1
|
Engel-Pizcueta C, Hevia CF, Voltes A, Livet J, Pujades C. Her9 controls the stemness properties of hindbrain boundary cells. Development 2025; 152:dev203164. [PMID: 39628452 PMCID: PMC11829766 DOI: 10.1242/dev.203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The different spatiotemporal distribution of progenitor and neurogenic capacities permits that brain regions engage asynchronously in neurogenesis. In the hindbrain, rhombomere progenitor cells contribute to neurons during the first neurogenic phase, whereas boundary cells participate later. To analyze what maintains boundary cells as non-neurogenic progenitors, we addressed the role of Her9, a zebrafish Hes1-related protein. her9 expression is temporarily sustained in boundary cells independently of Notch at early embryonic stages, while they are non-neurogenic progenitors. Complementary functional approaches show that Her9 inhibits the onset of Notch signaling and the neurogenic program, keeping boundary cells as progenitors. Multicolor clonal analysis combined with genetic perturbations reveal that Her9 expands boundary progenitors by promoting symmetric proliferative and preventing neurogenic cell divisions. Her9 also regulates the proliferation of boundary cells by inhibiting the cell cycle arrest gene cdkn1ca and interplaying with Cyclin D1. Moreover, her9 is enriched in hindbrain radial glial cells at late embryonic stages independently of Notch. Together these data demonstrate that Her9 maintains the stemness properties of hindbrain boundary progenitors and late radial glial cells, ensuring the different temporal distribution of neurogenic capacities within the hindbrain.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Adrià Voltes
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Cristina Pujades
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Varghese SS, Hernandez-De La Peña AG, Dhawan S. Safeguarding genomic integrity in beta-cells: implications for beta-cell differentiation, growth, and dysfunction. Biochem Soc Trans 2024; 52:2133-2144. [PMID: 39364746 PMCID: PMC11555696 DOI: 10.1042/bst20231519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The maintenance of optimal glucose levels in the body requires a healthy reserve of the insulin producing pancreatic beta-cells. Depletion of this reserve due to beta-cell dysfunction and death results in development of diabetes. Recent findings highlight unresolved DNA damage as a key contributor to beta-cell defects in diabetes. Beta-cells face various stressors and metabolic challenges throughout life, rendering them susceptible to DNA breaks. The post-mitotic, long-lived phenotype of mature beta-cells further warrants robust maintenance of genomic integrity. Failure to resolve DNA damage during beta-cell development, therefore, can result in an unhealthy reserve of beta-cells and predispose to diabetes. Yet, the molecular mechanisms safeguarding beta-cell genomic integrity remain poorly understood. Here, we focus on the significance of DNA damage in beta-cell homeostasis and postulate how cellular expansion, epigenetic programming, and metabolic shifts during development may impact beta-cell genomic integrity and health. We discuss recent findings demonstrating a physiological role for DNA breaks in modulating transcriptional control in neurons, which share many developmental programs with beta-cells. Finally, we highlight key gaps in our understanding of beta-cell genomic integrity and discuss emerging areas of interest.
Collapse
Affiliation(s)
- Sneha S. Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, U.S.A
| | | | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, U.S.A
| |
Collapse
|
3
|
Yao Y, Wei L, Chen Z, Li H, Qi J, Wu Q, Zhou X, Lu Y, Zhu X. Single-cell RNA sequencing: Inhibited Notch2 signalling underlying the increased lens fibre cells differentiation in high myopia. Cell Prolif 2023:e13412. [PMID: 36717696 PMCID: PMC10392066 DOI: 10.1111/cpr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
High myopia is the leading cause of blindness worldwide. It promotes the overgrowth of lens, which is an important component of ocular refractive system, and increases the risks of lens surgery. While postnatal growth of lens is based on the addition of lens fibre cells (LFCs) supplemented by proliferation and differentiation of lens epithelial cells (LECs), it remains unknown how these cellular processes change in highly myopic eyes and what signalling pathways may be involved. Single-cell RNA sequencing was performed and a total of 50,375 single cells isolated from the lens epithelium of mouse highly myopic and control eyes were analysed to uncover their underlying transcriptome atlas. The proportion of LFCs was significantly higher in highly myopic eyes. Meanwhile, Notch2 signalling was inhibited during lineage differentiation trajectory towards LFCs, while Notch2 predominant LEC cluster was significantly reduced in highly myopic eyes. In consistence, Notch2 was the top down-regulated gene identified in highly myopic lens epithelium. Further validation experiments confirmed NOTCH2 downregulation in the lens epithelium of human and mouse highly myopic eyes. In addition, NOTCH2 knockdown in primary human and mouse LECs resulted in enhanced differentiation towards LFCs accompanied by up-regulation of MAF and CDKN1C. These findings indicated an essential role of NOTCH2 inhibition in lens overgrowth of highly myopic eyes, suggesting a therapeutic target for future interventions.
Collapse
Affiliation(s)
- Yunqian Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiao Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wang YJ, Wang X, An A, Zang M, Xu L, Gong K, Song W, Li Q, Lu X, Xiao YF, Yu G, Ma ZA. Immunomodulator FTY720 improves glucose homeostasis and diabetic complications by rejuvenation of β-cell function in nonhuman primate model of diabetes. Fundam Clin Pharmacol 2022; 36:699-711. [PMID: 35064580 PMCID: PMC9546369 DOI: 10.1111/fcp.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022]
Abstract
Inadequate β‐cell mass is essential for the pathogenesis of type 2 diabetes (T2D). Previous report showed that an immunomodulator FTY720, a sphingosine 1‐phosphate (S1P) receptor modulator, sustainably normalized hyperglycemia by stimulating β‐cell in vivo regeneration in db/db mice. We further examined the effects of FTY720 on glucose homeostasis and diabetic complications in a translational nonhuman primate (NHP) model of spontaneously developed diabetes. The male diabetic cynomolgus macaques of 18–19 year old were randomly divided into Vehicle (Purified water, n = 5) and FTY720 (5 mg/kg, n = 7) groups with oral gavage once daily for 10 weeks followed by 10 weeks drug free period. Compared with the Vehicle group, FTY720 effectively lowered HbA1c, blood concentrations of fasting glucose (FBG) and insulin, hence, decreased homeostatic model assessment of insulin resistance (HOMA‐IR); ameliorated glucose intolerance and restored glucose‐stimulated insulin release, indicating rejuvenation of β‐cell function in diabetic NHPs. Importantly, after withdrawal of FTY720, FBG, and HbA1c remained at low level in the drug free period. Echocardiography revealed that FTY720 significantly reduced proteinuria and improved cardiac left ventricular systolic function measured by increased ejection fraction and fractional shortening in the diabetic NHPs. Finally, flow cytometry analysis (FACS) detected that FTY720 significantly reduced CD4 + and CD8 + T lymphocytes as well as increased DC cells in the circulation. Immunomodulator FTY720 improves glucose homeostasis via rejuvenation of β‐cell function, which can be mediated by suppression of cytotoxic CD8 + T lymphocytes to β‐cells, thus, may be a novel immunotherapy to reverse T2D progression and ameliorate the diabetic complications.
