1
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
2
|
Armingol E, Ghaddar A, Joshi CJ, Baghdassarian H, Shamie I, Chan J, Her HL, Berhanu S, Dar A, Rodriguez-Armstrong F, Yang O, O’Rourke EJ, Lewis NE. Inferring a spatial code of cell-cell interactions across a whole animal body. PLoS Comput Biol 2022; 18:e1010715. [PMID: 36395331 PMCID: PMC9714814 DOI: 10.1371/journal.pcbi.1010715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Cell-cell interactions shape cellular function and ultimately organismal phenotype. Interacting cells can sense their mutual distance using combinations of ligand-receptor pairs, suggesting the existence of a spatial code, i.e., signals encoding spatial properties of cellular organization. However, this code driving and sustaining the spatial organization of cells remains to be elucidated. Here we present a computational framework to infer the spatial code underlying cell-cell interactions from the transcriptomes of the cell types across the whole body of a multicellular organism. As core of this framework, we introduce our tool cell2cell, which uses the coexpression of ligand-receptor pairs to compute the potential for intercellular interactions, and we test it across the Caenorhabditis elegans' body. Leveraging a 3D atlas of C. elegans' cells, we also implement a genetic algorithm to identify the ligand-receptor pairs most informative of the spatial organization of cells across the whole body. Validating the spatial code extracted with this strategy, the resulting intercellular distances are negatively correlated with the inferred cell-cell interactions. Furthermore, for selected cell-cell and ligand-receptor pairs, we experimentally confirm the communicatory behavior inferred with cell2cell and the genetic algorithm. Thus, our framework helps identify a code that predicts the spatial organization of cells across a whole-animal body.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Abbas Ghaddar
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chintan J. Joshi
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Hratch Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Isaac Shamie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Jason Chan
- Poway High School, Poway, California, United States of America
| | - Hsuan-Lin Her
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Samuel Berhanu
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anushka Dar
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Olivia Yang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine of University of Virginia, Charlottesville, Virginia, United States of America
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
3
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
Zhang Q, Hrach H, Mangone M, Reiner DJ. Identifying the Caenorhabditis elegans vulval transcriptome. G3 (BETHESDA, MD.) 2022; 12:jkac091. [PMID: 35551383 PMCID: PMC9157107 DOI: 10.1093/g3journal/jkac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Development of the Caenorhabditis elegans vulva is a classic model of organogenesis. This system, which starts with 6 equipotent cells, encompasses diverse types of developmental event, including developmental competence, multiple signaling events to control precise and faithful patterning of three cell fates, execution and proliferation of specific cell lineages, and a series of sophisticated morphogenetic events. Early events have been subjected to extensive mutational and genetic investigations and later events to cell biological analyses. We infer the existence of dramatically changing profiles of gene expression that accompanies the observed changes in development. Yet, except from serendipitous discovery of several transcription factors expressed in dynamic patterns in vulval lineages, our knowledge of the transcriptomic landscape during vulval development is minimal. This study describes the composition of a vulva-specific transcriptome. We used tissue-specific harvesting of mRNAs via immunoprecipitation of epitope-tagged poly(A) binding protein, PAB-1, heterologously expressed by a promoter known to express GFP in vulval cells throughout their development. The identified transcriptome was small but tightly interconnected. From this data set, we identified several genes with identified functions in development of the vulva and validated more with promoter-GFP reporters of expression. For one target, lag-1, promoter-GFP expression was limited but a fluorescent tag of the endogenous protein revealed extensive expression. Thus, we have identified a transcriptome of C. elegans vulval lineages as a launching pad for exploration of functions of these genes in organogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Heather Hrach
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - David J Reiner
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
5
|
Klumpe HE, Langley MA, Linton JM, Su CJ, Antebi YE, Elowitz MB. The context-dependent, combinatorial logic of BMP signaling. Cell Syst 2022; 13:388-407.e10. [PMID: 35421361 PMCID: PMC9127470 DOI: 10.1016/j.cels.2022.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression. Ligands could be classified into equivalence groups based on their profile of positive and negative synergies with other ligands. These groups varied with receptor expression, explaining how ligands can functionally replace each other in one context but not another. Context-dependent combinatorial interactions could be explained by a biochemical model based on the competitive formation of alternative signaling complexes with distinct activities. Together, these results provide insights into the roles of BMP combinations in developmental and therapeutic contexts and establish a framework for analyzing other combinatorial, context-dependent signaling systems.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matthew A Langley
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina J Su
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Michael B Elowitz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Norrie disease protein is essential for cochlear hair cell maturation. Proc Natl Acad Sci U S A 2021; 118:2106369118. [PMID: 34544869 DOI: 10.1073/pnas.2106369118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the gene for Norrie disease protein (Ndp) cause syndromic deafness and blindness. We show here that cochlear function in an Ndp knockout mouse deteriorated with age: At P3-P4, hair cells (HCs) showed progressive loss of Pou4f3 and Gfi1, key transcription factors for HC maturation, and Myo7a, a specialized myosin required for normal function of HC stereocilia. Loss of expression of these genes correlated to increasing HC loss and profound hearing loss by 2 mo. We show that overexpression of the Ndp gene in neonatal supporting cells or, remarkably, up-regulation of canonical Wnt signaling in HCs rescued HCs and cochlear function. We conclude that Ndp secreted from supporting cells orchestrates a transcriptional network for the maintenance and survival of HCs and that increasing the level of β-catenin, the intracellular effector of Wnt signaling, is sufficient to replace the functional requirement for Ndp in the cochlea.
