1
|
Godeau AL, Marin-Riera M, Trubuil E, Rogalla S, Bengoetxea G, Backová L, Pujol T, Colombelli J, Sharpe J, Martin-Blanco E, Solon J. A transient contractile seam promotes epithelial sealing and sequential assembly of body segments. Nat Commun 2025; 16:4010. [PMID: 40301337 PMCID: PMC12041241 DOI: 10.1038/s41467-025-58566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
In embryos, epithelial sealing proceeds with progressive zipping eventually leading to a scar-free epithelium and ensuring the assembly of body segments in insects and neural tube in mammals. How zipping is mechanically controlled to promote tissue fusion on long distances, remains unclear. Combining physical modeling with genetic and mechanical perturbations, we reveal the existence of a transient contractile seam that generates forces to reduce the zipping angle by force balance, consequently promoting epidermal sealing during Drosophila embryogenesis. The seam is formed by the adhesion of two tissues, the epidermis and amnioserosa, and is stabilized by the tensions generated by the segment boundaries. Once a segment is zipped, the seam disassembles concurrently with the inactivation of the Jun kinase pathway. Thus, we show that epithelial sealing is promoted by a transient actomyosin contractile seam allowing sequential segment assembly.
Collapse
Affiliation(s)
- Amélie L Godeau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain.
| | - Miquel Marin-Riera
- European Molecular Biology Laboratory (EMBL Barcelona), 08003, Barcelona, Spain
| | - Elise Trubuil
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biologia Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Svana Rogalla
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
| | - Guillermo Bengoetxea
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
| | - Lenka Backová
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
| | - Thomas Pujol
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL Barcelona), 08003, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain.
- Departamento de Bioquímica y Biologia Molecular, University of the Basque Country, 48940, Leioa, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
2
|
Shakir S, Garland CB. A Comprehensive Approach to Robin Sequence. Clin Plast Surg 2025; 52:245-258. [PMID: 39986886 DOI: 10.1016/j.cps.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Robin sequence is a congenital condition characterized by micrognathia, glossoptosis, and airway obstruction with or without cleft palate. The condition is best managed by a multidisciplinary team proficient in treating the complex pediatric airway, including pediatricians, speech and feeding specialists, and surgeons. Conservative treatment includes prone positioning, nasopharyngeal airways, supplemental oxygen, and feeding support to maintain a patent airway and promote infant growth. For infants requiring further intervention, the tongue may be repositioned anteriorly through surgical tongue-lip adhesion or nonsurgical techniques including the orthodontic airway plate. Mandibular distraction osteogenesis is used in severe cases with the goal to avoid tracheostomy.
Collapse
Affiliation(s)
- Sameer Shakir
- Department of Plastic Surgery, Plastic and Reconstructive Surgery, Medical College of Wisconsin, 9000 West Wisconsin Avenue, Suite 340, Milwaukee, WI 53202, USA
| | - Catharine B Garland
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792, USA.
| |
Collapse
|
3
|
Schaffrath K, Ooms M, Seidel S, Hölzle F, Modabber A. An evaluation of speech therapy care in the surrounding area of an interdisciplinary cleft lip and palate tertiary care center. Sci Rep 2025; 15:5841. [PMID: 39966550 PMCID: PMC11836121 DOI: 10.1038/s41598-025-90588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
The anatomical deformation in cleft patients requires speech therapy to support cleft patients as best as possible. The aim of this study was to evaluate the standard of knowledge of therapists concerning clefts. Furthermore, the study aimed to determine whether there was a difference between therapists with and without treatment experience in cleft patients as well as among therapists with more or less years of general professional experience. We developed a questionnaire about different areas of speech therapy: "General," "Speech therapy," "Development opportunities and influences," and "Interdisciplinary collaboration." For a total of 50 questions, we used single-, multiple-choice questions and the visual analog scale (VAS). Speech therapists with experience in treating cleft patients (n = 43) felt more confident regarding their knowledge and abilities than therapists without experience (n = 61), especially concerning nonspecialist disciplines and cleft specifications. No difference was found in therapy duration, indications, influences, and potential for development. Professional experience (years) and cleft experience correlate; with more knowledge in the group with more than 8 years of experience. Cleft centers remain first choice for patients' care thanks to the higher number of patients, daily treatment routine, the direct contact among examiners, and a common treatment concept.
Collapse
Affiliation(s)
- Katharina Schaffrath
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Simone Seidel
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
Goering JP, Moedritzer M, Stetsiv M, Isai DG, Hufft-Martinez BM, Tran AJ, Umar Z, Rickabaugh MK, Keselman P, Chauhan M, Tran PV, Brooks WM, Fischer KJ, Czirok A, Saadi I. Novel insights into palatal shelf elevation dynamics in normal mouse embryos. Front Cell Dev Biol 2025; 13:1532448. [PMID: 40008102 PMCID: PMC11850390 DOI: 10.3389/fcell.2025.1532448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Development of the embryonic palate requires that the palatal shelves (PS), which extend from maxillary processes, to grow bilaterally and vertically alongside the tongue. This growth continues until embryonic day (E) 13.5, after which the PS elevate above the tongue and adhere, completing the process by E14.5. Current models indicate that this elevation process involves a complex vertical-to-horizontal PS reorientation. While earlier studies have implied that reorientation occurs rapidly, the precise timing has not been resolved. Time-restricted pregnancies with a 1-h resolution showed that in 97% of C57BL/6J embryos, the PS were unelevated at E14.0. However, 6 h later, at E14.25, the PS had completed elevation in 80% of embryos, indicating that the PS elevate in a rapid and constrained timeframe. Interestingly, all E14.25 embryos with unelevated PS (20%) were female, suggesting sex differences in C57BL/6J PS elevation. In FVB/NJ embryos, the elevation window started earlier (E13.875-E14.25), and without any sex differences. An intermediate stage with unilateral PS elevation was frequently observed. Magnetic resonance imaging (MRI) of various stages showed that PS elevation began with posterior bilateral bulges, which then progressed laterally and anteriorly over time. During elevation, we observed increased cell proliferation in the PS lingual region. Within the bulge, cell orientation was tilted towards the tongue, and actomyosin activity was increased, which together may participate in horizontal projection of the bulge. Thus, our data reveal novel insights into rapid dynamic changes during PS elevation, and lay the foundation for future studies of normal and abnormal palatogenesis.
