1
|
Mezzacappa C, Komiya Y, Habas R. Reversion induced LIM domain protein (RIL) is a Daam1-interacting protein and regulator of the actin cytoskeleton during non-canonical Wnt signaling. Dev Biol 2024; 515:46-58. [PMID: 38968989 PMCID: PMC11321505 DOI: 10.1016/j.ydbio.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
The Daam1 protein regulates Wnt-induced cytoskeletal changes during vertebrate gastrulation though its full mode of action and binding partners remain unresolved. Here we identify Reversion Induced LIM domain protein (RIL) as a new interacting protein of Daam1. Interaction studies uncover binding of RIL to the C-terminal actin-nucleating portion of Daam1 in a Wnt-responsive manner. Immunofluorescence studies showed subcellular localization of RIL to actin fibers and co-localization with Daam1 at the plasma membrane. RIL gain- and loss-of-function approaches in Xenopus produced severe gastrulation defects in injected embryos. Additionally, a simultaneous loss of Daam1 and RIL synergized to produce severe gastrulation defects indicating RIL and Daam1 may function in the same signaling pathway. RIL further synergizes with another novel Daam1-interacting protein, Formin Binding Protein 1 (FNBP1), to regulate gastrulation. Our studies altogether show RIL mediates Daam1-regulated non-canonical Wnt signaling that is required for vertebrate gastrulation.
Collapse
Affiliation(s)
| | - Yuko Komiya
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Brown W, Wesalo J, Samanta S, Luo J, Caldwell SE, Tsang M, Deiters A. Genetically Encoded Aminocoumarin Lysine for Optical Control of Protein-Nucleotide Interactions in Zebrafish Embryos. ACS Chem Biol 2023; 18:1305-1314. [PMID: 37272594 PMCID: PMC10278064 DOI: 10.1021/acschembio.3c00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
The strategic placement of unnatural amino acids into the active site of kinases and phosphatases has allowed for the generation of photocaged signaling proteins that offer spatiotemporal control over activation of these pathways through precise light exposure. However, deploying this technology to study cell signaling in the context of embryo development has been limited. The promise of optical control is especially useful in the early stages of an embryo where development is driven by tightly orchestrated signaling events. Here, we demonstrate light-induced activation of Protein Kinase A and a RASopathy mutant of NRAS in the zebrafish embryo using a new light-activated amino acid. We applied this approach to gain insight into the roles of these proteins in gastrulation and heart development and forge a path for further investigation of RASopathy mutant proteins in animals.
Collapse
Affiliation(s)
- Wes Brown
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua Wesalo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Subhas Samanta
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ji Luo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Steven E. Caldwell
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department
of Developmental Biology, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Cilia and their role in neural tube development and defects. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
4
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
5
|
Daud M, Rana MA, Husnain T, Ijaz B. Modulation of Wnt signaling pathway by hepatitis B virus. Arch Virol 2017; 162:2937-2947. [PMID: 28685286 DOI: 10.1007/s00705-017-3462-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) has a global distribution and is one of the leading causes of hepatocellular carcinoma. The precise mechanism of pathogenicity of HBV-associated hepatocellular carcinoma (HCC) is not yet fully understood. Viral-related proteins are known to take control of several cellular pathways like Wnt/β-catenin, TGF-β, Raf/MAPK and ROS for the virus's own replication. This affects cellular persistence, multiplication, migration, alteration and genomic instability. The Wnt/FZD/β-catenin signaling pathway plays a significant role in the pathology and physiology of the liver and has been identified as a main factor in HCC development. The role of β-catenin is linked mainly to the canonical pathway of the signaling system. Progression of liver diseases is known to be accompanied by disturbances in β-catenin expression (mainly overexpression), with its cytoplasmic or nuclear translocation. In recent years, studies have documented that the HBV X protein and hepatitis B surface antigen (HBsAg) can act as pathogenic factors that are involved in the modulation and induction of canonical Wnt signaling pathway. In the present review we explore the interaction of HBV genome products with components of the Wnt/β-catenin signaling pathway that results in the enhancement of the pathway and leads to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Muhammad Daud
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | | | - Tayyab Husnain
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Bushra Ijaz
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road, Thokar Niaz Baig, Lahore, 53700, Pakistan.
