1
|
Williams AL, Bohnsack BL. Keratin 8/18a.1 Expression Influences Embryonic Neural Crest Cell Dynamics and Contributes to Postnatal Corneal Regeneration in Zebrafish. Cells 2024; 13:1473. [PMID: 39273043 PMCID: PMC11394277 DOI: 10.3390/cells13171473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
2
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
3
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Vöcking O, Van Der Meulen K, Patel MK, Famulski JK. Zebrafish anterior segment mesenchyme progenitors are defined by function of tfap2a but not sox10. Differentiation 2023; 130:32-42. [PMID: 36563566 PMCID: PMC10006344 DOI: 10.1016/j.diff.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The anterior segment is a critical component of the visual system. Developing independent of the retina, the AS relies partially on cranial neural crest cells (cNCC) as its earliest progenitors. The cNCCs are thought to first adopt a periocular mesenchyme (POM) fate and subsequently target to the AS upon formation of the rudimentary retina. AS targeted POM is termed anterior segment mesenchyme (ASM). However, it remains unknown when and how the switch from cNCC to POM or POM to ASM takes place. As such, we sought to visualize the timing of these transitions and identify the regulators of this process using the zebrafish embryo model. Using two color fluorescence in situ hybridization, we tracked cNCC and ASM target gene expression from 12 to 24hpf. In doing so, we identified a tfap2a and foxC1a co-expression at 16hpf, identifying the earliest ASM to arrive at the AS. Interestingly, expression of two other key regulators of NCC, foxD3 and sox10 was not associated with early ASM. Functional analysis of tfap2a, foxD3 and sox10 revealed that tfap2a and foxD3 are both critical regulators of ASM specification and AS formation while sox10 was dispensable for either specification or development of the AS. Using genetic knockout lines, we show that in the absence of tfap2a or foxD3 function ASM cells are not specified, and subsequently the AS is malformed. Conversely, sox10 genetic mutants or CRISPR Cas9 injected embryos displayed no defects in ASM specification, migration or the AS. Lastly, using transcriptomic analysis, we show that GFP + cNCCs derived from Tg [foxD3:GFP] and Tg [foxC1b:GFP] share expression profiles consistent with ASM development whereas cNCCs isolated from Tg [sox10:GFP] exhibit expression profiles associated with vasculogenesis, muscle function and pigmentation. Taken together, we propose that the earliest stage of anterior segment mesenchyme (ASM) specification in zebrafish is approximately 16hpf and involves tfap2a/foxC1a positive cNCCs.
Collapse
Affiliation(s)
| | | | - M K Patel
- Department of Biology, University of Kentucky, USA
| | - J K Famulski
- Department of Biology, University of Kentucky, USA.
| |
Collapse
|
6
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
7
|
Candido-Ferreira IL, Lukoseviciute M, Sauka-Spengler T. Multi-layered transcriptional control of cranial neural crest development. Semin Cell Dev Biol 2022; 138:1-14. [PMID: 35941042 DOI: 10.1016/j.semcdb.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is an emblematic population of embryonic stem-like cells with remarkable migratory ability. These distinctive attributes have inspired the curiosity of developmental biologists for over 150 years, however only recently the regulatory mechanisms controlling the complex features of the NC have started to become elucidated at genomic scales. Regulatory control of NC development is achieved through combinatorial transcription factor binding and recruitment of associated transcriptional complexes to distal cis-regulatory elements. Together, they regulate when, where and to what extent transcriptional programmes are actively deployed, ultimately shaping ontogenetic processes. Here, we discuss how transcriptional networks control NC ontogeny, with a special emphasis on the molecular mechanisms underlying specification of the cephalic NC. We also cover emerging properties of transcriptional regulation revealed in diverse developmental systems, such as the role of three-dimensional conformation of chromatin, and how they are involved in the regulation of NC ontogeny. Finally, we highlight how advances in deciphering the NC transcriptional network have afforded new insights into the molecular basis of human diseases.
Collapse
Affiliation(s)
- Ivan L Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
8
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
9
|
DiNapoli SE, Martinez-McFaline R, Shen H, Doane AS, Perez AR, Verma A, Simon A, Nelson I, Balgobin CA, Bourque CT, Yao J, Raman R, Béguelin W, Zippin JH, Elemento O, Melnick AM, Houvras Y. Histone 3 Methyltransferases Alter Melanoma Initiation and Progression Through Discrete Mechanisms. Front Cell Dev Biol 2022; 10:814216. [PMID: 35223844 PMCID: PMC8866878 DOI: 10.3389/fcell.2022.814216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Perturbations to the epigenome are known drivers of tumorigenesis. In melanoma, alterations in histone methyltransferases that catalyze methylation at histone 3 lysine 9 and histone 3 lysine 27-two sites of critical post-translational modification-have been reported. To study the function of these methyltransferases in melanoma, we engineered melanocytes to express histone 3 lysine-to-methionine mutations at lysine 9 and lysine 27, which are known to inhibit the activity of histone methyltransferases, in a zebrafish melanoma model. Using this system, we found that loss of histone 3 lysine 9 methylation dramatically suppressed melanoma formation and that inhibition of histone 3 lysine 9 methyltransferases in human melanoma cells increased innate immune response signatures. In contrast, loss of histone 3 lysine 27 methylation significantly accelerated melanoma formation. We identified FOXD1 as a top target of PRC2 that is silenced in melanocytes and found that aberrant overexpression of FOXD1 accelerated melanoma onset. Collectively, these data demonstrate how histone 3 lysine-to-methionine mutations can be used to uncover critical roles for methyltransferases.
