1
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
2
|
Mu Y, Hu S, Liu X, Tang X, Lin J, Shi H. Mechanical forces pattern endocardial Notch activation via mTORC2-PKC pathway. eLife 2025; 13:RP97268. [PMID: 39932433 PMCID: PMC11813223 DOI: 10.7554/elife.97268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.
Collapse
Affiliation(s)
- Yunfei Mu
- Fudan UniversityShanghaiChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Shijia Hu
- Fudan UniversityShanghaiChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Xiangyang Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Xin Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
3
|
Miao R, Yu HY, Zhong BJ, Sun HX, Xia Q. AWGE-ESPCA: An edge sparse PCA model based on adaptive noise elimination regularization and weighted gene network for Hermetia illucens genomic data analysis. PLoS Comput Biol 2025; 21:e1012773. [PMID: 39946426 PMCID: PMC11825005 DOI: 10.1371/journal.pcbi.1012773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025] Open
Abstract
Hermetia illucens is an important insect resource. Studies have shown that exploring the effects of Cu2+-stressed on the growth and development of the Hermetia illucens genome holds significant scientific importance. There are three major challenges in the current studies of Hermetia illucens genomic data analysis: firstly, the lack of available genomic data which limits researchers in Hermetia illucens genomic data analysis. Secondly, to the best of our knowledge, there are no Artificial Intelligence (AI) feature selection models designed specifically for Hermetia illucens genome. Unlike human genomic data, noise in Hermetia illucens data is a more serious problem. Third, how to choose those genes located in the pathway enrichment region. Existing models assume that each gene probe has the same priori weight. However, researchers usually pay more attention to gene probes which are in the pathway enrichment region. Based on the above challenges, we initially construct experiments and establish a new Cu2+-stressed Hermetia illucens growth genome dataset. Subsequently, we propose AWGE-ESPCA: an edge Sparse PCA model based on adaptive noise elimination regularization and weighted gene network. The AWGE-ESPCA model innovatively proposes an adaptive noise elimination regularization method, effectively addressing the noise challenge in Hermetia illucens genomic data. We also integrate the known gene-pathway quantitative information into the Sparse PCA(SPCA) framework as a priori knowledge, which allows the model to filter out the gene probes in pathway-rich regions as much as possible. Ultimately, this study conducts five independent experiments and compared four latest Sparse PCA models as well as representative supervised and unsupervised baseline models to validate the model performance. The experimental results demonstrate the superior pathway and gene selection capabilities of the AWGE-ESPCA model. Ablation experiments validate the role of the adaptive regularizer and network weighting module. To summarize, this paper presents an innovative unsupervised model for Hermetia illucens genome analysis, which can effectively help researchers identify potential biomarkers. In addition, we also provide a working AWGE - ESPCA model code in the address: https://github.com/yhyresearcher/AWGE_ESPCA.
Collapse
Affiliation(s)
- Rui Miao
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Hao-Yang Yu
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Bing-Jie Zhong
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Hong-Xia Sun
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| | - Qiang Xia
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhu Hai, China
| |
Collapse
|
4
|
Qiu X, Zhu DY, Lu Y, Yao J, Jing Z, Min KH, Cheng M, Pan H, Zuo L, King S, Fang Q, Zheng H, Wang M, Wang S, Zhang Q, Yu S, Liao S, Liu C, Wu X, Lai Y, Hao S, Zhang Z, Wu L, Zhang Y, Li M, Tu Z, Lin J, Yang Z, Li Y, Gu Y, Ellison D, Chen A, Liu L, Weissman JS, Ma J, Xu X, Liu S, Bai Y. Spatiotemporal modeling of molecular holograms. Cell 2024; 187:7351-7373.e61. [PMID: 39532097 DOI: 10.1016/j.cell.2024.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Quantifying spatiotemporal dynamics during embryogenesis is crucial for understanding congenital diseases. We developed Spateo (https://github.com/aristoteleo/spateo-release), a 3D spatiotemporal modeling framework, and applied it to a 3D mouse embryogenesis atlas at E9.5 and E11.5, capturing eight million cells. Spateo enables scalable, partial, non-rigid alignment, multi-slice refinement, and mesh correction to create molecular holograms of whole embryos. It introduces digitization methods to uncover multi-level biology from subcellular to whole organ, identifying expression gradients along orthogonal axes of emergent 3D structures, e.g., secondary organizers such as midbrain-hindbrain boundary (MHB). Spateo further jointly models intercellular and intracellular interaction to dissect signaling landscapes in 3D structures, including the zona limitans intrathalamica (ZLI). Lastly, Spateo introduces "morphometric vector fields" of cell migration and integrates spatial differential geometry to unveil molecular programs underlying asymmetrical murine heart organogenesis and others, bridging macroscopic changes with molecular dynamics. Thus, Spateo enables the study of organ ecology at a molecular level in 3D space over time.
Collapse
Affiliation(s)
- Xiaojie Qiu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Basic Sciences and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| | - Daniel Y Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yifan Lu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Basic Sciences and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Jiajun Yao
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zehua Jing
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kyung Hoi Min
- Ginkgo Bioworks, The Innovation and Design Building, Boston, MA 02210, USA
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | | | - Lulu Zuo
- BGI Research, Shenzhen 518083, China
| | - Samuel King
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Fang
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Wang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA, USA
| | - Sichao Yu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sha Liao
- BGI Research, Shenzhen 518083, China; STOmics Tech Co., Ltd, Shenzhen 518083, China; BGI Research, Chongqing 401329, China
| | - Chao Liu
- BGI Research, Wuhan 430074, China
| | - Xinchao Wu
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Lai
- BGI Research, Shenzhen 518083, China
| | | | - Zhewei Zhang
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Wu
- BGI Research, Chongqing 401329, China
| | | | - Mei Li
- STOmics Tech Co., Ltd, Shenzhen 518083, China
| | - Zhencheng Tu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpei Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Sanya 572025, China
| | - Zhuoxuan Yang
- BGI Research, Hangzhou 310030, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Ying Gu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ao Chen
- BGI Research, Shenzhen 518083, China; STOmics Tech Co., Ltd, Shenzhen 518083, China; BGI Research, Chongqing 401329, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Shenzhen Bay Laboratory, Shenzhen 518132, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Jiayi Ma
- Electronic Information School, Wuhan University, Wuhan 430072, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; Shenzhen Bay Laboratory, Shenzhen 518132, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China; The Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, Guangdong, China.