| |
Collapse
|
6
|
Okerlund ND, Stanley RE, Cheyette BNR. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain. MOLECULAR NEUROPSYCHIATRY 2016; 2:107-14. [PMID: 27606324 DOI: 10.1159/000446778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.
Collapse
Affiliation(s)
- Nathan D Okerlund
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, Calif., USA; Department of Psychiatry, Stanford University, Palo Alto, Calif., USA
| | - Robert E Stanley
- Department of Psychiatry, Stanford University, Palo Alto, Calif., USA; Tetrad Graduate Program, Stanford University, Palo Alto, Calif., USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Stanford University, Palo Alto, Calif., USA; Tetrad Graduate Program, Stanford University, Palo Alto, Calif., USA; UCSF Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, Calif., USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco (UCSF), San Francisco, Calif., USA
| |
Collapse
|
7
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
8
|
Cechmanek PB, Hehr CL, McFarlane S. Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve. Mol Cell Neurosci 2015; 69:30-40. [PMID: 26455469 DOI: 10.1016/j.mcn.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
To grow out to contact target neurons an axon uses its distal tip, the growth cone, as a sensor of molecular cues that help the axon make appropriate guidance decisions at a series of choice points along the journey. In the developing visual system, the axons of the output cells of the retina, the retinal ganglion cells (RGCs), cross the brain midline at the optic chiasm. Shortly after, they grow past the brain entry point of the optic nerve arising from the contralateral eye, and extend dorso-caudally through the diencephalon towards their optic tectum target. Using the developing visual system of the experimentally amenable model Xenopus laevis, we find that RGC axons are normally prevented from entering the contralateral optic nerve. This mechanism requires the activity of a Rho-associated kinase, Rock, known to function downstream of a number of receptors that recognize cues that guide axons. Pharmacological inhibition of Rock in an in vivo brain preparation causes mis-entry of many RGC axons into the contralateral optic nerve, and this defect is partially phenocopied by selective disruption of Rock signaling in RGC axons. These data implicate Rock downstream of a molecular mechanism that is critical for RGC axons to be able to ignore a domain, the optic nerve, which they previously found attractive.
Collapse
Affiliation(s)
- Paula B Cechmanek
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada.
| |
Collapse
|
9
|
Shi Y, Ding Y, Lei YP, Yang XY, Xie GM, Wen J, Cai CQ, Li H, Chen Y, Zhang T, Wu BL, Jin L, Chen YG, Wang HY. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat 2012; 33:1450-5. [PMID: 22610794 DOI: 10.1002/humu.22121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/30/2012] [Indexed: 12/30/2022]
Abstract
Neural tube defects (NTDs) constitute the second most frequent cause of human congenital abnormalities. Complex multigenetic causes have been suggested to contribute to NTDs. The planar cell polarity (PCP) pathway plays a critical role in neural tube closure in model organisms and in human. Knockout of Dact1 (Dapper, Frodo) leads to deregulated PCP signaling with defective neural tube in mice. Here, we report that five missense heterozygote mutations of the DACT1 gene are specifically identified in 167 stillborn or miscarried Han Chinese fetuses with neural tube defects. Our biochemical analyses revealed that among the five mutations, N356K and R45W show loss-of-function or reduced activities in inducing Dishevelled2 (DVL2) degradation and inhibiting jun-N-terminal kinase (JNK) phosphorylation, implicating mutated DACT1 as a risk factor for human NTDs. Our findings, together with early reports, suggest that rare mutations of the PCP-related genes may constitute a great contribution to human NTDs.