Collapse
|
7
|
Modzelewska K, Brown L, Culotti J, Moghal N. Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans. Development 2020; 147:dev186080. [PMID: 32586974 DOI: 10.1242/dev.186080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/13/2020] [Indexed: 11/20/2022]
Abstract
Long-term survival of an animal species depends on development being robust to environmental variations and climate changes. We used C. elegans to study how mechanisms that sense environmental changes trigger adaptive responses that ensure animals develop properly. In water, the nervous system induces an adaptive response that reinforces vulval development through an unknown backup signal for vulval induction. This response involves the heterotrimeric G-protein EGL-30//Gαq acting in motor neurons. It also requires body-wall muscle, which is excited by EGL-30-stimulated synaptic transmission, suggesting a behavioral function of neurons induces backup signal production from muscle. We now report that increased acetylcholine during liquid growth activates an EGL-30-Rho pathway, distinct from the synaptic transmission pathway, that increases Wnt production from motor neurons. We also provide evidence that this neuronal Wnt contributes to EGL-30-stimulated vulval development, with muscle producing a parallel developmental signal. As diverse sensory modalities stimulate motor neurons via acetylcholine, this mechanism enables broad sensory perception to enhance Wnt-dependent development. Thus, sensory perception improves animal fitness by activating distinct neuronal functions that trigger adaptive changes in both behavior and developmental processes.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Louise Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Nadeem Moghal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
8
|
The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:2365-2376. [PMID: 32398235 PMCID: PMC7341121 DOI: 10.1534/g3.120.401182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblast migration is a critical aspect of nervous system development (e.g., neural crest migration). In an unbiased forward genetic screen, we identified a novel player in neuroblast migration, the ETR-1/CELF1 RNA binding protein. CELF1 RNA binding proteins are involved in multiple aspects of RNA processing including alternative splicing, stability, and translation. We find that a specific mutation in alternatively-spliced exon 8 results in migration defects of the AQR and PQR neurons, and not the embryonic lethality and body wall muscle defects of complete knockdown of the locus. Surprisingly, ETR-1 was required in body wall muscle cells for AQR/PQR migration (i.e., it acts cell non-autonomously). Genetic interactions indicate that ETR-1 acts with Wnt signaling, either in the Wnt pathway or in a parallel pathway. Possibly, ETR-1 is involved in the production of a Wnt signal or a parallel signal by the body wall muscles that controls AQR and PQR neuronal migration. In humans, CELF1 is involved in a number of neuromuscular disorders. If the role of ETR-1/CELF1 is conserved, these disorders might also involve cell or neuronal migration. Finally, we describe a technique of amplicon sequencing to detect rare, cell-specific genome edits by CRISPR/Cas9 in vivo (CRISPR-seq) as an alternative to the T7E1 assay.
Collapse
|
9
|
Thota RN, Rosato JI, Dias CB, Burrows TL, Martins RN, Garg ML. Dietary Supplementation with Curcumin Reduce Circulating Levels of Glycogen Synthase Kinase-3β and Islet Amyloid Polypeptide in Adults with High Risk of Type 2 Diabetes and Alzheimer's Disease. Nutrients 2020; 12:nu12041032. [PMID: 32283762 PMCID: PMC7230780 DOI: 10.3390/nu12041032] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Dietary supplementation with curcumin has been previously reported to have beneficial effects in people with insulin resistance, type 2 diabetes (T2D) and Alzheimer’s disease (AD). This study investigated the effects of dietary supplementation with curcumin on key peptides implicated in insulin resistance in individuals with high risk of developing T2D. Plasma samples from participants recruited for a randomised controlled trial with curcumin (180 mg/day) for 12 weeks were analysed for circulating glycogen synthase kinase-3 β (GSK-3β) and islet amyloid polypeptide (IAPP). Outcome measures were determined using ELISA kits. The homeostasis model for assessment of insulin resistance (HOMA-IR) was measured as parameters of glycaemic control. Curcumin supplementation significantly reduced circulating GSK-3β (−2.4 ± 0.4 ng/mL vs. −0.3 ± 0.6, p = 0.0068) and IAPP (−2.0 ± 0.7 ng/mL vs. 0.4 ± 0.6, p = 0.0163) levels compared with the placebo group. Curcumin supplementation significantly reduced insulin resistance (−0.3 ± 0.1 vs. 0.01 ± 0.05, p = 0.0142) compared with placebo group. Dietary supplementation with curcumin reduced circulating levels of IAPP and GSK-3β, thus suggesting a novel mechanism through which curcumin could potentially be used for alleviating insulin resistance related markers for reducing the risk of T2D and AD.
Collapse
Affiliation(s)
- Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Jessica I Rosato
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cintia B Dias
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- School of Biomedical Sciences, Macquarie University, Macquarie, NSW 2109, Australia;
| | - Tracy L Burrows
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ralph N Martins
- School of Biomedical Sciences, Macquarie University, Macquarie, NSW 2109, Australia;
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (R.N.T.); (J.I.R.); (C.B.D.); (T.L.B.)
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- Correspondence: ; Tel.: +61-2-4921-5647; Fax: +61-2-49212028
| |
Collapse
|
10
|
Kaur S, Mélénec P, Murgan S, Bordet G, Recouvreux P, Lenne PF, Bertrand V. Wnt ligands regulate the asymmetric divisions of neuronal progenitors in C. elegans embryos. Development 2020; 147:dev183186. [PMID: 32156756 PMCID: PMC10679509 DOI: 10.1242/dev.183186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Wnt/β-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in C. elegans to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY. We observed that, during interphase, the neuronal progenitor is elongated along the anteroposterior axis, then divides along its major axis, generating an anterior and a posterior daughter with different fates. Using time-controlled perturbations, we show that three Wnt ligands, which are transcribed at higher levels at the posterior of the embryo, regulate the orientation of the neuronal progenitor and its asymmetric division. We also identify a role for a Wnt receptor (MOM-5) and a cortical transducer APC (APR-1), which are, respectively, enriched at the posterior and anterior poles of the neuronal progenitor. Our study establishes a role for Wnt ligands in the regulation of the shape and terminal asymmetric divisions of neuronal progenitors, and identifies downstream components.
Collapse
Affiliation(s)
- Shilpa Kaur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pauline Mélénec
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Sabrina Murgan
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Guillaume Bordet
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pierre Recouvreux
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| |
Collapse
|
11
|
Kroll JR, Tsiaxiras J, van Zon JS. Variability in β-catenin pulse dynamics in a stochastic cell fate decision in C. elegans. Dev Biol 2020; 461:110-123. [PMID: 32032579 PMCID: PMC7203549 DOI: 10.1016/j.ydbio.2020.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022]
Abstract
During development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the β-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1–4 h pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate. The fate of the C. elegans P3.p cell is stochastic. β-catenin (BAR-1) accumulated in P3.p at the time of the cell fate decision. There is variability in dynamics of Hox and β-catenin levels during the decision. BAR-1 accumulated with variable pulse slope and time of pulse onset. Pulse dynamics bias cell fate at the time of the cell fate decision.
Collapse
Affiliation(s)
- Jason R Kroll
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands
| | - Jasonas Tsiaxiras
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands
| | - Jeroen S van Zon
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Wilson DH, Jarman EJ, Mellin RP, Wilson ML, Waddell SH, Tsokkou P, Younger NT, Raven A, Bhalla SR, Noll ATR, Olde Damink SW, Schaap FG, Chen P, Bates DO, Banales JM, Dean CH, Henderson DJ, Sansom OJ, Kendall TJ, Boulter L. Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors. Nat Commun 2020; 11:445. [PMID: 31974352 PMCID: PMC6978415 DOI: 10.1038/s41467-020-14283-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration.