Collapse
Affiliation(s)
- Sara E. DiNapoli
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Raúl Martinez-McFaline
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Hao Shen
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Ashley S. Doane
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Alexendar R. Perez
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, United States
| | - Akanksha Verma
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Isabel Nelson
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Courtney A. Balgobin
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Caitlin T. Bourque
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Jun Yao
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Renuka Raman
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Caryl and Israel Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Ari M. Melnick
- Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
10
|
Howard AGA, Nguyen AC, Tworig J, Ravisankar P, Singleton EW, Li C, Kotzur G, Waxman JS, Uribe RA. Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in Zebrafish. Front Cell Dev Biol 2022; 9:803370. [PMID: 35174164 PMCID: PMC8841348 DOI: 10.3389/fcell.2021.803370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.
Collapse
Affiliation(s)
| | - Aaron C. Nguyen
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua Tworig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Priya Ravisankar
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Allen Institute of Immunology, Seattle, WA, United States
| | | | - Can Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Grayson Kotzur
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rosa A. Uribe
- BioSciences Department, Rice University, Houston, TX, United States
- *Correspondence: Rosa A. Uribe,
| |
Collapse
|
11
|
Single-cell transcriptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development. Cell Rep 2021; 37:110140. [PMID: 34936864 PMCID: PMC8741273 DOI: 10.1016/j.celrep.2021.110140] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors. In addition, by computationally integrating these data with RNA-seq data from a transgenic Wnt reporter line, we identify gene cohorts with similar temporal responses to Wnts during migration and show that one, Atp6ap2, is required for melanocyte differentiation. Together, our results show that cranial NC cell lineages arise progressively and uncover a series of spatially restricted cell interactions likely to regulate such cell-fate decisions. Tatarakis et al. provide a single-cell transcriptomic timeline of cranial neural crest (NC) development in zebrafish and address long-standing questions surrounding the integration of NC cell migration and lineage specification. They find that lineages are specified mid-migration. These fate decisions correspond to shifts in Wnt signaling, and lineages rapidly segregate.
Collapse
|
12
|
NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration. Nat Commun 2021; 12:6336. [PMID: 34732706 PMCID: PMC8566576 DOI: 10.1038/s41467-021-26422-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC. Some fish can regenerate appendages by formation of a structure called the blastema. Here, the authors use single-cell RNA sequencing to characterize the cells required for blastema formation and fin regeneration and identified neural crest cells that orchestrate regeneration via the NRG1/ErbB axis
Collapse
|
13
|
Mizeracka K, Rogers JM, Rumley JD, Shaham S, Bulyk ML, Murray JI, Heiman MG. Lineage-specific control of convergent differentiation by a Forkhead repressor. Development 2021; 148:272306. [PMID: 34423346 DOI: 10.1242/dev.199493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
During convergent differentiation, multiple developmental lineages produce a highly similar or identical cell type. However, few molecular players that drive convergent differentiation are known. Here, we show that the C. elegans Forkhead transcription factor UNC-130 is required in only one of three convergent lineages that produce the same glial cell type. UNC-130 acts transiently as a repressor in progenitors and newly-born terminal cells to allow the proper specification of cells related by lineage rather than by cell type or function. Specification defects correlate with UNC-130:DNA binding, and UNC-130 can be functionally replaced by its human homolog, the neural crest lineage determinant FoxD3. We propose that, in contrast to terminal selectors that activate cell type-specific transcriptional programs in terminally differentiating cells, UNC-130 acts early and specifically in one convergent lineage to produce a cell type that also arises from molecularly distinct progenitors in other lineages.
Collapse
Affiliation(s)
- Karolina Mizeracka
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shai Shaham
- The Rockefeller University, New York, NY 10065, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
14
|
Zebrafish Cdx4 regulates neural crest cell specification and migratory behaviors in the posterior body. Dev Biol 2021; 480:25-38. [PMID: 34389276 DOI: 10.1016/j.ydbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
The neural crest (NC) is a transient multipotent cell population that migrates extensively to produce a remarkable array of vertebrate cell types. NC cell specification progresses in an anterior to posterior fashion, resulting in distinct, axial-restricted subpopulations. The anterior-most, cranial, population of NC is specified as gastrulation concludes and neurulation begins, while more posterior populations become specified as the body elongates. The mechanisms that govern development of the more posterior NC cells remain incompletely understood. Here, we report a key role for zebrafish Cdx4, a homeodomain transcription factor, in the development of posterior NC cells. We demonstrate that cdx4 is expressed in trunk NC cell progenitors, directly binds NC cell-specific enhancers in the NC GRN, and regulates expression of the key NC development gene foxd3 in the posterior body. Moreover, cdx4 mutants show disruptions to the segmental pattern of trunk NC cell migration due to loss of normal leader/follower cell dynamics. Finally, using cell transplantation to generate chimeric specimens, we show that Cdx4 does not function in the paraxial mesoderm-the environment adjacent to which crest migrates-to influence migratory behaviors. We conclude that cdx4 plays a critical, and likely tissue autonomous, role in the establishment of trunk NC migratory behaviors. Together, our results indicate that cdx4 functions as an early NC specifier gene in the posterior body of zebrafish embryos.
Collapse
|
15
|
Klann M, Mercader M, Carlu L, Hayashi K, Reimer JD, Laudet V. Variation on a theme: pigmentation variants and mutants of anemonefish. EvoDevo 2021; 12:8. [PMID: 34147131 PMCID: PMC8214269 DOI: 10.1186/s13227-021-00178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.