Collapse
Affiliation(s)
- Yan Shi
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
MicroRNA-206 regulates cell movements during zebrafish gastrulation by targeting prickle1a and regulating c-Jun N-terminal kinase 2 phosphorylation. Mol Cell Biol 2012; 32:2934-42. [PMID: 22615492 DOI: 10.1128/mcb.00134-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During vertebrate gastrulation, both concurrent inductive events and cell movements are required for axis formation. Convergence and extension (CE) movements contribute to narrowing and lengthening the forming embryonic axis. MicroRNAs (miRNAs) play a critical role in regulating fundamental cellular functions and developmental processes, but their functions in CE movements are not well known. Zebrafish mir206 is maternally expressed and present throughout blastulation and gastrulation periods. Either gain or loss of function of mir206 leads to severe defects of convergent extension movements both cell autonomously and non-cell autonomously. Mosaic lineage tracing studies reveal that the formation of membrane protrusions and actin filaments is disturbed in mir206-overexpressing embryos or mir206 morphants. Mechanistically, mir206 targets prickle1a (pk1a) mRNA and as a result regulates c-Jun N-terminal protein kinase 2 (JNK2) phosphorylation. pk1a overexpression or knockdown can rescue convergent extension defects induced by mir206 overexpression or knockdown, respectively. Therefore, mir206 is an essential, novel regulator for normal convergent and extension movements by regulating mitogen-activated protein kinase (MAPK) JNK signaling.
Collapse
|
11
|
Wnt/planar cell polarity signaling in the regulation of convergent extension movements during Xenopus gastrulation. Methods Mol Biol 2012; 839:79-89. [PMID: 22218894 DOI: 10.1007/978-1-61779-510-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Wnt/planar cell polarity (PCP) signaling pathway plays a critical role in wing, eye, neural tube defects, and sensory bristle development of Drosophila and vertebrate development. Recently, the Wnt/PCP pathway has been known to regulate convergent extension (CE) movements that are essential for establishing the three germ layers and body axis during early vertebrate development. Here, we describe detailed practical procedures required for the particular studies in Xenopus CE movements.
Collapse
|
12
|
Kivimäe S, Yang XY, Cheyette BNR. All Dact (Dapper/Frodo) scaffold proteins dimerize and exhibit conserved interactions with Vangl, Dvl, and serine/threonine kinases. BMC BIOCHEMISTRY 2011; 12:33. [PMID: 21718540 PMCID: PMC3141656 DOI: 10.1186/1471-2091-12-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/30/2011] [Indexed: 02/06/2023]
Abstract
Background The Dact family of scaffold proteins was discovered by virtue of binding to Dvl proteins central to Wnt and Planar Cell Polarity (PCP) signaling. Subsequently Dact proteins have been linked to a growing list of potential partners implicated in β-catenin-dependent and β-catenin-independent forms of Wnt and other signaling. To clarify conserved and non-conserved roles for this protein family, we systematically compared molecular interactions of all three murine Dact paralogs by co-immunoprecipitation of proteins recombinantly expressed in cultured human embryonic kidney cells. Results Every Dact paralog readily formed complexes with the Vangl, Dvl, and CK1δ/ε proteins of species ranging from fruit flies to humans, as well as with PKA and PKC. Dact proteins also formed complexes with themselves and with each other; their conserved N-terminal leucine-zipper domains, which have no known binding partners, were necessary and sufficient for this interaction, suggesting that it reflects leucine-zipper-mediated homo- and hetero-dimerization. We also found weaker, though conserved, interactions of all three Dact paralogs with the catenin superfamily member p120ctn. Complex formation with other previously proposed partners including most other catenins, GSK3, LEF/TCF, HDAC1, and TGFβ receptors was paralog-specific, comparatively weak, and/or more sensitive to empirical conditions. Conclusions Combined with published functional evidence from targeted knock-out mice, these data support a conserved role for Dact proteins in kinase-regulated biochemistry involving Vangl and Dvl. This strongly suggests that a principal role for all Dact family members is in the PCP pathway or a molecularly related signaling cascade in vertebrates.