Collapse
Affiliation(s)
- D H Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - E J Jarman
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - R P Mellin
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
- Infectious Diseases and Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - M L Wilson
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - S H Waddell
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - P Tsokkou
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - N T Younger
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK
| | - A Raven
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - S R Bhalla
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
| | - A T R Noll
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
| | - S W Olde Damink
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - F G Schaap
- Department of Surgery, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - P Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Centre for Cancer Science, Queen's Medical Centre, Nottingham, UK
- COMPARE University of Birmingham and University of Nottingham Midlands, Birmingham, UK
| | - J M Banales
- Biodonostia HRI, CIBERehd, Ikerbasque, San Sebastian, Spain
| | - C H Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - D J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - O J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T J Kendall
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - L Boulter
- MRC Human Genetics Unit, Institute for Genetic and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
13
|
Minor P, Sternberg P. C. elegans LRP-2 functions in vulval precursor cell polarity. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550417 PMCID: PMC7252275 DOI: 10.17912/micropub.biology.000152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Paul Minor
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125.,Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950
| | - Paul Sternberg
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125
| |
Collapse
|
14
|
Minor P, Sternberg P. Low density lipoprotein receptors LRP-1 and LRP-2 in C. elegans. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550404 PMCID: PMC7252236 DOI: 10.17912/micropub.biology.000154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paul Minor
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125.,Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950
| | - Paul Sternberg
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125
| |
Collapse
|
15
|
Shin H, Braendle C, Monahan KB, Kaplan REW, Zand TP, Mote FS, Peters EC, Reiner DJ. Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals. PLoS Genet 2019; 15:e1008056. [PMID: 31086367 PMCID: PMC6534338 DOI: 10.1371/journal.pgen.1008056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/24/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The six C. elegans vulval precursor cells (VPCs) are induced to form the 3°-3°-2°-1°-2°-3° pattern of cell fates with high fidelity. In response to EGF signal, the LET-60/Ras-LIN-45/Raf-MEK-2/MEK-MPK-1/ERK canonical MAP kinase cascade is necessary to induce 1° fate and synthesis of DSL ligands for the lateral Notch signal. In turn, LIN-12/Notch receptor is necessary to induce neighboring cells to become 2°. We previously showed that, in response to graded EGF signal, the modulatory LET-60/Ras-RGL-1/RalGEF-RAL-1/Ral signal promotes 2° fate in support of LIN-12. In this study, we identify two key differences between RGL-1 and RAL-1. First, deletion of RGL-1 confers no overt developmental defects, while previous studies showed RAL-1 to be essential for viability and fertility. From this observation, we hypothesize that the essential functions of RAL-1 are independent of upstream activation. Second, RGL-1 plays opposing and genetically separable roles in VPC fate patterning. RGL-1 promotes 2° fate via canonical GEF-dependent activation of RAL-1. Conversely, RGL-1 promotes 1° fate via a non-canonical GEF-independent activity. Our genetic epistasis experiments are consistent with RGL-1 functioning in the modulatory 1°-promoting AGE-1/PI3-Kinase-PDK-1-AKT-1 cascade. Additionally, animals lacking RGL-1 experience 15-fold higher rates of VPC patterning errors compared to the wild type. Yet VPC patterning in RGL-1 deletion mutants is not more sensitive to environmental perturbations. We propose that RGL-1 functions to orchestrate opposing 1°- and 2°-promoting modulatory cascades to decrease developmental stochasticity. We speculate that such switches are broadly conserved but mostly masked by paralog redundancy or essential functions. Developmental signals are increasingly conceptualized in the context of networks rather than linear pathways. Patterning of C. elegans vulval fates is mostly governed by two major signaling cascades that operate antagonistically to induce two cell identities. An additional pair of minor cascades support each of the major cascades. All components in this system are conserved in mammalian oncogenic signaling networks. We find that RGL-1, a component of one of the minor cascades, performs two antagonistic functions. Its deletion appears to abolish both opposing modulatory signals, resulting in a 15-fold increase in the basal error rate in development of these cells. We hypothesize that the bifunctional RGL-1 protein defines a novel mechanism by which signaling networks are interwoven to mitigate developmental errors.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America
| | | | - Kimberly B Monahan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Rebecca E W Kaplan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Tanya P Zand
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Francisca Sefakor Mote
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America
| | - Eldon C Peters
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
16
|
Xu Y, He Z, Song M, Zhou Y, Shen Y. A microRNA switch controls dietary restriction-induced longevity through Wnt signaling. EMBO Rep 2019; 20:embr.201846888. [PMID: 30872315 DOI: 10.15252/embr.201846888] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022] Open
Abstract
Dietary restriction (DR) is known to have a potent and conserved longevity effect, yet its underlying molecular mechanisms remain elusive. DR modulates signaling pathways in response to nutrient status, a process that also regulates animal development. Here, we show that the suppression of Wnt signaling, a key pathway controlling development, is required for DR-induced longevity in Caenorhabditis elegans We find that DR induces the expression of mir-235, which inhibits cwn-1/WNT4 expression by binding to the 3'-UTR The "switch-on" of mir-235 by DR occurs at the onset of adulthood, thereby minimizing potential disruptions in development. Our results therefore implicate that DR controls the adult lifespan by using a temporal microRNA switch to modulate Wnt signaling.
Collapse
Affiliation(s)
- Yunpeng Xu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Zhidong He
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Necessity and Contingency in Developmental Genetic Screens: EGF, Wnt, and Semaphorin Pathways in Vulval Induction of the Nematode Oscheius tipulae. Genetics 2019; 211:1315-1330. [PMID: 30700527 PMCID: PMC6456316 DOI: 10.1534/genetics.119.301970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in the nematode Caenorhabditis elegans have identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here, Vargas-Velazquez, Besnard, and Félix report on the molecular identification of... Genetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a primary (1°) vulval fate; P6.p in turn induces its neighbors to a secondary (2°) fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here, we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by clustered regularly interspaced short palindromic repeats/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway; a decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. Thus, the derived induction process in C. elegans with an early induction of the 1° fate appeared during evolution, after the recruitment of the EGF pathway for vulval induction.
