1
|
Greene CL, Traeger G, Venkatesh A, Han D, Majesky MW. Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model. J Dev Biol 2025; 13:13. [PMID: 40265371 PMCID: PMC12015864 DOI: 10.3390/jdb13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries produce mosaic patterns of investment based on embryonic origins with important implications for the non-uniform distribution of vascular disease later in life. The morphogenesis of blood vessels requires vascular cell movements within compartments as highly-sensitive responses to changes in fluid flow shear stress and wall strain. These movements underline the remodeling of primitive plexuses, expansion of lumen diameters, regression of unused vessels, and building of multilayered artery walls. Although the loss of endothelial compartment boundaries can produce arterial-venous malformations, little is known about the consequences of mislocalization or the failure to form SMC-origin-specific boundaries during vascular development. We propose that the failure to establish a normal compartment boundary between cardiac neural-crest-derived SMCs of the 6th pharyngeal arch artery (future ductus arteriosus) and paraxial-mesoderm-derived SMCs of the dorsal aorta in mid-gestation embryos leads to aortic coarctation observed at birth. This model raises new questions about the effects of fluid flow dynamics on SMC investment and the formation of SMC compartment borders during pharyngeal arch artery remodeling and vascular development.
Collapse
Affiliation(s)
- Christina L. Greene
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Geoffrey Traeger
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Akshay Venkatesh
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98105, USA;
| | - David Han
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Cell Biology & Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark W. Majesky
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Kathiriya IS, Dominguez MH, Rao KS, Muncie-Vasic JM, Devine WP, Hu KM, Hota SK, Garay BI, Quintero D, Goyal P, Matthews MN, Thomas R, Sukonnik T, Miguel-Perez D, Winchester S, Brower EF, Forjaz A, Wu PH, Wirtz D, Kiemen AL, Bruneau BG. A disrupted compartment boundary underlies abnormal cardiac patterning and congenital heart defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578995. [PMID: 38370632 PMCID: PMC10871243 DOI: 10.1101/2024.02.05.578995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Failure of septation of the interventricular septum (IVS) is the most common congenital heart defect (CHD), but mechanisms for patterning the IVS are largely unknown. We show that a Tbx5+/Mef2cAHF+ progenitor lineage forms a compartment boundary bisecting the IVS. This coordinated population originates at a first- and second heart field interface, subsequently forming a morphogenetic nexus. Ablation of Tbx5+/Mef2cAHF+ progenitors cause IVS disorganization, right ventricular hypoplasia and mixing of IVS lineages. Reduced dosage of the CHD transcription factor TBX5 disrupts boundary position and integrity, resulting in ventricular septation defects (VSDs) and patterning defects, including Slit2 and Ntn1 misexpression. Reducing NTN1 dosage partly rescues cardiac defects in Tbx5 mutant embryos. Loss of Slit2 or Ntn1 causes VSDs and perturbed septal lineage distributions. Thus, we identify essential cues that direct progenitors to pattern a compartment boundary for proper cardiac septation, revealing new mechanisms for cardiac birth defects.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
| | - Martin H Dominguez
- Gladstone Institutes, San Francisco, CA
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- Current address: Department of Medicine (Cardiovascular Medicine), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kavitha S Rao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
- Gladstone Institutes, San Francisco, CA
| | | | - W Patrick Devine
- Gladstone Institutes, San Francisco, CA
- Current address: Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Kevin M Hu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
- Gladstone Institutes, San Francisco, CA
- Current address: Creighton University School of Medicine, Omaha, NE
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA
- Current address: Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Bayardo I Garay
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
- Current address: University of Minnesota Medical Scientist Training Program, Minneapolis, MN
| | - Diego Quintero
- Gladstone Institutes, San Francisco, CA
- Current address: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Piyush Goyal
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
- Gladstone Institutes, San Francisco, CA
- Current address: Touro University California, Vallejo, CA
| | - Megan N Matthews
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Houyel L. Ventricular Septal Defects: Molecular Pathways and Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:535-549. [PMID: 38884730 DOI: 10.1007/978-3-031-44087-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septation is a complex process which involves the major genes of cardiac development, acting on myocardial cells from first and second heart fields, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. In this chapter, we will describe the formation of the ventricular septum in the normal heart, as well as the molecular mechanisms leading to the four main anatomic types of ventricular septal defects: outlet, inlet, muscular, and central perimembranous, resulting from failure of development of the different parts of the ventricular septum. Experiments on animal models, particularly transgenic mouse lines, have helped us to decipher the molecular determinants of ventricular septation. However, a precise description of the anatomic phenotypes found in these models is mandatory to achieve a better comprehension of the complex mechanisms responsible for the various types of VSDs.
Collapse
Affiliation(s)
- Lucile Houyel
- Pediatric and Congenital Cardiology Unit, Necker-Enfants Malades Hospital - M3C, University of Paris, Paris, France.
| |
Collapse
|
4
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Taliani V, Buonaiuto G, Desideri F, Setti A, Santini T, Galfrè S, Schirone L, Mariani D, Frati G, Valenti V, Sciarretta S, Perlas E, Nicoletti C, Musarò A, Ballarino M. The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart. eLife 2023; 12:81360. [PMID: 36877136 PMCID: PMC10023161 DOI: 10.7554/elife.81360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of heart physiology and disease, although the studies unveiling their modes of action are still limited to few examples. We recently identified pCharme, a chromatin-associated lncRNA whose functional knockout in mice results in defective myogenesis and morphological remodeling of the cardiac muscle. Here, we combined Cap-Analysis of Gene Expression (CAGE), single-cell (sc)RNA sequencing, and whole-mount in situ hybridization analyses to study pCharme cardiac expression. Since the early steps of cardiomyogenesis, we found the lncRNA being specifically restricted to cardiomyocytes, where it assists the formation of specific nuclear condensates containing MATR3, as well as important RNAs for cardiac development. In line with the functional significance of these activities, pCharme ablation in mice results in a delayed maturation of cardiomyocytes, which ultimately leads to morphological alterations of the ventricular myocardium. Since congenital anomalies in myocardium are clinically relevant in humans and predispose patients to major complications, the identification of novel genes controlling cardiac morphology becomes crucial. Our study offers unique insights into a novel lncRNA-mediated regulatory mechanism promoting cardiomyocyte maturation and bears relevance to Charme locus for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Fabio Desideri
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia (IIT)RomeItaly
| | - Adriano Setti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Tiziana Santini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| | - Silvia Galfrè
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia (IIT)RomeItaly
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Davide Mariani
- Center for Human Technologies, Istituto Italiano di TecnologiaGenovaItaly
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Valentina Valenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of RomeLatinaItaly
| | - Emerald Perlas
- Epigenetics and Neurobiology Unit, EMBL-RomeMonterotondoItaly
| | - Carmine Nicoletti
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of RomeRomeItaly
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of RomeRomeItaly
| |
Collapse
|
6
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
7
|
The Interventricular Septum: Structure, Function, Dysfunction, and Diseases. J Clin Med 2022; 11:jcm11113227. [PMID: 35683618 PMCID: PMC9181036 DOI: 10.3390/jcm11113227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Vertebrates developed pulmonary circulation and septated the heart into venous and arterial compartments, as the adaptation from aquatic to terrestrial life requires more oxygen and energy. The interventricular septum (IVS) accommodates the ventricular portion of the conduction system and contributes to the mechanical function of both ventricles. Conditions or diseases that affect IVS structure and function (e.g., hypertrophy, defects, other) may lead to ventricular pump failure and/or ventricular arrhythmias with grave consequences. IVS structure and function can be evaluated today using current imaging techniques. Effective therapies can be provided in most cases, although definitions of underlying etiologies may not always be easy, particularly in the elderly due to overlap between genetic and acquired causes of IVS hypertrophy, the most common being IVS abnormality. In this review, state-of-the-art information regarding IVS morphology, physiology, physiopathology, and disease is presented.