Collapse
Affiliation(s)
- Saul Kivimäe
- The Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco, 1550 4th St, San Francisco CA 94158-2324, USA.
| | | | | |
Collapse
|
13
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010; 67:2551-62. [PMID: 20229235 PMCID: PMC11115861 DOI: 10.1007/s00018-010-0329-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany.
| | | |
Collapse
|
15
|
Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zhao Q, Rank G, Auden A, Srivastava S, Papenfuss TA, Murdoch JN, Humbert PO, Boulos N, Weber T, Zuo J, Cunningham JM, Jane SM. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 2010; 19:138-47. [PMID: 20643356 PMCID: PMC2965174 DOI: 10.1016/j.devcel.2010.06.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/12/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair.
Collapse
Affiliation(s)
- Jacinta Caddy
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Tomasz Wilanowski
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Charbel Darido
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Sebastian Dworkin
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Stephen B. Ting
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Quan Zhao
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Gerhard Rank
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Alana Auden
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Seema Srivastava
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
| | - Tony A. Papenfuss
- Division of Bioinformatics, The Walter and Eliza Hall Institute, Parkville, VIC 3050, Australia
| | | | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Nidal Boulos
- Department of Pediatrics, University of Chicago, Chicago IL, 60637 USA
| | - Thomas Weber
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis TN, 38105 USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis TN, 38105 USA
| | | | - Stephen M. Jane
- Rotary Bone Marrow Research Laboratories, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, VIC 3050, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
16
|
Abstract
The differentiation of embryonic stem cells along the endothelial cell lineage requires a tightly coordinated sequence of events that are regulated in both space and time. Although significant gaps remain in this process, major strides have been made over the past 10 years in identifying the growth factors, signal transduction pathways, and transcription factors that function together as critical mediators of this process. Examples of some of the signal transduction pathways include the hedgehog (HH), WNT, BMP, and Notch pathways. A complex interplay between growth factors, and activation of a variety of signal transduction pathways leads to the induction of transcriptional programs that promote the differentiation of embryonic stem cells along the endothelial lineage and ultimately into arterial, venous, and lymphatic endothelial cells. The purpose of this review is to summarize the recent advances in our understanding of the molecular mechanisms underlying endothelial differentiation.
Collapse
Affiliation(s)
- Alex Le Bras
- Division of Cardiology, and Molecular and Vascular Biology, Department of Medicine and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Abstract
Intracellular signalling mediated by secreted Wnt proteins is essential for the establishment of cell fates and proper tissue patterning during embryo development and for the regulation of tissue homeostasis and stem cell function in adult tissues. Aberrant activation of Wnt signalling pathways has been directly linked to the genesis of different tumours. Here, the components and molecular mechanisms implicated in the transduction of Wnt signal, along with important results supporting a central role for this signalling pathway in stem cell function regulation and carcinogenesis will be briefl y reviewed.
Collapse
|
18
|
Suriben R, Kivimäe S, Fisher DAC, Moon RT, Cheyette BNR. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009; 41:977-85. [PMID: 19701191 PMCID: PMC2733921 DOI: 10.1038/ng.435] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 07/15/2009] [Indexed: 12/13/2022]
Abstract
Mice homozygous for mutations in Dact1 (also called Dapper or Frodo) phenocopy human malformations involving the spine, genitourinary system and distal digestive tract. We traced this phenotype to disrupted germ-layer morphogenesis at the primitive streak. Notably, heterozygous mutation of Vangl2, a transmembrane component of the planar cell polarity (PCP) pathway, rescued recessive Dact1 phenotypes, whereas loss of Dact1 reciprocally rescued semidominant Vangl2 phenotypes. We show that Dact1, an intracellular protein, forms a complex with Vangl2. In Dact1 mutants, Vangl2 was increased at the primitive streak, where cells ordinarily undergo an epithelial-mesenchymal transition. This is associated with abnormal E-cadherin distribution and changes in biochemical measures of the PCP pathway. We conclude that Dact1 contributes to morphogenesis at the primitive streak by regulating Vangl2 upstream of cell adhesion and the PCP pathway.