Collapse
|
18
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
20
|
Park EC, Rongo C. RPM-1 and DLK-1 regulate pioneer axon outgrowth by controlling Wnt signaling. Development 2018; 145:dev.164897. [PMID: 30093552 DOI: 10.1242/dev.164897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
Abstract
Axons must correctly reach their targets for proper nervous system function, although we do not fully understand the underlying mechanism, particularly for the first 'pioneer' axons. In C. elegans, AVG is the first neuron to extend an axon along the ventral midline, and this pioneer axon facilitates the proper extension and guidance of follower axons that comprise the ventral nerve cord. Here, we show that the ubiquitin ligase RPM-1 prevents the overgrowth of the AVG axon by repressing the activity of the DLK-1/p38 MAPK pathway. Unlike in damaged neurons, where this pathway activates CEBP-1, we find that RPM-1 and the DLK-1 pathway instead regulate the response to extracellular Wnt cues in developing AVG axons. The Wnt LIN-44 promotes the posterior growth of the AVG axon. In the absence of RPM-1 activity, AVG becomes responsive to a different Wnt, EGL-20, through a mechanism that appears to be independent of canonical Fz-type receptors. Our results suggest that RPM-1 and the DLK-1 pathway regulate axon guidance and growth by preventing Wnt signaling crosstalk.
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Zhang Q, Wu X, Chen P, Liu L, Xin N, Tian Y, Dillin A. The Mitochondrial Unfolded Protein Response Is Mediated Cell-Non-autonomously by Retromer-Dependent Wnt Signaling. Cell 2018; 174:870-883.e17. [PMID: 30057120 DOI: 10.1016/j.cell.2018.06.029] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
The mitochondrial unfolded protein response (UPRmt) can be triggered in a cell-non-autonomous fashion across multiple tissues in response to mitochondrial dysfunction. The ability to communicate information about the presence of mitochondrial stress enables a global response that can ultimately better protect an organism from local mitochondrial challenges. We find that animals use retromer-dependent Wnt signaling to propagate mitochondrial stress signals from the nervous system to peripheral tissues. Specifically, the polyQ40-triggered activation of mitochondrial stress or reduction of cco-1 (complex IV subunit) in neurons of C. elegans results in the Wnt-dependent induction of cell-non-autonomous UPRmt in peripheral cells. Loss-of-function mutations of retromer complex components that are responsible for recycling the Wnt secretion-factor/MIG-14 prevent Wnt secretion and thereby suppress cell-non-autonomous UPRmt. Neuronal expression of the Wnt ligand/EGL-20 is sufficient to induce cell-non-autonomous UPRmt in a retromer complex-, Wnt signaling-, and serotonin-dependent manner, clearly implicating Wnt signaling as a strong candidate for the "mitokine" signal.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Peng Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Limeng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Nan Xin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and The Paul F. Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Furuta T, Joo HJ, Trimmer KA, Chen SY, Arur S. GSK-3 promotes S-phase entry and progression in C. elegans germline stem cells to maintain tissue output. Development 2018; 145:dev.161042. [PMID: 29695611 DOI: 10.1242/dev.161042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
Adult C. elegans germline stem cells (GSCs) and mouse embryonic stem cells (mESCs) exhibit a non-canonical cell cycle structure with an abbreviated G1 phase and phase-independent expression of Cdk2 and cyclin E. Mechanisms that promote the abbreviated cell cycle remain unknown, as do the consequences of not maintaining an abbreviated cell cycle in these tissues. In GSCs, we discovered that loss of gsk-3 results in reduced GSC proliferation without changes in differentiation or responsiveness to GLP-1/Notch signaling. We find that DPL-1 transcriptional activity inhibits CDK-2 mRNA accumulation in GSCs, which leads to slower S-phase entry and progression. Inhibition of dpl-1 or transgenic expression of CDK-2 via a heterologous germline promoter rescues the S-phase entry and progression defects of the gsk-3 mutants, demonstrating that transcriptional regulation rather than post-translational control of CDK-2 establishes the abbreviated cell cycle structure in GSCs. This highlights an inhibitory cascade wherein GSK-3 inhibits DPL-1 and DPL-1 inhibits cdk-2 transcription. Constitutive GSK-3 activity through this cascade maintains an abbreviated cell cycle structure to permit the efficient proliferation of GSCs necessary for continuous tissue output.
Collapse
Affiliation(s)
- Tokiko Furuta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyoe-Jin Joo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Genes and Development Graduate Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA .,Genes and Development Graduate Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
23
|
Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339:57-65. [DOI: 10.1016/j.bbr.2017.11.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
24
|
Dawes AT, Wu D, Mahalak KK, Zitnik EM, Kravtsova N, Su H, Chamberlin HM. A computational model predicts genetic nodes that allow switching between species-specific responses in a conserved signaling network. Integr Biol (Camb) 2017; 9:156-166. [DOI: 10.1039/c6ib00238b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alterations to only specific parameters in a model including EGF, Wnt and Notch lead to cell behavior differences.
Collapse
Affiliation(s)
- Adriana T. Dawes
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Molecular Genetics
| | - David Wu
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | - Karley K. Mahalak
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
- Graduate Program in Molecular
| | - Edward M. Zitnik
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
| | - Natalia Kravtsova
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Statistics
| | - Haiwei Su
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | | |
Collapse
|
25
|
Lam AK, Phillips BT. Wnt Signaling Polarizes C. elegans Asymmetric Cell Divisions During Development. Results Probl Cell Differ 2017; 61:83-114. [PMID: 28409301 PMCID: PMC6057142 DOI: 10.1007/978-3-319-53150-2_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric cell division is a common mode of cell differentiation during the invariant lineage of the nematode, C. elegans. Beginning at the four-cell stage, and continuing throughout embryogenesis and larval development, mother cells are polarized by Wnt ligands, causing an asymmetric inheritance of key members of a Wnt/β-catenin signal transduction pathway termed the Wnt/β-catenin asymmetry pathway. The resulting daughter cells are distinct at birth with one daughter cell activating Wnt target gene expression via β-catenin activation of TCF, while the other daughter displays transcriptional repression of these target genes. Here, we seek to review the body of evidence underlying a unified model for Wnt-driven asymmetric cell division in C. elegans, identify global themes that occur during asymmetric cell division, as well as highlight tissue-specific variations. We also discuss outstanding questions that remain unanswered regarding this intriguing mode of asymmetric cell division.