Collapse
Affiliation(s)
- Marleen Klann
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Lilian Carlu
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Kina Hayashi
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of the Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of the Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, I-Lan, Taiwan.
| |
Collapse
|
16
|
Fontenas L, Kucenas S. Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. eLife 2021; 10:64267. [PMID: 33554855 PMCID: PMC7886336 DOI: 10.7554/elife.64267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
During development, oligodendrocytes and Schwann cells myelinate central and peripheral nervous system axons, respectively, while motor exit point (MEP) glia are neural tube-derived, peripheral glia that myelinate axonal territory between these populations at MEP transition zones. From which specific neural tube precursors MEP glia are specified, and how they exit the neural tube to migrate onto peripheral motor axons, remain largely unknown. Here, using zebrafish, we found that MEP glia arise from lateral floor plate precursors and require foxd3 to delaminate and exit the spinal cord. Additionally, we show that similar to Schwann cells, MEP glial development depends on axonally derived neuregulin1. Finally, our data demonstrate that overexpressing axonal cues is sufficient to generate additional MEP glia in the spinal cord. Overall, these studies provide new insight into how a novel population of hybrid, peripheral myelinating glia are generated from neural tube precursors and migrate into the periphery.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
17
|
Petratou K, Spencer SA, Kelsh RN, Lister JA. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor. PLoS One 2021; 16:e0244794. [PMID: 33439865 PMCID: PMC7806166 DOI: 10.1371/journal.pone.0244794] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how fate specification of distinct cell-types from multipotent progenitors occurs is a fundamental question in embryology. Neural crest stem cells (NCSCs) generate extraordinarily diverse derivatives, including multiple neural, skeletogenic and pigment cell fates. Key transcription factors and extracellular signals specifying NCSC lineages remain to be identified, and we have only a little idea of how and when they function together to control fate. Zebrafish have three neural crest-derived pigment cell types, black melanocytes, light-reflecting iridophores and yellow xanthophores, which offer a powerful model for studying the molecular and cellular mechanisms of fate segregation. Mitfa has been identified as the master regulator of melanocyte fate. Here, we show that an Mitf-related transcription factor, Tfec, functions as master regulator of the iridophore fate. Surprisingly, our phenotypic analysis of tfec mutants demonstrates that Tfec also functions in the initial specification of all three pigment cell-types, although the melanocyte and xanthophore lineages recover later. We show that Mitfa represses tfec expression, revealing a likely mechanism contributing to the decision between melanocyte and iridophore fate. Our data are consistent with the long-standing proposal of a tripotent progenitor restricted to pigment cell fates. Moreover, we investigate activation, maintenance and function of tfec in multipotent NCSCs, demonstrating for the first time its role in the gene regulatory network forming and maintaining early neural crest cells. In summary, we build on our previous work to characterise the gene regulatory network governing iridophore development, establishing Tfec as the master regulator driving iridophore specification from multipotent progenitors, while shedding light on possible cellular mechanisms of progressive fate restriction.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Samantha A. Spencer
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
18
|
Chong-Morrison V, Sauka-Spengler T. The Cranial Neural Crest in a Multiomics Era. Front Physiol 2021; 12:634440. [PMID: 33732166 PMCID: PMC7956944 DOI: 10.3389/fphys.2021.634440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Neural crest ontogeny plays a prominent role in craniofacial development. In this Perspective article, we discuss recent advances to the understanding of mechanisms underlying the cranial neural crest gene regulatory network (cNC-GRN) stemming from omics-based studies. We briefly summarize how parallel considerations of transcriptome, interactome, and epigenome data significantly elaborated the roles of key players derived from pre-omics era studies. Furthermore, the growing cohort of cNC multiomics data revealed contribution of the non-coding genomic landscape. As technological improvements are constantly being developed, we reflect on key questions we are poised to address by taking advantage of the unique perspective a multiomics approach has to offer.
Collapse
|
19
|
Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. STEM CELLS (DAYTON, OHIO) 2020; 39:7-25. [PMID: 33017496 PMCID: PMC7821161 DOI: 10.1002/stem.3283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.
Collapse
Affiliation(s)
- Surangi N Perera
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Van Der Meulen KL, Vöcking O, Weaver ML, Meshram NN, Famulski JK. Spatiotemporal Characterization of Anterior Segment Mesenchyme Heterogeneity During Zebrafish Ocular Anterior Segment Development. Front Cell Dev Biol 2020; 8:379. [PMID: 32528955 PMCID: PMC7266958 DOI: 10.3389/fcell.2020.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Assembly of the ocular anterior segment (AS) is a critical event during development of the vertebrate visual system. Failure in this process leads to anterior segment dysgenesis (ASD), which is characterized by congenital blindness and predisposition to glaucoma. The anterior segment is largely formed via a neural crest-derived population, the Periocular Mesenchyme (POM). In this study, we aimed to characterize POM behaviors and transcriptional identities during early establishment of the zebrafish AS. Two-color fluorescent in situ hybridization suggested that early AS associated POM comprise of a heterogenous population. In vivo and time-course imaging analysis of POM distribution and migratory dynamics analyzed using transgenic zebrafish embryos (Tg[foxc1b:GFP], Tg[foxd3:GFP], Tg[pitx2:GFP], Tg[lmx1b.1:GFP], and Tg[sox10:GFP]) revealed unique AS distribution and migratory behavior among the reporter lines. Based on fixed timepoint and real-time analysis of POM cell behavior a comprehensive model for colonization of the zebrafish AS was assembled. Furthermore, we generated single cell transcriptomic profiles (scRNA) from our POM reporter lines and characterized unique subpopulation expression patterns. Based on scRNA clustering analysis we observed cluster overlap between neural crest associated (sox10/foxd3), POM (pitx2) and finally AS specified cells (lmx1b, and foxc1b). scRNA clustering also revealed several novel markers potentially associated with AS development and/or function including lum, fmoda, adcyap1b, tgfbi, and hmng2. Taken together, our data indicates that AS-associated POM, or Anterior Segment Mesenchyme (ASM), is not homogeneous but rather comprised of several subpopulations with differing colonization patterns, migration behavior, and transcriptomic profiles.