Collapse
Affiliation(s)
- Rowena Suriben
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
19
|
Byrum CA, Xu R, Bince JM, McClay DR, Wikramanayake AH. Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation. Dev Dyn 2009; 238:1649-65. [PMID: 19449300 PMCID: PMC3057072 DOI: 10.1002/dvdy.21978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dishevelled (Dsh) is a phosphoprotein key to beta-catenin dependent (canonical) and beta-catenin independent (noncanonical) Wnt signaling. Whereas canonical Wnt signaling has been intensively studied in sea urchin development, little is known about other Wnt pathways. To examine roles of these beta-catenin independent pathways in embryogenesis, we used Dsh-DEP, a deletion construct blocking planar cell polarity (PCP) and Wnt/Ca(2+) signaling. Embryos overexpressing Dsh-DEP failed to gastrulate or undergo skeletogenesis, but produced pigment cells. Although early mesodermal gene expression was largely unperturbed, embryos exhibited reduced expression of genes regulating endoderm specification and differentiation. Overexpressing activated beta-catenin failed to rescue Dsh-DEP embryos, indicating that Dsh-DEP blocks endoderm formation downstream of initial canonical Wnt signaling. Because Dsh-DEP-like constructs block PCP signaling in other metazoans, and disrupting RhoA or Fz 5/8 in echinoids blocks subsets of the Dsh-DEP phenotypes, our data suggest that noncanonical Wnt signaling is crucial for sea urchin endoderm formation and skeletogenesis.
Collapse
Affiliation(s)
- Christine A. Byrum
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina
- Department of Biology, College of Charleston, Charleston, South Carolina
| | - Ronghui Xu
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Joanna M. Bince
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - David R. McClay
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina
| | - Athula H. Wikramanayake
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Biology, The University of Miami, Coral Gables, Florida
| |
Collapse
|
20
|
Kim GH, Her JH, Han JK. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 2008; 182:1073-82. [PMID: 18809723 PMCID: PMC2542470 DOI: 10.1083/jcb.200710188] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 08/27/2008] [Indexed: 11/22/2022] Open
Abstract
The single-pass transmembrane protein Ryk (atypical receptor related tyrosine kinase) functions as a Wnt receptor. However, Ryk's correlation with Wnt/Frizzled (Fz) signaling is poorly understood. Here, we report that Ryk regulates Xenopus laevis convergent extension (CE) movements via the beta-arrestin 2 (betaarr2)-dependent endocytic process triggered by noncanonical Wnt signaling. During X. laevis gastrulation, betaarr2-mediated endocytosis of Fz7 and dishevelled (Dvl/Dsh) actually occurs in the dorsal marginal zone tissues, which actively participate in noncanonical Wnt signaling. Noncanonical Wnt11/Fz7-mediated endocytosis of Dsh requires the cell-membrane protein Ryk. Ryk interacts with both Wnt11 and betaarr2, cooperates with Fz7 to mediate Wnt11-stimulated endocytosis of Dsh, and signals the noncanonical Wnt pathway in CE movements. Conversely, depletion of Ryk and Wnt11 prevents Dsh endocytosis in dorsal marginal zone tissues. Our study suggests that Ryk functions as an essential regulator for noncanonical Wnt/Fz-mediated endocytosis in the regulation of X. laevis CE movements.