Collapse
Affiliation(s)
- Yixin Jim Wang
- Crown Bioscience Inc., San Diego, California, USA.,Innoland Bioscience Inc., Taicang, China
| | | | - Annie An
- Crown Bioscience Inc., San Diego, California, USA
| | - Mingfa Zang
- Crown Bioscience Inc., San Diego, California, USA
| | - Ling Xu
- Crown Bioscience Inc., San Diego, California, USA
| | - Kefeng Gong
- Crown Bioscience Inc., San Diego, California, USA
| | | | - Qing Li
- The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojun Lu
- The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong-Fu Xiao
- Crown Bioscience Inc., San Diego, California, USA
| | - Guoliang Yu
- Apollomics Biopharmaceuticals, Inc., Hangzhou, China
| | | |
Collapse
|
5
|
Generation of Isogenic hiPSCs with Targeted Edits at Multiple Intronic SNPs to Study the Effects of the Type 2 Diabetes Associated KCNQ1 Locus in American Indians. Cells 2022; 11:cells11091446. [PMID: 35563754 PMCID: PMC9102014 DOI: 10.3390/cells11091446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The top genetic association signal for type 2 diabetes (T2D) in Southwestern American Indians maps to intron 15 of KCNQ1, an imprinted gene. We aim to understand the biology whereby variation at this locus affects T2D specifically in this genomic background. To do so, we obtained human induced pluripotent stem cells (hiPSC) derived from American Indians. Using these iPSCs, we show that imprinting of KCNQ1 and CDKN1C during pancreatic islet-like cell generation from iPSCs is consistent with known imprinting patterns in fetal pancreas and adult islets and therefore is an ideal model system to study this locus. In this report, we detail the use of allele-specific guide RNAs and CRISPR to generate isogenic hiPSCs that differ only at multiple T2D associated intronic SNPs at this locus which can be used to elucidate their functional effects. Characterization of these isogenic hiPSCs identified a few aberrant cell lines; namely cell lines with large hemizygous deletions in the putative functional region of KCNQ1 and cell lines hypomethylated at the KCNQ1OT1 promoter. Comparison of an isogenic cell line with a hemizygous deletion to the parental cell line identified CDKN1C and H19 as differentially expressed during the endocrine progenitor stage of pancreatic-islet development.
Collapse
|
6
|
Alhashem Z, Feldner-Busztin D, Revell C, Alvarez-Garcillan Portillo M, Camargo-Sosa K, Richardson J, Rocha M, Gauert A, Corbeaux T, Milanetto M, Argenton F, Tiso N, Kelsh RN, Prince VE, Bentley K, Linker C. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 2022; 11:e73550. [PMID: 35438077 PMCID: PMC9129880 DOI: 10.7554/elife.73550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice versa, remains largely unknown. We address these questions by combining in silico modelling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | - Christopher Revell
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
| | | | - Karen Camargo-Sosa
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Joanna Richardson
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Anton Gauert
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Tatianna Corbeaux
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | | | - Natascia Tiso
- Department of Biology, University of PadovaPadovaItaly
| | - Robert N Kelsh
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, The University of ChicagoChicagoUnited States
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
- Department of Informatics, King's College LondonLondonUnited Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. J Anat 2022; 241:42-66. [PMID: 35146756 PMCID: PMC9178385 DOI: 10.1111/joa.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
The core cell cycle machinery is conserved from yeast to humans, and hence it is assumed that all vertebrates share the same set of players. Yet during vertebrate evolution, the genome was duplicated twice, followed by a further genome duplication in teleost fish. Thereafter, distinct genes were retained in different vertebrate lineages; some individual gene duplications also occurred. To which extent these diversifying tendencies were compensated by retaining the same expression patterns across homologous genes is not known. This study for the first time undertook a comprehensive expression analysis for the core cell cycle regulators in the chicken, focusing in on early neurula and pharyngula stages of development, with the latter representing the vertebrate phylotypic stage. We also compared our data with published data for the mouse, Xenopus and zebrafish, the other established vertebrate models. Our work shows that, while many genes are expressed widely, some are upregulated or specifically expressed in defined tissues of the chicken embryo, forming novel synexpression groups with markers for distinct developmental pathways. Moreover, we found that in the neural tube and in the somite, mRNAs of some of the genes investigated accumulate in a specific subcellular localisation, pointing at a novel link between the site of mRNA translation, cell cycle control and interkinetic nuclear movements. Finally, we show that expression patterns of orthologous genes may differ in the four vertebrate models. Thus, for any study investigating cell proliferation, cell differentiation, tissue regeneration, stem cell behaviour and cancer/cancer therapy, it has to be carefully examined which of the observed effects are due to the specific model organism used, and which can be generalised.
Collapse
Affiliation(s)
- Marta Alaiz Noya
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Neurociencias de Alicante, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Life Sciences Solutions, Thermo Fisher Scientific, Monza, Italy
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
8
|
Capodanno Y, Chen Y, Schrader J, Tomosugi M, Sumi S, Yokoyama A, Hiraoka N, Ohki R. Cross-talk among MEN1, p53 and Notch regulates the proliferation of pancreatic neuroendocrine tumor cells by modulating INSM1 expression and subcellular localization. Neoplasia 2021; 23:979-992. [PMID: 34352404 PMCID: PMC8350333 DOI: 10.1016/j.neo.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
Genomic analysis of Pancreatic Neuroendocrine Tumors (PanNETs) has revealed that these tumors often lack mutations in typical cancer-related genes such as the tumor suppressor gene p53. Instead, PanNET tumorigenesis usually involves mutations in specific PanNET-related genes, such as tumor suppressor gene MEN1. Using a PanNET mouse model, human tissues and human cell lines, we studied the cross-talk among MEN1, p53 and Notch signaling pathways and their role in PanNETs. Here, we show that reactivation of the early developmental program of islet cells underlies PanNET tumorigenesis by restoring the proliferative capacity of PanNET cells. We investigated the role of INSM1, a transcriptional regulator of islet cells' development, and revealed that its expression and subcellular localization is regulated by MEN1 and p53. Both human and mouse data show that loss of MEN1 in a p53 wild-type genetic background results in increased nuclear INSM1 expression and cell proliferation. Additionally, inhibition of Notch signaling in a p53 wild-type background reduces the proliferation of PanNET cells, due to repression of INSM1 transcription and nuclear localization. Our study elucidates the molecular mechanisms governing the interactions of INSM1 with MEN1, p53 and Notch and their roles in PanNET tumorigenesis, suggesting INSM1 as a key transcriptional regulator of PanNET cell proliferation.
Collapse
Affiliation(s)
- Ylenia Capodanno
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Joerg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mitsuhiro Tomosugi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shoiciro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Ohtsuka T, Kageyama R. Hes1 overexpression leads to expansion of embryonic neural stem cell pool and stem cell reservoir in the postnatal brain. Development 2021; 148:dev.189191. [PMID: 33531431 DOI: 10.1242/dev.189191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022]
Abstract
Neural stem cells (NSCs) gradually alter their characteristics during mammalian neocortical development, resulting in the production of various neurons and glial cells, and remain in the postnatal brain as a source of adult neurogenesis. Notch-Hes signaling is a key regulator of stem cell properties in the developing and postnatal brain, and Hes1 is a major effector that strongly inhibits neuronal differentiation and maintains NSCs. To manipulate Hes1 expression levels in NSCs, we generated transgenic (Tg) mice using the Tet-On system. In Hes1-overexpressing Tg mice, NSCs were maintained in both embryonic and postnatal brains, and generation of later-born neurons was prolonged until later stages in the Tg neocortex. Hes1 overexpression inhibited the production of Tbr2+ intermediate progenitor cells but instead promoted the generation of basal radial glia-like cells in the subventricular zone (SVZ) at late embryonic stages. Furthermore, Hes1-overexpressing Tg mice exhibited the expansion of NSCs and enhanced neurogenesis in the SVZ of adult brain. These results indicate that Hes1 overexpression expanded the embryonic NSC pool and led to the expansion of the NSC reservoir in the postnatal and adult brain.