Collapse
Affiliation(s)
| | - Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Nishita N Meshram
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
Scerbo P, Monsoro-Burq AH. The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. SCIENCE ADVANCES 2020; 6:eaaz1469. [PMID: 32494672 PMCID: PMC7190326 DOI: 10.1126/sciadv.aaz1469] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/27/2020] [Indexed: 05/10/2023]
Abstract
During Cambrian, unipotent progenitors located at the neural (plate) border (NB) of an Olfactoria chordate embryo acquired the competence to form ectomesenchyme, pigment cells and neurons, initiating the rise of the multipotent neural crest cells (NC) specific to vertebrates. Surprisingly, the known vertebrate NB/NC transcriptional circuitry is a constrained feature also found in invertebrates. Therefore, evidence for vertebrate-specific innovations endowing vertebrate NC with multipotency is still missing. Here, we identified VENTX/NANOG and POU5/OCT4 as vertebrate-specific innovations. When VENTX was depleted in vivo and in directly-induced NC, the NC lost its early multipotent state and its skeletogenic potential, but kept sensory neuron and pigment identity, thus reminiscent of invertebrate NB precursors. In vivo, VENTX gain-of-function enabled NB specifiers to reprogram embryonic non-neural ectoderm towards early NC identity. We propose that skeletogenic NC evolved by acquiring VENTX/NANOG activity, promoting a novel multipotent progenitor regulatory state into the pre-existing sensory neuron/pigment NB program.
Collapse
Affiliation(s)
- Pierluigi Scerbo
- Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
| | - Anne H. Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
- Institut Universitaire de France, F-75005 Paris, France
- Corresponding author.
| |
Collapse
|
22
|
Zeng CW, Sheu JC, Tsai HJ. A new member of the forkhead box protein family in zebrafish: Domain composition, phylogenetic implication and embryonic expression pattern. Gene Expr Patterns 2020; 35:119093. [PMID: 31917260 DOI: 10.1016/j.gep.2019.119093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022]
Abstract
In this study, we reported a novel member of Forkhead box (Fox) proteins found in model zebrafish (Danio rerio). This new gene we cloned was primarily assigned as zgc:162612, which locates on Chromosome 3 at 26,108,033-26,109,322 in the zebrafish genome, but encodes an uncharacterized protein, LOC100037333. After we determined the nucleotide and deduced amino acid sequences of zgc:162612, we found that zgc:162612 is an intronless gene and contains 1290 base pairs encoding 308 amino acid residues. Zgc:162612 protein is composed of a highly conserved DNA-binding domain similar to that of the Fox protein family, but with variable terminal domains. Based on phylogenetic analysis of all known members within the zebrafish Fox protein family, zgc:162612 was clustered into the zebrafish FoxD isoform subfamily. Thus, we confirmed zgc:162612 as the zebrafish FoxD7 gene. The deduced amino acid sequence of zebrafish FoxD7 shared 49, 49, 74, 63 and 74% identities with that of zebrafish FoxD1, FoxD2, FoxD3, FoxD4 and FoxD6, respectively. Compared with all known FoxD proteins in invertebrate and vertebrate species, the zebrafish FoxD7 is categorized in the same monophyletic group along with FoxD of cephalochordate and sea urchin. Whole-mount in situ hybridization demonstrated that zebrafish FoxD7 transcripts represented maternal inheritance and were ubiquitously expressed throughout the whole embryo at 12hpf. Moreover, while FoxD7 transcripts were expressed in the brain, spinal cord, fins and eyes at early developmental stages, they were mainly presented in the telencephalon ventricular zone at late developmental stages, suggesting that FoxD7 may play roles in neurogenesis and organogenesis during development of zebrafish. Taken together, we have defined a previously uncharacterized gene in the zebrafish genome, zgc:162612, and revealed that Zgc:162612 encodes a novel putative transcription factor, thus becoming a new member of the zebrafish FoxD isoform subfamily.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan; Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
23
|
Gramann AK, Venkatesan AM, Guerin M, Ceol CJ. Regulation of zebrafish melanocyte development by ligand-dependent BMP signaling. eLife 2019; 8:50047. [PMID: 31868592 PMCID: PMC6968919 DOI: 10.7554/elife.50047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Preventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.