Collapse
Affiliation(s)
- Gun-Hwa Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
21
|
Louis I, Heinonen KM, Chagraoui J, Vainio S, Sauvageau G, Perreault C. The signaling protein Wnt4 enhances thymopoiesis and expands multipotent hematopoietic progenitors through beta-catenin-independent signaling. Immunity 2008; 29:57-67. [PMID: 18617424 DOI: 10.1016/j.immuni.2008.04.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 03/11/2008] [Accepted: 04/23/2008] [Indexed: 12/20/2022]
Abstract
Despite studies based on deletion or activation of intracellular components of the canonical Wingless related (Wnt) pathway, the role of Wnts in hematolymphopoiesis remains controversial. Using gain-of-function and loss-of-function models, we found that Wnt4 differentially affected diverse subsets of hematopoietic stem and progenitor cells. Bone-marrow and thymic Lin(-)Sca1(+)Kit(hi) cells (LSKs) were the key targets of Wnt4. In adult mice, Wnt4-induced expansion of Flt3(+) bone-marrow LSKs (lymphoid-primed multipotent progenitors) led to a sizeable accumulation of the most immature thymocyte subsets (upstream of beta-selection) and a major increase in thymopoiesis. Conversely, Wnt4(-/-) neonates showed low frequencies of bone-marrow LSKs and thymic hypocellularity. We provide compelling evidence that Wnt4 activates noncanonical (beta-catenin-independent) signaling and that its effects on hematopoietic cells are mainly non-cell-autonomous. Our work shows that Wnt4 overexpression has a unique ability to expand Flt3(+) LSKs in adults and demonstrates that noncanonical Wnt signaling regulates thymopoiesis.
Collapse
Affiliation(s)
- Isabelle Louis
- Institute for Research in Immunology and Cancer and, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Kestler HA, Kühl M. From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci 2008; 363:1333-47. [PMID: 18192173 DOI: 10.1098/rstb.2007.2251] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Wnt proteins play important roles during vertebrate and invertebrate development. They obviously have the ability to activate different intracellular signalling pathways. Based on the characteristic intracellular mediators used, these are commonly described as the Wnt/beta-catenin, the Wnt/calcium and the Wnt/Jun N-terminal kinase pathways (also called planar cell polarity pathway). In the past, these different signalling events were mainly described as individual and independent signalling branches. Here, we discuss the possibility that Wnt proteins activate a complex intracellular signalling network rather than individual pathways and suggest a graph representation of this network. Furthermore, we discuss different ways of how to predict the specific outcome of an activation of this network in a particular cell type, which will require the use of mathematical models. We point out that the use of deterministic approaches via the application of differential equations is suitable to model only small aspects of the whole network and that more qualitative approaches are possibly a suitable starting point for the prediction of the global behaviour of such large protein interaction networks.
Collapse
Affiliation(s)
- Hans A Kestler
- Clinic for Internal Medicine I, Medical Centre Ulm University, Robert-Koch-Strasse 8, 89081 Ulm, Germany
| | | |
Collapse
|
23
|
Abstract
The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/beta-catenin dependent pathway and the non-canonical or beta-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca(2+) pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis.