Collapse
Affiliation(s)
- Jeremy P. Goering
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael Moedritzer
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marta Stetsiv
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Dona Greta Isai
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M. Hufft-Martinez
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - An J. Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Zaid Umar
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Madison K. Rickabaugh
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul Keselman
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Munish Chauhan
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V. Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - William M. Brooks
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kenneth J. Fischer
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
| | - Andras Czirok
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Zhang C, Zheng Y, Qu Y, Huang R, Huang H, Li J, Qiu M, Li F. Transcriptional factor ISL1 regulates palate development by tuning the SHH cascade. FEBS J 2025; 292:851-863. [PMID: 39704783 DOI: 10.1111/febs.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Cleft palate is one of the most common birth defects in humans, and palate morphogenesis depends on epithelial-mesenchymal interaction. In this study, we report that ablation of Isl1 in the epithelium leads to complete cleft palate. A significant reduction in mesenchymal cell proliferation was detected in the Isl1Pitx2Cre mutant palates, but there was no significant difference in apoptosis between wild-type and mutant embryos. Fewer rugae structures were observed in Isl1Pitx2Cre mutant embryos. Shh, Sox2, Foxe1, Foxd2, and Msx1 expression was downregulated in the developing palate in Isl1 mutant embryos. We found that ISL1 can directly regulate Shh expression in palatal epithelial cells, suggesting a critical role for ISL1 in epithelial-mesenchymal interactions during palate development. Remarkably, cleft palate defects due to Isl1 deletion were rescued by a conditional transgenic allele (Tg-pmes-Ihh), confirming the genetic integration of Hedgehog signaling. Our findings indicate that ISL1 controls palatal shelf morphogenesis by modulating epithelial-mesenchymal communication via SHH signaling.
Collapse
Affiliation(s)
- Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Yuting Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Yaping Qu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China
| |
Collapse
|
6
|
Jia Z, Mukhopadhyay N, Yang Z, Butali A, Sun J, You Y, Yao M, Zhen Q, Ma J, He M, Pan Y, Alade A, Wang Y, Olujitan M, Qi M, Adeyemo WL, Buxó CJ, Gowans LJJ, Eshete M, Huang Y, Li C, Leslie EJ, Wang L, Bian Z, Carlson JC, Shi B, Weinberg SM, Murray JC, Sun L, Marazita ML, Freathy RM, Beaumont RN. Multi-ancestry Genome Wide Association Study Meta-analysis of Non-syndromic Orofacial Clefts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.06.24318522. [PMID: 39711721 PMCID: PMC11661332 DOI: 10.1101/2024.12.06.24318522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Non-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, and result from both genetic and environmental factors. NSOC include three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) based on epidemiology. Currently known loci only explain a limited proportion of the heritability of NSOC. Further, differences in genetic susceptibility among the sub-phenotypes are poorly characterized. We performed a multi-ancestry GWAS meta-analysis on 44,094 individuals (9,381 cases, 28,510 controls, 2042 case-parent trios and 18 multiplex pedigrees) of East Asian, European, Latin and South American, and African ancestry for both NSOC and subtypes. We identified 50 loci, including 11 novel loci: four loci ( CALD1 , SHH , NRG1 and LINC00320 ) associated with both NSOC and NSCL/P, two loci ( NTRK1 and RUNX1 ) only associated with NSOC, four loci ( HMGCR , PRICKLE1 , SOX9 and MYH9 ) only associated with NSCL/P and one locus ( ALX1 ) specifically associated with NSCLO. Five of the novel loci are located in regions containing genes associated with syndromic orofacial clefts ( SHH , NTRK1, CALD1, ALX1 and SOX9 ); seven of the novel loci are located in regions containing genes-implicated in craniofacial development ( HMGCR, SHH, PRICKLE1, ALX1, SOX9, RUNX1, MYH9 ). Genetic correlation and colocalization analyses revealed an overlap between signals associated with NSCLO, NSCPO and NSCLP, but there were also notable differences, emphasizing the complexity of common and distinct genetic processes affecting lip and palate development.
Collapse
|
7
|
Lu J, Peng B, Wang W, Zou Y. Epithelial-mesenchymal crosstalk: the scriptwriter of craniofacial morphogenesis. Front Cell Dev Biol 2024; 12:1497002. [PMID: 39583201 PMCID: PMC11582012 DOI: 10.3389/fcell.2024.1497002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Epithelial-mesenchymal interactions (EMI) are fundamental mechanisms in regulating development and organogenesis. Here we summarized the signaling mechanisms involved in EMI in the major developmental events during craniofacial morphogenesis, including neural crest cell induction, facial primordial growth as well as fusion processes. Regional specificity/polarity are demonstrated in the expression of most signaling molecules that usually act in a mutually synergistic/antagonistic manner. The underlying mechanisms of pathogenesis due to disrupted EMI was also discussed in this review.
