1
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Hasanpour S, Eagderi S, Poorbagher H, Angrand PO, Hasanpour M, Lashkarbolok M. The effect of Activin pathway modulation on the expression of both pluripotency and differentiation markers during early zebrafish development compared with other vertebrates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:562-575. [PMID: 34254429 DOI: 10.1002/jez.b.23070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/22/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Activin-like factors control many developmental processes, including pluripotency maintenance and differentiation. Although Activin-like factors' action in mesendoderm induction has been demonstrated in zebrafish, their involvement in preserving the stemness remains unknown. To investigate the role of maternal Activin-like factors, their effects were promoted or blocked using synthetic human Activin A or SB-431542 treatments respectively until the maternal to zygotic transition. To study the role of zygotic Activin-like factors, SB-431542 treatment was also applied after the maternal to zygotic transition. The effect of the pharmacological modulations of the Activin/Smad pathway was then studied on the mRNA expressions of the ndr1, ndr2, tbxta (no tail/ntl) as the differentiation index, mych, nanog, and oct4 (pou5f3) as the pluripotency markers of the zebrafish embryonic cells as well as sox17 as a definitive endoderm marker. Expression of the target genes was measured at the 16-cell, 256-cell, 1K-cell, oblong, dome, and shield stages using the real-time quantitative polymerase chain reaction (RT-qPCR). Activation of the maternal Activin signaling pathway led to an increase in zygotic expression of the tbxta, particularly marked at the oblong stage. In other words, promotion of the maternal Activin/Smad pathway induced differentiation by advancing the major peaks of ndr1 and nanog, thereby eliciting tbxta expression. Whereas suppression of the maternal or zygotic Activin/Smad pathway sustained the pluripotency by preventing the major peaks of ndr1 and nanog as well as tbxta encoding.
Collapse
Affiliation(s)
- Shaghayegh Hasanpour
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.,Development and Biosystematic Lab., Department of Fisheries and Animal Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Soheil Eagderi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Pierre-Olivier Angrand
- Univ Lille, CNRS UMR 9020, Inserm UMR-S 1277, CHU Lille, Centre Oscar Lambret, UMR Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Mohammad Hasanpour
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Lashkarbolok
- Department of Radiology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Rogers KW, ElGamacy M, Jordan BM, Müller P. Optogenetic investigation of BMP target gene expression diversity. eLife 2020; 9:58641. [PMID: 33174840 PMCID: PMC7728441 DOI: 10.7554/elife.58641] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.,Heliopolis Biotechnology Ltd, London, United Kingdom
| | - Benjamin M Jordan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Gentsch GE, Spruce T, Owens NDL, Smith JC. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nat Commun 2019; 10:4269. [PMID: 31537794 PMCID: PMC6753111 DOI: 10.1038/s41467-019-12263-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Thomas Spruce
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, 75015, Paris, France
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
5
|
Gentsch GE, Owens NDL, Smith JC. The Spatiotemporal Control of Zygotic Genome Activation. iScience 2019; 16:485-498. [PMID: 31229896 PMCID: PMC6593175 DOI: 10.1016/j.isci.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the midblastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal, and BMP signaling together generate most of the spatiotemporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, Paris 75015, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
6
|
Zhang Y, Ji D, Li L, Yang S, Zhang H, Duan X. ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth. Am J Cancer Res 2019; 9:1387-1400. [PMID: 30867839 PMCID: PMC6401512 DOI: 10.7150/thno.29761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/09/2019] [Indexed: 11/05/2022] Open
Abstract
Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special deformities in craniofacial morphology and tooth dysplasia. It is unclear whether these phenotypes are the typical features of CLCN7 involved osteopetrosis and whether ClC-7 could regulate the development of craniofacial bone and tooth in some signaling pathways. Methods: First, we collected 80 osteopetrosis cases from the literature and compared their craniofacial and dental phenotypes. Second, four osteopetrosis pedigrees with CLCN7 mutations were recruited from our clinic for gene testing and clinical analysis of their craniofacial and dental phenotypes. Third, we used a zebrafish model with clcn7 morpholino treatment to detect the effects of ClC-7 deficiency on the development of craniofacial and dental phenotypes. General observation, whole mount alcian blue and alizarin red staining, whole mount in situ hybridization, scanning electron microscope observation, lysoSensor staining, Q-PCR and western blotting were performed to observe the in vivo characteristics of craniofacial bone and tooth changes. Fourth, mouse marrow stromal cells were further primarily cultured to detect ClC-7 related mRNA and protein changes using siRNA, Q-PCR and western blotting. Results: Over 84% of osteopetrosis patients in the literature had some typical craniofacial and tooth phenotypes, including macrocephaly, frontal bossing, and changes in shape and proportions of facial skeleton, and these unique features are more severe and frequent in autosomal recessive osteopetrosis than in autosomal dominant osteopetrosis patients. Our four pedigrees with CLCN7 mutations confirmed the aforementioned clinical features. clcn7 knockdown in zebrafish reproduced the craniofacial cartilage defects and various dental malformations combined the decreased levels of col10a1, sp7, dlx2b, eve1, and cx43. Loss of clcn7 function resulted in lysosomal storage in the brain and jaw as well as downregulated cathepsin K (CTSK). The craniofacial phenotype severity also presented a dose-dependent relationship with the levels of ClC-7 and CTSK. ClC-7/CTSK further altered the balance of TGF-β/BMP signaling pathway, causing elevated TGF-β-like Smad2 signals and reduced BMP-like Smad1/5/8 signals in clcn7 morphants. SB431542 inhibitor of TGF-β pathway partially rescued the aforementioned craniofacial bone and tooth defects of clcn7 morphants. The ClC-7 involved CTSK/BMP and SMAD changes were also confirmed in mouse bone marrow stromal cells. Conclusion: These findings highlighted the vital role of clcn7 in zebrafish craniofacial bone and tooth development and mineralization, revealing novel insights for the causation of osteopetrosis with CLCN7 mutations. The mechanism chain of ClC-7/CTSK/ TGF-β/BMP/SMAD might explain the typical craniofacial bone and tooth changes in osteopetrosis as well as pycnodysostosis patients.