Collapse
|
8
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
9
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Every Beat You Take-The Wilms' Tumor Suppressor WT1 and the Heart. Int J Mol Sci 2021; 22:ijms22147675. [PMID: 34299295 PMCID: PMC8306835 DOI: 10.3390/ijms22147675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Nearly three decades ago, the Wilms’ tumor suppressor Wt1 was identified as a crucial regulator of heart development. Wt1 is a zinc finger transcription factor with multiple biological functions, implicated in the development of several organ systems, among them cardiovascular structures. This review summarizes the results from many research groups which allowed to establish a relevant function for Wt1 in cardiac development and disease. During development, Wt1 is involved in fundamental processes as the formation of the epicardium, epicardial epithelial-mesenchymal transition, coronary vessel development, valve formation, organization of the cardiac autonomous nervous system, and formation of the cardiac ventricles. Wt1 is further implicated in cardiac disease and repair in adult life. We summarize here the current knowledge about expression and function of Wt1 in heart development and disease and point out controversies to further stimulate additional research in the areas of cardiac development and pathophysiology. As re-activation of developmental programs is considered as paradigm for regeneration in response to injury, understanding of these processes and the molecules involved therein is essential for the development of therapeutic strategies, which we discuss on the example of WT1.
Collapse
|
11
|
Abstract
Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
Collapse
Affiliation(s)
- Lucile Houyel
- Unité de Cardiologie Pédiatrique et Congénitale and Centre de Référence des Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Université de Paris, 75015 Paris, France
| | - Sigolène M Meilhac
- Université de Paris, 75015 Paris, France.,Imagine-Institut Pasteur Unit of Heart Morphogenesis, INSERM UMR 1163, 75015 Paris, France;
| |
Collapse
|
12
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
13
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
14
|
Nollet EE, Manders EM, Goebel M, Jansen V, Brockmann C, Osinga J, van der Velden J, Helmes M, Kuster DWD. Large-Scale Contractility Measurements Reveal Large Atrioventricular and Subtle Interventricular Differences in Cultured Unloaded Rat Cardiomyocytes. Front Physiol 2020; 11:815. [PMID: 32848817 PMCID: PMC7396550 DOI: 10.3389/fphys.2020.00815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
The chambers of the heart fulfill different hemodynamic functions, which are reflected in their structural and contractile properties. While the atria are highly elastic to allow filling from the venous system, the ventricles need to be able to produce sufficiently high pressures to eject blood into the circulation. The right ventricle (RV) pumps into the low pressure pulmonary circulation, while the left ventricle (LV) needs to overcome the high pressure of the systemic circulation. It is incompletely understood whether these differences can be explained by the contractile differences at the level of the individual cardiomyocytes of the chambers. We addressed this by isolating cardiomyocytes from atria, RV, LV, and interventricular septum (IVS) of five healthy wild-type rats. Using a high-throughput contractility set-up, we measured contractile function of 2,043 cells after overnight culture. Compared to ventricular cardiomyocytes, atrial cells showed a twofold lower contraction amplitude and 1.4- to 1.7-fold slower kinetics of contraction and relaxation. The interventricular differences in contractile function were much smaller; RV cells displayed 12–13% less fractional shortening and 5–9% slower contraction and 3–15% slower relaxation kinetics relative to their LV and IVS counterparts. Aided by a large dataset, we established relationships between contractile parameters and found contraction velocity, fractional shortening and relaxation velocity to be highly correlated. In conclusion, our findings are in line with contractile differences observed at the atrioventricular level, but can only partly explain the interventricular differences that exist at the organ level.
Collapse
Affiliation(s)
- Edgar E Nollet
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Max Goebel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Valentijn Jansen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Cord Brockmann
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Jorrit Osinga
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Michiel Helmes
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.,CytoCypher BV, Wageningen, Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
15
|
Laura VG, Marcela SG, Ricardo JC, Roberto L, Filiberto TT, Sánchez Gómez C. Incorporation of the first and second heart fields and prospective fate of the straight heart tube via in vivo labeling of chicken embryos. PLoS One 2020; 15:e0234069. [PMID: 32649674 PMCID: PMC7351196 DOI: 10.1371/journal.pone.0234069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/18/2020] [Indexed: 01/14/2023] Open
Abstract
Recent discoveries of at least two heart fields and dynamic nature of cardiac development as well as controversies regarding the participation of heart fields in development of different heart structures led us to investigate the dynamics of incorporation of the first and second heart fields and prospective fate of the straight heart tube by labeling chicken embryos in vivo with the fluorescent lipophilic dye DiI. The cephalic and caudal limits of the anterior and posterior segments of the straight heart tube were labeled in two groups of embryos. Labels were tracked along the “C,” “S,” and “U” loops up to the tetracavitary or mature heart (n = 30 embryos/group; torsion and looping stage). To determine whether the atria and atrioventricular canal are derived from the first heart field the straight heart tube was cultured in vitro and immunodetection of Sox-9 and troponin I was performed to identify the mesenchymal and myocardial lineages respectively. Proliferating cell nuclear antigen (PCNA) immunodetection was used to determine the involvement of cell proliferation in heart tube development during torsion and looping. Embryological constitution of the straight heart tube and heart looping (C, S, and U) were not consistent with current descriptions. In fact, right ventricle precursors were absent in the straight heart tube derived from the first heart field. During torsion and looping, the cephalic segment of the straight heart tube gradually shifted into the heart tube until it was located at the myocardial interventricular septum in the tetracavitary heart. In contrast, the caudal segment of the straight heart tube was elongated and remodeled to become the first heart field derived left ventricle and the proximal part of the ventricular inlets. The ventricular outflows, right ventricle, distal part of the ventricular inlets, and atria developed from the second heart field.
Collapse
Affiliation(s)
- Villavicencio Guzmán Laura
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Salazar García Marcela
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jaime Cruz Ricardo
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Posgrado en Biología Experimental, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana—Iztapalapa, Mexico City, Mexico
| | - Lazzarini Roberto
- Departamento Biología de la Reproducción, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Toledano-Toledano Filiberto
- Unidad de Investigación en Medicina Basada en Evidencias, Hospital Infantil de México Federico Gómez Instituto Nacional de Salud, Mexico City, Mexico
| | - Concepción Sánchez Gómez
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- * E-mail: ,
| |
Collapse
|
16
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
17
|
De Bono C, Thellier C, Bertrand N, Sturny R, Jullian E, Cortes C, Stefanovic S, Zaffran S, Théveniau-Ruissy M, Kelly RG. T-box genes and retinoic acid signaling regulate the segregation of arterial and venous pole progenitor cells in the murine second heart field. Hum Mol Genet 2019; 27:3747-3760. [PMID: 30016433 DOI: 10.1093/hmg/ddy266] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
The arterial and venous poles of the mammalian heart are hotspots of congenital heart defects (CHD) such as those observed in 22q11.2 deletion (or DiGeorge) and Holt-Oram syndromes. These regions of the heart are derived from late differentiating cardiac progenitor cells of the Second Heart Field (SHF) located in pharyngeal mesoderm contiguous with the elongating heart tube. The T-box transcription factor Tbx1, encoded by the major 22q11.2 deletion syndrome gene, regulates SHF addition to both cardiac poles from a common progenitor population. Despite the significance of this cellular addition the mechanisms regulating the deployment of common progenitor cells to alternate cardiac poles remain poorly understood. Here we demonstrate that Tbx5, mutated in Holt-Oram syndrome and essential for venous pole development, is activated in Tbx1 expressing cells in the posterior region of the SHF at early stages of heart tube elongation. A subset of the SHF transcriptional program, including Tbx1 expression, is subsequently downregulated in Tbx5 expressing cells, generating a transcriptional boundary between Tbx1-positive arterial pole and Tbx5-positive venous pole progenitor cell populations. We show that normal downregulation of the definitive arterial pole progenitor cell program in the posterior SHF is dependent on both Tbx1 and Tbx5. Furthermore, retinoic acid (RA) signaling is required for Tbx5 activation in Tbx1-positive cells and blocking RA signaling at the time of Tbx5 activation results in atrioventricular septal defects at fetal stages. Our results reveal sequential steps of cardiac progenitor cell patterning and provide mechanistic insights into the origin of common forms of CHD.