Collapse
Affiliation(s)
- Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Wenyi Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Rihs S, Parisi L, Lauener A, Mansour F, Schnyder I, Dekany GM, La Scala GC, Katsaros C, Degen M. Reflecting the human lip in vitro: Cleft lip skin and mucosa keratinocytes keep their identities. Oral Dis 2024; 30:4390-4403. [PMID: 38178623 DOI: 10.1111/odi.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Cell models have shown great promise as tools for research, potentially providing intriguing alternatives to animal models. However, the original tissue characteristics must be maintained in culture, a fact that is often assumed, but seldom assessed. We aimed to follow the retention of the original tissue identities of cleft lip-derived skin and mucosa keratinocytes in vitro. METHODS Cleft lip-derived keratinocytes were isolated from discarded tissue along the cleft margins during cheiloplasty. Cell identities were assessed by immunohistochemistry and quantitative real-time PCR for tissue-specific markers and compared with native lip tissue. Moreover, keratinocytes were regularly analyzed for the retention of the original tissue characteristics by the aforementioned methods as well as by differentiation assays. RESULTS The various anatomical zones of the human lip could be distinguished using a panel of differentiation and functional-based markers. Using these markers, retention of the original tissue identities could be followed and confirmed in the corresponding primary keratinocytes in culture. CONCLUSIONS Our findings promote patient-derived cells retaining their original identities as astonishing and clinically relevant in vitro tools. Such cells allow a better molecular understanding of various lip-associated pathologies as well as their modeling in vitro, including but not restricted to orofacial clefts.
Collapse
Affiliation(s)
- Silvia Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Anic Lauener
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Farah Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Gabriela M Dekany
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Kumari A, Franks NE, Li L, Audu G, Liskowicz S, Johnson JD, Mistretta CM, Allen BL. Distinct expression patterns of Hedgehog signaling components in mouse gustatory system during postnatal tongue development and adult homeostasis. PLoS One 2024; 19:e0294835. [PMID: 38848388 PMCID: PMC11161123 DOI: 10.1371/journal.pone.0294835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The Hedgehog (HH) pathway regulates embryonic development of anterior tongue taste fungiform papilla (FP) and the posterior circumvallate (CVP) and foliate (FOP) taste papillae. HH signaling also mediates taste organ maintenance and regeneration in adults. However, there are knowledge gaps in HH pathway component expression during postnatal taste organ differentiation and maturation. Importantly, the HH transcriptional effectors GLI1, GLI2 and GLI3 have not been investigated in early postnatal stages; the HH receptors PTCH1, GAS1, CDON and HHIP, required to either drive HH pathway activation or antagonism, also remain unexplored. Using lacZ reporter mouse models, we mapped expression of the HH ligand SHH, HH receptors, and GLI transcription factors in FP, CVP and FOP in early and late postnatal and adult stages. In adults we also studied the soft palate, and the geniculate and trigeminal ganglia, which extend afferent fibers to the anterior tongue. Shh and Gas1 are the only components that were consistently expressed within taste buds of all three papillae and the soft palate. In the first postnatal week, we observed broad expression of HH signaling components in FP and adjacent, non-taste filiform (FILIF) papillae in epithelium or stroma and tongue muscles. Notably, we observed elimination of Gli1 in FILIF and Gas1 in muscles, and downregulation of Ptch1 in lingual epithelium and of Cdon, Gas1 and Hhip in stroma from late postnatal stages. Further, HH receptor expression patterns in CVP and FOP epithelium differed from anterior FP. Among all the components, only known positive regulators of HH signaling, SHH, Ptch1, Gli1 and Gli2, were expressed in the ganglia. Our studies emphasize differential regulation of HH signaling in distinct postnatal developmental periods and in anterior versus posterior taste organs, and lay the foundation for functional studies to understand the roles of numerous HH signaling components in postnatal tongue development.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicole E. Franks
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Libo Li
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabrielle Audu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, New Jersey, United States of America
| | - Sarah Liskowicz
- Department of Biology, University of Scranton, Scranton, Pennsylvania, United States of America
| | - John D. Johnson
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, New Jersey, United States of America
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
10
|
Yoshida N, Inubushi T, Hirose T, Aoyama G, Kurosaka H, Yamashiro T. The roles of JAK2/STAT3 signaling in fusion of the secondary palate. Dis Model Mech 2023; 16:dmm050085. [PMID: 37846594 PMCID: PMC10602007 DOI: 10.1242/dmm.050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Cleft palate has a multifactorial etiology. In palatal fusion, the contacting medial edge epithelium (MEE) forms the epithelial seam, which is subsequently removed with the reduction of p63. Failure in this process results in a cleft palate. We herein report the involvement of janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in palatal fusion and that folic acid rescues the fusing defect by reactivating JAK2/STAT3. In closure of bilateral palatal shelves, STAT3 phosphorylation was activated at the fusing MEE and mesenchyme underlying the MEE. JAK2 inhibition by AG490 inhibited STAT3 phosphorylation and resulted in palatal fusion failure without removal of the epithelial seam, in which p63 and keratin 17 (K17) periderm markers were retained. Folic acid application restored STAT3 phosphorylation in AG490-treated palatal explants and rescued the fusion defect, in which the p63- and K17-positive epithelial seam were removed. The AG490-induced palatal defect was also rescued in p63 haploinsufficient explants. These findings suggest that JAK2/STAT3 signaling is involved in palatal fusion by suppressing p63 expression in MEE and that folate restores the fusion defect by reactivating JAK2/STAT3.