| | - Yinqi Bai
- BGI Research, Sanya 572025, China; Hainan Technology Innovation Center for Marine Biological Resources Utilization (Preparatory Period), BGI Research, Sanya 572025, China.
| |
Collapse
|
5
|
Yuan Y, Zhang H, Xia E, Zhao X, Gao Q, Mu H, Liu X, Tian Y, Liu L, Shen Q, Sheng L. BMP2 Diminishes Angiotensin II-Induced Atrial Fibrillation by Inhibiting NLRP3 Inflammasome Signaling in Atrial Fibroblasts. Biomolecules 2024; 14:1053. [PMID: 39334820 PMCID: PMC11430365 DOI: 10.3390/biom14091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia to affect 1% of the global population and increases with age. Atrial fibrosis is a crucial substrate for promoting structural remodeling to cause atrial arrhythmogenesis. Bone morphogenic protein 2 (BMP2) has been reported to be involved in cardiac fibrogenesis. However, its role in modulating atrial fibrosis to affect AF development remains unknown. Our study aimed to investigate the expression of BMP2 under different AF conditions and the effect of BMP2 on the progression of atrial fibrosis using an angiotensin II (Ang II) rat model and an ex vivo cardiac fibroblast model. The qRT-PCR and Western blot assay showed increased BMP2 mRNA and protein levels in the atria of chronic AF patients and the right atria of a tachypacing rabbit model. In contrast, the levels of BMP2 receptor mRNA were comparable. The AF incidence of the Ang II rat was higher than that of a control rat, which was reduced by BMP2 treatment. Masson staining demonstrated an anti-fibrogenic impact on BMP2-subjected rat atria compared to only Ang II-treated rat atria. RNA-sequencing indicated the potential function of blocking NLRP3-associted inflammasome activation in BMP2-treated rat atrial tissues. In vitro, transfecting BMP2 shRNA into neonatal rat atrial fibroblasts upregulated the mRNA levels of NLRP3/Caspase-1/p20/ASC and the secretion of IL-1β and IL-6. In contrast, recombinant BMP2 protein attenuated the increased levels of the NLRP3 inflammasome pathway induced by Ang II. In summary, BMP2 opposes atrial fibrosis to alleviate AF susceptibility by inhibiting the activation of the inflammasome in atrial fibroblasts.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hang Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Erwen Xia
- Department of General Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xinbo Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qiang Gao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hongyuan Mu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xingzuo Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yuanye Tian
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Lei Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qiuling Shen
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Li Sheng
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
6
|
Shapiro D, Lee K, Asmussen J, Bourquard T, Lichtarge O. Evolutionary Action-Machine Learning Model Identifies Candidate Genes Associated With Early-Onset Coronary Artery Disease. J Am Heart Assoc 2023; 12:e029103. [PMID: 37642027 PMCID: PMC10547338 DOI: 10.1161/jaha.122.029103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
Background Coronary artery disease is a primary cause of death around the world, with both genetic and environmental risk factors. Although genome-wide association studies have linked >100 unique loci to its genetic basis, these only explain a fraction of disease heritability. Methods and Results To find additional gene drivers of coronary artery disease, we applied machine learning to quantitative evolutionary information on the impact of coding variants in whole exomes from the Myocardial Infarction Genetics Consortium. Using ensemble-based supervised learning, the Evolutionary Action-Machine Learning framework ranked each gene's ability to classify case and control samples and identified 79 significant associations. These were connected to known risk loci; enriched in cardiovascular processes like lipid metabolism, blood clotting, and inflammation; and enriched for cardiovascular phenotypes in knockout mouse models. Among them, INPP5F and MST1R are examples of potentially novel coronary artery disease risk genes that modulate immune signaling in response to cardiac stress. Conclusions We concluded that machine learning on the functional impact of coding variants, based on a massive amount of evolutionary information, has the power to suggest novel coronary artery disease risk genes for mechanistic and therapeutic discoveries in cardiovascular biology, and should also apply in other complex polygenic diseases.
Collapse
Affiliation(s)
- Dillon Shapiro
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Kwanghyuk Lee
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Jennifer Asmussen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Thomas Bourquard
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Olivier Lichtarge
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Computational & Integrative Biomedical Research CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
7
|
Bobos D, Soufla G, Angouras DC, Lekakis I, Georgopoulos S, Melissari E. Investigation of the Role of BMP2 and -4 in ASD, VSD and Complex Congenital Heart Disease. Diagnostics (Basel) 2023; 13:2717. [PMID: 37627976 PMCID: PMC10453726 DOI: 10.3390/diagnostics13162717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital heart malformations (CHMs) make up between 2 and 3% of annual human births. Bone morphogenetic proteins (BMPs) signalling is required for chamber myocardium development. We examined for possible molecular defects in the bone morphogenetic protein 2 and 4 (BMP2, -4) genes by sequencing analysis of all coding exons, as well as possible transcription or protein expression deregulation by real-time PCR and ELISA, respectively, in 52 heart biopsies with congenital malformations (atrial septal defect (ASD), ventricular septal defect (VSD), tetralogy ofFallot (ToF) and complex cases) compared to 10 non-congenital heart disease (CHD) hearts. No loss of function mutations was found; only synonymous single nucleotide polymorphisms (SNPs) in the BMP2 and BMP4 genes were found. Deregulation of the mRNA expression and co-expression profile of the two genes (BMP2/BMP4) was observed in the affected compared to the normal hearts. BMP2 and -4 protein expression levels were similar in normal and affected hearts. This is the first study assessing the role of BMP-2 and 4 in congenital heart malformations. Our analysis did not reveal molecular defects in the BMP2 and -4 genes that could support a causal relationship with the congenital defects present in our patients. Importantly, sustained mRNA and protein expression of BMP2 and -4 in CHD cases compared to controls indicates possible temporal epigenetic, microRNA or post-transcriptional regulation mechanisms governing the initial stages of cardiac malformation.