Collapse
|
7
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
8
|
Molina MD, Quirin M, Haillot E, Jimenez F, Chessel A, Lepage T. p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation. Development 2017; 144:2270-2281. [PMID: 28507001 DOI: 10.1242/dev.152330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of nodal expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis. Instead, we discovered that p38 inhibitors strongly disrupt specification of all germ layers by blocking signalling from the Nodal receptor and by interfering with the ERK pathway. Strikingly, while expression of a mutant p38 that is resistant to SB203580 did not rescue dorsal-ventral axis formation or skeletogenesis in embryos treated with this inhibitor, expression of mutant Nodal receptors that are resistant to SB203580 fully restored nodal expression in SB203580-treated embryos. Taken together, these results establish that p38 activity is not required for dorsal-ventral axis formation through nodal expression nor for skeletogenesis. Our results prompt a re-evaluation of the conclusions of several recent studies that linked p38 activity to dorsal-ventral axis formation and to patterning of the skeleton.
Collapse
Affiliation(s)
| | - Magali Quirin
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Emmanuel Haillot
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Felipe Jimenez
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| |
Collapse
|
9
|
Perineurial Glial Plasticity and the Role of TGF-β in the Development of the Blood-Nerve Barrier. J Neurosci 2017; 37:4790-4807. [PMID: 28389474 DOI: 10.1523/jneurosci.2875-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022] Open
Abstract
Precisely orchestrated interactions between spinal motor axons and their ensheathing glia are vital for forming and maintaining functional spinal motor nerves. Following perturbations to peripheral myelinating glial cells, centrally derived oligodendrocyte progenitor cells (OPCs) ectopically exit the spinal cord and myelinate peripheral nerves in myelin with CNS characteristics. However, whether remaining peripheral ensheathing glia, such as perineurial glia, properly encase the motor nerve despite this change in glial cell and myelin composition, remains unknown. Using zebrafish mutants in which OPCs migrate out of the spinal cord and myelinate peripheral motor axons, we assayed perineurial glial development, maturation, and response to injury. Surprisingly, in the presence of OPCs, perineurial glia exited the CNS normally. However, aspects of their development, response to injury, and function were altered compared with wildtype larvae. In an effort to better understand the plasticity of perineurial glia in response to myelin perturbations, we identified transforming growth factor-β1 as a partial mediator of perineurial glial development. Together, these results demonstrate the incredible plasticity of perineurial glia in the presence of myelin perturbations.SIGNIFICANCE STATEMENT Peripheral neuropathies can result from damage or dysregulation of the insulating myelin sheath surrounding spinal motor axons, causing pain, inefficient nerve conduction, and the ectopic migration of oligodendrocyte progenitor cells (OPCs), the resident myelinating glial cell of the CNS, into the periphery. How perineurial glia, the ensheathing cells that form the protective blood-nerve barrier, are impacted by this myelin composition change is unknown. Here, we report that certain aspects of perineurial glial development and injury responses are mostly unaffected in the presence of ectopic OPCs. However, perineurial glial function is disrupted along nerves containing centrally derived myelin, demonstrating that, although perineurial glial cells display plasticity despite myelin perturbations, the blood-nerve barrier is compromised in the presence of ectopic OPCs.
Collapse
|
10
|
Charney RM, Forouzmand E, Cho JS, Cheung J, Paraiso KD, Yasuoka Y, Takahashi S, Taira M, Blitz IL, Xie X, Cho KWY. Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program. Dev Cell 2017; 40:595-607.e4. [PMID: 28325473 PMCID: PMC5434453 DOI: 10.1016/j.devcel.2017.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/24/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
The interplay between transcription factors and chromatin dictates gene regulatory network activity. Germ layer specification is tightly coupled with zygotic gene activation and, in most metazoans, is dependent upon maternal factors. We explore the dynamic genome-wide interactions of Foxh1, a maternal transcription factor that mediates Nodal/TGF-β signaling, with cis-regulatory modules (CRMs) during mesendodermal specification. Foxh1 marks CRMs during cleavage stages and recruits the co-repressor Tle/Groucho in the early blastula. We highlight a population of CRMs that are continuously occupied by Foxh1 and show that they are marked by H3K4me1, Ep300, and Fox/Sox/Smad motifs, suggesting interplay between these factors in gene regulation. We also propose a molecular "hand-off" between maternal Foxh1 and zygotic Foxa at these CRMs to maintain enhancer activation. Our findings suggest that Foxh1 functions at the top of a hierarchy of interactions by marking developmental genes for activation, beginning with the onset of zygotic gene expression.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elmira Forouzmand
- Department of Computer Science, Donald Bren School of Information & Computer Sciences, University of California, Irvine, CA 92697, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Jessica Cheung
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shuji Takahashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Xiaohui Xie
- Department of Computer Science, Donald Bren School of Information & Computer Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Alvarado E, Yousefelahiyeh M, Alvarado G, Shang R, Whitman T, Martinez A, Yu Y, Pham A, Bhandari A, Wang B, Nissen RM. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PLoS One 2016; 11:e0166984. [PMID: 27880803 PMCID: PMC5120840 DOI: 10.1371/journal.pone.0166984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-β) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-β interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.