Collapse
Affiliation(s)
- Arielle Koonyee Lam
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
26
|
Farah O, Biechele S, Rossant J, Dufort D. Porcupine-dependent Wnt signaling controls stromal proliferation and endometrial gland maintenance through the action of distinct WNTs. Dev Biol 2016; 422:58-69. [PMID: 27965056 DOI: 10.1016/j.ydbio.2016.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
Abstract
Wnt signaling has been shown to be important in orchestrating proper development of the female reproductive tract. In the uterus, six members of the Wnt family are expressed in the neonatal endometrium and deletion of individual Wnt genes often leads to similar phenotypes, suggesting an interaction of these genes in uterine development and function. Furthermore, Wnts may have complementary functions, which could mask the identification of their individual functional role in single gene deletions. To circumvent this issue, we have generated a deletion of the Porcupine homolog within the female reproductive tract using progesterone receptor-Cre mice (PgrCre/+); preventing Wnt secretion from the producing cells. We show that Porcupine-dependent Wnt signaling, unlike previously reported, is dispensable for postnatal gland formation but is required for post-pubertal gland maintenance as well as for stromal cell proliferation. Furthermore, our results demonstrate that WNT7a is sufficient to restore post-pubertal endometrial gland formation. Although WNT5a did not restore gland formation, it rescued stromal cell proliferation; up-regulating several secreted factors including Fgf10 and Ihh. Our results further elucidate the roles of Wnt signaling in uterine development and function as well as provide an ideal system to address individual Wnt functions in the uterus.
Collapse
Affiliation(s)
- Omar Farah
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Steffen Biechele
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Janet Rossant
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Daniel Dufort
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Tintori SC, Osborne Nishimura E, Golden P, Lieb JD, Goldstein B. A Transcriptional Lineage of the Early C. elegans Embryo. Dev Cell 2016; 38:430-44. [PMID: 27554860 PMCID: PMC4999266 DOI: 10.1016/j.devcel.2016.07.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/19/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022]
Abstract
During embryonic development, cells must establish fates, morphologies, and behaviors in coordination with one another to form a functional body. A prevalent hypothesis for how this coordination is achieved is that each cell's fate and behavior is determined by a defined mixture of RNAs. Only recently has it become possible to measure the full suite of transcripts in a single cell. Here we quantify genome-wide mRNA abundance in each cell of the Caenorhabditis elegans embryo up to the 16-cell stage. We describe spatially dynamic expression, quantify cell-specific differential activation of the zygotic genome, and identify genes that were previously unappreciated as being critical for development. We present an interactive data visualization tool that allows broad access to our dataset. This genome-wide single-cell map of mRNA abundance, alongside the well-studied life history and fate of each cell, describes at a cellular resolution the mRNA landscape that guides development.
Collapse
Affiliation(s)
- Sophia C Tintori
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erin Osborne Nishimura
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Patrick Golden
- School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason D Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Rochard L, Monica SD, Ling ITC, Kong Y, Roberson S, Harland R, Halpern M, Liao EC. Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during zebrafish palate morphogenesis. Development 2016; 143:2541-7. [PMID: 27287801 DOI: 10.1242/dev.137000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
The Wnt signaling pathway is crucial for tissue morphogenesis, participating in cellular behavior changes, notably during the process of convergent-extension. Interactions between Wnt-secreting and receiving cells during convergent-extension remain elusive. We investigated the role and genetic interactions of Wnt ligands and their trafficking factors Wls, Gpc4 and Frzb in the context of palate morphogenesis in zebrafish. We describe that the chaperon Wls and its ligands Wnt9a and Wnt5b are expressed in the ectoderm, whereas juxtaposed chondrocytes express Frzb and Gpc4. Using wls, gpc4, frzb, wnt9a and wnt5b mutants, we genetically dissected the Wnt signals operating between secreting ectoderm and receiving chondrocytes. Our analysis delineates that non-canonical Wnt signaling is required for cell intercalation, and that wnt5b and wnt9a are required for palate extension in the anteroposterior and transverse axes, respectively.
Collapse
Affiliation(s)
- Lucie Rochard
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Stefanie D Monica
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irving T C Ling
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Yawei Kong
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, and Department of Biology, Johns Hopkins University, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Richard Harland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Marnie Halpern
- Department of Embryology, Carnegie Institution for Science, and Department of Biology, Johns Hopkins University, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114, USA
| |
Collapse
|
29
|
Grimbert S, Tietze K, Barkoulas M, Sternberg PW, Félix MA, Braendle C. Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction. Dev Biol 2016; 416:123-135. [PMID: 27288708 DOI: 10.1016/j.ydbio.2016.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/05/2016] [Accepted: 05/31/2016] [Indexed: 01/26/2023]
Abstract
How cells coordinate their spatial positioning through intercellular signaling events is poorly understood. Here we address this topic using Caenorhabditis elegans vulval patterning during which hypodermal vulval precursor cells (VPCs) adopt distinct cell fates determined by their relative positions to the gonadal anchor cell (AC). LIN-3/EGF signaling by the AC induces the central VPC, P6.p, to adopt a 1° vulval fate. Exact alignment of AC and VPCs is thus critical for correct fate patterning, yet, as we show here, the initial AC-VPC positioning is both highly variable and asymmetric among individuals, with AC and P6.p only becoming aligned at the early L3 stage. Cell ablations and mutant analysis indicate that VPCs, most prominently 1° cells, move towards the AC. We identify AC-released LIN-3/EGF as a major attractive signal, which therefore plays a dual role in vulval patterning (cell alignment and fate induction). Additionally, compromising Wnt pathway components also induces AC-VPC alignment errors, with loss of posterior Wnt signaling increasing stochastic vulval centering on P5.p. Our results illustrate how intercellular signaling reduces initial spatial variability in cell positioning to generate reproducible interactions across tissues.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Centre National de la Recherche Scientifique (CNRS) UMR7277 - Institut National de la Santé et de la Recherche Médicale (INSERM) U1091, Université Nice Sophia Antipolis, 06108 Nice cedex 02, France
| | - Kyria Tietze
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Michalis Barkoulas
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR 8197 and INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR 8197 and INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | - Christian Braendle
- Centre National de la Recherche Scientifique (CNRS) UMR7277 - Institut National de la Santé et de la Recherche Médicale (INSERM) U1091, Université Nice Sophia Antipolis, 06108 Nice cedex 02, France.