Collapse
Affiliation(s)
| | | | | | - Rachel Sturny
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | - Claudio Cortes
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | | | | | - Robert G Kelly
- Aix-Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| |
Collapse
|
18
|
Katano W, Moriyama Y, Takeuchi JK, Koshiba-Takeuchi K. Cardiac septation in heart development and evolution. Dev Growth Differ 2018; 61:114-123. [PMID: 30549006 DOI: 10.1111/dgd.12580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/24/2023]
Abstract
The heart is one of the vital organs and is functionalized for blood circulation from its early development. Some vertebrates have altered their living environment from aquatic to terrestrial life over the course of evolution and obtained circulatory systems well adapted to their lifestyles. The morphology of the heart has been changed together with the acquisition of a sophisticated respiratory organ, the lung. Adaptation to a terrestrial environment requires the coordination of heart and lung development due to the intake of oxygen from the air and the production of the large amount of energy needed for terrestrial life. Therefore, vertebrates developed pulmonary circulation and a septated heart (four-chambered heart) with venous and arterial blood completely separated. In this review, we summarize how vertebrates change the structures and functions of their circulatory systems according to environmental changes.
Collapse
Affiliation(s)
- Wataru Katano
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | - Yuuta Moriyama
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Kazuko Koshiba-Takeuchi
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| |
Collapse
|
19
|
Niderla-BieliŃska J, Jankowska-Steifer E, Flaht-Zabost A, Gula G, Czarnowska E, Ratajska A. Proepicardium: Current Understanding of its Structure, Induction, and Fate. Anat Rec (Hoboken) 2018; 302:893-903. [PMID: 30421563 DOI: 10.1002/ar.24028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022]
Abstract
The proepicardium (PE) is a transitory extracardiac embryonic structure which plays a crucial role in cardiac morphogenesis and delivers various cell lineages to the developing heart. The PE arises from the lateral plate mesoderm (LPM) and is present in all vertebrate species. During development, mesothelial cells of the PE reach the naked myocardium either as free-floating aggregates in the form of vesicles or via a tissue bridge; subsequently, they attach to the myocardium and, finally, form the third layer of a mature heart-the epicardium. After undergoing epithelial-to-mesenchymal transition (EMT) some of the epicardial cells migrate into the myocardial wall and differentiate into fibroblasts, smooth muscle cells, and possibly other cell types. Despite many recent findings, the molecular pathways that control not only proepicardial induction and differentiation but also epicardial formation and epicardial cell fate are poorly understood. Knowledge about these events is essential because molecular mechanisms that occur during embryonic development have been shown to be reactivated in pathological conditions, for example, after myocardial infarction, during hypertensive heart disease or other cardiovascular diseases. Therefore, in this review we intended to summarize the current knowledge about PE formation and structure, as well as proepicardial cell fate in animals commonly used as models for studies on heart development. Anat Rec, 302:893-903, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Gula
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.,The Postgraduate School of Molecular Medicine (SMM), Warsaw, Poland
| | - Elżbieta Czarnowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Wiegering A, Rüther U, Gerhardt C. The Role of Hedgehog Signalling in the Formation of the Ventricular Septum. J Dev Biol 2017; 5:E17. [PMID: 29615572 PMCID: PMC5831794 DOI: 10.3390/jdb5040017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022] Open
Abstract
An incomplete septation of the ventricles in the vertebrate heart that disturbes the strict separation between the contents of the two ventricles is termed a ventricular septal defect (VSD). Together with bicuspid aortic valves, it is the most frequent congenital heart disease in humans. Until now, life-threatening VSDs are usually treated surgically. To avoid surgery and to develop an alternative therapy (e.g., a small molecule therapy), it is necessary to understand the molecular mechanisms underlying ventricular septum (VS) development. Consequently, various studies focus on the investigation of signalling pathways, which play essential roles in the formation of the VS. In the past decade, several reports found evidence for an involvement of Hedgehog (HH) signalling in VS development. In this review article, we will summarise the current knowledge about the association between HH signalling and VS formation and discuss the use of such knowledge to design treatment strategies against the development of VSDs.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med 2017; 23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer a practical source for the de novo generation of cardiac tissues and a unique opportunity to investigate cardiovascular lineage commitment. Numerous strategies have focused on the in vitro production of cardiomyocytes, smooth muscle, and endothelium from hPSCs. However, these differentiation protocols often yield undesired cell types. Thus, establishing a set of stage-specific markers for pure cardiac subpopulations will assist in defining the hierarchy of cardiac differentiation, aid in the development of cellular therapy, and facilitate drug screening and disease modeling. The recent characterization of many such markers is enabling the isolation of major cardiac lineages and subpopulations from differentiating hPSCs. We provide here a comprehensive review detailing the suite of biomarkers used to differentiate cardiac lineages from mixed hPSC-derived populations.
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Timothy J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Dueñas A, Aranega AE, Franco D. More than Just a Simple Cardiac Envelope; Cellular Contributions of the Epicardium. Front Cell Dev Biol 2017; 5:44. [PMID: 28507986 PMCID: PMC5410615 DOI: 10.3389/fcell.2017.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
The adult pumping heart is formed by distinct tissue layers. From inside to outside, the heart is composed by an internal endothelial layer, dubbed the endocardium, a thick myocardial component which supports the pumping capacity of the heart and exteriorly covered by a thin mesothelial layer named the epicardium. Cardiac insults such as coronary artery obstruction lead to ischemia and thus to an irreversible damage of the myocardial layer, provoking in many cases heart failure and death. Thus, searching for new pathways to regenerate the myocardium is an urgent biomedical need. Interestingly, the capacity of heart regeneration is present in other species, ranging from fishes to neonatal mammals. In this context, several lines of evidences demonstrated a key regulatory role for the epicardial layer. In this manuscript, we provide a state-of-the-art review on the developmental process leading to the formation of the epicardium, the distinct pathways controlling epicardial precursor cell specification and determination and current evidences on the regenerative potential of the epicardium to heal the injured heart.
Collapse
Affiliation(s)
- Angel Dueñas
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Amelia E Aranega
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| |
Collapse
|
23
|
Panzer AA, Regmi SD, Cormier D, Danzo MT, Chen IBD, Winston JB, Hutchinson AK, Salm D, Schulkey CE, Cochran RS, Wilson DB, Jay PY. Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart. Sci Rep 2017; 7:46438. [PMID: 28406175 PMCID: PMC5390293 DOI: 10.1038/srep46438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (SspnKO) mice do not have heart defects, but Nkx2-5+/−/SspnKO mutants have a higher incidence of muscular VSD than Nkx2-5+/− mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5+/−/SspnKO mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs.
