaytseva
- School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia
| | - Naomi Mitchell
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia
| | - S Sean Millard
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4067, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4067, Australia
| | - Leonie M Quinn
- School of Biomedical Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
44
|
Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U. The glia of the adult Drosophila nervous system. Glia 2017; 65:606-638. [PMID: 28133822 PMCID: PMC5324652 DOI: 10.1002/glia.23115] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
Abstract
Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638
Collapse
Affiliation(s)
- Malte C Kremer
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany.,Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| | - Sara Batelli
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, Virginia
| | - Ulrike Gaul
- Gene Center and Department of Biochemistry, Center of Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
45
|
Abramczuk MK, Burkard TR, Rolland V, Steinmann V, Duchek P, Jiang Y, Wissel S, Reichert H, Knoblich JA. The splicing co-factor Barricade/Tat-SF1, is required for cell cycle and lineage progression in Drosophila neural stem cells. Development 2017; 144:3932-3945. [DOI: 10.1242/dev.152199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Stem cells need to balance self-renewal and differentiation for correct tissue development and homeostasis. Defects in this balance can lead to developmental defects or tumor formation. In recent years, mRNA splicing has emerged as one important mechanism regulating cell fate decisions. Here we address the role of the evolutionary conserved splicing co-factor Barricade (Barc)/Tat-SF1/CUS2 in Drosophila neural stem cell (neuroblast) lineage formation. We show that Barc is required for the generation of neurons during Drosophila brain development by ensuring correct neural progenitor proliferation and differentiation. Barc associates with components of the U2 small nuclear ribonucleic proteins (snRNP), and its depletion causes alternative splicing in form of intron retention in a subset of genes. Using bioinformatics analysis and a cell culture based splicing assay, we found that Barc-dependent introns share three major traits: they are short, GC rich and have weak 3' splice sites. Our results show that Barc, together with the U2snRNP, plays an important role in regulating neural stem cell lineage progression during brain development and facilitates correct splicing of a subset of introns.
Collapse
Affiliation(s)
- Monika K. Abramczuk
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Thomas R. Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Vivien Rolland
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Current address: Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Canberra, ACT 2601, Australia
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
- Current address: D-BSSE ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Wissel
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Juergen A. Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
| |
Collapse
|
46
|
Brace EJ, DiAntonio A. Models of axon regeneration in Drosophila. Exp Neurol 2017; 287:310-317. [PMID: 26996133 PMCID: PMC5026866 DOI: 10.1016/j.expneurol.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Maintaining neuronal connectivity in the face of injury and disease is a major challenge for the nervous system. The great length of axons makes them particularly vulnerable to insult with dire consequences for neuronal function. In the peripheral nervous system there is a program of axonal regeneration that can reestablish connectivity. In the mammalian central nervous system, however, injured axons have little or no capacity to regenerate. The molecular mechanisms that promote axon regeneration have begun to be identified and many of the implicated pathways are evolutionarily conserved. Here we discuss Drosophila models of axonal regrowth, describe insights derived from these studies, and highlight future directions in the use of the fly for dissecting the mechanisms of axonal regeneration.
Collapse
Affiliation(s)
- E J Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA, 63110.
| |
Collapse
|
47
|
Omoto JJ, Lovick JK, Hartenstein V. Origins of glial cell populations in the insect nervous system. CURRENT OPINION IN INSECT SCIENCE 2016; 18:96-104. [PMID: 27939718 PMCID: PMC5825180 DOI: 10.1016/j.cois.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Glia of vertebrates and invertebrates alike represents a diverse population of cells in the nervous system, divided into numerous classes with different structural and functional characteristics. In insects, glia fall within three basic classes: surface, cell body, and neuropil glia. Due to the glial subclass-specific markers and genetic tools available in Drosophila, it is possible to establish the progenitor origin of these different populations and reconstruct their migration and differentiation during development. We review, and posit when appropriate, recently elucidated aspects of glial developmental dynamics. In particular, we focus on the relationships between mature glial subclasses of the larval nervous system (primary glia), born in the embryo, and glia of the adult (secondary glia), generated in the larva.
Collapse
Affiliation(s)
- Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development. G3-GENES GENOMES GENETICS 2016; 6:2435-45. [PMID: 27261002 PMCID: PMC4978897 DOI: 10.1534/g3.116.031310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7). Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp) is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia.
Collapse
|
49
|
Singh P, Chowdhuri DK. Environmental Presence of Hexavalent but Not Trivalent Chromium Causes Neurotoxicity in Exposed Drosophila melanogaster. Mol Neurobiol 2016; 54:3368-3387. [DOI: 10.1007/s12035-016-9909-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
50
|
Schirmeier S, Matzat T, Klämbt C. Axon ensheathment and metabolic supply by glial cells in Drosophila. Brain Res 2015; 1641:122-129. [PMID: 26367447 DOI: 10.1016/j.brainres.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Neuronal function requires constant working conditions and a well-balanced supply of ions and metabolites. The metabolic homeostasis in the nervous system crucially depends on the presence of glial cells, which nurture and isolate neuronal cells. Here we review recent findings on how these tasks are performed by glial cells in the genetically amenable model organism Drosophila melanogaster. Despite the small size of its nervous system, which would allow diffusion of metabolites, a surprising division of labor between glial cells and neurons is evident. Glial cells are glycolytically active and transfer lactate and alanine to neurons. Neurons in turn do not require glycolysis but can use the glially provided compounds for their energy homeostasis. Besides feeding neurons, glial cells also insulate neuronal axons in a way similar to Remak fibers in the mammalian nervous system. The molecular mechanisms orchestrating this insulation require neuregulin signaling and resemble the mechanisms controlling glial differentiation in mammals surprisingly well. We hypothesize that metabolic cross talk and insulation of neurons by glial cells emerged early during evolution as two closely interlinked features in the nervous system. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Badestr. 9, 48149 Münster, Germany
| | - Till Matzat
- Institut für Neuro- und Verhaltensbiologie, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|