Collapse
Affiliation(s)
- Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Greg Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robin Shang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Taryn Whitman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Andrew Martinez
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Annie Pham
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Anish Bhandari
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Bingyan Wang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KWY. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 2014; 141:4537-47. [PMID: 25359723 DOI: 10.1242/dev.107227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nodal/TGFβ signaling regulates diverse biological responses. By combining RNA-seq on Foxh1 and Nodal signaling loss-of-function embryos with ChIP-seq of Foxh1 and Smad2/3, we report a comprehensive genome-wide interaction between Foxh1 and Smad2/3 in mediating Nodal signaling during vertebrate mesendoderm development. This study significantly increases the total number of Nodal target genes regulated by Foxh1 and Smad2/3, and reinforces the notion that Foxh1-Smad2/3-mediated Nodal signaling directly coordinates the expression of a cohort of genes involved in the control of gene transcription, signaling pathway modulation and tissue morphogenesis during gastrulation. We also show that Foxh1 may function independently of Nodal signaling, in addition to its role as a transcription factor mediating Nodal signaling via Smad2/3. Finally, we propose an evolutionarily conserved interaction between Foxh1 and PouV, a mechanism observed in Pou5f1-mediated regulation of pluripotency in human embryonic stem and epiblast cells.
Collapse
Affiliation(s)
- William T Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Rebekah Charney Le
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yi Li
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Jacob Biesinger
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
14
|
Zhu Z, Chen J, Xiong JW, Peng J. Haploinsufficiency of Def activates p53-dependent TGFβ signalling and causes scar formation after partial hepatectomy. PLoS One 2014; 9:e96576. [PMID: 24801718 PMCID: PMC4011785 DOI: 10.1371/journal.pone.0096576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/09/2014] [Indexed: 01/07/2023] Open
Abstract
The metazoan liver exhibits a remarkable capacity to regenerate lost liver mass without leaving a scar following partial hepatectomy (PH). Whilst previous studies have identified components of several different signaling pathways that are essential for activation of hepatocyte proliferation during liver regeneration, the mechanisms that enable such regeneration to occur without accompanying scar formation remain poorly understood. Here we use the adult zebrafish liver, which can regenerate within two weeks following PH, as a new genetic model to address this important question. We focus on the role of Digestive-organ-expansion-factor (Def), a nucleolar protein which has recently been shown to complex with calpain3 (Capn3) to mediate p53 degradation specifically in the nucleolus, in liver regeneration. Firstly, we show that Def expression is up-regulated in the wild-type liver following amputation, and that the defhi429/+ heteroozygous mutant (def+/−) suffers from haploinsufficiency of Def in the liver. We then show that the expression of pro-inflammatory cytokines is up-regulated in the def+/− liver, which leads to distortion of the migration and the clearance of leukocytes after PH. Transforming growth factor β (TGFβ) signalling is thus activated in the wound epidermis in def+/− due to a prolonged inflammatory response, which leads to fibrosis at the amputation site. Fibrotic scar formation in def+/− is blocked by the over-expression of Def, by the loss-of-function of p53, and by treatment with anti-inflammation drug dexamethasone or TGFβ-signalling inhibitor SB431542. We finally show that the Def- p53 pathway suppresses fibrotic scar formation, at least in part, through the regulation of the expression of the pro-inflammatory factor, high-mobility group box 1. We conclude that the novel Def- p53 nucleolar pathway functions specifically to prevent a scar formation at the amputation site in a normal amputated liver.
Collapse
Affiliation(s)
- Zhihui Zhu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
15
|
Chen H, Sun X, Chi R, Li X, Feng J, Wu J, Ning W, Liu Z, Wu Q. Glucocorticoid dexamethasone regulates the differentiation of mouse conducting airway epithelial progenitor cells. Steroids 2014; 80:44-50. [PMID: 24333449 DOI: 10.1016/j.steroids.2013.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/20/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023]
Abstract
Inhaled glucocorticoid dexamethasone is the most effective treatment of asthma currently available. Epithelial damage and shedding represents a clear manifestation of asthmatic pathologies. However it remains unknown if dexamethasone regulates functions of airway progenitor cells that are responsible for epithelial repair. In present study Secretoglobin1a1 (Scgb1a1) lineage tracing mice were injected intraperitoneally with tamoxifen to induce the expression of green fluorescence protein (GFP) in Scgb1a1-expressing conducting airway progenitor cells. Scgb1a1-expressing progenitor cells were isolated from lungs of Scgb1a1 lineage tracing mice via flow activated cell sorting. In vitro three-dimensional matrigel culture of these progenitor cells revealed that dexamethasone has little effect on the colony forming ability of airway epithelial progenitor cells, but exhibits significant effects on the differentiation of the progenitor cells. Compared to the untreated group, dexamethasone treatment inhibited the expression of forkhead box J1 (FoxJ1) and mucin subtype A & C (Muc5Ac), but promoted the expression of calcium activated chloride channel 3 (Clca3) and cystic fibrosis transmembrane conductance regulator (Cftr). Dexamethasone-induced effects on the expression of FoxJ1, Muc5Ac and Clca3 were abolished or even reversed in the presence of RU486, an antagonist of glucocorticoid receptor, indicating that glucocorticoid receptor plays a role in the regulation of airway epithelial progenitor cells by dexamethasone. These data suggested that, though effective to reduce airway inflammation, dexamethasone treatment alone fails to fully restore the mucociliary clearance function in the treatment of asthma patients.
Collapse
Affiliation(s)
- Huaiyong Chen
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China.
| | - Xin Sun
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Ruo Chi
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Xue Li
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Jing Feng
- Department of Respiratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junping Wu
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhixue Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin 300350, China.