Collapse
Affiliation(s)
- Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan .,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
11
|
Weng C, Xi J, Li H, Cui J, Gu A, Lai S, Leskov K, Ke L, Jin F, Li Y. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab 2020; 2:1443-1458. [PMID: 33257854 PMCID: PMC7744443 DOI: 10.1038/s42255-020-00314-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022]
Abstract
The in vitro differentiation of insulin-producing beta-like cells can model aspects of human pancreatic development. Here, we generate 95,308 single-cell transcriptomes and reconstruct a lineage tree of the entire differentiation process from human embryonic stem cells to beta-like cells to study temporally regulated genes during differentiation. We identify so-called 'switch genes' at the branch point of endocrine/non-endocrine cell fate choice, revealing insights into the mechanisms of differentiation-promoting reagents, such as NOTCH and ROCKII inhibitors, and providing improved differentiation protocols. Over 20% of all detectable genes are activated multiple times during differentiation, even though their enhancer activation is usually unimodal, indicating extensive gene reuse driven by different enhancers. We also identify a stage-specific enhancer at the TCF7L2 locus for diabetes, uncovered by genome-wide association studies, that drives a transient wave of gene expression in pancreatic progenitors. Finally, we develop a web app to visualize gene expression on the lineage tree, providing a comprehensive single-cell data resource for researchers studying islet biology and diabetes.
Collapse
Affiliation(s)
- Chen Weng
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiajia Xi
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Haiyan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anniya Gu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sisi Lai
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Master of Science in Biology Program, Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Department of Electrical Engineering and Computer Science, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
13
|
Kim JW, Jun SY, Ylaya K, Chang HK, Oh YH, Hong SM, Chung JY, Hewitt SM. Loss of HES-1 Expression Predicts a Poor Prognosis for Small Intestinal Adenocarcinoma Patients. Front Oncol 2020; 10:1427. [PMID: 32974155 PMCID: PMC7466551 DOI: 10.3389/fonc.2020.01427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Hairy and enhancer of split-1 (HES-1), which is a downstream target of the Notch signaling pathway, has been linked to KRAS mutations. HES-1 has been proposed as harboring oncogenic activity in colorectal cancer but has not been investigated in adenocarcinoma of the small intestine, where the drivers of oncogenesis are not as well-understood. Materials and Methods: To investigate the clinicopathologic and prognostic implications of HES-1, HES-1 immunohistochemical expression was analyzed in digital images along with clinicopathological variables, including survival and KRAS genotype, in 185 small intestinal adenocarcinomas. Results: The loss of HES-1 expression (HES-1Loss) was observed in 38.4% (71/185) of the patients, and was associated with higher pT category (P = 0.018), pancreatic invasion (P = 0.005), high grade (P = 0.043), and non-tubular histology (P = 0.004). Specifically, in tumors with mutant KRAS (KRAS MT), HES-1Loss was related to proximal location (P = 0.024), high T and N categories (P = 0.005 and 0.047, respectively), and pancreatic invasion (P = 0.004). Patients with HES-1Loss showed worse overall survival compared to those with intact HES-1 (HES-1Intact) (P = 0.013). Patients with HES-1Loss/KRAS MT (median, 17.3 months) had significantly worse outcomes than those with HES-1Intact/KRAS WT (39.9 months), HES-1Intact/KRAS MT (47.6 month), and HES-1Loss/KRAS WT (36.2 months; P = 0.010). By multivariate analysis, HES-1Loss (hazard ratio = 1.55, 95% confidence interval (CI), 1.07-2.26; P = 0.022) remained an independent prognostic factor. Conclusion: HES-1expression can be used as a potential prognostic marker and may aid in the management of patients with small intestinal adenocarcinomas.
Collapse
Affiliation(s)
- Jeong Won Kim
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Sun-Young Jun
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hee-Kyung Chang
- Department of Pathology, Kosin University College of Medicine, Busan, South Korea
| | - Young-Ha Oh
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joon-Yong Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
15
|
Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells 2019; 38:301-314. [PMID: 31721388 PMCID: PMC7027765 DOI: 10.1002/stem.3117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
Adult hair follicles undergo repeated cycling of regression (catagen), resting (telogen), and growth (anagen), which is maintained by hair follicle stem cells (HFSCs). The mechanism underlying hair growth initiation and HFSC maintenance is not fully understood. Here, by epithelial deletion of Hes1, a major Notch downstream transcriptional repressor, we found that hair growth is retarded, but the hair cycle progresses normally. Hes1 is specifically upregulated in the lower bulge/HG during anagen initiation. Accordingly, loss of Hes1 results in delayed activation of the secondary hair germ (HG) and shortened anagen phase. This developmental delay causes reduced hair shaft length but not identity changes in follicular lineages. Remarkably, Hes1 ablation results in impaired hair regeneration upon repetitive depilation. Microarray gene profiling on HFSCs indicates that Hes1 modulates Shh responsiveness in anagen initiation. Using primary keratinocyte cultures, we demonstrated that Hes1 deletion negatively influences ciliogenesis and Smoothened ciliary accumulation upon Shh treatment. Furthermore, transient application of Smoothened agonist during repetitive depilation can rescue anagen initiation and HFSC self-renewal in Hes1-deficient hair follicles. We reveal a critical function of Hes1 in potentiating Shh signaling in anagen initiation, which allows sufficient signaling strength to expand the HG and replenish HFSCs to maintain the hair cycle homeostasis.
Collapse
Affiliation(s)
- Wei-Jeng Suen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Shao-Ting Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Liang-Tung Yang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taiwan, R.O.C
| |
Collapse
|
16
|
Vujovic F, Hunter N, Farahani RM. Notch pathway: a bistable inducer of biological noise? Cell Commun Signal 2019; 17:133. [PMID: 31640734 PMCID: PMC6805690 DOI: 10.1186/s12964-019-0453-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Notch signalling pathway is central to development of metazoans. The pathway codes a binary fate switch. Upon activation, downstream signals contribute to resolution of fate dichotomies such as proliferation/differentiation or sub-lineage differentiation outcome. There is, however, an interesting paradox in the Notch signalling pathway. Despite remarkable predictability of fate outcomes instructed by the Notch pathway, the associated transcriptome is versatile and plastic. This inconsistency suggests the presence of an interface that compiles input from the plastic transcriptome of the Notch pathway but communicates only a binary output in biological decisions. Herein, we address the interface that determines fate outcomes. We provide an alternative hypothesis for the Notch pathway as a biological master switch that operates by induction of genetic noise and bistability in order to facilitate resolution of dichotomous fate outcomes in development.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| |
Collapse
|
17
|
Akbari M, Shomali N, Faraji A, Shanehbandi D, Asadi M, Mokhtarzadeh A, Shabani A, Baradaran B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int 2019; 44:368-380. [PMID: 31579983 DOI: 10.1002/cbin.11243] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Recently, the role of cancer stem cells (CSCs) has been highlighted as a crucial emerging factor in chemoresistance, cancer relapse, and metastasis. CD133 is a surface marker of CSCs and has been argued to have prognostic and therapeutic values in CRC along with its related pathways such as Wnt, Notch, and hedgehog. Several studies have successfully applied targeted therapies against CD133 in CRC models namely bispecific antibodies (BiAbs) and anti-Wnt and notch pathways agents. These studies have yielded initial promising results in this regard. However, none of the therapeutics have been used in the clinical setting and their efficacy and adverse effects profile are yet to be elucidated. This review aims to gather the old and most recent data on the prognostic and therapeutic values of CD133 and CD133-targeted therapies in CRC.