Collapse
Affiliation(s)
- Naoki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Takumi Hirose
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Wolf CJ, Fitzpatrick H, Becker C, Smith J, Wood C. An improved multicellular human organoid model for the study of chemical effects on palatal fusion. Birth Defects Res 2023; 115:1513-1533. [PMID: 37530699 PMCID: PMC11253831 DOI: 10.1002/bdr2.2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Tissue fusion is a mechanism involved in the development of the heart, iris, genital tubercle, neural tube, and palate during embryogenesis. Failed fusion of the palatal shelves could result in cleft palate (CP), a common birth defect. Organotypic models constructed of human cells offer an opportunity to investigate developmental processes in the human. Previously, our laboratory developed an organoid model of the human palate that contains human mesenchyme and epithelial progenitor cells to study the effects of chemicals on fusion. METHODS Here, we developed an organoid model more representative of the embryonic palate that includes three cell types: mesenchyme, endothelial, and epithelial cells. We measured fusion by a decrease in epithelial cells at the contact point between the organoids and compared the effects of CP teratogens on fusion and toxicity in the previous and current organoid models. We further tested additional suspect teratogens in our new model. RESULTS We found that the three-cell-type model is more sensitive to fusion inhibition by valproic acid and inhibitors of FGF, BMP, and TGFβRI/II. In this new model, we tested other suspect CP teratogens and found that nocodazole, topiramate, and Y27632 inhibit fusion at concentrations that do not induce toxicity. CONCLUSION This sensitive human three-cell-type organotypic model accurately evaluates chemicals for cleft palate teratogenicity.
Collapse
Affiliation(s)
- Cynthia J Wolf
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Hunter Fitzpatrick
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Carrie Becker
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jessica Smith
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Carmen Wood
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
12
|
Peng X, Chen J, Wang Y, Wang X, Zhao X, Zheng X, Wang Z, Yuan D, Du J. Osteogenic microenvironment affects palatal development through glycolysis. Differentiation 2023; 133:1-11. [PMID: 37267667 DOI: 10.1016/j.diff.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Palate development involves various events, including proliferation, osteogenic differentiation, and epithelial-mesenchymal transition. Disruption of these processes can result in the cleft palate (CP). Mouse embryonic palatal mesenchyme (MEPM) cells are commonly used to explore the mechanism of palatal development and CP. However, the role of the microenvironment in the biological properties of MEPM cells, which undergoes dynamic changes during palate development, is rarely reported. In this study, we investigated whether there were differences between the palatal shelf mesenchyme at different developmental stages. Our results found that the palatal shelves facilitate proliferation at the early palate stage at mouse embryonic day (E) 13.5 and the tendency towards osteogenesis at E15.5, the late palate development stage. And the osteogenic microenvironment, which was mimicked by osteogenic differentiation medium (OIM), affected the biological properties of MEPM cells when compared to the routine medium. Specifically, MEPM cells showed slower proliferation, shorter S phase, increased apoptosis, and less migration distance after osteogenesis. E15.5 MEPM cells were more sensitive than E13.5, showing an earlier change. Moreover, E13.5 MEPM cells had weaker osteogenic ability than E15.5, and both MEPM cells exhibited different Lactate dehydrogenase A (LDHA) and Cytochrome c (CytC) expressions in OIM compared to routine medium, suggesting that glycolysis might be associated with the influence of the osteogenic microenvironment on MEPM cells. By comparing the stemness of the two cells, we investigated that the stemness of E13.5 MEPM cells was stronger than that of E15.5 MEPM cells, and E15.5 MEPM cells were more like differentiated cells than stem cells, as their capacity to differentiate into multiple cell fates was reduced. E13.5 MEPM cells might be the precursor cells of E15.5 MEPM cells. Our results enriched the understanding of the effect of the microenvironment on the biological properties of E13.5 and E15.5 MEPM cells, which should be considered when using MEPM cells as a model for palatal studies in the future.
Collapse
Affiliation(s)
- Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Dong Yuan
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China; Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China.
| |
Collapse
|
13
|
Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q. Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. J Genet Genomics 2023; 50:676-687. [PMID: 36841529 DOI: 10.1016/j.jgg.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
During vertebrate embryonic development, neural crest-derived ectomesenchyme within the maxillary prominences undergoes precisely coordinated proliferation and differentiation to give rise to diverse craniofacial structures, such as tooth and palate. However, the transcriptional regulatory networks underpinning such an intricate process have not been fully elucidated. Here, we perform single-cell RNA-Seq to comprehensively characterize the transcriptional dynamics during mouse maxillary development from embryonic day (E) 10.5-E14.5. Our single-cell transcriptome atlas of ∼28,000 cells uncovers mesenchymal cell populations representing distinct differentiating states and reveals their developmental trajectory, suggesting that the segregation of dental from the palatal mesenchyme occurs at E11.5. Moreover, we identify a series of key transcription factors (TFs) associated with mesenchymal fate transitions and deduce the gene regulatory networks directed by these TFs. Collectively, our study provides important resources and insights for achieving a systems-level understanding of craniofacial morphogenesis and abnormality.