Collapse
Affiliation(s)
- Adam A Panzer
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suk D Regmi
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - DePorres Cormier
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Megan T Danzo
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Iuan-Bor D Chen
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Julia B Winston
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Alayna K Hutchinson
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Diana Salm
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Claire E Schulkey
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Patrick Y Jay
- Department of Pediatrics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University School of Medicine, Box 8208 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| |
Collapse
|
24
|
Abstract
TBX5 is a member of the T-box transcription factor family and is primarily known for its role in cardiac and forelimb development. Human patients with dominant mutations in TBX5 are characterized by Holt-Oram syndrome, and show defects of the cardiac septa, cardiac conduction system, and the anterior forelimb. The range of cardiac defects associated with TBX5 mutations in humans suggests multiple roles for the transcription factor in cardiac development and function. Animal models demonstrate similar defects and have provided a useful platform for investigating the roles of TBX5 during embryonic development. During early cardiac development, TBX5 appears to act primarily as a transcriptional activator of genes associated with cardiomyocyte maturation and upstream of morphological signals for septation. During later cardiac development, TBX5 is required for patterning of the cardiac conduction system and maintenance of mature cardiomyocyte function. A comprehensive understanding of the integral roles of TBX5 throughout cardiac development and adult life will be critical for understanding human cardiac morphology and function.
Collapse
Affiliation(s)
- J D Steimle
- University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
25
|
Agger P, Lakshminrusimha S, Laustsen C, Gugino S, Frandsen JR, Smerup M, Anderson RH, Hjortdal V, Steinhorn RH. The myocardial architecture changes in persistent pulmonary hypertension of the newborn in an ovine animal model. Pediatr Res 2016; 79:565-74. [PMID: 26679151 PMCID: PMC4837009 DOI: 10.1038/pr.2015.263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Persistent pulmonary hypertension in the newborn remains a syndrome with high mortality. Knowledge of changes in myocardial architecture in the setting of heart failure in persistent pulmonary hypertension is lacking, and could aid in the explanation of the prevailing high mortality. METHODS Persistent pulmonary hypertension was induced by antenatal ligation of the arterial duct in six ovine fetuses. The hearts were compared ex vivo with five matched control hearts, using diffusion tensor imaging to provide the overall anatomical arrangement, and assessment of the angulations and course of the cardiomyocytes. Fibrosis was assessed with histology. RESULTS We found an overall increase in heart size in pulmonary hypertension, with myocardial thickening confined to the interventricular septum. An increase of 3.5° in angulation of myocyte aggregations was found in hypertensive hearts. In addition, we observed a 2.2% increase in collagen content in the right ventricular free wall. Finally, we found a previously undescribed subepicardial layer of strictly longitudinally oriented cardiomyocytes confined to the right ventricle in all hearts. CONCLUSION Myocardial fibrosis and possibly changes in angulations of myocytes seem to play a part in the etiology of persistent pulmonary hypertension. Moreover, a new anatomical arrangement of right ventricular mural architecture is described.
Collapse
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Satyan Lakshminrusimha
- Division of Neonatology, Women and Children’s Hospital of Buffalo, State University of New York at Buffalo, Buffalo, New York
| | - Christoffer Laustsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark,MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Sylvia Gugino
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Jesper R. Frandsen
- Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Smerup
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Robert H. Anderson
- Institute of Genetic Medicine, University of Newcastle, Newcastle-upon-Tyne, UK
| | - Vibeke Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Robin H. Steinhorn
- Division of Neonatology, UC Davis Children’s Hospital, Sacramento, California
| |
Collapse
|
26
|
Chen L, Cheng B, Li L, Zhan S, Wang L, Zhong T, Chen Y, Zhang H. The molecular characterization and temporal-spatial expression of myocyte enhancer factor 2 genes in the goat and their association with myofiber traits. Gene 2014; 555:223-30. [PMID: 25447896 DOI: 10.1016/j.gene.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/16/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
Abstract
The myocyte enhancer factor-2 (MEF2) gene family in vertebrates includes MEF2A, MEF2B, MEF2C, and MEF2D, which have important functions in the regulation of muscular growth and development. To investigate their temporal-spatial expression and functions in the goat, these genes were cloned (accession nos. JN967621-24) and their expression patterns characterized at five postnatal stages (3, 30, 60, 90, and 120days). Association analysis was then applied regarding MEF2 expression levels and myofiber diameter and density. MEF2B was shown to be weakly homologous with other species, the distant branches with other members and the lowest expression levels, suggesting that it is distinct from other family members. Expression of the other three MEF2 genes was widely distributed, but this was largely accumulated in the skeletal muscle and myocardium compared with the viscera at all developmental stages. MEF2A and MEF2D expression levels were higher overall than MEF2B and MEF2C in six tissues, and were significantly positively correlated with the myofiber diameter of the longissimus dorsi. These findings suggest that goat MEF2 genes mainly function in the skeletal muscle and myocardium, and that MEF2A and MEF2D are likely to effectively promote muscular growth and development during postnatal stages. MEF2A expression was highest in the myocardium, where MEF2C expression increased with age, implying that both gene products are related to the growth and development of postnatal myocardium.
Collapse
Affiliation(s)
- Li Chen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Bo Cheng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Li Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Siyuan Zhan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Tao Zhong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Yu Chen
- Institute of Nanjiang Yellow Goat Breeding Science, Nanjiang 635600, China
| | - Hongping Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China.
| |
Collapse
|
27
|
Embryonic Development of Heart in Indian Buffalo (Bubalus bubalis). INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:293675. [PMID: 27355030 PMCID: PMC4897456 DOI: 10.1155/2014/293675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 11/17/2022]
Abstract
The present study was conducted on 35 buffalo foetuses from 0.9 cm CVRL (32 days) to 99.5 cm CVRL (298 days) to observe the morphogenesis and histogenesis of heart. The study revealed that, in 0.9 cm CVRL buffalo foetus, heart was unseptated and tubular which was clearly divided into common atrial chamber dorsally, primitive ventricles ventrally, primitive outflow tract with bulbous cordis region proximally, and aortic sac distally at 1.2 cm CVRL. Septum primum appeared at 1.9 cm CVRL whereas the truncal swellings and fold of interventricular septum appeared at 2.5 cm CVRL foetus. At 3.0 cm CVRL septum primum, endocardial cushions, septum secundum, and foramen ovale were observed. At 7.6 cm CVRL the endocardial cushions fused to form right and left atrioventricular openings and ventricular apex became pointed. Interventricular canal was obliterated and four-chambered heart was recognised along with atrioventricular valve, chordae tendineae, and papillary muscles in 8.7 cm CVRL (66 days) buffalo foetus. The endocardium as well as epicardium of the atria was thicker as compared to ventricle, whereas the myocardium of atria was thin as compared to ventricles in all the age groups. All the internal structures of heart were well differentiated from 50 cm CVRL onwards. The detailed structural components of buffalo heart during prenatal period have been discussed in the present paper.
Collapse
|
28
|
Meilhac SM, Lescroart F, Blanpain C, Buckingham ME. Cardiac cell lineages that form the heart. Cold Spring Harb Perspect Med 2014; 4:a013888. [PMID: 25183852 DOI: 10.1101/cshperspect.a013888] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Myocardial cells ensure the contractility of the heart, which also depends on other mesodermal cell types for its function. Embryological experiments had identified the sources of cardiac precursor cells. With the advent of genetic engineering, novel tools have been used to reconstruct the lineage tree of cardiac cells that contribute to different parts of the heart, map the development of cardiac regions, and characterize their genetic signature. Such knowledge is of fundamental importance for our understanding of cardiogenesis and also for the diagnosis and treatment of heart malformations.