Collapse
Affiliation(s)
- Morteza Akbari
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 3514799422, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Afsaneh Faraji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Aliakbar Shabani
- Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| |
Collapse
|
18
|
Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood 2019; 134:263-276. [PMID: 31076446 DOI: 10.1182/blood.2018862383] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
FLT3, DNMT3A, and NPM1 are the most frequently mutated genes in cytogenetically normal acute myeloid leukemia (AML), but little is known about how these mutations synergize upon cooccurrence. Here we show that triple-mutated AML is characterized by high leukemia stem cell (LSC) frequency, an aberrant leukemia-specific GPR56 highCD34low immunophenotype, and synergistic upregulation of Hepatic Leukemia Factor (HLF). Cell sorting based on the LSC marker GPR56 allowed isolation of triple-mutated from DNMT3A/NPM1 double-mutated subclones. Moreover, in DNMT3A R882-mutated patients, CpG hypomethylation at the HLF transcription start site correlated with high HLF mRNA expression, which was itself associated with poor survival. Loss of HLF via CRISPR/Cas9 significantly reduced the CD34+GPR56+ LSC compartment of primary human triple-mutated AML cells in serial xenotransplantation assays. HLF knockout cells were more actively cycling when freshly harvested from mice, but rapidly exhausted when reintroduced in culture. RNA sequencing of primary human triple-mutated AML cells after shRNA-mediated HLF knockdown revealed the NOTCH target Hairy and Enhancer of Split 1 (HES1) and the cyclin-dependent kinase inhibitor CDKN1C/p57 as novel targets of HLF, potentially mediating these effects. Overall, our data establish HLF as a novel LSC regulator in this genetically defined high-risk AML subgroup.
Collapse
|
19
|
Moin ASM, Montemurro C, Zeng K, Cory M, Nguyen M, Kulkarni S, Fritsch H, Meier JJ, Dhawan S, Rizza RA, Atkinson MA, Butler AE. Characterization of Non-hormone Expressing Endocrine Cells in Fetal and Infant Human Pancreas. Front Endocrinol (Lausanne) 2019; 9:791. [PMID: 30687234 PMCID: PMC6334491 DOI: 10.3389/fendo.2018.00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
Context: Previously, we identified chromograninA positive hormone-negative (CPHN) cells in high frequency in human fetal and neonatal pancreas, likely representing nascent endocrine precursor cells. Here, we characterize the putative endocrine fate and replicative status of these newly formed cells. Objective: To establish the replicative frequency and transcriptional identity of CPHN cells, extending our observation on CPHN cell frequency to a larger cohort of fetal and infant pancreas. Design, Setting, and Participants: 8 fetal, 19 infant autopsy pancreata were evaluated for CPHN cell frequency; 12 fetal, 24 infant/child pancreata were evaluated for CPHN replication and identity. Results: CPHN cell frequency decreased 84% (islets) and 42% (clusters) from fetal to infant life. Unlike the beta-cells at this stage, CPHN cells were rarely observed to replicate (0.2 ± 0.1 vs. 4.7 ± 1.0%, CPHN vs. islet hormone positive cell replication, p < 0.001), indicated by the lack of Ki67 expression in CPHN cells whether located in the islets or in small clusters, and with no detectable difference between fetal and infant groups. While the majority of CPHN cells express (in overall compartments of pancreas) the pan-endocrine transcription factor NKX2.2 and beta-cell specific NKX6.1 in comparable frequency in fetal and infant/child cases (81.9 ± 6.3 vs. 82.8 ± 3.8% NKX6.1+-CPHN cells of total CPHN cells, fetal vs. infant/child, p = 0.9; 88.0 ± 4.7 vs. 82.1 ± 5.3% NKX2.2+-CPHN cells of total CPHN cells, fetal vs. infant/child, p = 0.4), the frequency of clustered CPHN cells expressing NKX6.1 or NKX2.2 is lower in infant/child vs. fetal cases (1.2 ± 0.3 vs. 16.7 ± 4.7 clustered NKX6.1+-CPHN cells/mm2, infant/child vs. fetal, p < 0.01; 2.7 ± 1.0 vs. 16.0 ± 4.0 clustered NKX2.2+-CPHN cells/mm2, infant/child vs. fetal, p < 0.01). Conclusions: The frequency of CPHN cells declines steeply from fetal to infant life, presumably as they differentiate to hormone-expressing cells. CPHN cells represent a non-replicative pool of endocrine precursor cells, a proportion of which are likely fated to become beta-cells. Precis : CPHN cell frequency declines steeply from fetal to infant life, as they mature to hormone expression. CPHN cells represent a non-replicative pool of endocrine precursor cells, a proportion of which are likely fated to become beta-cells.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Chiara Montemurro
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Kylie Zeng
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Megan Cory
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Megan Nguyen
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
| | - Shweta Kulkarni
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Helga Fritsch
- Institute of Pathology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Tyrol, Austria
| | - Juris J. Meier
- St. Josef Hospital of the Ruhr-University Bochum (RUB), Bochum, Germany
| | - Sangeeta Dhawan
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Robert A. Rizza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Mark A. Atkinson
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, United States
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| |
Collapse
|
20
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Komatsu H, Cook CA, Gonzalez N, Medrano L, Salgado M, Sui F, Li J, Kandeel F, Mullen Y, Tai YC. Oxygen transporter for the hypoxic transplantation site. Biofabrication 2018; 11:015011. [PMID: 30524058 PMCID: PMC9851375 DOI: 10.1088/1758-5090/aaf2f0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell transplantation is a promising treatment for complementing lost function by replacing new cells with a desired function, e.g. pancreatic islet transplantation for diabetics. To prevent cell obliteration, oxygen supply is critical after transplantation, especially until the graft is sufficiently re-vascularized. To supply oxygen during this period, we developed a chemical-/electrical-free implantable oxygen transporter that delivers oxygen to the hypoxic graft site from ambient air by diffusion potential. This device is simply structured using a biocompatible silicone-based body that holds islets, connected to a tube that opens outside the body. In computational simulations, the oxygen transporter increased the oxygen level to >120 mmHg within grafts; in contrast, a control device that did not transport oxygen showed <6.5 mmHg. In vitro experiments demonstrated similar results. To test the effectiveness of the oxygen transporter in vivo, we transplanted pancreatic islets, which are susceptible to hypoxia, subcutaneously into diabetic rats. Islets transplanted using the oxygen transporter showed improved graft viability and cellular function over the control device. These results indicate that our oxygen transporter, which is safe and easily fabricated, effectively supplies oxygen locally. Such a device would be suitable for multiple clinical applications, including cell transplantations that require changing a hypoxic microenvironment into an oxygen-rich site.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.,Corresponding author: Hirotake Komatsu,
| | - Colin A. Cook
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena, CA 91125, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Leonard Medrano
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Feng Sui
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Tao W, Zhang Y, Ma L, Deng C, Duan H, Liang X, Liao R, Lin S, Nie T, Chen W, Wang C, Birchmeier C, Jia S. Haploinsufficiency of Insm1 Impairs Postnatal Baseline β-Cell Mass. Diabetes 2018; 67:2615-2625. [PMID: 30257979 DOI: 10.2337/db17-1330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/21/2018] [Indexed: 11/13/2022]
Abstract
Baseline β-cell mass is established during the early postnatal period when β-cells expand. In this study, we show that heterozygous ablation of Insm1 decreases baseline β-cell mass and subsequently impairs glucose tolerance. When exposed to a high-fat diet or on an ob/ob background, glucose intolerance was more severe in Insm1+/lacZ mice compared with Insm1+/+ mice, although no further decrease in the β-cell mass was detected. In islets of early postnatal Insm1+/lacZ mice, the cell cycle was prolonged in β-cells due to downregulation of the cell cycle gene Ccnd1 Although Insm1 had a low affinity for the Ccnd1 promoter compared with other binding sites, binding affinity was strongly dependent on Insm1 levels. We observed dramatically decreased binding of Insm1 to the Ccnd1 promoter after downregulation of Insm1 expression. Furthermore, downregulation of Ccnd1 resulted in a prolonged cell cycle, and overexpression of Ccnd1 rescued cell cycle abnormalities observed in Insm1-deficient β-cells. We conclude that decreases in Insm1 interfere with β-cell specification during the early postnatal period and impair glucose homeostasis during metabolic stress in adults. Insm1 levels are therefore a factor that can influence the development of diabetes.