Collapse
Affiliation(s)
- Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yijun Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Nayoung Ha
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianfei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiqi Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Qian Bian
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Won HJ, Kim JW, Won HS, Shin JO. Gene Regulatory Networks and Signaling Pathways in Palatogenesis and Cleft Palate: A Comprehensive Review. Cells 2023; 12:1954. [PMID: 37566033 PMCID: PMC10416829 DOI: 10.3390/cells12151954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Palatogenesis is a complex and intricate process involving the formation of the palate through various morphogenetic events highly dependent on the surrounding context. These events comprise outgrowth of palatal shelves from embryonic maxillary prominences, their elevation from a vertical to a horizontal position above the tongue, and their subsequent adhesion and fusion at the midline to separate oral and nasal cavities. Disruptions in any of these processes can result in cleft palate, a common congenital abnormality that significantly affects patient's quality of life, despite surgical intervention. Although many genes involved in palatogenesis have been identified through studies on genetically modified mice and human genetics, the precise roles of these genes and their products in signaling networks that regulate palatogenesis remain elusive. Recent investigations have revealed that palatal shelf growth, patterning, adhesion, and fusion are intricately regulated by numerous transcription factors and signaling pathways, including Sonic hedgehog (Shh), bone morphogenetic protein (Bmp), fibroblast growth factor (Fgf), transforming growth factor beta (Tgf-β), Wnt signaling, and others. These studies have also identified a significant number of genes that are essential for palate development. Integrated information from these studies offers novel insights into gene regulatory networks and dynamic cellular processes underlying palatal shelf elevation, contact, and fusion, deepening our understanding of palatogenesis, and facilitating the development of more efficacious treatments for cleft palate.
Collapse
Affiliation(s)
- Hyung-Jin Won
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- BIT Medical Convergence Graduate Program, Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Woo Kim
- Graduate School of Clinical Dentistry, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung-Sun Won
- Department of Anatomy, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
- Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea
| |
Collapse
|
15
|
Ozekin YH, O’Rourke R, Bates EA. Single cell sequencing of the mouse anterior palate reveals mesenchymal heterogeneity. Dev Dyn 2023; 252:713-727. [PMID: 36734036 PMCID: PMC10238667 DOI: 10.1002/dvdy.573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cleft palate is one of the most prevalent birth defects. Mice are useful for studying palate development because of their morphological and genetic similarities to humans. In mice, palate development occurs between embryonic days (E)11.5 to 15.5. Single cell transcriptional profiles of palate cell populations have been a valuable resource for the craniofacial research community, but we lack a single cell transcriptional profile for anterior palate at E13.5, at the transition from proliferation to shelf elevation. RESULTS A detailed single cell RNA sequencing analysis reveals heterogeneity in expression profiles of the cell populations of the E13.5 anterior palate. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA FISH) reveals epithelial populations segregate into layers. Mesenchymal populations spatially segregate into four domains. One of these mesenchymal populations expresses ligands and receptors distinct from the rest of the mesenchyme, suggesting that these cells have a unique function. RNA velocity analysis shows two terminal cell states that contribute to either the proximal or distal palatal regions emerge from a single progenitor pool. CONCLUSION This single cell resolution expression data and detailed analysis from E13.5 anterior palate provides a powerful resource for mechanistic insight into secondary palate morphogenesis for the craniofacial research community.
Collapse
Affiliation(s)
- Yunus H. Ozekin
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Anne Bates
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Zhang M, Zhou J, Ji Y, Shu S, Zhang M, Liang Y. LncRNA-NONMMUT100923.1 regulates mouse embryonic palatal shelf adhesion by sponging miR-200a-3p to modulate medial epithelial cell desmosome junction during palatogenesis. Heliyon 2023; 9:e16329. [PMID: 37251885 PMCID: PMC10208945 DOI: 10.1016/j.heliyon.2023.e16329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Cleft palate (CP) is a common neonatal craniofacial defect caused by the adhesion and fusion dysfunction of bilateral embryonic palatal shelf structures. Long non-coding RNA (lncRNA) is involved in CP formation with regulatory mechanism unknown. In this study, all-trans retinoic acid (ATRA) was used to induced cleft palate in embryonic mice as model group. The RNA-sequencing was performed to screen differentially expressed genes between the normal and model group on embryonic day 16.5, and the expression of LncRNA-NONMMUT100923.1 and miR-200a-3p, Cdsn was confirmed by RT-PCR and western blotting. Colony formation, CCK-8 and EDU assays were performed to measure cell proliferation and apoptosis on mouse embryonic palatal shelf (MEPS) epithelial cells in vitro. Fluorescence in situ hybridization (FISH) and dual luciferase activity assays was used to investigate the regulatory effect of LncRNA-NONMMUT100923.1 on miRNA and its target genes. Up-regulation of LncRNA-NONMMUT100923.1 and Cdsn while downregulation of miR-200a-3p was found in the model group. The sponging effects of LncRNA-NONMMUT100923 on miR-200a-3p and the target gene relations between Cdsn and miR-200a-3p was confirmed. Low expression of miR-200a-3p was related to the increased expressed levels of Cdsn and the proliferation of MEPS epithelial cells. Thus, a potential ceRNA regulatory network in which LncRNA-NONMMUT100923.1 regulates Cdsn expression by competitively binding to endogenous miR-200a-3p during palatogenesis, which may inhibit MEPS adhesion by preventing the disintegration of the desmosome junction in medial edge epithelium cells. These findings indicate the regulatory role of lncRNA and provides a potential direction for target gene therapy of CP.