| |
Collapse
|
16
|
Corallo D, Schiavinato A, Trapani V, Moro E, Argenton F, Bonaldo P. Emilin3 is required for notochord sheath integrity and interacts with Scube2 to regulate notochord-derived Hedgehog signals. Development 2013; 140:4594-601. [PMID: 24131633 DOI: 10.1242/dev.094078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The notochord is a transient and essential structure that provides both mechanical and signaling cues to the developing vertebrate embryo. In teleosts, the notochord is composed of a core of large vacuolated cells and an outer layer of cells that secrete the notochord sheath. In this work, we have identified the extracellular matrix glycoprotein Emilin3 as a novel essential component of the zebrafish notochord sheath. The development of the notochord sheath is impaired in Emilin3 knockdown embryos. The patterning activity of the notochord is also affected by Emilin3, as revealed by the increase of Hedgehog (Hh) signaling in Emilin3-depleted embryos and the decreased Hh signaling in embryos overexpressing Emilin3 in the notochord. In vitro and in vivo experiments indicate that Emilin3 modulates the availability of Hh ligands by interacting with the permissive factor Scube2 in the notochord sheath. Overall, this study reveals a new role for an EMILIN protein and reinforces the concept that structure and function of the notochord are strictly linked.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Harata A, Matsuzaki T, Nishikawa A, Ihara S. The cell sorting process of Xenopus gastrula cells involves the acto-myosin system and TGF-β signaling. In Vitro Cell Dev Biol Anim 2013; 49:220-9. [PMID: 23435857 DOI: 10.1007/s11626-013-9586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/25/2013] [Indexed: 01/03/2023]
Abstract
We have previously shown that the cell sorting process of animal pole cells (AC) and vegetal pole cells (VC) from Xenopus gastrulae is considered to involve two steps: concentrification and polarization. In this study, we addressed the question of what specified the spatial relationship of the AC and VC clusters during the process. First, we examined the inhibitory or facilitatory treatment for myosin 2 activity during each of the two steps. The aggregates treated with Y27632 or blebbistatin during the concentrification step showed a cluster random arrangement, suggesting the prevention of the cell sorting by inhibition of myosin 2. Meanwhile, the treatment with a Rac1 inhibitor, NSC23766, during the same step resulted in promotion of the fusion of the AC clusters and the progression of the cell sorting, presumably by an indirect activation of myosin 2. On the other hand, the treatments with any of the three drugs during the polarization step showed that the two clusters did not appose, and their array remained concentric. Thus, the modulation of cell contraction might be indispensable to each of the two steps. Next, the activin/nodal TGF-β signaling was perturbed by using a specific activin receptor-like kinase inhibitor, SB431542. The results revealed a bimodal participation of the activin/nodal TGF-β signaling, i.e., suppressive and promotive effects on the concentrification and the polarization, respectively. Thus, the present in vitro system, which permits not only the cell contraction-mediated cell sorting but also the TGF-β-directed mesodermal induction such as cartilage formation, may fairly reflect the embryogenesis in vivo.
Collapse
Affiliation(s)
- Ayano Harata
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, 1060 Nisikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | | | | | | |
Collapse
|
18
|
Roussigne M, Blader P, Wilson SW. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain. Dev Neurobiol 2012; 72:269-81. [PMID: 22553774 DOI: 10.1002/dneu.20885] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.
Collapse
Affiliation(s)
- Myriam Roussigne
- Universite Paul Sabatier, Centre de Biologie du Developpement,Toulouse, France.
| | | | | |
Collapse
|
19
|
Zhao F, Huang F, Tang M, Li X, Zhang N, Amfilochiadis A, Li Y, Hu R, Jin T, Peng C, Wang Q. Nodal induces apoptosis through activation of the ALK7 signaling pathway in pancreatic INS-1 β-cells. Am J Physiol Endocrinol Metab 2012; 303:E132-43. [PMID: 22550067 PMCID: PMC3404563 DOI: 10.1152/ajpendo.00074.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.
Collapse
Affiliation(s)
- Fang Zhao
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chablais F, Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development 2012; 139:1921-30. [PMID: 22513374 DOI: 10.1242/dev.078543] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammals respond to a myocardial infarction by irreversible scar formation. By contrast, zebrafish are able to resolve the scar and to regenerate functional cardiac muscle. It is not known how opposing cellular responses of fibrosis and new myocardium formation are spatially and temporally coordinated during heart regeneration in zebrafish. Here, we report that the balance between the reparative and regenerative processes is achieved through Smad3-dependent TGFβ signaling. The type I receptor alk5b (tgfbr1b) is expressed in both fibrotic and cardiac cells of the injured heart. TGFβ ligands are locally induced following cryoinjury and activate the signaling pathway both in the infarct area and in cardiomyocytes in the vicinity of the trauma zone. Inhibition of the relevant type I receptors with the specific chemical inhibitor SB431542 qualitatively altered the infarct tissue and completely abolished heart regeneration. We show that transient scar formation is an essential step to maintain robustness of the damaged ventricular wall prior to cardiomyocyte replacement. Taking advantage of the reversible action of the inhibitor, we dissected the multifunctional role of TGFβ signaling into three crucial processes: collagen-rich scar deposition, Tenascin C-associated tissue remodeling at the infarct-myocardium interface, and cardiomyocyte proliferation. Thus, TGFβ signaling orchestrates the beneficial interplay between scar-based repair and cardiomyocyte-based regeneration to achieve complete heart regeneration.
Collapse
Affiliation(s)
- Fabian Chablais
- Unit of Anatomy, Department of Medicine, University of Fribourg, Rte A. Gockel 1, 1700 Fribourg, Switzerland
| | | |
Collapse
|
21
|
Chen YY, Harris MP, Levesque MP, Nüsslein-Volhard C, Sonawane M. Heterogeneity across the dorso-ventral axis in zebrafish EVL is regulated by a novel module consisting of sox, snail1a and max genes. Mech Dev 2012; 129:13-23. [DOI: 10.1016/j.mod.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 12/31/2022]
|
22
|
Dush MK, McIver AL, Parr MA, Young DD, Fisher J, Newman DR, Sannes PL, Hauck ML, Deiters A, Nascone-Yoder N. Heterotaxin: a TGF-β signaling inhibitor identified in a multi-phenotype profiling screen in Xenopus embryos. ACTA ACUST UNITED AC 2011; 18:252-63. [PMID: 21338922 DOI: 10.1016/j.chembiol.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 12/23/2022]
Abstract
Disruptions of anatomical left-right asymmetry result in life-threatening heterotaxic birth defects in vital organs. We performed a small molecule screen for left-right asymmetry phenotypes in Xenopus embryos and discovered a pyridine analog, heterotaxin, which disrupts both cardiovascular and digestive organ laterality and inhibits TGF-β-dependent left-right asymmetric gene expression. Heterotaxin analogs also perturb vascular development, melanogenesis, cell migration, and adhesion, and indirectly inhibit the phosphorylation of an intracellular mediator of TGF-β signaling. This combined phenotypic profile identifies these compounds as a class of TGF-β signaling inhibitors. Notably, heterotaxin analogs also possess highly desirable antitumor properties, inhibiting epithelial-mesenchymal transition, angiogenesis, and tumor cell proliferation in mammalian systems. Our results suggest that assessing multiple organ, tissue, cellular, and molecular parameters in a whole organism context is a valuable strategy for identifying the mechanism of action of bioactive compounds.