Collapse
Affiliation(s)
- Weihua Tao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lijuan Ma
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Chujun Deng
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Hualin Duan
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xuehua Liang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rui Liao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaoqiang Lin
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tao Nie
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Institute of Clinical Medicine, Jinan University, Guangzhou, China
| | - Wanqun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Cunchuan Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Clinical Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Dominguez Gutierrez G, Xin Y, Okamoto H, Kim J, Lee AH, Ni M, Adler C, Yancopoulos GD, Murphy AJ, Gromada J. Gene Signature of Proliferating Human Pancreatic α Cells. Endocrinology 2018; 159:3177-3186. [PMID: 30010845 DOI: 10.1210/en.2018-00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic α cells proliferate at a low rate, and little is known about the control of this process. Here we report the characterization of human α cells by large-scale, single-cell RNA sequencing coupled with pseudotime ordering. We identified two large subpopulations and a smaller cluster of proliferating α cells with increased expression of genes involved in cell-cycle regulation. The proliferating α cells were differentiated, had normal levels of GCG expression, and showed no signs of cellular stress. Proliferating α cells were detected in both the G1S and G2M phases of the cell cycle. Human α cells proliferate at a fivefold higher rate than human β cells and express lower levels of the cell-cycle inhibitors CDKN1A and CDKN1C. Collectively, this study provides the gene signatures of human α cells and the genes involved in their cell division. The lower expression of two cell-cycle inhibitors in human α cells could account for their higher rate of proliferation compared with their insulin-producing counterparts.
Collapse
Affiliation(s)
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | |
Collapse
|
24
|
Ramond C, Beydag-Tasöz BS, Azad A, van de Bunt M, Petersen MBK, Beer NL, Glaser N, Berthault C, Gloyn AL, Hansson M, McCarthy MI, Honoré C, Grapin-Botton A, Scharfmann R. Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development 2018; 145:dev.165480. [PMID: 30042179 PMCID: PMC6124547 DOI: 10.1242/dev.165480] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
To decipher the populations of cells present in the human fetal pancreas and their lineage relationships, we developed strategies to isolate pancreatic progenitors, endocrine progenitors and endocrine cells. Transcriptome analysis of the individual populations revealed a large degree of conservation among vertebrates in the drivers of gene expression changes that occur at different steps of differentiation, although notably, sometimes, different members of the same gene family are expressed. The transcriptome analysis establishes a resource to identify novel genes and pathways involved in human pancreas development. Single-cell profiling further captured intermediate stages of differentiation and enabled us to decipher the sequence of transcriptional events occurring during human endocrine differentiation. Furthermore, we evaluate how well individual pancreatic cells derived in vitro from human pluripotent stem cells mirror the natural process occurring in human fetuses. This comparison uncovers a few differences at the progenitor steps, a convergence at the steps of endocrine induction, and the current inability to fully resolve endocrine cell subtypes in vitro.
Collapse
Affiliation(s)
- Cyrille Ramond
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ajuna Azad
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Martijn van de Bunt
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Global Research Informatics, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Maja Borup Kjær Petersen
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark,Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Nicola L. Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Nicolas Glaser
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Claire Berthault
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Mattias Hansson
- Stem Cell Research, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Christian Honoré
- Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark,Authors for correspondence (; )
| | - Raphael Scharfmann
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris 75014, France,CNRS UMR 8104, Paris 75014, France,University of Paris Descartes, Sorbonne Paris Cité, Paris 75006, France,Authors for correspondence (; )
| |
Collapse
|
25
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
26
|
Komatsu H, Rawson J, Barriga A, Gonzalez N, Mendez D, Li J, Omori K, Kandeel F, Mullen Y. Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site. Am J Transplant 2018; 18:832-842. [PMID: 28898528 DOI: 10.1111/ajt.14497] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023]
Abstract
Subcutaneous tissue is a promising site for islet transplantation, due to its large area and accessibility, which allows minimally invasive procedures for transplantation, graft monitoring, and removal of malignancies as needed. However, relative to the conventional intrahepatic transplantation site, the subcutaneous site requires a large number of islets to achieve engraftment success and diabetes reversal, due to hypoxia and low vascularity. We report that the efficiency of subcutaneous islet transplantation in a Lewis rat model is significantly improved by treating recipients with inhaled 50% oxygen, in conjunction with prevascularization of the graft bed by agarose-basic fibroblast growth factor. Administration of 50% oxygen increased oxygen tension in the subcutaneous site to 140 mm Hg, compared to 45 mm Hg under ambient air. In vitro, islets cultured under 140 mm Hg oxygen showed reduced central necrosis and increased insulin release, compared to those maintained in 45 mm Hg oxygen. Six hundred syngeneic islets subcutaneously transplanted into the prevascularized graft bed reversed diabetes when combined with postoperative 50% oxygen inhalation for 3 days, a number comparable to that required for intrahepatic transplantation; in the absence of oxygen treatment, diabetes was not reversed. Thus, we show oxygen inhalation to be a simple and promising approach to successfully establishing subcutaneous islet transplantation.