Collapse
Affiliation(s)
- Dimitrios Bobos
- Department of Pediatric Cardiothoracic Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Giannoula Soufla
- Department of Hematology and Blood Transfusion, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Dimitrios C. Angouras
- Department of Cardiac Surgery, Faculty of Medicine, Attikon University Hospital, National Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis Lekakis
- Second Department of Cardiology, Attikon Hospital, Athens Medical School, National Kapodistrian University of Athens, 15771 Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Surgery, Laikon General Hospital, Medical School, National Kapodistrian University of Athens, 15771 Athens, Greece
| | - Euthemia Melissari
- Department of Hematology and Blood Transfusion, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
8
|
Hernández-García A, Pendleton KE, Kim S, Li Y, Kim BJ, Zaveri HP, Jordan VK, Berry AM, Ljungberg MC, Chen R, Lanz RB, Scott DA. SOX7 deficiency causes ventricular septal defects through its effects on endocardial-to-mesenchymal transition and the expression of Wnt4 and Bmp2. Hum Mol Genet 2023; 32:2152-2161. [PMID: 37000005 PMCID: PMC10281751 DOI: 10.1093/hmg/ddad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
SOX7 is a transcription factor-encoding gene located in a region on chromosome 8p23.1 that is recurrently deleted in individuals with ventricular septal defects (VSDs). We have previously shown that Sox7-/- embryos die of heart failure around E11.5. Here, we demonstrate that these embryos have hypocellular endocardial cushions with severely reduced numbers of mesenchymal cells. Ablation of Sox7 in the endocardium also resulted in hypocellular endocardial cushions, and we observed VSDs in rare E15.5 Sox7flox/-;Tie2-Cre and Sox7flox/flox;Tie2-Cre embryos that survived to E15.5. In atrioventricular explant studies, we showed that SOX7 deficiency leads to a severe reduction in endocardial-to-mesenchymal transition (EndMT). RNA-seq studies performed on E9.5 Sox7-/- heart tubes revealed severely reduced Wnt4 transcript levels. Wnt4 is expressed in the endocardium and promotes EndMT by acting in a paracrine manner to increase the expression of Bmp2 in the myocardium. Both WNT4 and BMP2 have been previously implicated in the development of VSDs in individuals with 46,XX sex reversal with dysgenesis of kidney, adrenals and lungs (SERKAL) syndrome and in individuals with short stature, facial dysmorphism and skeletal anomalies with or without cardiac anomalies 1 (SSFSC1) syndrome, respectively. We now show that Sox7 and Wnt4 interact genetically in the development of VSDs through their additive effects on endocardial cushion development with Sox7+/-;Wnt4+/- double heterozygous embryos having hypocellular endocardial cushions and perimembranous and muscular VSDs not seen in their Sox7+/- and Wnt4+/- littermates. These results provide additional evidence that SOX7, WNT4 and BMP2 function in the same pathway during mammalian septal development and that their deficiency can contribute to the development of VSDs in humans.
Collapse
Affiliation(s)
- Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine E Pendleton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bum J Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aliska M Berry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
D'Amato G, Phansalkar R, Naftaly JA, Fan X, Amir ZA, Rios Coronado PE, Cowley DO, Quinn KE, Sharma B, Caron KM, Vigilante A, Red-Horse K. Endocardium-to-coronary artery differentiation during heart development and regeneration involves sequential roles of Bmp2 and Cxcl12/Cxcr4. Dev Cell 2022; 57:2517-2532.e6. [PMID: 36347256 PMCID: PMC9833645 DOI: 10.1016/j.devcel.2022.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Endocardial cells lining the heart lumen are coronary vessel progenitors during embryogenesis. Re-igniting this developmental process in adults could regenerate blood vessels lost during cardiac injury, but this requires additional knowledge of molecular mechanisms. Here, we use mouse genetics and scRNA-seq to identify regulators of endocardial angiogenesis and precisely assess the role of CXCL12/CXCR4 signaling. Time-specific lineage tracing demonstrated that endocardial cells differentiated into coronary endothelial cells primarily at mid-gestation. A new mouse line reporting CXCR4 activity-along with cell-specific gene deletions-demonstrated it was specifically required for artery morphogenesis rather than angiogenesis. Integrating scRNA-seq data of endocardial-derived coronary vessels from mid- and late-gestation identified a Bmp2-expressing transitioning population specific to mid-gestation. Bmp2 stimulated endocardial angiogenesis in vitro and in injured neonatal mouse hearts. Our data demonstrate how understanding the molecular mechanisms underlying endocardial angiogenesis can identify new potential therapeutic targets promoting revascularization of the injured heart.
Collapse
Affiliation(s)
- Gaetano D'Amato
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ragini Phansalkar
- Department of Biology, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Xiaochen Fan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Zhainib A Amir
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC, USA
| | - Kelsey E Quinn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bikram Sharma
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alessandra Vigilante
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, London, UK
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
10
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
11
|
Kim NJ, Lee KH, Son Y, Nam AR, Moon EH, Pyun JH, Park J, Kang JS, Lee YJ, Cho JY. Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment. RNA Biol 2021; 18:640-654. [PMID: 34755591 PMCID: PMC8782178 DOI: 10.1080/15476286.2021.1976549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The roles of long non-coding RNA (LncRNA) have been highlighted in various development processes including congenital heart defects (CHD). Here, we characterized the molecular function of LncRNA, Moshe (1010001N08ik-203), one of the Gata6 antisense transcripts located upstream of Gata6, which is involved in both heart development and the most common type of congenital heart defect, atrial septal defect (ASD). During mouse embryonic development, Moshe was first detected during the cardiac mesoderm stage (E8.5 to E9.5) where Gata6 is expressed and continues to increase at the atrioventricular septum (E12.5), which is involved in ASD. Functionally, the knock-down of Moshe during cardiogenesis caused significant repression of Nkx2.5 in cardiac progenitor stages and resulted in the increase in major SHF lineage genes, such as cardiac transcriptional factors (Isl1, Hand2, Tbx2), endothelial-specific genes (Cd31, Flk1, Tie1, vWF), a smooth muscle actin (a-Sma) and sinoatrial node-specific genes (Shox2, Tbx18). Chromatin Isolation by RNA Purification showed Moshe activates Nkx2.5 gene expression via direct binding to its promoter region. Of note, Moshe was conserved across species, including human, pig and mouse. Altogether, this study suggests that Moshe is a heart-enriched lncRNA that controls a sophisticated network of cardiogenesis by repressing genes in SHF via Nkx2.5 during cardiac development and may play an important role in ASD.