Collapse
Affiliation(s)
- Michael K Dush
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang YP, Anderson RM, Klingensmith J. BMP antagonism protects Nodal signaling in the gastrula to promote the tissue interactions underlying mammalian forebrain and craniofacial patterning. Hum Mol Genet 2010; 19:3030-42. [PMID: 20508035 DOI: 10.1093/hmg/ddq208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Holoprosencephaly (HPE) is the most common forebrain and craniofacial malformation syndrome in humans. The genetics of HPE suggest that it often stems from a synergistic interaction of mutations in independent loci. In mice, several combinations of mutations in Nodal signaling pathway components can give rise to HPE, but it is not clear whether modest deficits of Nodal signaling along with lesions in other pathways might also cause such defects. We find that HPE results from simultaneous reduction of Nodal signaling and an organizer BMP (bone morphogenetic protein) antagonist, either Chordin or Noggin. These defects result from reduced production of tissues that promote forebrain and craniofacial development. Nodal promotes the expression of genes in the anterior primitive streak that are important for the development of these tissues, whereas BMP inhibits their expression. Pharmacological and transgenic manipulation of these signaling pathways suggests that BMP and Nodal antagonize each other prior to intracellular signal transduction. Biochemical experiments in vitro indicate that secreted Bmp2 and Nodal can form extracellular complexes, potentially interfering with receptor activation. Our results reveal that the patterning of forebrain and medial craniofacial elements requires a fine balance between BMP and Nodal signaling during primitive streak development, and provide a potential mechanistic basis for a new multigenic model of HPE.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710-3709, USA
| | | | | |
Collapse
|
24
|
Swiers G, Chen YH, Johnson AD, Loose M. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Dev Biol 2010; 343:138-52. [PMID: 20394741 DOI: 10.1016/j.ydbio.2010.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 11/26/2022]
Abstract
Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.
Collapse
Affiliation(s)
- Gemma Swiers
- Institute of Genetics, Queens Medical Centre, University of Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
25
|
Watt KI, Jaspers RT, Atherton P, Smith K, Rennie MJ, Ratkevicius A, Wackerhage H. SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force. Muscle Nerve 2010; 41:624-9. [DOI: 10.1002/mus.21573] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Roussigné M, Bianco IH, Wilson SW, Blader P. Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development 2009; 136:1549-57. [PMID: 19363156 DOI: 10.1242/dev.034793] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The habenulae are evolutionarily conserved bilateral nuclei in the epithalamus that relay input from the forebrain to the ventral midbrain. In zebrafish, the habenulae display left-right (L/R) asymmetries in gene expression and axonal projections. The elaboration of habenular asymmetries requires the presence of a second asymmetric structure, the parapineal, the laterality of which is biased by unilateral Nodal signalling. Here we show that neurons are present earlier in the left habenula than in the right, but, in contrast to other habenular asymmetry phenotypes, this asymmetry in neurogenesis is not dependent on the parapineal. Embryos in which the L/R asymmetry in Nodal signalling is abolished display symmetric neurogenesis, revealing a requirement for this pathway in asymmetrically biasing neurogenesis. Our results provide evidence of a direct requirement for unilateral Nodal activity in establishing an asymmetry per se, rather than solely in biasing its laterality.
Collapse
|
27
|
Kwon HJ, Riley BB. Mesendodermal signals required for otic induction: Bmp-antagonists cooperate with Fgf and can facilitate formation of ectopic otic tissue. Dev Dyn 2009; 238:1582-94. [PMID: 19418450 PMCID: PMC2835543 DOI: 10.1002/dvdy.21955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Induction of otic placodes requires Fgf from surrounding tissues. We tested the hypothesis that mesendodermally derived Bmp-antagonists Chordin, Follistatin-a, and Crossveinless-2 cooperate in this process. Injecting morpholinos for all three genes, or treatment with the Nodal inhibitor SB431542 to block mesoderm-formation, reduces otic induction and strongly enhances the effects of disrupting fgf3 or fgf8. In contrast, using a lower dose of SB431542, combined with partial loss of Fgf, causes a dramatic medial expansion of otic tissue and formation of a single, large otic vesicle spanning the width of the hindbrain. Under these conditions, paraxial cephalic mesoderm forms ectopically at the midline, migrates into the head, and later transfates to form otic tissue beneath the hindbrain. Blocking expression of Bmp-antagonists blocks formation of medial otic tissue. These data show the importance of mesendodermal Bmp-antagonists for otic induction and that paraxial cephalic mesendoderm can facilitate its own otic differentiation under certain circumstances. Developmental Dynamics 238:1582-1594, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- Biology Department, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
28
|
Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development 2008; 135:2927-37. [PMID: 18697906 DOI: 10.1242/dev.020842] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We identify Balpha (PPP2R2A) and Bdelta (PPP2R2D), two highly related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-beta/Activin/Nodal signalling that affect the pathway in opposite ways. Knockdown of Balpha in Xenopus embryos or mammalian tissue culture cells suppresses TGF-beta/Activin/Nodal-dependent responses, whereas knockdown of Bdelta enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit Twins. We show that, in vertebrates, Balpha enhances TGF-beta/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bdelta negatively modulates these pathways by restricting receptor activity. Thus, these highly related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-beta/Activin/Nodal signalling to elicit opposing biological outcomes.