| |
Collapse
|
30
|
Zacharias AL, Walton T, Preston E, Murray JI. Quantitative Differences in Nuclear β-catenin and TCF Pattern Embryonic Cells in C. elegans. PLoS Genet 2015; 11:e1005585. [PMID: 26488501 PMCID: PMC4619327 DOI: 10.1371/journal.pgen.1005585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
The Wnt signaling pathway plays a conserved role during animal development in transcriptional regulation of distinct targets in different developmental contexts but it remains unclear whether quantitative differences in the nuclear localization of effector proteins TCF and β-catenin contribute to context-specific regulation. We investigated this question in Caenorhabditis elegans embryos by quantifying nuclear localization of fluorescently tagged SYS-1/β-catenin and POP-1/TCF and expression of Wnt ligands at cellular resolution by time-lapse microscopy and automated lineage tracing. We identified reproducible, quantitative differences that generate a subset of Wnt-signaled cells with a significantly higher nuclear concentration of the TCF/β-catenin activating complex. Specifically, β-catenin and TCF are preferentially enriched in nuclei of daughter cells whose parents also had high nuclear levels of that protein, a pattern that could influence developmental gene expression. Consistent with this, we found that expression of synthetic reporters of POP-1-dependent activation is biased towards cells that had high nuclear SYS-1 in consecutive divisions. We identified new genes whose embryonic expression patterns depend on pop-1. Most of these require POP-1 for either transcriptional activation or repression, and targets requiring POP-1 for activation are more likely to be expressed in the cells with high nuclear SYS-1 in consecutive divisions than those requiring POP-1 for repression. Taken together, these results indicate that SYS-1 and POP-1 levels are influenced by the parent cell’s SYS-1/POP-1 levels and this may provide an additional mechanism by which POP-1 regulates distinct targets in different developmental contexts. The Wnt signaling pathway is active during the development of all multi-cellular animals and also improperly re-activated in many cancers. Here, we use time-lapse microscopy to quantify the nuclear localization of several proteins in response to Wnt signaling throughout early embryonic development in the nematode worm, C. elegans. We find that cells that received a Wnt signal in the previous division respond more strongly to a Wnt signal in the next division, in part by localizing more of the regulator β-catenin to the nucleus. This causes the relative enrichment of Wnt pathway proteins in the nuclei of repeatedly signaled cells, which we show likely impacts the activation of Wnt target genes. This represents a novel mechanism for the regulation of Wnt pathway targets in development and disease.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Travis Walton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kidd AR, Muñiz-Medina V, Der CJ, Cox AD, Reiner DJ. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity. PLoS One 2015. [PMID: 26208319 PMCID: PMC4514874 DOI: 10.1371/journal.pone.0133226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch, CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-dependent migration phenotypes with mutations predicted to increase or decrease intrinsic GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt signals, and also uses different types of Wnt signaling. Previously described cooperative Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz contributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal. For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antagonize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated signaling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients or receptor priorities in the system.
Collapse
Affiliation(s)
- Ambrose R. Kidd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Vanessa Muñiz-Medina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David J. Reiner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center and College of Medicine, Houston, Texas, 77030, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
33
|
Schmid T, Hajnal A. Signal transduction during C. elegans vulval development: a NeverEnding story. Curr Opin Genet Dev 2015; 32:1-9. [DOI: 10.1016/j.gde.2015.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
|
34
|
Hartin SN, Hudson ML, Yingling C, Ackley BD. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis. PLoS One 2015; 10:e0121397. [PMID: 25938228 PMCID: PMC4418752 DOI: 10.1371/journal.pone.0121397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/31/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. RESULTS We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. CONCLUSIONS PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.
Collapse
Affiliation(s)
- Samantha N. Hartin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Martin L. Hudson
- Department of Biology and Physics, Kennesaw State University, Kennesaw, GA, United States of America
| | - Curtis Yingling
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
35
|
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9:66. [PMID: 25814927 PMCID: PMC4356074 DOI: 10.3389/fncel.2015.00066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.
Collapse
Affiliation(s)
- Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Grace S Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| |
Collapse
|
36
|
Gurling M, Garriga G. The two faces of TOE-2. WORM 2015; 4:e979697. [PMID: 26430558 DOI: 10.4161/21624054.2014.979697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/07/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022]
Abstract
The C. elegans Q lineage provides a unique context for studying how cells divide asymmetrically to generate cells fated to die. The Q cell divides to form the Q.a and Q.p neuroblasts, each of which divides to produce neurons and a cell that dies by apoptosis; however, these neuroblasts employ different mechanisms to divide asymmetrically.(1) We discovered 2 distinct roles for TOE-2, a protein previously shown to be a target of the C. elegans ERK ortholog MPK-1, in promoting apoptosis in each of these neuroblast divisions. In this commentary, we discuss possible molecular mechanisms by which TOE-2 promotes apoptosis. Specifically, we will discuss potential roles for TOE-2 interacting proteins, a possible nuclear function for TOE-2, and a potential link to the Wnt pathway.
Collapse
Affiliation(s)
- Mark Gurling
- Molecular and Cell Biology; University of California ; Berkeley, CA USA ; Present address: Department of Biochemistry; University of Utah ; Salt Lake City, UT USA
| | - Gian Garriga
- Molecular and Cell Biology; University of California ; Berkeley, CA USA
| |
Collapse
|
37
|
PLR-1, a putative E3 ubiquitin ligase, controls cell polarity and axonal extensions in C. elegans. Dev Biol 2014; 398:44-56. [PMID: 25448694 DOI: 10.1016/j.ydbio.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/09/2014] [Accepted: 11/11/2014] [Indexed: 02/02/2023]
Abstract
During embryonic development neurons differentiate and extend axons and dendrites that have to reach their appropriate targets. In Caenorhabditis elegans the AVG neuron is the first neuron to extend an axon during the establishment of the ventral nerve cord, the major longitudinal axon tract in the animal. In genetic screens we isolated alleles of plr-1, which caused polarity reversals of the AVG neuron as well as outgrowth and navigation defects of the AVG axon. In addition plr-1 mutants show outgrowth defects in several other classes of neurons as well as the posterior excretory canals. plr-1 is predicted to encode a transmembrane E3 ubiquitin ligase and is widely expressed in the animal including the AVG neuron and the excretory cell. plr-1 has recently been shown to negatively regulate Wnt signalling by removing Wnt receptors from the cell surface. We observed that mutations in a gene reducing Wnt signalling as well as mutations in unc-53/NAV2 and unc-73/Trio suppress the AVG polarity defects in plr-1 mutants, but not the defects seen in other cells. This places plr-1 in a Wnt regulation pathway, but also suggests that plr-1 has Wnt independent functions and interacts with unc-53 and unc-73 to control cell polarity.