Collapse
Affiliation(s)
- Na-Jung Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - A-Reum Nam
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Eun-Hye Moon
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University, Yeonsu-gu, Republic of Korea
| | - Jung-Hoon Pyun
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jinyoung Park
- Department of Biochemistry, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University, Yeonsu-gu, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Zheng M, Erhardt S, Ai D, Wang J. Bmp Signaling Regulates Hand1 in a Dose-Dependent Manner during Heart Development. Int J Mol Sci 2021; 22:ijms22189835. [PMID: 34576009 PMCID: PMC8465227 DOI: 10.3390/ijms22189835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The bone morphogenetic protein (Bmp) signaling pathway and the basic helix–loop–helix (bHLH) transcription factor Hand1 are known key regulators of cardiac development. In this study, we investigated the Bmp signaling regulation of Hand1 during cardiac outflow tract (OFT) development. In Bmp2 and Bmp4loss-of-function embryos with varying levels of Bmp in the heart, Hand1 is sensitively decreased in response to the dose of Bmp expression. In contrast, Hand1 in the heart is dramatically increased in Bmp4 gain-of-function embryos. We further identified and characterized the Bmp/Smad regulatory elements in Hand1. Combined transfection assays and chromatin immunoprecipitation (ChIP) experiments indicated that Hand1 is directly activated and bound by Smads. In addition, we found that upon the treatment of Bmp2 and Bmp4, P19 cells induced Hand1 expression and favored cardiac differentiation. Together, our data indicated that the Bmp signaling pathway directly regulates Hand1 expression in a dose-dependent manner during heart development.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Di Ai
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.Z.); (S.E.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
13
|
Prados B, Del Toro R, MacGrogan D, Gómez-Apiñániz P, Papoutsi T, Muñoz-Cánoves P, Méndez-Ferrer S, de la Pompa JL. Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death Dis 2021; 12:729. [PMID: 34294700 PMCID: PMC8298441 DOI: 10.1038/s41419-021-04003-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.
Collapse
Affiliation(s)
- Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Raquel Del Toro
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Physiophatology group, Instituto de Biomedicina de Sevilla-IBIS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla). Manuel Siurot, s/n, 41013, Sevilla, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Paula Gómez-Apiñániz
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Tania Papoutsi
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Pura Muñoz-Cánoves
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Experimental & Health Sciences, Universidad Pompeu Fabra (UPF), ICREA and CIBERNED, Dr. Aiguader 88, Barcelona, Spain
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
14
|
Bassen D, Wang M, Pham D, Sun S, Rao R, Singh R, Butcher J. Hydrostatic mechanical stress regulates growth and maturation of the atrioventricular valve. Development 2021; 148:270769. [PMID: 34086041 DOI: 10.1242/dev.196519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022]
Abstract
During valvulogenesis, cytoskeletal, secretory and transcriptional events drive endocardial cushion growth and remodeling into thin fibrous leaflets. Genetic disorders play an important role in understanding valve malformations but only account for a minority of clinical cases. Mechanical forces are ever present, but how they coordinate molecular and cellular decisions remains unclear. In this study, we used osmotic pressure to interrogate how compressive and tensile stresses influence valve growth and shape maturation. We found that compressive stress drives a growth phenotype, whereas tensile stress increases compaction. We identified a mechanically activated switch between valve growth and maturation, by which compression induces cushion growth via BMP-pSMAD1/5, while tension induces maturation via pSer-19-mediated MLC2 contractility. The compressive stress acts through BMP signaling to increase cell proliferation and decrease cell contractility, and MEK-ERK is essential for both compressive stress and BMP mediation of compaction. We further showed that the effects of osmotic stress are conserved through the condensation and elongation stages of development. Together, our results demonstrate that compressive/tensile stress regulation of BMP-pSMAD1/5 and MLC2 contractility orchestrates valve growth and remodeling.
Collapse
Affiliation(s)
- David Bassen
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mingkun Wang
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Duc Pham
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Shuofei Sun
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Rashmi Rao
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Rishabh Singh
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan Butcher
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Zhang JM, Yu RQ, Wu FZ, Qiao L, Wu XR, Fu YJ, Liang YF, Pang Y, Xie CY. BMP-2 alleviates heart failure with type 2 diabetes mellitus and doxorubicin-induced AC16 cell injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Exp Ther Med 2021; 22:897. [PMID: 34257710 DOI: 10.3892/etm.2021.10329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure (CHF) and diabetes mellitus are associated with morbidity and mortality. CHF and diabetes generally simultaneously occur, resulting in adverse outcomes. Diabetes complicates cardiomyopathy and exacerbates heart failure conditions. An increase in natriuretic peptides, including atrial natriuretic peptide (ANP), and another endsogenously generated peptide, brain natriuretic peptide (BNP), serves an essential role in CHF. The aim of this study was to explore the molecular regulation between bone morphogenetic protein-2 (BMP-2) and ANP or BNP in diabetes-associated cardiomyopathy. In total, 25 serum samples were collected from patients with CHF with or without type 2 diabetes mellitus to compare with 25 controls. Cardiomyopathy and hyperglycemia were induced in rats by doxorubicin and streptozotocin, respectively. AC16 cells were used to study molecular mechanisms. BMP, ANP and BNP concentration in patients and rats were measured by ELISA. Flow cytometry was performed to analyze cell pyroptosis and ROS production. Reverse transcription-quantitative PCR and western blotting were used to examine mRNA and protein expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), pro-caspase-1, caspase-1 (p20) and gasdermin D. BMP-2 was negatively correlated with ANP and BNP in CHF patients with type 2 diabetes mellitus. Similar results were obtained in rats and AC16 cells. BMP-2 decreased the NLRP3 inflammasome activation and cell pyroptosis. The present study found evidence that the cardioprotective effects of BMP-2 act through ANP and BNP both in vivo and in vitro. BMP-2 inhibits inflammasome formation. The results suggested that BMP-2 may serve as a novel therapeutic target for the treatment of diabetic heart conditions.
Collapse
Affiliation(s)
- Jia-Mei Zhang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Rui-Qun Yu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Feng-Zhu Wu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Liang Qiao
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Xiao-Rong Wu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Ying-Jie Fu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Yue-Feng Liang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Yu Pang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Chun-Yi Xie
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
16
|
Zhang C, Li Y, Cao J, Yu B, Zhang K, Li K, Xu X, Guo Z, Liang Y, Yang X, Yang Z, Sun Y, Kaartinen V, Ding K, Wang J. Hedgehog signalling controls sinoatrial node development and atrioventricular cushion formation. Open Biol 2021; 11:210020. [PMID: 34062094 PMCID: PMC8169207 DOI: 10.1098/rsob.210020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.