Collapse
Affiliation(s)
- Alec K Gramann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Arvind M Venkatesan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Melissa Guerin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
24
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Hendrick LA, Carter GA, Hilbrands EH, Heubel BP, Schilling TF, Le Pabic P. Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi. EvoDevo 2019; 10:18. [PMID: 31417669 PMCID: PMC6691528 DOI: 10.1186/s13227-019-0132-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/27/2019] [Indexed: 01/19/2023] Open
Abstract
Background Melanic patterns such as horizontal stripes, vertical bars and spots are common among teleost fishes and often serve roles in camouflage or mimicry. Extensive research in the zebrafish model has shown that the development of horizontal stripes depends on complex cellular interactions between melanophores, xanthophores and iridophores. Little is known about the development of horizontal stripes in other teleosts, and even less is known about bar or spot development. Here, we compare chromatophore composition and development of stripes, bars and spots in two cichlid species of sand-dwellers from Lake Malawi—Copadichromis azureus and Dimidiochromis compressiceps. Results (1) In D. compressiceps, stripes are made of dense melanophores underlaid by xanthophores and overlaid by iridophores. Melanophores and xanthophores are either loose or absent in interstripes, and iridophores are dense. In C. azureus, spots and bars are composed of a chromatophore arrangement similar to that of stripes but are separated by interbars where density of melanophores and xanthophores is only slightly lower than in stripes and iridophore density appears slightly greater. (2) Stripe, bar and spot chromatophores appear in the skin at metamorphosis. Stripe melanophores directly differentiate along horizontal myosepta into the adult pattern. In contrast, bar number and position are dynamic throughout development. As body length increases, new bars appear between old ones or by splitting of old ones through new melanophore appearance, not migration. Xanthophore and iridophore distributions follow melanophore patterns. (3) Metamorphic pigmentation arises in cichlids in a fashion similar to that described in zebrafish: melanophore progenitors derived from the medial route of neural crest migration migrate from the vicinity of the neural tube to the skin during metamorphosis. Conclusion The three pigment cell types forming stripes, bars and spots arise in the skin at metamorphosis. Stripes develop by differentiation of melanophores along horizontal myosepta, while bars do not develop along patent anatomical boundaries and increase in number in relation with body size. We propose that metamorphic melanophore differentiation and migratory arrest upon arrival to the skin lead to stripe formation, while bar formation must be supported by extensive migration of undifferentiated melanophores in the skin.
Collapse
Affiliation(s)
- Laura A Hendrick
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Grace A Carter
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Erin H Hilbrands
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Brian P Heubel
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Thomas F Schilling
- 2Department of Developmental and Cell Biology, University of California, Irvine, 4109 Natural Sciences II, Irvine, CA 92697-2300 USA
| | - Pierre Le Pabic
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| |
Collapse
|
26
|
Lukoseviciute M, Gavriouchkina D, Williams RM, Hochgreb-Hagele T, Senanayake U, Chong-Morrison V, Thongjuea S, Repapi E, Mead A, Sauka-Spengler T. From Pioneer to Repressor: Bimodal foxd3 Activity Dynamically Remodels Neural Crest Regulatory Landscape In Vivo. Dev Cell 2019; 47:608-628.e6. [PMID: 30513303 PMCID: PMC6286384 DOI: 10.1016/j.devcel.2018.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
The neural crest (NC) is a transient embryonic stem cell-like population characterized by its multipotency and broad developmental potential. Here, we perform NC-specific transcriptional and epigenomic profiling of foxd3-mutant cells in vivo to define the gene regulatory circuits controlling NC specification. Together with global binding analysis obtained by foxd3 biotin-ChIP and single cell profiles of foxd3-expressing premigratory NC, our analysis shows that, during early steps of NC formation, foxd3 acts globally as a pioneer factor to prime the onset of genes regulating NC specification and migration by re-arranging the chromatin landscape, opening cis-regulatory elements and reshuffling nucleosomes. Strikingly, foxd3 then gradually switches from an activator to its well-described role as a transcriptional repressor and potentially uses differential partners for each role. Taken together, these results demonstrate that foxd3 acts bimodally in the neural crest as a switch from “permissive” to “repressive” nucleosome and chromatin organization to maintain multipotency and define cell fates. FoxD3 primes neural crest specification by modulating distal enhancers FoxD3 represses a number of neural crest migration and differentiation genes In neural crest, FoxD3 acts to switch chromatin from “permissive” to “repressive” Distinctive gene regulatory mechanisms underlie the bimodal action of FoxD3
Collapse
Affiliation(s)
- Martyna Lukoseviciute
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatiana Hochgreb-Hagele
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vanessa Chong-Morrison
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Supat Thongjuea
- Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Mead
- Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
27
|
Qiu W, Chuong CM, Lei M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp Dermatol 2019; 28:395-405. [PMID: 30537004 DOI: 10.1111/exd.13856] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Prasad MS, Charney RM, García-Castro MI. Specification and formation of the neural crest: Perspectives on lineage segregation. Genesis 2019; 57:e23276. [PMID: 30576078 PMCID: PMC6570420 DOI: 10.1002/dvg.23276] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
29
|
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 2018; 14:e1007402. [PMID: 30286071 PMCID: PMC6191144 DOI: 10.1371/journal.pgen.1007402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Tatiana Subkhankulova
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| |
Collapse
|
30
|
Cooper CD, Erickson SD, Yin S, Moravec T, Peh B, Curran K. Protein Kinase A Signaling Inhibits Iridophore Differentiation in Zebrafish. J Dev Biol 2018; 6:jdb6040023. [PMID: 30261583 PMCID: PMC6315511 DOI: 10.3390/jdb6040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
In zebrafish (Danio rerio), iridophores are specified from neural crest cells and represent a tractable system for examining mechanisms of cell fate and differentiation. Using this system, we have investigated the role of cAMP protein kinase A (PKA) signaling in pigment cell differentiation. Activation of PKA with the adenylyl cyclase activator forskolin reduces the number of differentiated iridophores in wildtype larvae, with insignificant changes to melanophore number. Inhibition of PKA with H89 significantly increases iridophore number, supporting a specific role for PKA during iridophore development. To determine the effects of altering PKA activity on iridophore and melanophore gene expression, we examined expression of iridophore marker pnp4a, melanophore marker mitfa, and the mitfa repressor foxd3. Consistent with our cell counts, forskolin significantly decreased pnp4a expression as detected by in situ hybridization and quantification of pnp4a+ cells. Forskolin had the opposite effect on mitfa and foxd3 gene activity, increasing the area of expression. As mitfa/nacre mutants have extra iridophores as compared to wildtype larvae, we examined the function of mitfa during PKA-sensitive iridophore development. Forskolin treatment of mitfa/nacre mutants did significantly reduce the number of iridophores but to a lesser extent than that observed in treated wildtype larvae. Taken together, our data suggests that PKA inhibits iridophore development in a subset of iridophore precursors, potentially via a foxd3-independent pathway.