Collapse
Affiliation(s)
- Ming Zhang
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jieyan Zhou
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yingwen Ji
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Mingjun Zhang
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yan Liang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563099, Guizhou, China
| |
Collapse
|
17
|
Won HJ, Won HS, Shin JO. Increased miR-200c levels disrupt palatal fusion by affecting apoptosis, cell proliferation, and cell migration. Biochem Biophys Res Commun 2023; 664:43-49. [PMID: 37137222 DOI: 10.1016/j.bbrc.2023.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The mammalian palate separates the oral and nasal cavities, facilitating proper feeding, respiration, and speech. Palatal shelves, composed of neural crest-derived mesenchyme and surrounding epithelium, are a pair of maxillary prominences contributing to this structure. Palatogenesis reaches completion upon the fusion of the midline epithelial seam (MES) following contact between medial edge epithelium (MEE) cells in the palatal shelves. This process entails numerous cellular and molecular occurrences, including apoptosis, cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT). MicroRNAs (miRs) are small, endogenous, non-coding RNAs derived from double-stranded hairpin precursors that regulate gene expression by binding to target mRNA sequences. Although miR-200c is a positive regulator of E-cadherin, its role in palatogenesis remains unclear. This study aims to explore the role of miR-200c in palate development. Before contact with palatal shelves, mir-200c was expressed in the MEE along with E-cadherin. After palatal shelf contact, miR-200c was present in the palatal epithelial lining and epithelial islands surrounding the fusion region but absent in the mesenchyme. The function of miR-200c was investigated by utilizing a lentiviral vector to facilitate overexpression. Ectopic expression of miR-200c resulted in E-cadherin upregulation, impaired dissolution of the MES, and reduced cell migration for palatal fusion. The findings imply that miR-200c is essential in palatal fusion as it governs E-cadherin expression, cell death, and cell migration, acting as a non-coding RNA. This study may contribute to clarifying the underlying molecular mechanisms in palate formation and provides insights into potential gene therapies for cleft palate.
Collapse
Affiliation(s)
- Hyung-Jin Won
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea; BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hyung-Sun Won
- Department of Anatomy and Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea; BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
18
|
Willie D, Holmes G, Jabs EW, Wu M. Cleft Palate in Apert Syndrome. J Dev Biol 2022; 10:jdb10030033. [PMID: 35997397 PMCID: PMC9397066 DOI: 10.3390/jdb10030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Apert syndrome is a rare genetic disorder characterized by craniosynostosis, midface retrusion, and limb anomalies. Cleft palate occurs in a subset of Apert syndrome patients. Although the genetic causes underlying Apert syndrome have been identified, the downstream signaling pathways and cellular mechanisms responsible for cleft palate are still elusive. To find clues for the pathogenic mechanisms of palatal defects in Apert syndrome, we review the clinical characteristics of the palate in cases of Apert syndrome, the palatal phenotypes in mouse models, and the potential signaling mechanisms involved in palatal defects. In Apert syndrome patients, cleft of the soft palate is more frequent than of the hard palate. The length of the hard palate is decreased. Cleft palate is associated most commonly with the S252W variant of FGFR2. In addition to cleft palate, high-arched palate, lateral palatal swelling, or bifid uvula are common in Apert syndrome patients. Mouse models of Apert syndrome display palatal defects, providing valuable tools to understand the underlying mechanisms. The mutations in FGFR2 causing Apert syndrome may change a signaling network in epithelial–mesenchymal interactions during palatogenesis. Understanding the pathogenic mechanisms of palatal defects in Apert syndrome may shed light on potential novel therapeutic solutions.
Collapse
|
19
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
20
|
Satake K, Ishii T, Morikawa T, Sakamoto T, Nishii Y. Quercetin Reduces the Development of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Cleft Palate in Mice by Suppressing CYP1A1 via the Aryl Hydrocarbon Receptor. Nutrients 2022; 14:nu14122448. [PMID: 35745180 PMCID: PMC9229746 DOI: 10.3390/nu14122448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Quercetin is a flavonoid with a wide range of pharmacological activities, including anticancer, antioxidant, and anti-inflammatory effects. Since it is a nutrient that can be consumed with a regular diet, quercetin has recently garnered interest. Quercetin acts as a phytochemical ligand for the aryl hydrocarbon receptor (AhR). Cleft lip and palate are among the most frequently diagnosed congenital diseases, and exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during pregnancy induces cleft palate via AhR. In this study, we investigated the preventive effect of quercetin intake on the TCDD-induced cleft palate and its mechanism of action. The in vivo results suggest that quercetin intake by pregnant mice can prevent cleft palate in fetal mice. In vitro, the addition of TCDD induced a reduction in cell migration and the proliferation of mouse embryonic palatal mesenchymal cells, which was mitigated by the addition of quercetin. The addition of quercetin did not alter the mRNA expression levels of the AhR repressor but significantly suppressed mRNA expression of CYP1A1. In addition, the binding of AhR to a xenobiotic responsive element was inhibited by quercetin, based on a chemically activated luciferase expression assay. In conclusion, our results suggest that quercetin reduces the development of TCDD-induced cleft palate by inhibiting CYP1A1 through AhR.