Collapse
Affiliation(s)
- Chaohui Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yuxin Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Jiaheng Cao
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Beibei Yu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Kaiyue Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Ke Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xinhui Xu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, People's Republic of China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, People's Republic of China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou 450003, People's Republic of China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| |
Collapse
|
17
|
Kanapeckaitė A, Burokienė N. Insights into therapeutic targets and biomarkers using integrated multi-'omics' approaches for dilated and ischemic cardiomyopathies. Integr Biol (Camb) 2021; 13:121-137. [PMID: 33969404 DOI: 10.1093/intbio/zyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
At present, heart failure (HF) treatment only targets the symptoms based on the left ventricle dysfunction severity; however, the lack of systemic 'omics' studies and available biological data to uncover the heterogeneous underlying mechanisms signifies the need to shift the analytical paradigm towards network-centric and data mining approaches. This study, for the first time, aimed to investigate how bulk and single cell RNA-sequencing as well as the proteomics analysis of the human heart tissue can be integrated to uncover HF-specific networks and potential therapeutic targets or biomarkers. We also aimed to address the issue of dealing with a limited number of samples and to show how appropriate statistical models, enrichment with other datasets as well as machine learning-guided analysis can aid in such cases. Furthermore, we elucidated specific gene expression profiles using transcriptomic and mined data from public databases. This was achieved using the two-step machine learning algorithm to predict the likelihood of the therapeutic target or biomarker tractability based on a novel scoring system, which has also been introduced in this study. The described methodology could be very useful for the target or biomarker selection and evaluation during the pre-clinical therapeutics development stage as well as disease progression monitoring. In addition, the present study sheds new light into the complex aetiology of HF, differentiating between subtle changes in dilated cardiomyopathies (DCs) and ischemic cardiomyopathies (ICs) on the single cell, proteome and whole transcriptome level, demonstrating that HF might be dependent on the involvement of not only the cardiomyocytes but also on other cell populations. Identified tissue remodelling and inflammatory processes can be beneficial when selecting targeted pharmacological management for DCs or ICs, respectively.
Collapse
Affiliation(s)
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
18
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
19
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
20
|
Välimäki MJ, Leigh RS, Kinnunen SM, March AR, de Sande AH, Kinnunen M, Varjosalo M, Heinäniemi M, Kaynak BL, Ruskoaho H. GATA-targeted compounds modulate cardiac subtype cell differentiation in dual reporter stem cell line. Stem Cell Res Ther 2021; 12:190. [PMID: 33736688 PMCID: PMC7977156 DOI: 10.1186/s13287-021-02259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration. Methods Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression. Results GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression. Conclusions Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02259-z.
Collapse
Affiliation(s)
- Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Robert S Leigh
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Alexander R March
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Ana Hernández de Sande
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bogac L Kaynak
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
21
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
22
|
Ahluwalia N, Gelb BD. A de novo pathogenic BMP2 variant-related phenotype with the novel finding of bicuspid aortic valve. Am J Med Genet A 2020; 185:575-578. [PMID: 33247540 DOI: 10.1002/ajmg.a.61992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022]
Abstract
A rare autosomal dominant syndrome with craniofacial dysmorphisms, skeletal abnormalities, short stature, and congenital heart defects has recently been described, associated with monoallelic truncating and frameshift bone morphogenetic protein 2 (BMP2) variants and deletions. We describe a patient harboring a novel de novo BMP2 nonsense variant, who exhibited craniofacial and skeletal features previously described for this trait and the novel findings of bicuspid aortic valve (BAV) and aortic root and ascending aortic aneurysm. This first instance of aortic valve involvement provides another potential cause of BAV and confirms the role of BMP2 in left ventricular outflow development.
Collapse
Affiliation(s)
- Neha Ahluwalia
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
24
|
Abstract
The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.
Collapse
Affiliation(s)
- Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
26
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
27
|
Hulshoff MS, del Monte-Nieto G, Kovacic J, Krenning G. Non-coding RNA in endothelial-to-mesenchymal transition. Cardiovasc Res 2019; 115:1716-1731. [PMID: 31504268 PMCID: PMC6755356 DOI: 10.1093/cvr/cvz211] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the process wherein endothelial cells lose their typical endothelial cell markers and functions and adopt a mesenchymal-like phenotype. EndMT is required for development of the cardiac valves, the pulmonary and dorsal aorta, and arterial maturation, but activation of the EndMT programme during adulthood is believed to contribute to several pathologies including organ fibrosis, cardiovascular disease, and cancer. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, modulate EndMT during development and disease. Here, we review the mechanisms by which non-coding RNAs facilitate or inhibit EndMT during development and disease and provide a perspective on the therapeutic application of non-coding RNAs to treat fibroproliferative cardiovascular disease.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen, The Netherlands
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | | | - Jason Kovacic
- Dept. Cardiology, Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen, The Netherlands
| |
Collapse
|
28
|
Boogerd CJ, Zhu X, Aneas I, Sakabe N, Zhang L, Sobreira DR, Montefiori L, Bogomolovas J, Joslin AC, Zhou B, Chen J, Nobrega MA, Evans SM. Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development. Circ Res 2019; 123:428-442. [PMID: 29903739 PMCID: PMC6092109 DOI: 10.1161/circresaha.118.311339] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type–specific requirement for TBX20 in early myocardial development remains to be explored. Objective: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. Methods and Results: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. Conclusions: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.
Collapse
Affiliation(s)
- Cornelis J. Boogerd
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Xiaoming Zhu
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Ivy Aneas
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Noboru Sakabe
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lunfeng Zhang
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Debora R. Sobreira
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lindsey Montefiori
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Julius Bogomolovas
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.B.)
| | - Amelia C. Joslin
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Bin Zhou
- Department of Genetics, Medicine and Pediatrics, Albert Einstein College of Medicine of Yeshiva University, New York, NY (B.Z.)
| | - Ju Chen
- Department of Medicine (J.B., J.C., S.M.E.)
| | - Marcelo A. Nobrega
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Sylvia M. Evans
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Pharmacology (S.M.E.)
| |
Collapse
|
29
|
Abstract
Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue-tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis. In this Review, we describe the role of Notch signalling and the crosstalk with other signalling pathways during the differentiation and patterning of the different cardiac tissues and in cardiac valve and ventricular chamber development. We examine how perturbation of Notch signalling activity is linked to congenital heart diseases affecting the neonate and adult, and discuss studies that shed light on the role of Notch signalling in heart regeneration and repair after injury.