Collapse
Affiliation(s)
- H Komatsu
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - J Rawson
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - A Barriga
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - N Gonzalez
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - D Mendez
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - J Li
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - K Omori
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - F Kandeel
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Y Mullen
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
27
|
Perron A, Nishikawa Y, Iwata J, Shimojo H, Takaya J, Kobayashi K, Imayoshi I, Mbenza NM, Takenoya M, Kageyama R, Kodama Y, Uesugi M. Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone. J Biol Chem 2018. [PMID: 29523683 DOI: 10.1074/jbc.ra118.002316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Hes family basic helix-loop-helix transcription factor 1 (Hes1) is a downstream effector of Notch signaling and plays a crucial role in orchestrating developmental processes during the embryonic stage. However, its aberrant signaling in adulthood is linked to the pathogenesis of cancer. In the present study, we report the discovery of small organic molecules (JI051 and JI130) that impair the ability of Hes1 to repress transcription. Hes1 interacts with the transcriptional corepressor transducing-like enhancer of split 1 (TLE1) via an interaction domain comprising two tryptophan residues, prompting us to search a chemical library of 1,800 small molecules enriched for indole-like π-electron-rich pharmacophores for a compound that blocks Hes1-mediated transcriptional repression. This screening identified a lead compound whose extensive chemical modification to improve potency yielded JI051, which inhibited HEK293 cell proliferation with an EC50 of 0.3 μm Unexpectedly, using immunomagnetic isolation and nanoscale LC-MS/MS, we found that JI051 does not bind TLE1 but instead interacts with prohibitin 2 (PHB2), a cancer-associated protein chaperone. We also found that JI051 stabilizes PHB2's interaction with Hes1 outside the nucleus, inducing G2/M cell-cycle arrest. Of note, JI051 dose-dependently reduced cell growth of the human pancreatic cancer cell line MIA PaCa-2, and JI130 treatment significantly reduced tumor volume in a murine pancreatic tumor xenograft model. These results suggest a previously unrecognized role for PHB2 in the regulation of Hes1 and may inform potential strategies for managing pancreatic cancer.
Collapse
Affiliation(s)
- Amelie Perron
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011
| | | | - Jun Iwata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011
| | - Hiromi Shimojo
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Junichiro Takaya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011
| | - Kumiko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Itaru Imayoshi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Naasson M Mbenza
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011
| | - Mihoko Takenoya
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine.
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Uji, Kyoto 611-0011.
| |
Collapse
|
28
|
Ndlovu R, Deng LC, Wu J, Li XK, Zhang JS. Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Front Genet 2018; 9:482. [PMID: 30425728 PMCID: PMC6219204 DOI: 10.3389/fgene.2018.00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.
Collapse
Affiliation(s)
- Rodrick Ndlovu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lian-Cheng Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Centre for Precision Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| |
Collapse
|
29
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
30
|
miR-18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells. Sci Rep 2017; 7:45002. [PMID: 28332553 PMCID: PMC5362961 DOI: 10.1038/srep45002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/17/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of endogenous stem/progenitor cells to repair injured tissues is an ideal option for disease treatment. However, adult pancreatic progenitor cells remain in a quiescent state in vivo. Thus, it is difficult to stimulate proliferation and differentiation in these progenitor cells, and the cause remains elusive. miR-17-92 cluster miRNAs are highly conserved in mammals and are expressed in multiple tissue stem/progenitor cells, but their role in pancreatic progenitor cells are less well known. In the present study, we demonstrate that miR-18a, but not the other members of the miR-17-92 gene cluster, inhibits the proliferation of pancreatic progenitor cells in vitro and ex vivo. miR-18a inhibits proliferation of adult pancreatic progenitor cells through arresting the cell cycle at G1 stage, indicating that miR-18a plays a role in keeping the adult pancreatic progenitor cells in quiescence. miR-18a inhibits pancreatic progenitor proliferation by targeting the gene expressions of connective tissue growth factor (CTGF), neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), and cyclin dependent kinase 19 (CDK19), as well as by suppressing activation of the proliferation-related signaling pathways phosphatidylinositol 3-kinase–protein kinase B (PI3K/AKT) and extracellular signal-regulated kinase (ERK).
Collapse
|
31
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
32
|
Tan D, Wu Y, Hu L, He P, Xiong G, Bai Y, Yang K. Long noncoding RNA H19 is up-regulated in esophageal squamous cell carcinoma and promotes cell proliferation and metastasis. Dis Esophagus 2017; 30:1-9. [PMID: 27247022 DOI: 10.1111/dote.12481] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play various roles in tumorigenesis, among which lncRNA H19 has been revealed as an ambivalent factor that acts as both an oncogene and a tumor suppressor in carcinogenesis. However, the exact biological role of H19 in esophageal squamous cell carcinoma (ESCC) remains to be determined. The aim of this study was to examine the expression pattern of H19 in ESCC and evaluate its biological role and clinical significance in the progression of ESCC. Expression of H19 was analyzed in 64 ESCC tissues and four ESCC cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Proliferation, cell cycle, migration, and invasion assays were performed in ESCC cell lines following knockdown of H19 to determine the biological function of H19 in the progression of ESCC both in vitro and in vivo. Western blot analysis was also performed to identify the potential mechanisms involved. H19 was highly expressed both in ESCC samples and cell lines compared with corresponding normal counterparts. The up-regulation of of H19 was significantly correlated with ESCC clinical stage and lymph node metastasis. Knockdown of H19 not only exerted inhibitory effect on tumor proliferation in vitro and in vivo, but also repressed the migratory and invasive capacity. G0/G1 phase arrest was also found in H19 knockdown cell lines. In addition, silencing of H19 up-regulated epithelial marker E-cadherin while down-regulating mesenchymal marker vimentin and metastasis-associated protein such as MMP-9. These findings indicate that H19 acts as an oncogene and promotes ESCC cell proliferation and metastasis, which may infer H19 as a marker of poor prognosis and, thus, a potential therapeutic target for treating ESCC patients.
Collapse
Affiliation(s)
- Deli Tan
- Department of Cardiothoracic Surgery, Southwest Hospital, Chongqing, China
| | - Yuanyuan Wu
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Liwen Hu
- Department of Cardiothoracic Surgery, Southwest Hospital, Chongqing, China
| | - Ping He
- Department of Cardiothoracic Surgery, Southwest Hospital, Chongqing, China
| | - Gang Xiong
- Department of Cardiothoracic Surgery, Southwest Hospital, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Kang Yang
- Department of Cardiothoracic Surgery, Southwest Hospital, Chongqing, China
| |
Collapse
|
33
|
Stanescu DE, Yu R, Won KJ, Stoffers DA. Single cell transcriptomic profiling of mouse pancreatic progenitors. Physiol Genomics 2016; 49:105-114. [PMID: 28011883 DOI: 10.1152/physiolgenomics.00114.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of the developing pancreatic epithelium and low abundance of endocrine progenitors limit the information derived from traditional expression studies. To identify genes that characterize early developmental tissues composed of multiple progenitor lineages, we applied single-cell RNA-Seq to embryonic day (e)13.5 mouse pancreata and performed integrative analysis with single cell data from mature pancreas. We identified subpopulations expressing macrophage or endothelial markers and new pancreatic progenitor markers. We also identified potential α-cell precursors expressing glucagon (Gcg) among the e13.5 pancreatic cells. Despite their high Gcg expression levels, these cells shared greater transcriptomic similarity with other e13.5 cells than with adult α-cells, indicating their immaturity. Comparative analysis identified the sodium-dependent neutral amino acid transporter, Slc38a5, as a characteristic gene expressed in α-cell precursors but not mature cells. By immunofluorescence analysis, we observed SLC38A5 expression in pancreatic progenitors, including in a subset of NEUROG3+ endocrine progenitors and MAFB+ cells and in all GCG+ cells. Expression declined in α-cells during late gestation and was absent in the adult islet. Our results suggest SLC38A5 as an early marker of α-cell lineage commitment.