Collapse
Affiliation(s)
- Sigolène M Meilhac
- Institut Pasteur, Department of Developmental and Stem Cell Biology, CNRS URA2578, 75015 Paris, France
| | | | - Cédric Blanpain
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| | - Margaret E Buckingham
- Institut Pasteur, Department of Developmental and Stem Cell Biology, CNRS URA2578, 75015 Paris, France
| |
Collapse
|
29
|
Araújo AC, Marques S, Belo JA. Targeted inactivation of Cerberus like-2 leads to left ventricular cardiac hyperplasia and systolic dysfunction in the mouse. PLoS One 2014; 9:e102716. [PMID: 25033293 PMCID: PMC4102536 DOI: 10.1371/journal.pone.0102716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022] Open
Abstract
Previous analysis of the Cerberus like 2 knockout (Cerl2−/−) mouse revealed a significant mortality during the first day after birth, mostly due to cardiac defects apparently associated with randomization of the left-right axis. We have however, identified Cerl2-associated cardiac defects, particularly a large increase in the left ventricular myocardial wall in neonates that cannot be explained by laterality abnormalities. Therefore, in order to access the endogenous role of Cerl2 in cardiogenesis, we analyzed the embryonic and neonatal hearts of Cerl2 null mutants that did not display a laterality phenotype. Neonatal mutants obtained from the compound mouse line Cer2−/−::Mlc1v-nLacZ24+, in which the pulmonary ventricle is genetically marked, revealed a massive enlargement of the ventricular myocardium in animals without laterality defects. Echocardiography analysis in Cerl2−/− neonates showed a left ventricular systolic dysfunction that is incompatible with a long lifespan. We uncovered that the increased ventricular muscle observed in Cerl2−/− mice is caused by a high cardiomyocyte mitotic index in the compact myocardium which is mainly associated with increased Ccnd1 expression levels in the left ventricle at embryonic day (E) 13. Interestingly, at this stage we found augmented left ventricular expression of Cerl2 levels when compared with the right ventricle, which may elucidate the regionalized contribution of Cerl2 to the left ventricular muscle formation. Importantly, we observed an increase of phosphorylated Smad2 (pSmad2) levels in embryonic (E13) and neonatal hearts indicating a prolonged TGFβs/Nodal-signaling activation. Concomitantly, we detected an increase of Baf60c levels, but only in Cerl2−/− embryonic hearts. These results indicate that independently of its well-known role in left-right axis establishment Cerl2 plays an important role during heart development in the mouse, mediating Baf60c levels by exerting an important control of the TGFβs/Nodal-signaling pathway.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- PhD Program in Biomedical Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Marques
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - José António Belo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
30
|
Schleich JM, Abdulla T, Summers R, Houyel L. An overview of cardiac morphogenesis. Arch Cardiovasc Dis 2013; 106:612-23. [PMID: 24138816 DOI: 10.1016/j.acvd.2013.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023]
Abstract
Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In this article we review the different steps of heart development, focusing on the processes of alignment and septation. We also show, as often as possible, the links between abnormalities of cardiac development and the main congenital heart defects. The development of animal models has permitted the unraveling of many mechanisms that potentially lead to cardiac malformations. A next step towards a better knowledge of cardiac development could be multiscale cardiac modelling.
Collapse
Affiliation(s)
- Jean-Marc Schleich
- Service de Cardiologie et de Maladies Vasculaires, Hôpital de Pontchaillou, 35033 Rennes cedex 09, France; INSERM U 1099, Université de Rennes, LTSI, 35042 Rennes, France.
| | | | | | | |
Collapse
|
31
|
Miquerol L, Bellon A, Moreno N, Beyer S, Meilhac SM, Buckingham M, Franco D, Kelly RG. Resolving cell lineage contributions to the ventricular conduction system with a Cx40-GFP allele: a dual contribution of the first and second heart fields. Dev Dyn 2013; 242:665-77. [PMID: 23526457 DOI: 10.1002/dvdy.23964] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The ventricular conduction system (VCS) coordinates the heartbeat and is composed of central components (the atrioventricular node, bundle, and right and left bundle branches) and a peripheral Purkinje fiber network. Conductive myocytes develop from common progenitor cells with working myocytes in a bimodal process of lineage restriction followed by limited outgrowth. The lineage relationship between progenitor cells giving rise to different components of the VCS is unclear. RESULTS Cell lineage contributions to different components of the VCS were analysed by a combination of retrospective clonal analysis, regionalized transgene expression studies, and genetic tracing experiments using Connexin40-GFP mice that precisely delineate the VCS. Analysis of a library of hearts containing rare large clusters of clonally related myocytes identifies two VCS lineages encompassing either the right Purkinje fiber network or left bundle branch. Both lineages contribute to the atrioventricular bundle and right bundle branch that segregate early from working myocytes. Right and left VCS lineages share the transcriptional program of the respective ventricular working myocytes and genetic tracing experiments discount alternate progenitor cell contributions to the VCS. CONCLUSIONS The mammalian VCS is comprised of cells derived from two lineages, supporting a dual contribution of first and second heart field progenitor cells.
Collapse
Affiliation(s)
- Lucile Miquerol
- Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2013; 164A:1347-71. [PMID: 23633400 DOI: 10.1002/ajmg.a.35896] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.
Collapse
Affiliation(s)
- Marc Sylva
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 2013; 5:a008292. [PMID: 23457256 DOI: 10.1101/cshperspect.a008292] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mammalian heart is the first functional organ, the first indicator of life. Its normal formation and function are essential for fetal life. Defects in heart formation lead to congenital heart defects, underscoring the finesse with which the heart is assembled. Understanding the regulatory networks controlling heart development have led to significant insights into its lineage origins and morphogenesis and illuminated important aspects of mammalian embryology, while providing insights into human congenital heart disease. The mammalian heart has very little regenerative potential, and thus, any damage to the heart is life threatening and permanent. Knowledge of the developing heart is important for effective strategies of cardiac regeneration, providing new hope for future treatments for heart disease. Although we still have an incomplete picture of the mechanisms controlling development of the mammalian heart, our current knowledge has important implications for embryology and better understanding of human heart disease.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, and Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
34
|
Gerhardt C, Lier JM, Kuschel S, Rüther U. The ciliary protein Ftm is required for ventricular wall and septal development. PLoS One 2013; 8:e57545. [PMID: 23469020 PMCID: PMC3585374 DOI: 10.1371/journal.pone.0057545] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
Ventricular septal defects (VSDs) are the most common congenital heart defects in humans. Despite several studies of the molecular mechanisms involved in ventricular septum (VS) development, very little is known about VS-forming signaling. We observed perimembranous and muscular VSDs in Fantom (Ftm)-negative mice. Since Ftm is a ciliary protein, we investigated presence and function of cilia in murine hearts. Primary cilia could be detected at distinct positions in atria and ventricles at embryonic days (E) 10.5-12.5. The loss of Ftm leads to shortened cilia and a reduced proliferation in distinct atrial and ventricular ciliary regions at E11.5. Consequently, wall thickness is diminished in these areas. We suggest that ventricular proliferation is regulated by cilia-mediated Sonic hedgehog (Shh) and platelet-derived growth factor receptor α (Pdgfrα) signaling. Accordingly, we propose that primary cilia govern the cardiac proliferation which is essential for proper atrial and ventricular wall development and hence for the fully outgrowth of the VS. Thus, our study suggests ciliopathy as a cause of VSDs.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna M. Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Kuschel
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
35
|
Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:499-530. [PMID: 24014420 DOI: 10.1002/wdev.98] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis.