Collapse
|
30
|
Torregrosa-Carrión R, Luna-Zurita L, García-Marqués F, D'Amato G, Piñeiro-Sabarís R, Bonzón-Kulichenko E, Vázquez J, de la Pompa JL. NOTCH Activation Promotes Valve Formation by Regulating the Endocardial Secretome. Mol Cell Proteomics 2019; 18:1782-1795. [PMID: 31249105 PMCID: PMC6731085 DOI: 10.1074/mcp.ra119.001492] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/24/2019] [Indexed: 11/06/2022] Open
Abstract
The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-β2 (TGFβ2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfβ2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.
Collapse
Affiliation(s)
- Rebeca Torregrosa-Carrión
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN
| | - Luis Luna-Zurita
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN
| | | | - Gaetano D'Amato
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; ‖Department of Biology, Stanford University, Stanford, CA 94305
| | - Rebeca Piñeiro-Sabarís
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN
| | - Elena Bonzón-Kulichenko
- §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN; **Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN
| | - Jesús Vázquez
- §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN; **Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN
| | - José Luis de la Pompa
- ‡Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, SPAIN; §Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, SPAIN.
| |
Collapse
|
31
|
Abstract
Endocardial cells are specialized endothelial cells that form the innermost layer of the heart wall. By virtue of genetic lineage-tracing technology, many of the unexpected roles of endocardium during murine heart development, diseases, and regeneration have been identified recently. In addition to heart valves developed from the well-known endothelial to mesenchymal transition, recent fate-mapping studies using mouse models reveal that multiple cardiac cell lineages are also originated from the endocardium. This review focuses on a variety of different cell types that are recently reported to be endocardium derived during murine heart development, diseases, and regeneration. These multiple cell fates underpin the unprecedented roles of endocardial progenitors in function, pathological progression, and regeneration of the heart. Because emerging studies suggest that developmental mechanisms can be redeployed and recapitulated in promoting heart disease development and also cardiac repair and regeneration, understanding the mechanistic regulation of endocardial plasticity and modulation of their cell fate conversion may uncover new therapeutic potential in facilitating heart regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Kathy O Lui
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Bin Zhou
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| |
Collapse
|
32
|
Establishment of an Immortalized Mouse Bmp2 Knockout Dental Papilla Mesenchymal Cell Line. Methods Mol Biol 2019. [PMID: 30838560 DOI: 10.1007/978-1-4939-9012-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bone morphogenetic protein 2 (Bmp2) is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta (DGI), showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. Here we describe the generation of an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2ko/ko-dp) cell line by introducing Cre fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2flox/flox-dp) cells.
Collapse
|
33
|
Abstract
IMPACT STATEMENT By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.
Collapse
Affiliation(s)
- David H Wu
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
34
|
Bhakta M, Padanad MS, Harris JP, Lubczyk C, Amatruda JF, Munshi NV. pouC Regulates Expression of bmp4 During Atrioventricular Canal Formation in Zebrafish. Dev Dyn 2018; 248:173-188. [PMID: 30444277 DOI: 10.1002/dvdy.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minoti Bhakta
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Mahesh S Padanad
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - John P Harris
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Christina Lubczyk
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Nikhil V Munshi
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
35
|
Menon V, Lincoln J. The Genetic Regulation of Aortic Valve Development and Calcific Disease. Front Cardiovasc Med 2018; 5:162. [PMID: 30460247 PMCID: PMC6232166 DOI: 10.3389/fcvm.2018.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Heart valves are dynamic, highly organized structures required for unidirectional blood flow through the heart. Over an average lifetime, the valve leaflets or cusps open and close over a billion times, however in over 5 million Americans, leaflet function fails due to biomechanical insufficiency in response to wear-and-tear or pathological stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes are associated with dysregulation of several molecular pathways important for valve development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic regulators. In this review, we discuss the multifactorial mechanisms that contribute to CAVD pathogenesis and the potential of targeting these for the development of novel, alternative therapeutics beyond surgical intervention.
Collapse
Affiliation(s)
- Vinal Menon
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Wang Y, Lu P, Wu B, Riascos-Bernal DF, Sibinga NES, Valenta T, Basler K, Zhou B. Myocardial β-Catenin-BMP2 signaling promotes mesenchymal cell proliferation during endocardial cushion formation. J Mol Cell Cardiol 2018; 123:150-158. [PMID: 30201295 PMCID: PMC10662972 DOI: 10.1016/j.yjmcc.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 09/01/2018] [Indexed: 01/09/2023]
Abstract
Abnormal endocardial cushion formation is a major cause of congenital heart valve disease, which is a common birth defect with significant morbidity and mortality. Although β-catenin and BMP2 are two well-known regulators of endocardial cushion formation, their interaction in this process is largely unknown. Here, we report that deletion of β-catenin in myocardium results in formation of hypoplastic endocardial cushions accompanying a decrease of mesenchymal cell proliferation. Loss of β-catenin reduced Bmp2 expression in myocardium and SMAD signaling in cushion mesenchyme. Exogenous BMP2 recombinant proteins fully rescued the proliferation defect of mesenchymal cells in cultured heart explants from myocardial β-catenin knockout embryos. Using a canonical WNT signaling reporter mouse line, we showed that cushion myocardium exhibited high WNT/β-catenin activities during endocardial cushion growth. Selective disruption of the signaling function of β-catenin resulted in a cushion growth defect similar to that caused by the complete loss of β-catenin. Together, these observations demonstrate that myocardial β-catenin signaling function promotes mesenchymal cell proliferation and endocardial cushion expansion through inducing BMP signaling.
Collapse
Affiliation(s)
- Yidong Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States.
| | - Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States; Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 10461, United States; Department of Cardiology, First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Segert J, Schneider I, Berger IM, Rottbauer W, Just S. Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:20-31. [PMID: 30036562 DOI: 10.1016/j.pbiomolbio.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.