Collapse
Affiliation(s)
- Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Steve D Erickson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Scott Yin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Trevor Moravec
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Brian Peh
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA 98686, USA.
| | - Kevin Curran
- Department of Biology, University of San Diego, San Diego, CA 92110, USA.
| |
Collapse
|
31
|
Aguillon R, Batut J, Subramanian A, Madelaine R, Dufourcq P, Schilling TF, Blader P. Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm. eLife 2018; 7. [PMID: 29292696 PMCID: PMC5749950 DOI: 10.7554/elife.32041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
The zebrafish olfactory epithelium comprises a variety of neuronal populations, which are thought to have distinct embryonic origins. For instance, while ciliated sensory neurons arise from preplacodal ectoderm (PPE), previous lineage tracing studies suggest that both Gonadotropin releasing hormone 3 (Gnrh3) and microvillous sensory neurons derive from cranial neural crest (CNC). We find that the expression of Islet1/2 is restricted to Gnrh3 neurons associated with the olfactory epithelium. Unexpectedly, however, we find no change in Islet1/2+ cell numbers in sox10 mutant embryos, calling into question their CNC origin. Lineage reconstruction based on backtracking in time-lapse confocal datasets, and confirmed by photoconversion experiments, reveals that Gnrh3 neurons derive from the anterior PPE. Similarly, all of the microvillous sensory neurons we have traced arise from preplacodal progenitors. Our results suggest that rather than originating from separate ectodermal populations, cell-type heterogeneity is generated from overlapping pools of progenitors within the preplacodal ectoderm.
Collapse
Affiliation(s)
- Raphaël Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Julie Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, United States
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Pascale Dufourcq
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, United States
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| |
Collapse
|
32
|
Heffer A, Marquart GD, Aquilina-Beck A, Saleem N, Burgess HA, Dawid IB. Generation and characterization of Kctd15 mutations in zebrafish. PLoS One 2017; 12:e0189162. [PMID: 29216270 PMCID: PMC5720732 DOI: 10.1371/journal.pone.0189162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa), a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.
Collapse
Affiliation(s)
- Alison Heffer
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Gregory D. Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Allisan Aquilina-Beck
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Nabil Saleem
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Igor B. Dawid
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
33
|
Boer EF, Jette CA, Stewart RA. Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts. PLoS One 2016; 11:e0167278. [PMID: 28005909 PMCID: PMC5179070 DOI: 10.1371/journal.pone.0167278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC diseases.
Collapse
Affiliation(s)
- Elena F. Boer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
34
|
Square T, Jandzik D, Cattell M, Hansen A, Medeiros DM. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling. Sci Rep 2016; 6:34282. [PMID: 27677704 PMCID: PMC5039696 DOI: 10.1038/srep34282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84215, Slovakia
| | - Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Andrew Hansen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
35
|
Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. Biomaterials 2016; 102:148-61. [DOI: 10.1016/j.biomaterials.2016.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022]
|
36
|
Asad Z, Pandey A, Babu A, Sun Y, Shevade K, Kapoor S, Ullah I, Ranjan S, Scaria V, Bajpai R, Sachidanandan C. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum Mol Genet 2016; 25:3539-3554. [PMID: 27418670 PMCID: PMC5179949 DOI: 10.1093/hmg/ddw198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
CHD7 mutations are implicated in a majority of cases of the congenital disorder, CHARGE syndrome. CHARGE, an autosomal dominant syndrome, is known to affect multiple tissues including eye, heart, ear, craniofacial nerves and skeleton and genital organs. Using a morpholino-antisense-oligonucleotide-based zebrafish model for CHARGE syndrome, we uncover a complex spectrum of abnormalities in the neural crest and the crest-derived cell types. We report for the first time, defects in myelinating Schwann cells, enteric neurons and pigment cells in a CHARGE model. We also observe defects in the specification of peripheral neurons and the craniofacial skeleton as previously reported. Chd7 morphants have impaired migration of neural crest cells and deregulation of sox10 expression from the early stages. Knocking down Sox10 in the zebrafish CHARGE model rescued the defects in Schwann cells and craniofacial cartilage. Our zebrafish CHARGE model thus reveals important regulatory roles for Chd7 at multiple points of neural crest development viz., migration, fate choice and differentiation and we suggest that sox10 deregulation is an important driver of the neural crest-derived aspects of Chd7 dependent CHARGE syndrome.