Collapse
Affiliation(s)
- Zachary Neeb
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
36
|
Tardy MM, Galvaing G, Sakka L, Garcier JM, Chazal J, Filaire M. [Embryology of the heart walls]. Morphologie 2013; 97:2-11. [PMID: 23414788 DOI: 10.1016/j.morpho.2012.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/12/2012] [Accepted: 11/19/2012] [Indexed: 11/16/2022]
Abstract
Although anatomically simple structures, the atrial septum and the ventricular septum have complex embryological origins. Recent findings in molecular biology allowed better comprehension of their formation. As soon as the heart tube is formed, cells migrate from several cardiogenic fields to take part in the septation. Elongation, ballooning, and later inflexion of the heart tube create chamber separating grooves, facing the future septa. The systemic venous tributaries conflate at the venous pole of the heart; it will partially involute while contributing to the atrial septum. The primary atrial septum grows from the atrial roof towards the atrioventricular canal. It fuses there with the atrioventricular cushions, while its upper margin breaks down to form the ostium secundum. Then a deep fold develops from the atrial roof and partly covers the ostium secundum, leaving a flap-like interatrial communication through the oval foramen. It will close at birth. The interventricular septum has three embryological origins. The ventricular septum primum, created during the ballooning process, origins from the primary heart tube. It will form the trabecular septum and the inlet septum. The interventricular ring, surrounding the interventricular foramen, will participate in the inlet septum and also form the atrioventricular conduction axis. The outflow cushions will separate the outflow tract in the aorta and pulmonary artery, and grow to create the outlet septum. After merging with the atrioventricular cushions, they will also be part of the membranous septum.
Collapse
Affiliation(s)
- M-M Tardy
- Laboratoire d'anatomie, faculté de médecine, BP 38, 28, place Henri-Dunant, 63001 Clermont-Ferrand cedex 1, France.
| | | | | | | | | | | |
Collapse
|
37
|
El-Hamamsy I, Lekadir K, Olivotto I, El Guindy A, Merrifield R, Rega L, Yang G, Cecchi F, Yacoub MH. Pattern and degree of left ventricular remodeling following a tailored surgical approach for hypertrophic obstructive cardiomyopathy. Glob Cardiol Sci Pract 2012; 2012:9. [PMID: 25610840 PMCID: PMC4239823 DOI: 10.5339/gcsp.2012.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/30/2012] [Indexed: 01/20/2023] Open
Abstract
Background The role of a tailored surgical approach for hypertrophic cardiomyopathy (HCM) on regional ventricular remodelling remains unknown. The aims of this study were to evaluate the pattern, extent and functional impact of regional ventricular remodelling after a tailored surgical approach. Methods From 2005 to 2008, 44 patients with obstructive HCM underwent tailored surgical intervention. Of those, 14 were ineligible for cardiac magnetic resonance (CMR) studies. From the remainder, 14 unselected patients (42±12 years) underwent pre- and post-operative CMR studies at a median 12 months post-operatively (range 4–37 months). Regional changes in left ventricular (LV) thickness as well as global LV function following surgery were assessed using CMR Tools (London, UK). Results Pre-operative mean echocardiographic septal thickness was 21±4 mm and mean LV outflow gradient was 69±32 mmHg. Following surgery, there was a significant degree of regional regression of LV thickness in all segments of the LV, ranging from 16% in the antero-lateral midventricular segment to 41% in the anterior basal segment. Wall thickening was significantly increased in basal segments but showed no significant change in the midventricular or apical segments. Globally, mean indexed LV mass decreased significantly after surgery (120±29g/m2 versus 154±36g/m2; p<0.001). There was a trend for increased indexed LV end-diastolic volume (70±13 mL versus 65±11 mL; p=0.16) with a normalization of LV ejection fraction (68±7% versus 75±9%; p<0.01). Conclusion Following a tailored surgical relief of outflow obstruction for HCM, there is a marked regional reverse LV remodelling. These changes could have a significant impact on overall ventricular dynamics and function.
Collapse
Affiliation(s)
- Ismail El-Hamamsy
- Department of Cardiac Surgery, Montreal Heart Institute, Universite de Montreal, Montreal, Canada ; Harefield Heart Science Center, National Heart and Lung Institute, Imperial College London, UK
| | | | - Iacopo Olivotto
- Department of Cardiology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Ahmed El Guindy
- Harefield Heart Science Center, National Heart and Lung Institute, Imperial College London, UK
| | | | - Luigi Rega
- Department of Radiology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Franco Cecchi
- Department of Cardiology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Magdi H Yacoub
- Harefield Heart Science Center, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
38
|
Barnett P, van den Boogaard M, Christoffels V. Localized and temporal gene regulation in heart development. Curr Top Dev Biol 2012; 100:171-201. [PMID: 22449844 DOI: 10.1016/b978-0-12-387786-4.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heart is a structurally complex and functionally heterogeneous organ. The repertoire of genes active in a given cardiac cell defines its shapes and function. This process of localized or heterogeneous gene expression is regulated to a large extent at the level of transcription, dictating the degree particular genes in a cell are active. Therefore, errors in the regulation of localized gene expression are at the basis of misregulation of the delicate process of heart development and function. In this review, we provide an overview of the origin of the different components of the vertebrate heart, and discuss our current understanding of the regulation of localized gene expression in the developing heart. We will also discuss where future research may lead to gain more insight into this process, which should provide much needed insight into the dysregulation of heart development and function, and the etiology of congenital defects.
Collapse
Affiliation(s)
- Phil Barnett
- Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Okamoto N, Akimoto N, Hidaka N, Shoji S, Sumida H. Formal genesis of the outflow tracts of the heart revisited: previous works in the light of recent observations. Congenit Anom (Kyoto) 2010; 50:141-58. [PMID: 20608949 DOI: 10.1111/j.1741-4520.2010.00286.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formal genesis of the great arteries continues to be controversial due to the lack of consensus of septation of the developing outflow tract. In order to make it clear how the great arteries are generated, we have re-examined our previous papers which emphasized the formation of the aorta and pulmonary trunk, concept of the aorticopulmonary septum, formation of the leaflets of semilunar valves, morphogenesis of the crista supraventricularis, programmed cell death and rotation of the outflow tract. In the present paper, we compare outcomes gained from the re-examination of our previous papers with prevalent interpretations of the arterial trunk. We obtained conclusions as follows: (i) The elongation of the fourth and sixth aortic arch arteries, which sprout from the wall of the aortic sac at the expense of the distal truncus, contributes to the formation of the aorta and pulmonary trunk; (ii) Smooth muscle cells of the tunica media of the arterial trunks do not arise from the transformation of the myocardial cells of the truncus wall (not 'arterialization'); (iii) Truncus swellings are divided into two parts: distal and proximal. The former contributes to the separation of the orifices of arterial trunks ('aorticopulmonary septum'). The latter contributes to the formation of the leaflets of the semilunar valves of the aorta and pulmonary trunk; (iv) The origin of the myocardial cells of the crista supraventricularis is a wall of the conus originated from secondary/anterior heart fields; and (v) There has been no acceptable proof that rotation and counterclockwise rotation are involved.