Collapse
Affiliation(s)
- Julia Segert
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Isabelle Schneider
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
38
|
Papoutsi T, Luna-Zurita L, Prados B, Zaffran S, de la Pompa JL. Bmp2 and Notch cooperate to pattern the embryonic endocardium. Development 2018; 145:dev.163378. [PMID: 29853617 DOI: 10.1242/dev.163378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Signaling interactions between the myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects.
Collapse
Affiliation(s)
- Tania Papoutsi
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Luis Luna-Zurita
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Belén Prados
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, GMGF, UMR_S910, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain .,Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
39
|
Abstract
During mammalian heart development, restricted myocardial Bmp2 expression is a key patterning signal for atrioventricular canal specification and the epithelial-mesenchyme transition that gives rise to the valves. Using a mouse transgenic line conditionally expressing Bmp2, we show that widespread Bmp2 expression in the myocardium leads to valve and chamber dysmorphogenesis and embryonic death by E15.5. Transgenic embryos show thickened valves, ventricular septal defect, enlarged trabeculae and dilated ventricles, with an endocardium able to undergo EMT both in vivo and in vitro. Gene profiling and marker analysis indicate that cellular proliferation is increased in transgenic embryos, whereas chamber maturation and patterning are impaired. Similarly, forced Bmp2 expression stimulates proliferation and blocks cardiomyocyte differentiation of embryoid bodies. These data show that widespread myocardial Bmp2 expression directs ectopic valve primordium formation and maintains ventricular myocardium and cardiac progenitors in a primitive, proliferative state, identifying the potential of Bmp2 in the expansion of immature cardiomyocytes.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This review aims to highlight the past and more current literature related to the multifaceted pathogenic programs that contribute to calcific aortic valve disease (CAVD) with a focus on the contribution of developmental programs. RECENT FINDINGS Calcification of the aortic valve is an active process characterized by calcific nodule formation on the aortic surface leading to a less supple and more stiffened cusp, thereby limiting movement and causing clinical stenosis. The mechanisms underlying these pathogenic changes are largely unknown, but emerging studies have suggested that signaling pathways common to valvulogenesis and bone development play significant roles and include Transforming Growth Factor-β (TGF-β), bone morphogenetic protein (BMP), Wnt, Notch, and Sox9. This comprehensive review of the literature highlights the complex nature of CAVD but concurrently identifies key regulators that can be targeted in the development of mechanistic-based therapies beyond surgical intervention to improve patient outcome.
Collapse
|
41
|
Peng Y, Song L, Li D, Kesterson R, Wang J, Wang L, Rokosh G, Wu B, Wang Q, Jiao K. Sema6D acts downstream of bone morphogenetic protein signalling to promote atrioventricular cushion development in mice. Cardiovasc Res 2018; 112:532-542. [PMID: 28172500 DOI: 10.1093/cvr/cvw200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yin Peng
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lanying Song
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ding Li
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert Kesterson
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lizhong Wang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregg Rokosh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
43
|
Dias Bastos PA, Vlahou A, Leite-Moreira A, Santos LL, Ferreira R, Vitorino R. Deciphering the disease-related molecular networks using urine proteomics. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
BMP2 expression in the endocardial lineage is required for AV endocardial cushion maturation and remodeling. Dev Biol 2017; 430:113-128. [PMID: 28790014 DOI: 10.1016/j.ydbio.2017.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/16/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
Distal outgrowth, maturation and remodeling of the endocardial cushion mesenchyme in the atrioventricular (AV) canal are the essential morphogenetic events during four-chambered heart formation. Mesenchymalized AV endocardial cushions give rise to the AV valves and the membranous ventricular septum (VS). Failure of these processes results in several human congenital heart defects. Despite this clinical relevance, the mechanisms governing how mesenchymalized AV endocardial cushions mature and remodel into the membranous VS and AV valves have only begun to be elucidated. The role of BMP signaling in the myocardial and secondary heart forming lineage has been well studied; however, little is known about the role of BMP2 expression in the endocardial lineage. To fill this knowledge gap, we generated Bmp2 endocardial lineage-specific conditional knockouts (referred to as Bmp2 cKOEndo) by crossing conditionally-targeted Bmp2flox/flox mice with a Cre-driver line, Nfatc1Cre, wherein Cre-mediated recombination was restricted to the endocardial cells and their mesenchymal progeny. Bmp2 cKOEndo mouse embryos did not exhibit failure or delay in the initial AV endocardial cushion formation at embryonic day (ED) 9.5-11.5; however, significant reductions in AV cushion size were detected in Bmp2 cKOEndo mouse embryos when compared to control embryos at ED13.5 and ED16.5. Moreover, deletion of Bmp2 from the endocardial lineage consistently resulted in membranous ventricular septal defects (VSDs), and mitral valve deficiencies, as evidenced by the absence of stratification of mitral valves at birth. Muscular VSDs were not found in Bmp2 cKOEndo mouse hearts. To understand the underlying morphogenetic mechanisms leading to a decrease in cushion size, cell proliferation and cell death were examined for AV endocardial cushions. Phospho-histone H3 analyses for cell proliferation and TUNEL assays for apoptotic cell death did not reveal significant differences between control and Bmp2 cKOEndo in AV endocardial cushions. However, mRNA expression of the extracellular matrix components, versican, Has2, collagen 9a1, and periostin was significantly reduced in Bmp2 cKOEndo AV cushions. Expression of transcription factors implicated in the cardiac valvulogenesis, Snail2, Twist1 and Sox9, was also significantly reduced in Bmp2 cKOEndo AV cushions. These data provide evidence that BMP2 expression in the endocardial lineage is essential for the distal outgrowth, maturation and remodeling of AV endocardial cushions into the normal membranous VS and the stratified AV valves.
Collapse
|
45
|
Penn M, Mausner-Fainberg K, Golan M, Karni A. High serum levels of BMP-2 correlate with BMP-4 and BMP-5 levels and induce reduced neuronal phenotype in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2017; 310:120-128. [PMID: 28778435 DOI: 10.1016/j.jneuroim.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022]
Abstract
Blockage of bone morphogenetic protein (BMP) signaling is required for differentiation of neurons and oligodendrocytes from neural stem cells (NSCs). Sera of untreated relapsing-remitting multiple sclerosis (RR-MS) patients expressed significantly higher levels of BMP-2 compared to sera of healthy controls. BMP-2 levels correlated with BMP-4 and -5 levels only in sera of untreated MS patients. Furthermore, sera of untreated patients inhibited the neuronal differentiation of RA-treated P19 cells, which was associated with induction of phospho-SMAD signaling pathway. These results suggest that BMP-2 sera levels may play a role in the failure of remyelination and neuro-regeneration in RR-MS.