Collapse
Affiliation(s)
- Zainab Asad
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Aditi Pandey
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Yuhan Sun
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaivalya Shevade
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ikram Ullah
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| |
Collapse
|
37
|
Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish. PLoS One 2016; 11:e0148726. [PMID: 26863206 PMCID: PMC4749159 DOI: 10.1371/journal.pone.0148726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia) zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes) were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes) occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure), with a small number of genes showing changes limited to only the 2 hr (55 genes) or 5 hr (71 genes) time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in sensory circuits.
Collapse
|
38
|
Barriga EH, Trainor PA, Bronner M, Mayor R. Animal models for studying neural crest development: is the mouse different? Development 2015; 142:1555-60. [PMID: 25922521 DOI: 10.1242/dev.121590] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA Department of Anatomy and Cell Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Marianne Bronner
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
39
|
Fukuzawa T. Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis. Cell Tissue Res 2015; 361:733-44. [PMID: 25715760 PMCID: PMC4550656 DOI: 10.1007/s00441-015-2133-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/15/2015] [Indexed: 12/01/2022]
Abstract
“White pigment cells” are derived from melanophore precursors and contain both melanophore-specific and iridophore-specific pigment organelles. Whereas melanophores differentiate in the wild type regenerating tail, white pigment cells appear in the regenerating tail in the periodic albino mutant (ap/ap) of Xenopus laevis. The localization and density of white pigment cells in the mutant regenerating tail are similar to those of melanophores in the wild type regenerating tail. Here, white pigment cells in the mutant regenerating tail have been compared with melanophores in the wild type regenerating tail in the presence of phenylthiourea (PTU), which inhibits melanosome maturation in melanophores but does not affect reflecting platelet formation in white pigment cells. Ultrastructural analysis shows that reflecting platelet formation in white pigment cells is different from that in iridophores. Reflecting platelets in iridophores are formed from spherical vesicles with electron-dense material, whereas they are formed from stage II melanosomes characteristic of melanophore precursors in white pigment cells. Ultrastructural features of pigment organelles, except reflecting platelets, are similar between mutant melanophores and white pigment cells. In an attempt to identify specific genes in white pigment cells, a subtracted cDNA library enriched for mutant cDNAs has been prepared. Subtracted cDNA fragments have been cloned and selected by whole mount in situ hybridization. Among cDNA fragments examined so far, the ferritin H subunit gene is specifically expressed in white pigment cells, but not in melanophores. Pigment organellogenesis and specific gene expression in white pigment cells are also discussed.
Collapse
Affiliation(s)
- Toshihiko Fukuzawa
- Department of Biology, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama, 223-8521, Japan,
| |
Collapse
|
40
|
Is pigment patterning in fish skin determined by the Turing mechanism? Trends Genet 2015; 31:88-96. [DOI: 10.1016/j.tig.2014.11.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022]
|
41
|
Kotnik Halavaty K, Bader M, Bashammakh S, Seyfried S. Serotonin is required for pharyngeal arch morphogenesis in zebrafish. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.awpdlz.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serotonin (5-HT) is not only a neurotransmitter but also a mediator of developmental processes in vertebrates. In this study, we analyzed the importance of 5-HT during zebrafish development. The expression patterns of three zebrafish tryptophan hydroxylase isoforms (Tph1A, Tph1B, Tph2), the rate-limiting enzymes in 5-HT synthesis, were analyzed and compared to the appearance and distribution of 5-HT. 5-HT was found in the raphe nuclei correlating with tph2 expression and in the pineal gland correlating with tph1a and tph2 expression. tph2 deficient fish generated with antisense morpholino oligonucleotides exhibited morphogenesis defects during pharyngeal arch development. The correct specification of neural crest cells was not affected in tph2 morphants as shown by the expression of early markers, but the survival and differentiation of pharyngeal arch progenitor cells were impaired. An organizing role of 5-HT in pharyngeal arch morphogenesis was suggested by a highly regular pattern of 5-HT positive cells in this tissue. Moreover, the 5-HT2B receptor was expressed in the pharyngeal arches and its pharmacological inhibition also induced defects in pharyngeal arch morphogenesis. These results support an important role of Tph2-derived serotonin as a morphogenetic factor in the development of neural crest derived tissues.
Collapse
|
42
|
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 2014; 5:17. [PMID: 24987514 PMCID: PMC4077281 DOI: 10.1186/2041-9139-5-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, 142 Life Sciences Addition #3200, Berkeley, CA 94720, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Christopher J Lowe
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
43
|
Fairchild CL, Conway JP, Schiffmacher AT, Taneyhill LA, Gammill LS. FoxD3 regulates cranial neural crest EMT via downregulation of tetraspanin18 independent of its functions during neural crest formation. Mech Dev 2014; 132:1-12. [PMID: 24582980 PMCID: PMC4001935 DOI: 10.1016/j.mod.2014.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 01/09/2023]
Abstract
The scaffolding protein tetraspanin18 (Tspan18) maintains epithelial cadherin-6B (Cad6B) to antagonize chick cranial neural crest epithelial-to-mesenchymal transition (EMT). For migration to take place, Tspan18 must be downregulated. Here, we characterize the role of the winged-helix transcription factor FoxD3 in the control of Tspan18 expression. Although we previously found that Tspan18 mRNA persists several hours past the stage it would normally be downregulated in FoxD3-deficient neural folds, we now show that Tspan18 expression eventually declines. This indicates that while FoxD3 is crucial for initial downregulation of Tspan18, other factors subsequently impact Tspan18 expression. Remarkably, the classical EMT transcription factor Snail2 is not one of these factors. As in other vertebrates, FoxD3 is required for chick cranial neural crest specification and migration, however, FoxD3 has surprisingly little impact on chick cranial neural crest cell survival. Strikingly, Tspan18 knockdown rescues FoxD3-dependent neural crest migration defects, although neural crest specification is still deficient. This indicates that FoxD3 promotes cranial neural crest EMT by eliciting Tspan18 downregulation separable from its Tspan18-independent activity during neural crest specification and survival.