Collapse
|
38
|
Cruciat CM. Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31:46-55. [PMID: 25200911 DOI: 10.1016/j.ceb.2014.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Casein kinase 1 (CK1) members play a critical and evolutionary conserved role in Wnt/β-catenin signaling. They phosphorylate several pathway components and exert a dual function, acting as both Wnt activators and Wnt inhibitors. Recent discoveries suggest that CK1 members act in a coordinated manner to regulate early responses to Wnt and notably that their enzymatic activity is regulated. Here, I provide a brief update of CK1 function and regulation in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Poh WC, Shen Y, Inoue T. Function of the Ryk intracellular domain in C. elegans vulval development. Dev Dyn 2014; 243:1074-85. [PMID: 24975394 DOI: 10.1002/dvdy.24159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/05/2014] [Accepted: 06/01/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ryk is a subfamily of receptor tyrosine kinases, which along with Frizzled and Ror, function as Wnt receptors. Vertebrate Ryk intracellular domain (ICD) is released from the cell membrane by a proteolytic cleavage in the transmembrane region and localizes to the nucleus. In C. elegans, Ryk is encoded by the lin-18 gene and regulates the polarity of the P7.p vulval cell. RESULTS Based on Western blots, we were unable to detect the presence of the cleaved LIN-18 ICD fragment. Functional assays found that LIN-18 intracellular domain is not absolutely required for LIN-18 function, consistent with previous results. However, overexpression of the LIN-18 intracellular domain fragment (LIN-18ICD) weakly enhanced the phenotype of lin-18 loss-of-function mutants. Furthermore, this activity was specific to the serine-rich juxtamembrane region. We also found that the nuclear localization of LIN-18ICD fragment can be regulated by Wnt pathway components including CAM-1/Ror, and by PAR-5/14-3-3. CONCLUSIONS Release of LIN-18ICD by cleavage at the membrane is not the main mechanism of LIN-18 signaling in vulval cells. However, our results suggest that LIN-18 intracellular domain interacts with Wnt pathway components and a 14-3-3 protein and likely plays a minor role in LIN-18 signaling.
Collapse
Affiliation(s)
- Woon Cheng Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
40
|
Loss-of-function of β-catenin bar-1 slows development and activates the Wnt pathway in Caenorhabditis elegans. Sci Rep 2014; 4:4926. [PMID: 24819947 PMCID: PMC4019968 DOI: 10.1038/srep04926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/23/2014] [Indexed: 02/07/2023] Open
Abstract
C. elegans is extensively used to study the Wnt-pathway and most of the core-signalling components are known. Four β-catenins are important gene expression regulators in Wnt-signalling. One of these, bar-1, is part of the canonical Wnt-pathway. Together with Wnt effector pop-1, bar-1 forms a transcription activation complex which regulates the transcription of downstream genes. The effects of bar-1 loss-of-function mutations on many phenotypes have been studied well. However, the effects on global gene expression are unknown. Here we report the effects of a loss-of-function mutation bar-1(ga80). By analysing the transcriptome and developmental phenotyping we show that bar-1(ga80) impairs developmental timing. This developmental difference confounds the comparison of the gene expression profile between the mutant and the reference strain. When corrected for this difference it was possible to identify genes that were directly affected by the bar-1 mutation. We show that the Wnt-pathway itself is activated, as well as transcription factors elt-3, pqm-1, mdl-1 and pha-4 and their associated genes. The outcomes imply that this response compensates for the loss of functional bar-1. Altogether we show that bar-1 loss-of function leads to delayed development possibly caused by an induction of a stress response, reflected by daf-16 activated genes.
Collapse
|
41
|
Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development. G3-GENES GENOMES GENETICS 2014; 4:733-47. [PMID: 24569038 PMCID: PMC4059243 DOI: 10.1534/g3.113.009522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Collapse
|
42
|
Lezzerini M, Budovskaya Y. A dual role of the Wnt signaling pathway during aging in Caenorhabditis elegans. Aging Cell 2014; 13:8-18. [PMID: 23879250 PMCID: PMC4326866 DOI: 10.1111/acel.12141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 11/30/2022] Open
Abstract
Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age-related diseases. These effects occur through highly complicated cell-to-cell interactions mediated by multiple Wnt-secreted proteins. While they share a high degree of sequence similarity, their function is highly diversified. Although the role of Wnt ligands during development is well studied, very little is known about the possible actions of Wnt signaling in natural aging. In this study, Caenorhabditis elegans serves, for the first time, as a model system to determine the role of Wnt ligands in aging. Caenorhabditis elegans has five Wnt proteins, mom-2, egl-20, lin-44, cwn-1, and cwn-2. We show that all five Wnt ligands are expressed and active past the development stages. The ligand mom-2/Wnt plays a major detrimental role in longevity, whereas the function of lin-44/Wnt is beneficial for long life. Interestingly, no evidence was found for Wnt signaling being involved in cellular or oxidative stress responses during aging. Our results suggest that Wnt signaling regulates aging-intrinsic genetic pathways, opening a new research direction on the role of Wnt signaling in aging and age-related diseases.
Collapse
Affiliation(s)
- Marco Lezzerini
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Yelena Budovskaya
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
43
|
Schindler AJ, Sherwood DR. Morphogenesis of the caenorhabditis elegans vulva. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 2:75-95. [PMID: 23418408 DOI: 10.1002/wdev.87] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs.
Collapse
|
44
|
Developmental drift as a mechanism for aging: lessons from nematodes. Biogerontology 2013; 14:693-701. [DOI: 10.1007/s10522-013-9462-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/30/2013] [Indexed: 01/16/2023]
|
45
|
Minor PJ, He TF, Sohn CH, Asthagiri AR, Sternberg PW. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans. Development 2013; 140:3882-91. [PMID: 23946444 DOI: 10.1242/dev.095687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans.