Collapse
Affiliation(s)
- Julie Batut
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
29
|
Mine N, Anderson RM, Klingensmith J. BMP antagonism is required in both the node and lateral plate mesoderm for mammalian left-right axis establishment. Development 2008; 135:2425-34. [DOI: 10.1242/dev.018986] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mouse, left-right (L-R) patterning depends on asymmetric expression of Nodal around the node, leading to Nodal expression specifically in the left lateral plate mesoderm (LPM). Bone morphogenetic protein (BMP) signaling is also involved, but the mechanistic relationship with Nodal expression remains unclear. We find that BMP signal transduction is higher in the right LPM, although Bmp4, which is required for L-R patterning, is expressed symmetrically. By contrast, the BMP antagonists noggin (Nog) and chordin (Chrd) are expressed at higher levels in the left LPM. In Chrd;Nog double mutants, BMP signaling is elevated on both sides, whereas Nodal expression is absent. Ectopic expression of Nog in the left LPM of double mutants restores Nodalexpression. Ectopic Bmp4 expression in the left LPM of wild-type embryos represses Nodal transcription, whereas ectopic Nogin the right LPM leads to inappropriate Nodal expression. These data indicate that chordin and noggin function to limit BMP signaling in the left LPM, thereby derepressing Nodal expression. In the node, they promote peripheral Nodal expression and proper node morphology, potentially in concert with Notch signaling. These results indicate that BMP antagonism is required in both the node and LPM to facilitate L-R axis establishment in the mammalian embryo.
Collapse
Affiliation(s)
- Naoki Mine
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,
| | - Ryan M. Anderson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,
| | - John Klingensmith
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,
| |
Collapse
|
30
|
Lou X, Li S, Wang J, Ding X. Activin/nodal signaling modulates XPAPC expression during Xenopus gastrulation. Dev Dyn 2008; 237:683-91. [PMID: 18265000 DOI: 10.1002/dvdy.21456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gastrulation is the first obligatory morphogenesis during vertebrate development, by which the body plan is established. Nodal signaling is a key player in many developmental processes, including gastrulation. XPAPC has been found to exert its biological function through modifying the adhesion property of cells and interacting with other several important molecules in embryos. In this report, we show that nodal signaling is necessary and sufficient for XPAPC expression during Xenopus gastrulation. Furthermore, we isolated 4.8 kb upstream DNA sequence of Xenopus XPAPC, and proved that this 4.8-kb genomic contig is sufficient to recapitulate the expression pattern of XPAPC from gastrula to tail bud stage. Transgene and ChIP assays indicate that Activin/nodal signaling participates in regulation of XPAPC expression through a Smad binding element within the XPAPC promoter. Concomitant investigation suggests that the canonical Wnt pathway-activated XPAPC expression requires nodal signaling.
Collapse
Affiliation(s)
- Xin Lou
- Key Laboratory of Stem Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
31
|
Shestopalov IA, Chen JK. Chemical technologies for probing embryonic development. Chem Soc Rev 2008; 37:1294-307. [PMID: 18568156 DOI: 10.1039/b703023c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Embryogenesis is a remarkable program of cell proliferation, migration, and differentiation that transforms a single fertilized egg into a complex multicellular organism. Understanding this process at the molecular and systems levels will require an interdisciplinary approach, including the concepts and technologies of chemical biology. This tutorial review provides an overview of chemical tools that have been used in developmental biology research, focusing on methods that enable spatiotemporal control of gene function and the visualization of embryonic patterning. Limitations of current approaches and future challenges are also discussed.
Collapse
Affiliation(s)
- Ilya A Shestopalov
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
32
|
Anderson SB, Goldberg AL, Whitman M. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem 2008; 283:7027-35. [PMID: 18175804 DOI: 10.1074/jbc.m706678200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myostatin, a transforming growth factor-beta superfamily ligand, negatively regulates skeletal muscle growth. Generation of the mature signaling peptide requires cleavage of pro-myostatin by a proprotein convertase, which is thought to occur constitutively in the Golgi apparatus. In serum, mature myostatin is found in an inactive, non-covalent complex with its prodomain. We find that in skeletal muscle, unlike serum, myostatin is present extracellularly as uncleaved pro-myostatin. In cultured cells, co-expression of pro-myostatin and latent transforming growth factor-beta-binding protein-3 (LTBP-3) sequesters pro-myostatin in the extracellular matrix, and secreted pro-myostatin can be cleaved extracellularly by the proprotein convertase furin. Co-expression of LTBP-3 with myostatin reduces phosphorylation of Smad2, and ectopic expression of LTBP-3 in mature mouse skeletal muscle increases fiber area, consistent with reduction of myostatin activity. We propose that extracellular pro-myostatin constitutes the major pool of latent myostatin in muscle. Post-secretion activation of this pool by furin family proprotein convertases may therefore represent a major control point for activation of myostatin in skeletal muscle.