Collapse
Affiliation(s)
- Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reynold Yu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Hill JH, Franzosa EA, Huttenhower C, Guillemin K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 2016; 5:e20145. [PMID: 27960075 PMCID: PMC5154760 DOI: 10.7554/elife.20145] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Resident microbes play important roles in the development of the gastrointestinal tract, but their influence on other digestive organs is less well explored. Using the gnotobiotic zebrafish, we discovered that the normal expansion of the pancreatic β cell population during early larval development requires the intestinal microbiota and that specific bacterial members can restore normal β cell numbers. These bacteria share a gene that encodes a previously undescribed protein, named herein BefA (β Cell Expansion Factor A), which is sufficient to induce β cell proliferation in developing zebrafish larvae. Homologs of BefA are present in several human-associated bacterial species, and we show that they have conserved capacity to stimulate β cell proliferation in larval zebrafish. Our findings highlight a role for the microbiota in early pancreatic β cell development and suggest a possible basis for the association between low diversity childhood fecal microbiota and increased diabetes risk.
Collapse
Affiliation(s)
| | - Eric A Franzosa
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, United States
- The Broad Institute, Cambridge, United States
| | - Curtis Huttenhower
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, United States
- The Broad Institute, Cambridge, United States
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, United States
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
35
|
Edwards W, Nantie LB, Raetzman LT. Identification of a novel progenitor cell marker, grainyhead-like 2 in the developing pituitary. Dev Dyn 2016; 245:1097-1106. [PMID: 27564454 DOI: 10.1002/dvdy.24439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pituitary stem/progenitor cells give rise to all of the endocrine cell types within the pituitary gland and are necessary for both development and gland homeostasis. Recent studies have identified several key factors that characterize the progenitor cell population. However, little is known about the factors that regulate progenitor cell differentiation and maintenance. Therefore, it is crucial to identify novel factors that help elucidate mechanisms of progenitor cell function in the developing pituitary. Our studies are the first to characterize the expression of Grainyhead-like 2 (GRHL2), a transcription factor known to regulate progenitor cell plasticity, in the developing pituitary. RESULTS Our studies show GRHL2 expression is highest in the embryonic and early postnatal pituitary and is localized in pituitary progenitor cells. We demonstrate GRHL2 expression is changed in Notch2 cKO and Prop1df/df mice, mouse models that display progenitor cell number defects. In addition, our studies indicate a potential relationship between Notch signaling and GRHL2 expression in the developing pituitary. CONCLUSIONS Taken together, our results indicate GRHL2 as a novel progenitor cell maker in the developing pituitary that may contribute to progenitor cell function and maintenance. Developmental Dynamics 245:1097-1106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Leah B Nantie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
36
|
Billing M, Rörby E, May G, Tipping AJ, Soneji S, Brown J, Salminen M, Karlsson G, Enver T, Karlsson S. A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation of mouse hematopoietic progenitor cells. Exp Hematol 2016; 44:399-409.e5. [DOI: 10.1016/j.exphem.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
|
37
|
Del Debbio CB, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, Neville AJ, Ahmad I. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1. PLoS One 2016; 11:e0152025. [PMID: 27011052 PMCID: PMC4806989 DOI: 10.1371/journal.pone.0152025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally.
Collapse
Affiliation(s)
- Carolina Beltrame Del Debbio
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Qulsum Mir
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sowmya Parameswaran
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Saumi Mathews
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xiaohuan Xia
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Li Zheng
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Andrew J. Neville
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
38
|
Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genet 2016; 12:e1005916. [PMID: 26963625 PMCID: PMC4786089 DOI: 10.1371/journal.pgen.1005916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to generate body heat, providing a valid explanation for the persistence of thinness in our model and supporting a major role for elevated CDKN1C in SRS. Silver Russell syndrome is a severe developmental disorder characterised by low birth weight, sparing of the head and neonatal hypoglycemia. SRS adults are small and can be extremely thin, lacking body fat. Numerous genetic and epigenetic mutations have been linked to SRS primarily involving imprinted genes, but progress has been hampered by the lack of a suitable animal model. Here we describe a mouse model of the rare micro duplications reported in some SRS patients, which recapitulated many of the defining features of SRS, including extreme thinness. We showed that these mice possessed substantially more of the energy consuming brown adipose tissue (BAT), driven by a double dose of the imprinted Cdkn1c gene. We further show that Cdkn1c is required for the postranscriptional accumulation of the BAT determinant PRDM16 and that these proteins co-localise to the nucleus of in a rare label-retaining cell within BAT. These data suggest that Cdkn1c contributes to the development of BAT by modulating PRDM16 and supports a major role for this gene in SRS.
Collapse
Affiliation(s)
| | - Simon J. Tunster
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Steven Millership
- MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Lindsay Benson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stuart Peirson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mark Christian
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
40
|
Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, Gabrielli B, Fisk NM, Khosrotehrani K. Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling. Stem Cells 2016; 34:902-12. [PMID: 26732848 DOI: 10.1002/stem.2262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 11/10/2022]
Abstract
Since the discovery of endothelial colony forming cells (ECFC), there has been significant interest in their therapeutic potential to treat vascular injuries. ECFC cultures display significant heterogeneity and a hierarchy among cells able to give rise to high proliferative versus low proliferative colonies. Here we aimed to define molecularly this in vitro hierarchy. Based on flow cytometry, CD34 expression levels distinguished two populations. Only CD34 + ECFC had the capacity to reproduce high proliferative potential (HPP) colonies on replating, whereas CD34- ECFCs formed only small clusters. CD34 + ECFCs were the only ones to self-renew in stringent single-cell cultures and gave rise to both CD34 + and CD34- cells. Upon replating, CD34 + ECFCs were always found at the centre of HPP colonies and were more likely in G0/1 phase of cell cycling. Functionally, CD34 + ECFC were superior at restoring perfusion and better engrafted when injected into ischemic hind limbs. Transcriptomic analysis identified cyclin-dependent kinase (CDK) cell cycle inhibiting genes (p16, p21, and p57), the Notch signaling pathway (dll1, dll4, hes1, and hey1), and the endothelial cytokine il33 as highly expressed in CD34 + ECFC. Blocking the Notch pathway using a γ-secretase inhibitor (DAPT) led to reduced expression of cell cycle inhibitors, increased cell proliferation followed by a loss of self-renewal, and HPP colony formation capacity reflecting progenitor exhaustion. Similarly shRNA knockdown of p57 strongly affected self-renewal of ECFC colonies. ECFC hierarchy is defined by Notch signalling driving cell cycle regulators, progenitor quiescence and self-renewal potential.
Collapse
Affiliation(s)
- Jatin Patel
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Ho Yi Wong
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Weili Wang
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Josue Alexis
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Abbas Shafiee
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Alexander J Stevenson
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Brian Gabrielli
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Nicholas M Fisk
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.,Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Kiarash Khosrotehrani
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.,UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
41
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
42
|
Cellular Response upon Stress: p57 Contribution to the Final Outcome. Mediators Inflamm 2015; 2015:259325. [PMID: 26491224 PMCID: PMC4600511 DOI: 10.1155/2015/259325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Progression through the cell cycle is one of the most important decisions during the life of a cell and several kinds of stress are able to influence this choice. p57 is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family and is a well-known regulator of the cell cycle during embryogenesis and tissue differentiation. p57 loss has been reported in a variety of cancers and great effort has been spent during the past years studying the mechanisms of p57 regulation and the effects of p57 reexpression on tumor growth. Recently, growing amount of evidence points out that p57 has a specific function in cell cycle regulation upon cellular stress that is only partially shared by the other CIP/KIP inhibitors p21 and p27. Furthermore, it is nowadays emerging that p57 plays a role in the induction of apoptosis and senescence after cellular stress independently of its cell cycle related functions. This review focuses on the contribution that p57 holds in regulating cell cycle arrest, apoptosis, and senescence after cellular stress with particular attention to the response of cancer cells.