Collapse
Affiliation(s)
- Paul J Minor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
46
|
Weinstein N, Mendoza L. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front Genet 2013; 4:112. [PMID: 23785384 PMCID: PMC3682179 DOI: 10.3389/fgene.2013.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 01/21/2023] Open
Abstract
The vulva of Caenorhabditis elegans has been long used as an experimental model of cell differentiation and organogenesis. While it is known that the signaling cascades of Wnt, Ras/MAPK, and NOTCH interact to form a molecular network, there is no consensus regarding its precise topology and dynamical properties. We inferred the molecular network, and developed a multivalued synchronous discrete dynamic model to study its behavior. The model reproduces the patterns of activation reported for the following types of cell: vulval precursor, first fate, second fate, second fate with reversed polarity, third fate, and fusion fate. We simulated the fusion of cells, the determination of the first, second, and third fates, as well as the transition from the second to the first fate. We also used the model to simulate all possible single loss- and gain-of-function mutants, as well as some relevant double and triple mutants. Importantly, we associated most of these simulated mutants to multivulva, vulvaless, egg-laying defective, or defective polarity phenotypes. The model shows that it is necessary for RAL-1 to activate NOTCH signaling, since the repression of LIN-45 by RAL-1 would not suffice for a proper second fate determination in an environment lacking DSL ligands. We also found that the model requires the complex formed by LAG-1, LIN-12, and SEL-8 to inhibit the transcription of eff-1 in second fate cells. Our model is the largest reconstruction to date of the molecular network controlling the specification of vulval precursor cells and cell fusion control in C. elegans. According to our model, the process of fate determination in the vulval precursor cells is reversible, at least until either the cells fuse with the ventral hypoderm or divide, and therefore the cell fates must be maintained by the presence of extracellular signals.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, México
| |
Collapse
|
47
|
Barsi-Rhyne BJ, Miller KM, Vargas CT, Thomas AB, Park J, Bremer M, Jarecki JL, VanHoven MK. Kinesin-1 acts with netrin and DCC to maintain sensory neuron position in Caenorhabditis elegans. Genetics 2013; 194:175-87. [PMID: 23475988 PMCID: PMC3632465 DOI: 10.1534/genetics.113.149310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
The organization of neurons and the maintenance of that arrangement are critical to brain function. Failure of these processes in humans can lead to severe birth defects, mental retardation, and epilepsy. Several kinesins have been shown to play important roles in cell migration in vertebrate systems, but few upstream and downstream pathway members have been identified. Here, we utilize the genetic model organism Caenorhabditis elegans to elucidate the pathway by which the C. elegans Kinesin-1 Heavy Chain (KHC)/KIF5 ortholog UNC-116 functions to maintain neuronal cell body position in the PHB sensory neurons. We find that UNC-116/KHC acts in part with the cell and axon migration molecules UNC-6/Netrin and UNC-40/DCC in this process, but in parallel to SAX-3/Robo. We have also identified several potential adaptor, cargo, and regulatory proteins that may provide insight into the mechanism of UNC-116/KHC's function in this process. These include the cargo receptor UNC-33/CRMP2, the cargo adaptor protein UNC-76/FEZ and its regulator UNC-51/ULK, the cargo molecule UNC-69/SCOCO, and the actin regulators UNC-44/Ankyrin and UNC-34/Enabled. These genes also act in cell migration and axon outgrowth; however, many proteins that function in these processes do not affect PHB position. Our findings suggest an active posterior cell migration mediated by UNC-116/KHC occurs throughout development to maintain proper PHB cell body position and define a new pathway that mediates maintenance of neuronal cell body position.
Collapse
Affiliation(s)
| | - Kristine M. Miller
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Christopher T. Vargas
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Anthony B. Thomas
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Joori Park
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Martina Bremer
- Department of Mathematics, San José State University, San José, California 95192
| | - Jessica L. Jarecki
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Miri K. VanHoven
- Department of Biological Sciences, San José State University, San José, California 95192
| |
Collapse
|
48
|
Modzelewska K, Lauritzen A, Hasenoeder S, Brown L, Georgiou J, Moghal N. Neurons refine the Caenorhabditis elegans body plan by directing axial patterning by Wnts. PLoS Biol 2013; 11:e1001465. [PMID: 23319891 PMCID: PMC3539944 DOI: 10.1371/journal.pbio.1001465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/16/2012] [Indexed: 12/14/2022] Open
Abstract
Metazoans display remarkable conservation of gene families, including growth factors, yet somehow these genes are used in different ways to generate tremendous morphological diversity. While variations in the magnitude and spatio-temporal aspects of signaling by a growth factor can generate different body patterns, how these signaling variations are organized and coordinated during development is unclear. Basic body plans are organized by the end of gastrulation and are refined as limbs, organs, and nervous systems co-develop. Despite their proximity to developing tissues, neurons are primarily thought to act after development, on behavior. Here, we show that in Caenorhabditis elegans, the axonal projections of neurons regulate tissue progenitor responses to Wnts so that certain organs develop with the correct morphology at the right axial positions. We find that foreshortening of the posteriorly directed axons of the two canal-associated neurons (CANs) disrupts mid-body vulval morphology, and produces ectopic vulval tissue in the posterior epidermis, in a Wnt-dependent manner. We also provide evidence that suggests that the posterior CAN axons modulate the location and strength of Wnt signaling along the anterior-posterior axis by employing a Ror family Wnt receptor to bind posteriorly derived Wnts, and hence, refine their distributions. Surprisingly, despite high levels of Ror expression in many other cells, these cells cannot substitute for the CAN axons in patterning the epidermis, nor can cells expressing a secreted Wnt inhibitor, SFRP-1. Thus, unmyelinated axon tracts are critical for patterning the C. elegans body. Our findings suggest that the evolution of neurons not only improved metazoans by increasing behavioral complexity, but also by expanding the diversity of developmental patterns generated by growth factors such as Wnts.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Amara Lauritzen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Stefan Hasenoeder
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Louise Brown
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John Georgiou
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nadeem Moghal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Sharanya D, Thillainathan B, Marri S, Bojanala N, Taylor J, Flibotte S, Moerman DG, Waterston RH, Gupta BP. Genetic control of vulval development in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2012; 2:1625-41. [PMID: 23275885 PMCID: PMC3516484 DOI: 10.1534/g3.112.004598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/19/2012] [Indexed: 01/23/2023]
Abstract
The nematode Caenorhabditis briggsae is an excellent model organism for the comparative analysis of gene function and developmental mechanisms. To study the evolutionary conservation and divergence of genetic pathways mediating vulva formation, we screened for mutations in C. briggsae that cause the egg-laying defective (Egl) phenotype. Here, we report the characterization of 13 genes, including three that are orthologs of Caenorhabditis elegans unc-84 (SUN domain), lin-39 (Dfd/Scr-related homeobox), and lin-11 (LIM homeobox). Based on the morphology and cell fate changes, the mutants were placed into four different categories. Class 1 animals have normal-looking vulva and vulva-uterine connections, indicating defects in other components of the egg-laying system. Class 2 animals frequently lack some or all of the vulval precursor cells (VPCs) due to defects in the migration of P-cell nuclei into the ventral hypodermal region. Class 3 animals show inappropriate fusion of VPCs to the hypodermal syncytium, leading to a reduced number of vulval progeny. Finally, class 4 animals exhibit abnormal vulval invagination and morphology. Interestingly, we did not find mutations that affect VPC induction and fates. Our work is the first study involving the characterization of genes in C. briggsae vulva formation, and it offers a basis for future investigations of these genes in C. elegans.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Sujatha Marri
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Jon Taylor
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephane Flibotte
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
50
|
Abstract
In addition to activating β-catenin/TCF transcriptional complexes, Wnt proteins can elicit a variety of other responses. These are often lumped together under the denominator "alternative" or "non-canonical" Wnt signaling, but they likely comprise distinct signaling events. In this article, I discuss how the use of different ligand and receptor combinations is thought to give rise to these alternative Wnt-signaling responses. Although many of the biochemical details remain to be resolved, it is evident that alternative Wnt signaling plays important roles in regulating tissue morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Renée van Amerongen
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|