Collapse
Affiliation(s)
- Yuko Komiya
- Department of Biochemistry; University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School
| | - Raymond Habas
- Department of Biochemistry; University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School
- The Cancer Institute of New Jersey; Piscataway, New Jersey USA
| |
Collapse
|
24
|
Lemeer S, Pinkse MWH, Mohammed S, van Breukelen B, den Hertog J, Slijper M, Heck AJR. Online Automated in Vivo Zebrafish Phosphoproteomics: From Large-Scale Analysis Down to a Single Embryo. J Proteome Res 2008; 7:1555-64. [DOI: 10.1021/pr700667w] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Martijn W. H. Pinkse
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jeroen den Hertog
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Monique Slijper
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
25
|
WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO J 2008; 27:606-17. [PMID: 18256687 DOI: 10.1038/emboj.2008.9] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/10/2008] [Indexed: 12/17/2022] Open
Abstract
The Wnt-PCP (planar cell polarity, PCP) pathway regulates cell polarity and convergent extension movements during axis formation in vertebrates by activation of Rho and Rac, leading to the re-organization of the actin cytoskeleton. Rho and Rac activation require guanine nucleotide-exchange factors (GEFs), but the identity of the GEF involved in Wnt-PCP-mediated convergent extension is unknown. Here we report the identification of the weak-similarity GEF (WGEF) gene by a microarray-based screen for notochord enriched genes, and show that WGEF is involved in Wnt-regulated convergent extension. Overexpression of WGEF activated RhoA and rescued the suppression of convergent extension by dominant-negative Wnt-11, whereas depletion of WGEF led to suppression of convergent extension that could be rescued by RhoA or Rho-associated kinase activation. WGEF protein preferentially localized at the plasma membrane, and Frizzled-7 induced colocalization of Dishevelled and WGEF. WGEF protein can bind to Dishevelled and Daam-1, and deletion of the Dishevelled-binding domain generates a hyperactive from of WGEF. These results indicate that WGEF is a component of the Wnt-PCP pathway that connects Dishevelled to Rho activation.
Collapse
|
26
|
Krawetz R, Kelly GM. Wnt6 induces the specification and epithelialization of F9 embryonal carcinoma cells to primitive endoderm. Cell Signal 2007; 20:506-17. [PMID: 18160257 DOI: 10.1016/j.cellsig.2007.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 12/25/2022]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) play key roles in the normal development of an organism as well as its demise following the metastasis of a malignant tumour. An EMT during early mouse development results in the differentiation of primitive endoderm into the parietal endoderm that forms part of the parietal yolk sac. In the embryo, primitive endoderm develops from cells in the inner cell mass, but the signals that instruct these cells to become specified and adopt an epithelial fate are poorly understood. The mouse F9 teratocarcinoma cell line, a model that can recapitulate the in vivo primitive to parietal endoderm EMT, has been used extensively to elucidate the signalling cascades involved in extraembryonic endoderm differentiation. Here, we identified Wnt6 as a gene up-regulated in F9 cells in response to RA and show that Wnt6 expressing cells or cells exposed to Wnt6 conditioned media form primitive endoderm. Wnt6 induction of primitive endoderm is accompanied by beta-catenin and Snail1 translocation to the nucleus and the appearance of cytokeratin intermediate filaments. Attenuating glycogen synthase kinase 3 activity using LiCl gave similar results, but the fact that cells de-differentiate when LiCl is removed reveals that other signalling pathways are required to maintain cells as primitive endoderm. Finally, Wnt6-induced primitive endodermal cells were tested to determine their competency to complete the EMT and differentiate into parietal endoderm. Towards that end, results show that up-regulating protein kinase A activity is sufficient to induce markers of parietal endoderm. Together, these findings indicate that undifferentiated F9 cells are responsive to canonical Wnt signalling, which negatively regulates glycogen synthase kinase 3 activity leading to the epithelialization and specification of primitive endoderm competent to receive additional signals required for EMT. Considering the ability of F9 cells to mimic an in vivo EMT, the identification of this Wnt6-beta-catenin-Snail signalling cascade has broad implications for understanding EMT mechanisms in embryogenesis and metastasis.