Collapse
Affiliation(s)
- Naomasa Okamoto
- Hiroshima University and Miyazaki University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
40
|
Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rücker-Martin C, Barbry P, Bel A, Bruneval P, Cowan C, Pouly J, Mitalipov S, Gouadon E, Binder P, Hagège A, Desnos M, Renaud JF, Menasché P, Pucéat M. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 2010; 120:1125-39. [PMID: 20335662 PMCID: PMC2846046 DOI: 10.1172/jci40120] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 01/13/2010] [Indexed: 12/21/2022] Open
Abstract
Cell therapy holds promise for tissue regeneration, including in individuals with advanced heart failure. However, treatment of heart disease with bone marrow cells and skeletal muscle progenitors has had only marginal positive benefits in clinical trials, perhaps because adult stem cells have limited plasticity. The identification, among human pluripotent stem cells, of early cardiovascular cell progenitors required for the development of the first cardiac lineage would shed light on human cardiogenesis and might pave the way for cell therapy for cardiac degenerative diseases. Here, we report the isolation of an early population of cardiovascular progenitors, characterized by expression of OCT4, stage-specific embryonic antigen 1 (SSEA-1), and mesoderm posterior 1 (MESP1), derived from human pluripotent stem cells treated with the cardiogenic morphogen BMP2. This progenitor population was multipotential and able to generate cardiomyocytes as well as smooth muscle and endothelial cells. When transplanted into the infarcted myocardium of immunosuppressed nonhuman primates, an SSEA-1+ progenitor population derived from Rhesus embryonic stem cells differentiated into ventricular myocytes and reconstituted 20% of the scar tissue. Notably, primates transplanted with an unpurified population of cardiac-committed cells, which included SSEA-1- cells, developed teratomas in the scar tissue, whereas those transplanted with purified SSEA-1+ cells did not. We therefore believe that the SSEA-1+ progenitors that we have described here have the potential to be used in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Guillaume Blin
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - David Nury
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Sonia Stefanovic
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Tui Neri
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Oriane Guillevic
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Benjamin Brinon
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Valérie Bellamy
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Catherine Rücker-Martin
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Pascal Barbry
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Alain Bel
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Patrick Bruneval
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Chad Cowan
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Julia Pouly
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Shoukhrat Mitalipov
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Elodie Gouadon
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Patrice Binder
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Albert Hagège
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Michel Desnos
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Jean-François Renaud
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Philippe Menasché
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| | - Michel Pucéat
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France.
University Montpellier II, France.
INSERM U633, University Paris Descartes, France.
CNRS-UMR 8162, Université Paris-Sud, and Hôpital Marie Lannelongue, Le Plessis Robinson, France.
CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, Department of Cardiovascular Surgery, Paris, France.
AP-HP, Hôpital Européen Georges-Pompidou, Department of Pathology, and INSERM U970, Paris, France.
Stowers Medical Institute, Center for Regenerative Medicine and Technology, Cardiovascular Research Center, Boston, Massachusetts.
Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton.
Institut de Médecine Aérospatiale du Service de Santé des Armées (IMASSA), Brétigny sur Orge, France.
Department of Cardiology, AP-HP, Hôpital Européen Georges-Pompidou
| |
Collapse
|
41
|
Watanabe Y, Miyagawa-Tomita S, Vincent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res 2009; 106:495-503. [PMID: 20035084 DOI: 10.1161/circresaha.109.201665] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE The genes encoding fibroblast growth factor (FGF) 8 and 10 are expressed in the anterior part of the second heart field that constitutes a population of cardiac progenitor cells contributing to the arterial pole of the heart. Previous studies of hypomorphic and conditional Fgf8 mutants show disrupted outflow tract (OFT) and right ventricle (RV) development, whereas Fgf10 mutants do not have detectable OFT defects. OBJECTIVES Our aim was to investigate functional overlap between Fgf8 and Fgf10 during formation of the arterial pole. METHODS AND RESULTS We generated mesodermal Fgf8; Fgf10 compound mutants with MesP1Cre. The OFT/RV morphology in these mutants was affected with variable penetrance; however, the incidence of embryos with severely affected OFT/RV morphology was significantly increased in response to decreasing Fgf8 and Fgf10 gene dosage. Fgf8 expression in the pharyngeal arch ectoderm is important for development of the pharyngeal arch arteries and their derivatives. We now show that Fgf8 deletion in the mesoderm alone leads to pharyngeal arch artery phenotypes and that these vascular phenotypes are exacerbated by loss of Fgf10 function in the mesodermal core of the arches. CONCLUSIONS These results show functional overlap of FGF8 and FGF10 signaling from second heart field mesoderm during development of the OFT/RV, and from pharyngeal arch mesoderm during pharyngeal arch artery formation, highlighting the sensitivity of these key aspects of cardiovascular development to FGF dosage.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Developmental Biology, URA CNRS 2578, Institut Pasteur, 25 rue du Dr. Roux 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
42
|
Miquerol L, Kelly RG. Monitoring clonal growth in the developing ventricle. Pediatr Cardiol 2009; 30:603-8. [PMID: 19184177 DOI: 10.1007/s00246-008-9371-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Understanding the etiology of congenital heart defects depends on a detailed knowledge of the morphogenetic events underlying cardiac development. Deciphering the developmental processes and cell behaviors resulting in the formation of a four-chambered heart requires techniques by which the destiny of individual cells can be traced during development. Ideally, such approaches provide information on progenitor cells and growth properties of clonally related myocytes. In the avian system, clonal analysis based on the use of replication-defective retroviral labeling led to a model for growth of the ventricular wall from polyclonal transmural cones of myocardial cells. In the mouse, the nlaacZ retrospective clonal analysis system has proved to be a powerful technique for studying different aspects of cardiac morphogenesis. Morphologic and histologic analyses of clonally related myocytes at early stages of development have provided genetic evidence for the formation of the heart tube from two cell lineages. Additional aspects of cardiac morphogenesis, including formation of the interventricular septum and myocardial outflow tract, and more recently, the origin of the ventricular conduction system, have been studied using this system. This brief review discusses how the nlaacZ system has provided new insights into the divergent properties of clonally related cells in these different regions of the developing heart.
Collapse
Affiliation(s)
- Lucile Miquerol
- Developmental Biology Institute of Marseilles-Luminy, Inserm Avenir Group, UMR 6216 CNRS-Université de Méditerranée, Campus de Luminy, Case 907, Marseille Cedex 9 13288, France
| | | |
Collapse
|
43
|
Christoffels VM, Grieskamp T, Norden J, Mommersteeg MTM, Rudat C, Kispert A. Tbx18 and the fate of epicardial progenitors. Nature 2009; 458:E8-9; discussion E9-10. [PMID: 19369973 DOI: 10.1038/nature07916] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/03/2009] [Indexed: 11/09/2022]
Abstract
Uncovering the origins of myocardial cells is important for understanding and treating heart diseases. Cai et al. suggest that Tbx18-expressing epicardium provides a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Here we show that the T-box transcription factor gene 18 (Tbx18) itself is expressed in the myocardium, showing that their genetic lineage tracing system does not allow conclusions of an epicardial origin of cardiomyocytes in vivo to be drawn.
Collapse
Affiliation(s)
- Vincent M Christoffels
- Department of Anatomy & Embryology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15 L2-108, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Contreras-Ramos A, Sánchez-Gómez C, Fierro-Pastrana R, González-Márquez H, Acosta-Vazquez F, Arellano-Galindo J. Normal development of the muscular region of the interventricular septum. II. The importance of myocardial proliferation. Anat Histol Embryol 2009; 38:219-28. [PMID: 19469768 DOI: 10.1111/j.1439-0264.2008.00926.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a first paper, we concluded that the muscular region of the interventricular septum is developed by the trabecular branches and showed evidence that the developing interventricular septum elongates in a direction opposite to that of atria. Nevertheless, to date the literature is lacking precise information on the importance of myocardial proliferation not only in this process but also in the morphogenesis of the ventricular cavities. The aim of this study was to determine the spatial and temporal distribution of high-intensity foci of cycling myocytes in the ventricular region of the heart of chicken embryos during cardiac septation. Histological studies, detection of the proliferating cell nuclear antigen by light and confocal microscopy and flow cytometric analysis were carried out. The results corroborate that the developing interventricular septum grows in a direction opposite to that of atria. A remoulding mechanism that results in fenestrated trabecular sheets and trabecular branching is discussed. Our findings allowed us to summarize the normal morphogenesis of the muscular region of the interventricular septum in a way that is different from that suggested by other researchers.