Collapse
|
43
|
Yanagida A, Chikada H, Ito K, Umino A, Kato-Itoh M, Yamazaki Y, Sato H, Kobayashi T, Yamaguchi T, Nakayama KI, Nakauchi H, Kamiya A. Liver maturation deficiency in p57(Kip2)-/- mice occurs in a hepatocytic p57(Kip2) expression-independent manner. Dev Biol 2015; 407:331-43. [PMID: 26165599 DOI: 10.1016/j.ydbio.2015.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Fetal hepatic stem/progenitor cells, hepatoblasts, are highly proliferative cells and the source of both hepatocytes and cholangiocytes. In contrast, mature hepatocytes have a low proliferative potency and high metabolic functions. Cell proliferation is regulated by cell cycle-related molecules. However, the correlation between cell cycle regulation and hepatic maturation are still unknown. To address this issue, we revealed that the cell cycle inhibitor p57(Kip2) was expressed in the hepatoblasts and mesenchymal cells of fetal liver in a spatiotemporal manner. In addition, we found that hepatoblasts in p57(Kip2)-/- mice were highly proliferative and had deficient maturation compared with those in wild-type (WT) mice. However, there were no remarkable differences in the expression levels of cell cycle- and bipotency-related genes except for Ccnd2. Furthermore, p57(Kip2)-/- hepatoblasts could differentiate into mature hepatocytes in p57(Kip2)-/- and WT chimeric mice, suggesting that the intrinsic activity of p57(Kip2) does not simply regulate hepatoblast maturation.
Collapse
Affiliation(s)
- Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Keiichi Ito
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayumi Umino
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Megumi Kato-Itoh
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuji Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Kobayashi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5461, USA
| | - Akihide Kamiya
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
44
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Nakamura T, Yoshitomi Y, Sakai K, Patel V, Fukumoto S, Yamada Y. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation. J Cell Sci 2014; 127:5261-72. [PMID: 25344255 DOI: 10.1242/jcs.156778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development.
Collapse
Affiliation(s)
- Takashi Nakamura
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuo Yoshitomi
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kiyoshi Sakai
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Domingues-Faria C, Chanet A, Salles J, Berry A, Giraudet C, Patrac V, Denis P, Bouton K, Goncalves-Mendes N, Vasson MP, Boirie Y, Walrand S. Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats. Nutr Metab (Lond) 2014; 11:47. [PMID: 25317198 PMCID: PMC4195890 DOI: 10.1186/1743-7075-11-47] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diminished ability of aged muscle to self-repair is a factor behind sarcopenia and contributes to muscle atrophy. Muscle repair depends on satellite cells whose pool size is diminished with aging. A reduction in Notch pathway activity may explain the age-related decrease in satellite cell proliferation, as this pathway has been implicated in satellite cell self-renewal. Skeletal muscle is a target of vitamin D which modulates muscle cell proliferation and differentiation in vitro and stimulates muscle regeneration in vivo. Vitamin D status is positively correlated to muscle strength/function, and elderly populations develop a vitamin D deficiency. The aim of this study was to evaluate how vitamin D deficiency induces skeletal muscle atrophy in old rats through a reduction in Notch pathway activity and proliferation potential in muscle. METHODS 15-month-old male rats were vitamin D-depleted or not (control) for 9 months (n = 10 per group). Rats were 24-month-old at the end of the experiment. Gene and/or protein expression of markers of proliferation, or modulating proliferation, and of Notch signalling pathway were studied in the tibialis anterior muscle by qPCR and western blot. An unpaired student's t-test was performed to test the effect of the experimental conditions. RESULTS Vitamin D depletion led to a drop in concentrations of plasma 25-hydroxyvitamin D in depleted rats compared to controls (-74%, p < 0.01). Tibialis anterior weight was decreased in D-depleted rats (-25%, p < 0.05). The D-depleted group showed -39%, -31% drops in expression of two markers known to modulate proliferation (Bmp4, Fgf-2 mRNA levels) and -56% drop in one marker of cell proliferation (PCNA protein expression) compared to controls (p < 0.05). Notch pathway activity was blunted in tibialis anterior of D-depleted rats compared to controls, seen as a down-regulation of cleaved Notch (-53%, p < 0.05) and its target Hes1 (-35%, p < 0.05). CONCLUSIONS A 9-month vitamin D depletion induced vitamin D deficiency in old rats. Vitamin D depletion induces skeletal muscle atrophy in old rats through a reduction in Notch pathway activity and proliferation potential. Vitamin D deficiency could aggravate the age-related decrease in muscle regeneration capacity.
Collapse
Affiliation(s)
- Carla Domingues-Faria
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Audrey Chanet
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Jérôme Salles
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Alexandre Berry
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Christophe Giraudet
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Véronique Patrac
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Philippe Denis
- Université d'Auvergne, Unité de Nutrition Humaine, Installation Expérimentale de Nutrition, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Katia Bouton
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Nicolas Goncalves-Mendes
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; Centre Jean Perrin, Unité de Nutrition, 63000 Clermont-Ferrand, France
| | - Yves Boirie
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; CHU Clermont-Ferrand, Service de Nutrition Clinique, 63003 Clermont-Ferrand, France
| | - Stéphane Walrand
- Université d'Auvergne, Unité de Nutrition Humaine, Equipe NuTriM, CRNH Auvergne; INRA, UMR 1019, UNH, CRNH Auvergne, Clermont Université, 63000 Clermont-Ferrand, France ; INRA, UMR1019, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
47
|
Osipovich AB, Long Q, Manduchi E, Gangula R, Hipkens SB, Schneider J, Okubo T, Stoeckert CJ, Takada S, Magnuson MA. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141:2939-49. [PMID: 25053427 PMCID: PMC4197673 DOI: 10.1242/dev.104810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Elisabetta Manduchi
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Susan B Hipkens
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Judsen Schneider
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Christian J Stoeckert
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
48
|
Zalc A, Hayashi S, Auradé F, Bröhl D, Chang T, Mademtzoglou D, Mourikis P, Yao Z, Cao Y, Birchmeier C, Relaix F. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest. Development 2014; 141:2780-90. [PMID: 25005473 DOI: 10.1242/dev.110155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation.
Collapse
Affiliation(s)
- Antoine Zalc
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Shinichiro Hayashi
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Frédéric Auradé
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Dominique Bröhl
- Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Ted Chang
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Despoina Mademtzoglou
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Philippos Mourikis
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| | - Zizhen Yao
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yi Cao
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Frédéric Relaix
- UPMC Paris 06, U 974, Paris, F-75013, France INSERM, Avenir Team, Pitié-Salpétrière, Paris, F-75013, France Institut de Myologie, Paris, F-75013, France
| |
Collapse
|
49
|
Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CTL. Contribution of a non-β-cell source to β-cell mass during pregnancy. PLoS One 2014; 9:e100398. [PMID: 24940737 PMCID: PMC4062500 DOI: 10.1371/journal.pone.0100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1) determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2) investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3) plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP), we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1) as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1) were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.
Collapse
Affiliation(s)
- Chiara Toselli
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin M. Hyslop
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martha Hughes
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David R. Natale
- Department of Reproductive Medicine, University of California San Diego, San Diego, California, United States of America
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institut D’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Carol T. L. Huang
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|