Collapse
Affiliation(s)
- Corinne L Fairchild
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P Conway
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, 1405 Animal Sciences Center, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, 1405 Animal Sciences Center, University of Maryland, College Park, MD 20742, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Vogg MC, Owlarn S, Pérez Rico YA, Xie J, Suzuki Y, Gentile L, Wu W, Bartscherer K. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev Biol 2014; 390:136-48. [PMID: 24704339 DOI: 10.1016/j.ydbio.2014.03.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022]
Abstract
Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue.
Collapse
Affiliation(s)
- Matthias C Vogg
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Suthira Owlarn
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; CiM-IMPRS Graduate School, Schlossplatz 5, 48149 Münster, Germany
| | - Yuvia A Pérez Rico
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yoko Suzuki
- CiM-IMPRS Graduate School, Schlossplatz 5, 48149 Münster, Germany; Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Luca Gentile
- Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells & Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany; Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| |
Collapse
|
45
|
Juarez M, Reyes M, Coleman T, Rotenstein L, Sao S, Martinez D, Jones M, Mackelprang R, De Bellard ME. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 2014; 521:3303-20. [PMID: 23640803 DOI: 10.1002/cne.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.
Collapse
Affiliation(s)
- Marilyn Juarez
- Biology Department, California State University Northridge, Northridge, California 91330, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schiffmacher AT, Padmanabhan R, Jhingory S, Taneyhill LA. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest. Mol Biol Cell 2013; 25:41-54. [PMID: 24196837 PMCID: PMC3873892 DOI: 10.1091/mbc.e13-08-0459] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | | | | | | |
Collapse
|
47
|
Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 2013; 140:3445-55. [PMID: 23900542 DOI: 10.1242/dev.096164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
48
|
Lander R, Nasr T, Ochoa SD, Nordin K, Prasad MS, Labonne C. Interactions between Twist and other core epithelial-mesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nat Commun 2013; 4:1542. [PMID: 23443570 DOI: 10.1038/ncomms2543] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/24/2013] [Indexed: 01/05/2023] Open
Abstract
A subset of transcription factors classified as neural crest 'specifiers' are also core epithelial-mesenchymal transition regulatory factors, both in the neural crest and in tumour progression. The bHLH factor Twist is among the least well studied of these factors. Here we demonstrate that Twist is required for cranial neural crest formation and fate determination in Xenopus. We further show that Twist function in the neural crest is dependent upon its carboxy-terminal WR domain. The WR domain mediates physical interactions between Twist and other core epithelial-mesenchymal transition factors, including Snail1 and Snail2, which are essential for proper function. Interaction with Snail1/2, and Twist function more generally, is regulated by GSK-3-β-mediated phosphorylation of conserved sites in the WR domain. Together, these findings elucidate a mechanism for coordinated control of a group of structurally diverse factors that function as a regulatory unit in both developmental and pathological epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
- Rachel Lander
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
49
|
Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G. The zebrafish as a model for nociception studies. J Cell Physiol 2013; 228:1956-66. [DOI: 10.1002/jcp.24379] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Bruce Bryant
- Monell Chemical Senses Center; Philadelphia, Pennsylvania
| | - William Raffaeli
- Institute for Research on Pain; ISAL-Foundation; Torre Pedrera (RN); Italy
| | | | | |
Collapse
|
50
|
Krauss J, Astrinidis P, Astrinides P, Frohnhöfer HG, Walderich B, Nüsslein-Volhard C. transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol Open 2013; 2:703-10. [PMID: 23862018 PMCID: PMC3711038 DOI: 10.1242/bio.20135132] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 11/20/2022] Open
Abstract
In the skin of adult zebrafish, three pigment cell types arrange into alternating horizontal stripes, melanophores in dark stripes, xanthophores in light interstripes and iridophores in both stripes and interstripes. The analysis of mutants and regeneration studies revealed that this pattern depends on interactions between melanophores and xanthophores; however, the role of iridophores in this process is less understood. We describe the adult viable and fertile mutant transparent (tra), which shows a loss or strong reduction of iridophores throughout larval and adult stages. In addition, in adults only the number of melanophores is strongly reduced, and stripes break up into spots. Stripes in the fins are normal. By cell transplantations we show that tra acts cell-autonomously in iridophores, whereas the reduction in melanophores in the body occurs secondarily as a consequence of iridophore loss. We conclude that differentiated iridophores are required for the accumulation and maintenance of melanophores during pigment pattern formation. The tra mutant phenotype is caused by a small deletion in mpv17, an ubiquituously expressed gene whose protein product, like its mammalian and yeast homologs, localizes to mitochondria. Iridophore death might be the result of mitochondrial dysfunction, consistent with the mitochondrial DNA depletion syndrome observed in mammalian mpv17 mutants. The specificity of the tra phenotype is most likely due to redundancy after gene multiplication, making this mutant a valuable model to understand the molecular function of Mpv17 in mitochondria.
Collapse
Affiliation(s)
- Jana Krauss
- Max-Planck-Institut für Entwicklungsbiologie , Spemannstrasse 35, 72076 Tübingen , Germany
| | | | | | | | | | | |
Collapse
|