Collapse
Affiliation(s)
- A Contreras-Ramos
- Deptos. Biología del Desarrollo y Teratogénesis Experimental, Patología Clínica y Experimental, Hematología, Sección Biología Molecular, Hospital Infantil de México Federico Gómez, Mexico
| | | | | | | | | | | |
Collapse
|
45
|
Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, Moorman AFM, Christoffels VM. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 2009; 104:1267-74. [PMID: 19423846 DOI: 10.1161/circresaha.108.192450] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The primary myocardium of the embryonic heart, including the atrioventricular canal and outflow tract, is essential for septation and valve formation. In the chamber-forming heart, the expression of the T-box transcription factor Tbx2 is restricted to the primary myocardium. To gain insight into the cellular contributions of the Tbx2+ primary myocardium to the components of the definitive heart, genetic lineage tracing was performed using a novel Tbx2Cre allele. These analyses revealed that progeny of Tbx2+ cells provide an unexpectedly large contribution to the Tbx2-negative ventricles. Contrary to common assumption, we found that the embryonic left ventricle only forms the left part of the definitive ventricular septum and the apex. The atrioventricular node, but not the atrioventricular bundle, was found to derive from Tbx2+ cells. The Tbx2+ outflow tract formed the right ventricle and right part of the ventricular septum. In Tbx2-deficient embryos, the left-sided atrioventricular canal was found to prematurely differentiate to chamber myocardium and to proliferate at increased rates similar to those of chamber myocardium. As a result, the atrioventricular junction and base of the left ventricle were malformed. Together, these observations indicate that Tbx2 temporally suppresses differentiation and proliferation of primary myocardial cells. A subset of these Tbx2Cre-marked cells switch off expression of Tbx2, which allows them to differentiate into chamber myocardium, to initiate proliferation, and to provide a large contribution to the ventricles. These findings imply that errors in the development of the early atrioventricular canal may affect a much larger region than previously anticipated, including the ventricular base.
Collapse
Affiliation(s)
- Wim T J Aanhaanen
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol 2009; 6:317-21. [PMID: 19352336 DOI: 10.1038/nrcardio.2009.9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of genetic mutations associated with hypertrophic cardiomyopathy (HCM) occur in genes encoding sarcomeric proteins, which are expressed only in cardiomyocytes. However, some manifestations of the HCM phenotype, such as myocardial disarray, interstitial fibrosis, mitral valve abnormalities, and microvascular remodeling, indicate the involvement of other cell lineages. The link between sarcomeric gene defects and these 'extended' HCM phenotypes remains elusive. Based on novel insights provided by cardiac developmental biology, we propose that a common lineage ancestry of the diverse HCM phenotypes not involving the cardiomyocyte can be traced to the pluripotent epicardium-derived cells (EPDCs). During cardiac colonization, EPDCs differentiate into interstitial fibroblasts, coronary smooth-muscle cells, and atrioventricular endocardial cushions as mesenchymal cells. We propose that the cross-talk between healthy EPDCs and abnormally contracting cardiomyocytes might account for the diverse manifestations of HCM, by a putative mechanism of mechanotransduction leading to abnormal gene expression and differentiation.
Collapse
Affiliation(s)
- Iacopo Olivotto
- Department of Cardiology, Careggi University Hospital, Florence
| | | | | | | |
Collapse
|
47
|
Boukens BJD, Christoffels VM, Coronel R, Moorman AFM. Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circ Res 2009; 104:19-31. [PMID: 19118284 DOI: 10.1161/circresaha.108.188698] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Reentry is the main mechanism of life-threatening ventricular arrhythmias, including ventricular fibrillation and tachycardia. Its occurrence depends on the simultaneous presence of an arrhythmogenic substrate (a preexisting condition) and a "trigger," and is favored by electrophysiological heterogeneities. In the adult heart, electrophysiological heterogeneities of the ventricle exist along the apicobasal, left-right, and transmural axes. Also, conduction is preferentially slowed in the right ventricular outflow tract, especially during pharmacological sodium channel blockade. We propose that the origin of electrophysiological heterogeneities of the adult heart lies in early heart development. The heart is formed from several progenitor regions: the first heart field predominantly forms the left ventricle, whereas the second heart field forms the right ventricle and outflow tract. Furthermore, the embryonic outflow tract consists of slowly conducting tissue until it is incorporated into the ventricles and develops rapidly conducting properties. The subepicardial myocytes and subendocardial myocytes run distinctive gene programs from their formation onwards. This review discusses the hypothesis that electrophysiological heterogeneities in the adult heart result from persisting patterns in gene expression and function along the craniocaudal and epicardial-endocardial axes of the developing heart. Understanding the developmental origins of electrophysiological heterogeneity contributing to ventricular arrhythmias may give rise to new therapies.
Collapse
Affiliation(s)
- Bastiaan J D Boukens
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
48
|
Contreras-Ramos A, Sánchez-Gómez C, García-Romero HL, Cimarosti LO. Normal Development of the Muscular Region of the Interventricular Septum - I. The Significance of the Ventricular Trabeculations. Anat Histol Embryol 2008; 37:344-51. [DOI: 10.1111/j.1439-0264.2008.00852.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008; 454:104-8. [PMID: 18480752 DOI: 10.1038/nature06969] [Citation(s) in RCA: 605] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 04/01/2008] [Indexed: 11/10/2022]
Abstract
Understanding the origins and roles of cardiac progenitor cells is important for elucidating the pathogenesis of congenital and acquired heart diseases. Moreover, manipulation of cardiac myocyte progenitors has potential for cell-based repair strategies for various myocardial disorders. Here we report the identification in mouse of a previously unknown cardiac myocyte lineage that derives from the proepicardial organ. These progenitor cells, which express the T-box transcription factor Tbx18, migrate onto the outer cardiac surface to form the epicardium, and then make a substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls. Tbx18-expressing cardiac progenitors also give rise to cardiac fibroblasts and coronary smooth muscle cells. The pluripotency of Tbx18 proepicardial cells provides a theoretical framework for applying these progenitors to effect cardiac repair and regeneration.
Collapse
Affiliation(s)
- Chen-Leng Cai
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tessari A, Pietrobon M, Notte A, Cifelli G, Gage PJ, Schneider MD, Lembo G, Campione M. Myocardial Pitx2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs. Circ Res 2008; 102:813-22. [PMID: 18292603 DOI: 10.1161/circresaha.107.163188] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Pitx2 gene regulates left-right (L/R) asymmetrical cardiac morphogenesis. Constitutive Pitx2 knock out (ko) mice die before birth and display, among other defects, right atrial isomerism, atrial and ventricular septal defects, and double outlet right ventricle. The myocardial role of the gene has not been dissected. In particular, how Pitx2 regulates the differential L/R cardiac identity program is not clear. Additionally, the relation between Pitx2 ko ventricular defects and the gene expression pattern is not understood. In this article we analyze Pitx2 myocardial function during mouse heart development. By in situ hybridization analysis we show that myocardial Pitx2 expression delineates the remodeling of the left atrioventricular canal, the inner curvature, the ventral part of the interventricular ring, and the ventral portion of the right and left ventricle. By genetic analysis using an allelic series of Pitx2 mutants, among which a myocardial specific ko (ko(myo)) we show it has a crucial role in this process. Pitx2 ko(myo) mutants survive to adulthood, when they present strong cardiac morphological and functional defects. Confocal analysis of embryonic Pitx2 ko(myo) hearts reveals delayed cardiomyocyte development in the ventricular but not in the atrial Pitx2 null areas. Conversely, selective left atrial BMP10 mRNA downregulation which normally occurs at fetal stages is not found in the Pitx2 ko(myo) mice. This is the first evidence for distinct Pitx2 action in mediating L/R atrial identity and asymmetrical ventricular remodeling.
Collapse
Affiliation(s)
- Alessandra Tessari
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|