Collapse
|
21
|
Multiple Skeletal Anomalies of Sprague Dawley Rats following Prenatal Exposure to Anastatica hierochuntica, as Delineated by a Modified Double-Staining Method. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9050763. [PMID: 35626940 PMCID: PMC9140171 DOI: 10.3390/children9050763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Anastatica hierochuntica (A. hierochuntica) is a plant that originates from Middle Eastern countries. This herb is commonly consumed by pregnant women to ease the process of childbirth. However, consumption of A. hierochuntica during the prenatal period may disrupt foetal development. In this study, we aimed to evaluate the potential effects of four different doses (0, 250, 500 and 1000 mg/kg) of A. hierochuntica aqueous extract (AHAE) on the skeletal development of Sprague Dawley rat foetuses. The AHAE was administered from gestational day (GD) 6 till GD20. We also aimed to produce a simplified and reproducible skeletal staining procedure for proper skeletal assessment of full-term Sprague Dawley rat foetuses. Skeletal structures were stained using a modified method that utilised Alcian Blue 8GX and Alizarin Red S dyes. The staining procedure involved fixation, skinning, evisceration, cartilage staining, bone staining and clearing. Our modified staining technique has successfully showed a clear demarcation between the bone and cartilage components, which enabled objective assessment of the skeletal ossification following administration of AHAE. Some skeletal anomalies such as sacrocaudal agenesis and maxillary defect (cleft lip) were observed in 250 and 1000 mg/kg groups, respectively. These findings indicate potential toxicity effects of AHAE on the developing foetuses.
Collapse
|
22
|
Teng T, Teng CS, Kaartinen V, Bush JO. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development 2022; 149:275520. [PMID: 35593401 PMCID: PMC9188751 DOI: 10.1242/dev.200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion. Summary: Multiple cellular processes mediate secondary palate fusion, including a unique form of streaming collective epithelial migration driven by pulsatile actomyosin contractility.
Collapse
Affiliation(s)
- Teng Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Camilla S. Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Vesa Kaartinen
- University of Michigan School of Dentistry 5 Department of Biologic and Materials Sciences , , Ann Arbor, MI 48109 , USA
| | - Jeffrey O. Bush
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| |
Collapse
|
23
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
24
|
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models. Int J Mol Sci 2022; 23:ijms23020953. [PMID: 35055138 PMCID: PMC8779325 DOI: 10.3390/ijms23020953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.
Collapse
Affiliation(s)
- Anna Jaruga
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
| | - Jakub Ksiazkiewicz
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Krystian Kuzniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
25
|
Studdert JB, Bildsoe H, Masamsetti VP, Tam PPL. Elucidation of Gene Expression Patterns in the Craniofacial Tissues of Mouse Embryos by Wholemount In Situ Hybridization. Methods Mol Biol 2022; 2403:33-42. [PMID: 34913114 DOI: 10.1007/978-1-0716-1847-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analysis of animal models allows a deeper understanding of craniofacial development in health and diseases of humans. Wholemount in situ hybridization (WISH) is an informative technique to visualize gene expression in tissues across the developmental stages of embryos. The principle of WISH is based on the complementary binding (hybridization) of the DNA/RNA probe to the target transcript. The bound probe can then be visualized by an enzymatic color reaction to delineate the expression pattern of transcripts within a tissue. Here we describe an optimized method to perform in situ hybridization in mouse embryos.
Collapse
Affiliation(s)
- Joshua B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia.
| | - Heidi Bildsoe
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| |
Collapse
|
26
|
Pang X, Wang X, Wang Y, Pu L, Shi J, Burdekin N, Shi B, Li C. Sox9CreER-mediated deletion of β-catenin in palatal mesenchyme results in delayed palatal elevation accompanied with repressed canonical Wnt signaling and reduced actin polymerization. Genesis 2021; 59:e23441. [PMID: 34390177 DOI: 10.1002/dvg.23441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/11/2022]
Abstract
Cleft palate is a good model to pushing us toward a deeper understanding of the molecular mechanisms of spatiotemporal patterns in tissues and organisms because of the multiple-step processes such as elevation and fusion. Previous studies have shown that the epithelial β-catenin is crucial for palatal fusion, however, the function of the mesenchymal β-catenin remains elusive. We investigate the role of mesenchymal β-catenin in palatal development by generating a β-catenin conditional knockout mouse (CKO) (Sox9CreER; Ctnnb1F/F ). We found that the CKO mice exhibited delayed palatal elevation, leading to cleft palate in both in vivo and ex vivo. Abnormal cell proliferation and repressed mesenchymal canonical Wnt signaling were found in the CKO palate. Interestingly, Filamentous actin (F-actin) polymerization was significantly reduced in the palatal mesenchyme of mutant embryos. Furthermore, overexpression of adenovirus-mediated transfection with Acta1 in the mutant could help to elevate the palatal shelves but could not prevent cleft palate in ex vivo. Our results suggest that conditionally knock out β-catenin in the palatal mesenchyme by Sox9CreER leading to delayed palatal elevation, which results in repressed mesenchymal canonical Wnt signaling, decreased cell proliferation, and reduced actin polymerization, finally causes cleft palate.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yahong Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lingling Pu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jiayu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Nathaniel Burdekin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Bukova I, Szczerkowska KI, Prochazkova M, Beck IM, Prochazka J, Sedlacek R. Loss of Wiz Function Affects Methylation Pattern in Palate Development and Leads to Cleft Palate. Front Cell Dev Biol 2021; 9:620692. [PMID: 34150743 PMCID: PMC8206640 DOI: 10.3389/fcell.2021.620692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
WIZ (Widely Interspaced Zinc Finger) is associated with the G9a-GLP protein complex, a key H3K9 methyltransferase suggesting a role in transcriptional repression. However, its role in embryonic development is poorly described. In order to assess the loss of function of WIZ, we generated CRISPR/Cas9 WIZ knockout mouse model with 32 nucleotide deletion. Observing the lethality status, we identified the WIZ knockouts to be subviable during embryonic development and non-viable after birth. Morphology of developing embryo was analyzed at E14.5 and E18.5 and our findings were supported by microCT scans. Wiz KO showed improper development in multiple aspects, specifically in the craniofacial area. In particular, shorter snout, cleft palate, and cleft eyelids were present in mutant embryos. Palatal shelves were hypomorphic and though elevated to a horizontal position on top of the tongue, they failed to make contact and fuse. By comparison of proliferation pattern and histone methylation in developing palatal shelves we brought new evidence of importance WIZ dependent G9a-GLP methylation complex in craniofacial development, especially in palate shelf fusion.