Collapse
Affiliation(s)
- Moran Penn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Shah TA, Zhu Y, Shaikh NN, Harris MA, Harris SE, Rogers MB. Characterization of new bone morphogenetic protein (Bmp)-2 regulatory alleles. Genesis 2017; 55. [PMID: 28401685 DOI: 10.1002/dvg.23035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell proliferation, differentiation, and apoptosis. Key events requiring precise Bmp2 regulation include heart specification and morphogenesis and neural development. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence pattern formation and organogenesis, the mechanisms that regulate Bmp2 are crucial. A sequence within the 3'UTR of the Bmp2 mRNA termed the "ultra-conserved sequence" (UCS) has been largely unchanged since fishes and mammals diverged. Cre-lox mediated deletion of the UCS in a reporter transgene revealed that the UCS may repress Bmp2 in proepicardium, epicardium, and epicardium-derived cells (EPDC) and in tissues with known epicardial contributions (coronary vessels and valves). The UCS also repressed the transgene in the aorta, outlet septum, posterior cardiac plexus, cardiac and extra-cardiac nerves, and neural ganglia. We used homologous recombination and conditional deletion to generate three new alleles in which the Bmp2 3'UTR was altered as follows: a UCS flanked by loxP sites with or without a neomycin resistance targeting vector, or a deleted UCS. Deletion of the UCS was associated with elevated Bmp2 mRNA and BMP signaling levels, reduced fitness, and embryonic malformations.
Collapse
Affiliation(s)
- Tapan A Shah
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| | - Youhua Zhu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| | - Nadia N Shaikh
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| | - Marie A Harris
- Department of Periodontics, University of Texas Health Science Centre, San Antonio, Texas
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Centre, San Antonio, Texas
| | - Melissa B Rogers
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| |
Collapse
|
47
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Luxán G, D'Amato G, MacGrogan D, de la Pompa JL. Endocardial Notch Signaling in Cardiac Development and Disease. Circ Res 2015; 118:e1-e18. [PMID: 26635389 DOI: 10.1161/circresaha.115.305350] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/22/2015] [Indexed: 01/03/2023]
Abstract
The Notch signaling pathway is an ancient and highly conserved signaling pathway that controls cell fate specification and tissue patterning in the embryo and in the adult. Region-specific endocardial Notch activity regulates heart morphogenesis through the interaction with multiple myocardial-, epicardial-, and neural crest-derived signals. Mutations in NOTCH signaling elements cause congenital heart disease in humans and mice, demonstrating its essential role in cardiac development. Studies in model systems have provided mechanistic understanding of Notch function in cardiac development, congenital heart disease, and heart regeneration. Notch patterns the embryonic endocardium into prospective territories for valve and chamber formation, and later regulates the signaling processes leading to outflow tract and valve morphogenesis and ventricular trabeculae compaction. Alterations in NOTCH signaling in the endocardium result in congenital structural malformations that can lead to disease in the neonate and adult heart.
Collapse
Affiliation(s)
- Guillermo Luxán
- From the Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovascular (CNIC), Melchor Fernández Almagro, Madrid, Spain (G.L., G.D'A., D.M., J.L.d.l.P.); and Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany (G.L.)
| | - Gaetano D'Amato
- From the Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovascular (CNIC), Melchor Fernández Almagro, Madrid, Spain (G.L., G.D'A., D.M., J.L.d.l.P.); and Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany (G.L.)
| | - Donal MacGrogan
- From the Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovascular (CNIC), Melchor Fernández Almagro, Madrid, Spain (G.L., G.D'A., D.M., J.L.d.l.P.); and Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany (G.L.)
| | - José Luis de la Pompa
- From the Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovascular (CNIC), Melchor Fernández Almagro, Madrid, Spain (G.L., G.D'A., D.M., J.L.d.l.P.); and Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany (G.L.).
| |
Collapse
|
49
|
BMPER Promotes Epithelial-Mesenchymal Transition in the Developing Cardiac Cushions. PLoS One 2015; 10:e0139209. [PMID: 26418455 PMCID: PMC4587915 DOI: 10.1371/journal.pone.0139209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 01/25/2023] Open
Abstract
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.
Collapse
|
50
|
Sallustio F, Serino G, Schena FP. Potential Reparative Role of Resident Adult Renal Stem/Progenitor Cells in Acute Kidney Injury. Biores Open Access 2015; 4:326-33. [PMID: 26309808 PMCID: PMC4509615 DOI: 10.1089/biores.2015.0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human kidney is particularly susceptible to ischemia and toxins with consequential tubular necrosis and activation of inflammatory processes. This process can lead to the acute renal injury, and even if the kidney has a great capacity for regeneration after tubular damage, in several circumstances, the normal renal repair program may not be sufficient to achieve a successful regeneration. Resident adult renal stem/progenitor cells could participate in this repair process and have the potentiality to enhance the renal regenerative mechanism. This could be achieved both directly, by means of their capacity to differentiate and integrate into the renal tissues, and by means of paracrine factors able to induce or improve the renal repair or regeneration. Recent genetic fate-tracing studies indicated that tubular damage is instead repaired by proliferative duplication of epithelial cells, acquiring a transient progenitor phenotype and by fate-restricted clonal cell progeny emerging from different nephron segments. In this review, we discuss about the properties and the reparative characteristics of high regenerative CD133(+)/CD24(+) cells, with a view to a future application of these cells for the treatment of acute renal injury.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Emergency and Organ Transplantation, University of Bari , Bari, Italy . ; C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3 , Valenzano, Italy . ; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento , Lecce-Monteroni, Lecce, Italy
| | - Grazia Serino
- Department of Emergency and Organ Transplantation, University of Bari , Bari, Italy
| | - Francesco Paolo Schena
- C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3 , Valenzano, Italy . ; Schena Foundation, Research Center of Renal Diseases , Bari, Italy
| |
Collapse
|