Collapse
Affiliation(s)
- Sarah B Anderson
- Department of Developmental Biology, Harvard School of Dental Medicine, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Ho DM, Whitman M. TGF-beta signaling is required for multiple processes during Xenopus tail regeneration. Dev Biol 2008; 315:203-16. [PMID: 18234181 DOI: 10.1016/j.ydbio.2007.12.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/08/2007] [Accepted: 12/20/2007] [Indexed: 02/03/2023]
Abstract
Xenopus tadpoles can fully regenerate all major tissue types following tail amputation. TGF-beta signaling plays essential roles in growth, repair, specification, and differentiation of tissues throughout development and adulthood. We examined the localization of key components of the TGF-beta signaling pathway during regeneration and characterized the effects of loss of TGF-beta signaling on multiple regenerative events. Phosphorylated Smad2 (p-Smad2) is initially restricted to the p63+ basal layer of the regenerative epithelium shortly after amputation, and is later found in multiple tissue types in the regeneration bud. TGF-beta ligands are also upregulated throughout regeneration. Treatment of amputated tails with SB-431542, a specific and reversible inhibitor of TGF-beta signaling, blocks tail regeneration at multiple points. Inhibition of TGF-beta signaling immediately following tail amputation reversibly prevents formation of a wound epithelium over the future regeneration bud. Even brief inhibition immediately following amputation is sufficient, however, to irreversibly block the establishment of structures and cell types that characterize regenerating tissue and to prevent the proper activation of BMP and ERK signaling pathways. Inhibition of TGF-beta signaling after regeneration has already commenced blocks cell proliferation in the regeneration bud. These data reveal several spatially and temporally distinct roles for TGF-beta signaling during regeneration: (1) wound epithelium formation, (2) establishment of regeneration bud structures and signaling cascades, and (3) regulation of cell proliferation.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. ACTA ACUST UNITED AC 2007; 56:3706-14. [PMID: 17968924 DOI: 10.1002/art.23024] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Mechanical signals are key determinants in tissue morphogenesis, maintenance, and restoration strategies in regenerative medicine, although molecular mechanisms of mechanotransduction remain to be elucidated. This study was undertaken to investigate the mechanotransduction process of expression of superficial zone protein (SZP), a critical joint lubricant. METHODS Regional expression of SZP was first quantified in cartilage obtained from the femoral condyles of immature bovines, using immunoblotting, and visualized by immunohistochemistry. Contact pressure mapping in whole joints was accomplished using pressure-sensitive film and a load application system for joint testing. Friction measurements on cartilage plugs were acquired under boundary lubrication conditions using a pin-on-disk tribometer modified for reciprocating sliding. Direct mechanical stimulation by shear loading of articular cartilage explants was performed with and without inhibition of transforming growth factor beta (TGFbeta) signaling, and SZP content in media was quantified by enzyme-linked immunosorbent assay. RESULTS An unexpected pattern of SZP localization in knee cartilage was initially identified, with anterior regions exhibiting high levels of SZP expression. Regional SZP patterns were regulated by mechanical signals and correlated with tribological behavior. Direct relationships were demonstrated between high levels of SZP expression, maximum contact pressures, and low friction coefficients. Levels of SZP expression and accumulation were increased by applying shear stress, depending on location within the knee, and were decreased to control levels with the use of a specific inhibitor of TGFbeta receptor type I kinase and subsequent phospho-Smad2/3 activity. CONCLUSION These findings indicate a new role for TGFbeta signaling in the mechanism of cellular mechanotransduction that is especially significant for joint lubrication.
Collapse
Affiliation(s)
- Corey P Neu
- Center for Tissue Regeneration and Repair, University of California, Davis, Medical Center, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
35
|
Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard É, Pilote M, Philip A, Roy S. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One 2007; 2:e1227. [PMID: 18043735 PMCID: PMC2082079 DOI: 10.1371/journal.pone.0001227] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/31/2007] [Indexed: 11/23/2022] Open
Abstract
Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-β). In the present study, the full length sequence of the axolotl TGF-β1 cDNA was isolated. The spatio-temporal expression pattern of TGF-β1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-β signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-β type I receptor, SB-431542, we show that TGF-β signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-β signaling are down-regulated. These data directly implicate TGF-β signaling in the initiation and control of the regeneration process in axolotls.
Collapse
Affiliation(s)
- Mathieu Lévesque
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Gatien
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Kenneth Finnson
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Sophie Desmeules
- Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Éric Villiard
- Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Mireille Pilote
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Anie Philip
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Stéphane Roy
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Londin ER, Mentzer L, Sirotkin HI. Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling. BMC DEVELOPMENTAL BIOLOGY 2007; 7:120. [PMID: 17980025 PMCID: PMC2180179 DOI: 10.1186/1471-213x-7-120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 11/02/2007] [Indexed: 01/22/2023]
Abstract
Background Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh) has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood. Results We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal. Conclusion These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that chch is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for chch in regulating cell movement and fate during early development.
Collapse
Affiliation(s)
- Eric R Londin
- Department of Neurobiology and Behavior, Stony Brook University Stony Brook, New York, USA.
| | | | | |
Collapse
|
37
|
Jaźwińska A, Badakov R, Keating MT. Activin-βA Signaling Is Required for Zebrafish Fin Regeneration. Curr Biol 2007; 17:1390-5. [PMID: 17683938 DOI: 10.1016/j.cub.2007.07.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 12/28/2022]
Abstract
Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells progressively leave the zone and undergo the differentiation that results in the replacement of the amputated structures. Little is known about the mechanisms triggering regenerative events after injury. The zebrafish caudal fin provides a valuable model to study the mechanisms of regeneration. Zebrafish blastemal cells express specific genes, such as the homeobox-containing transcription factors msxB and msxC, and secreted signal FGF20a. In this study, we set out to identify signals that are transcriptionally upregulated after fin amputation and before blastema formation. Accordingly, a gene encoding a TGFbeta-related ligand, activin-betaA (actbetaA), was found to be strongly induced within 6 hr after fin amputation at the wound margin, and later in the blastema. Inhibition of Activin signaling through two specific chemical inhibitors, SB431542 and SB505124, lead to the early and complete block of regeneration. The morpholino knockdown of actbetaA and its receptor alk4 impaired the progression of regeneration. Closer examination of the phenotype revealed that Activin signaling is necessary for cell migration during wound healing and blastemal proliferation. These findings reveal a role of Activin-betaA signaling in the tissue repair after injury and subsequent outgrowth formation during epigenetic regeneration of the vertebrate appendage.