Collapse
Affiliation(s)
- Roman Krawetz
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
27
|
Weiser DC, Pyati UJ, Kimelman D. Gravin regulates mesodermal cell behavior changes required for axis elongation during zebrafish gastrulation. Genes Dev 2007; 21:1559-71. [PMID: 17575056 PMCID: PMC1891432 DOI: 10.1101/gad.1535007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Convergent extension of the mesoderm is the major driving force of vertebrate gastrulation. During this process, mesodermal cells move toward the future dorsal side of the embryo, then radically change behavior as they initiate extension of the body axis. How cells make this transition in behavior is unknown. We have identified the scaffolding protein and tumor suppressor Gravin as a key regulator of this process in zebrafish embryos. We show that Gravin is required for the conversion of mesodermal cells from a highly migratory behavior to the medio-laterally intercalative behavior required for body axis extension. In the absence of Gravin, paraxial mesodermal cells fail to shut down the protrusive activity mediated by the Rho/ROCK/Myosin II pathway, resulting in embryos with severe extension defects. We propose that Gravin functions as an essential scaffold for regulatory proteins that suppress the migratory behavior of the mesoderm during gastrulation, and suggest that this function also explains how Gravin inhibits invasive behaviors in metastatic cells.
Collapse
Affiliation(s)
- Douglas C. Weiser
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Ujwal J. Pyati
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Corresponding author.E-MAIL ; FAX (206) 616-8676
| |
Collapse
|
28
|
Kim GH, Han JK. Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J 2007; 26:2513-26. [PMID: 17476309 PMCID: PMC1868900 DOI: 10.1038/sj.emboj.7601688] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/26/2007] [Indexed: 11/09/2022] Open
Abstract
beta-Arrestin 2 (betaarr2) is a multifunctional protein that regulates numerous aspects of G-protein-coupled receptor function. However, its possible involvement in developmental processes is poorly understood. In this work, we examined the potential role of betaarr2 during Xenopus early development. Gain- and loss-of-function studies showed that Xenopus betaarr2 (xbetaarr2) is required for proper convergent extension (CE) movements, and normal cell polarization and intercalation without affecting cell fate. Moreover, for CE movements, betaarr2 acts as an essential regulator of dishevelled-mediated PCP (planar cell polarity) signaling, but not G-protein-mediated Ca(2+) signaling. Notably, xbetaarr2 is localized with the same distribution as the dishevelled protein, which is reasonable, as xbetaarr2 is required for dishevelled activation of RhoA. Furthermore, xbetaarr2 interacts with the N-terminal quarter of Daam1 and RhoA proteins, but not Rac1, and regulates RhoA activation through Daam1 activation for CE movements. We provide evidence that the endocytic activity of xbetaarr2 is essential for control of CE movements. Taken together, our results suggest that betaarr2 has a pivotal role in the regulation of Xenopus CE movements.
Collapse
Affiliation(s)
- Gun-Hwa Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jin-Kwan Han
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
29
|
Rohde LA, Heisenberg CP. Zebrafish Gastrulation: Cell Movements, Signals, and Mechanisms. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:159-92. [PMID: 17560282 DOI: 10.1016/s0074-7696(07)61004-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrulation is a morphogenetic process that results in the formation of the embryonic germ layers. Here we detail the major cell movements that occur during zebrafish gastrulation: epiboly, internalization, and convergent extension. Although gastrulation is known to be regulated by signaling pathways such as the Wnt/planar cell polarity pathway, many questions remain about the underlying molecular and cellular mechanisms. Key factors that may play a role in gastrulation cell movements are cell adhesion and cytoskeletal rearrangement. In addition, some of the driving force for gastrulation may derive from tissue interactions such as those described between the enveloping layer and the yolk syncytial layer. Future exploration of gastrulation mechanisms relies on the development of sensitive and quantitative techniques to characterize embryonic germ-layer properties.
Collapse
Affiliation(s)
- Laurel A Rohde
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
30
|
Nie S, Chang C. Regulation of Xenopus gastrulation by ErbB signaling. Dev Biol 2006; 303:93-107. [PMID: 17134691 PMCID: PMC4939279 DOI: 10.1016/j.ydbio.2006.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 12/15/2022]
Abstract
During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell-cell and cell-matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation.
Collapse
Affiliation(s)
| | - Chenbei Chang
- Corresponding author. Fax: +1 205 975 5648. (C. Chang)
| |
Collapse
|