Collapse
Affiliation(s)
- Anna Jaźwińska
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
38
|
Hagos EG, Fan X, Dougan ST. The role of maternal Activin-like signals in zebrafish embryos. Dev Biol 2007; 309:245-58. [PMID: 17692308 DOI: 10.1016/j.ydbio.2007.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 06/24/2007] [Accepted: 07/12/2007] [Indexed: 12/15/2022]
Abstract
Maternal Activin-like proteins, a subgroup of the TGF-beta superfamily, play a key role in establishing the body axes in many vertebrates, but their role in teleosts is unclear. At least two maternal Activin-like proteins are expressed in zebrafish, including the Vg1 orthologue, zDVR-1, and the nodal-related gene, Squint. Our analysis of embryos lacking both maternal and zygotic squint function revealed that maternal squint is required in some genetic backgrounds for the formation of dorsal and anterior tissues. Conditional inactivation of the ALK4, 5 and 7 receptors by SB-505124 treatment during the cleavage stages ruled out a role for maternal Squint, zDVR-1, or other Activin-like ligands before the mid-blastula transition, when the dorsal axis is established. Furthermore, we show that maternal Squint and zDVR-1 are not required during the cleavage stages to induce zygotic nodal-related gene expression. nodal-related gene expression decreases when receptor inhibition continues past the mid-blastula transition, resulting in a progressive loss of mesoderm and endoderm. We conclude that maternally expressed Activin-like signals do not act before the mid-blastula transition in zebrafish, but do have a variably penetrant role in the later stages of axis formation. This contrasts with the early role for these signals during Xenopus development.
Collapse
Affiliation(s)
- Engda G Hagos
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
39
|
Waghabi MC, Keramidas M, Calvet CM, Meuser M, de Nazaré C Soeiro M, Mendonça-Lima L, Araújo-Jorge TC, Feige JJ, Bailly S. SB-431542, a transforming growth factor beta inhibitor, impairs Trypanosoma cruzi infection in cardiomyocytes and parasite cycle completion. Antimicrob Agents Chemother 2007; 51:2905-10. [PMID: 17526757 PMCID: PMC1932517 DOI: 10.1128/aac.00022-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiinflammatory cytokine transforming growth factor beta (TGF-beta) plays an important role in Chagas disease, a parasitic infection caused by the protozoan Trypanosoma cruzi. In the present study, we show that SB-431542, an inhibitor of the TGF-beta type I receptor (ALK5), inhibits T. cruzi-induced activation of the TGF-beta pathway in epithelial cells and in cardiomyocytes. Further, we demonstrate that addition of SB-431542 greatly reduces cardiomyocyte invasion by T. cruzi. Finally, SB-431542 treatment significantly reduces the number of parasites per infected cell and trypomastigote differentiation and release. Taken together, these data further confirm the major role of the TGF-beta signaling pathway in both T. cruzi infection and T. cruzi cell cycle completion. Our present data demonstrate that small inhibitors of the TGF-beta signaling pathway might be potential pharmacological tools for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Mariana C Waghabi
- Laboratorio de Genômica Funcional e Bioinformática, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Brasil, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2007; 7:22. [PMID: 17391517 PMCID: PMC1851950 DOI: 10.1186/1471-213x-7-22] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/28/2007] [Indexed: 12/11/2022]
Abstract
Background The vertebrate body plan is generated during gastrulation with the formation of the three germ layers. Members of the Nodal-related subclass of the TGF-β superfamily induce and pattern the mesoderm and endoderm in all vertebrates. In zebrafish, two nodal-related genes, called squint and cyclops, are required in a dosage-dependent manner for the formation of all derivatives of the mesoderm and endoderm. These genes are expressed dynamically during the blastula stages and may have different roles at different times. This question has been difficult to address because conditions that alter the timing of nodal-related gene expression also change Nodal levels. We utilized a pharmacological approach to conditionally inactivate the ALK 4, 5 and 7 receptors during the blastula stages without disturbing earlier signaling activity. This permitted us to directly examine when Nodal signals specify cell types independently of dosage effects. Results We show that two drugs, SB-431542 and SB-505124, completely block the response to Nodal signals when added to embryos after the mid-blastula transition. By blocking Nodal receptor activity at later stages, we demonstrate that Nodal signaling is required from the mid-to-late blastula period to specify sequentially, the somites, notochord, blood, Kupffer's vesicle, hatching gland, heart, and endoderm. Blocking Nodal signaling at late times prevents specification of cell types derived from the embryo margin, but not those from more animal regions. This suggests a linkage between cell fate and length of exposure to Nodal signals. Confirming this, cells exposed to a uniform Nodal dose adopt progressively more marginal fates with increasing lengths of exposure. Finally, cell fate specification is delayed in squint mutants and accelerated when Nodal levels are elevated. Conclusion We conclude that (1) Nodal signals are most active during the mid-to-late blastula stages, when nodal-related gene expression and the movement of responding cells are at their most dynamic; (2) Nodal signals specify cell fates along the animal-vegetal axis in a time-dependent manner; (3) cells respond to the total cumulative dose of Nodal signals to which they are exposed, as a function of distance from the source and duration of exposure.
Collapse
|
41
|
Batut J, Howell M, Hill CS. Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands. Dev Cell 2007; 12:261-74. [PMID: 17276343 DOI: 10.1016/j.devcel.2007.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/30/2006] [Accepted: 01/17/2007] [Indexed: 01/13/2023]
Abstract
During vertebrate development, Activin/Nodal-related ligands signal through Smad2, leading to its activation and accumulation in the nucleus. Here, we demonstrate that Smad2 constantly shuttles between the cytoplasm and nucleus both in early Xenopus embryo explants and in living zebrafish embryos, providing a mechanism whereby the intracellular components of the pathway constantly monitor receptor activity. We have gone on to demonstrate that an intact microtubule network and kinesin ATPase activity are required for Smad2 phosphorylation and nuclear accumulation in response to Activin/Nodal in early vertebrate embryos and TGF-beta in mammalian cells. The kinesin involved is kinesin-1, and Smad2 interacts with the kinesin-1 light chain subunit. Interfering with kinesin activity in Xenopus and zebrafish embryos phenocopies loss of Nodal signaling. Our results reveal that kinesin-mediated transport of Smad2 along microtubules to the receptors is an essential step in ligand-induced Smad2 activation.
Collapse
Affiliation(s)
- Julie Batut
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|