Collapse
Affiliation(s)
- Ivana Bukova
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katarzyna Izabela Szczerkowska
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Prochazkova
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Inken M. Beck
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Animal Research Centre, Ulm University, Ulm, Germany
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
28
|
Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA. RERE deficiency contributes to the development of orofacial clefts in humans and mice. Hum Mol Genet 2021; 30:595-602. [PMID: 33772547 DOI: 10.1093/hmg/ddab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
Deletions of chromosome 1p36 are the most common telomeric deletions in humans and are associated with an increased risk of orofacial clefting. Deletion/phenotype mapping, combined with data from human and mouse studies, suggests the existence of multiple 1p36 genes associated with orofacial clefting including SKI, PRDM16, PAX7 and GRHL3. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in the proximal critical region for 1p36 deletion syndrome and encodes a nuclear receptor co-regulator. Pathogenic RERE variants have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye or heart (NEDBEH). Cleft lip has previously been described in one individual with NEDBEH. Here we report the first individual with NEDBEH to have a cleft palate. We confirm that RERE is broadly expressed in the palate during mouse embryonic development, and we demonstrate that the majority of RERE-deficient mouse embryos on C57BL/6 background have cleft palate. We go on to show that ablation of Rere in cranial neural crest (CNC) cells, mediated by a Wnt1-Cre, leads to delayed elevation of the palatal shelves and cleft palate and that proliferation of mesenchymal cells in the palatal shelves is significantly reduced in Rereflox/flox; Wnt1-Cre embryos. We conclude that loss of RERE function contributes to the development of orofacial clefts in individuals with proximal 1p36 deletions and NEDBEH and that RERE expression in CNC cells and their derivatives is required for normal palatal development.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter N Kundert
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiana M Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jenny Carmichael
- LNR Genomic Medicine Service, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, UK
| | - Daryl A Scott
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Qiao W, Huang P, Wang X, Meng L. Susceptibility to DNA damage caused by abrogation of Rad54 homolog B: A putative mechanism for chemically induced cleft palate. Toxicology 2021; 456:152772. [PMID: 33823233 DOI: 10.1016/j.tox.2021.152772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
Exposure to environmental toxicants such as all-trans retinoic acid (atRA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may cause cleft palate (CP), which process is related to DNA damage. Rad54B, an important DNA damage repaired protein, has been proved to be associated with non-syndromic cleft lip with palate (NSCLP). In the present study, we sought to clarify the role of Rad54B in palatal development and environment-induced CP. atRA (100 mg/kg) and TCDD (40 μg/kg) were used to induce CP in mice (C57BL/6 J mice). In this study, mouse embryonic heads were collected on embryonic day (E) 13.5∼16.5. The expression level of DNA repair protein Rad54 homolog B (Rad54B) was significantly decreased while those of the DNA double-strand breaks (DSBs) marker γ-H2A.X, apoptosis marker caspase-3 and p53 were significantly increased in the palatal shelves upon exposure to atRA and TCDD relative to the control. Primary mouse embryonic palatal mesenchymal cells (MEPMs) were cultured and transfected with siRNA or adenovirus in vitro to knock down or increase the level of Rad54B. Rad54B knockdown resulted in increased cellular S-phase arrest and apoptosis as well as decreased cell proliferation. Rad54B overexpression also increased apoptosis and reduced cell proliferation. Western blotting was used to detect the level of γ-H2A.X in transfected cells stimulated with etoposide (ETO, a DSBs inducer), and after 5 μM ETO stimulation of transfected MEPMs, the expression of γ-H2A.X was increased in Rad54B-knockdown cells. The expression of Mdm2, Mdmx and p53 with changes in Rad54B was also detected and coimmunoprecipitation was performed to analyze the combination of Mdm2 and p53 when Rad54B was changed in MEPMs. Knockdown of Rad54B inhibited the expression of Mdm2 and Mdmx, while the level of p53 increased. The coimmunoprecipitation results showed a decreased combination of Mdm2 and p53 when Rad54B was knocked down. Therefore, Rad54B can regulate the cell cycle, proliferation, and apoptosis of MEPMs. The loss of Rad54B increased the sensitivity of MEPMs to DSBs inducers, promoted apoptosis, and suppressed the proliferation of MEPMs by inhibiting the degradation of p53. Taken together, these findings suggest that Rad54B may play a key regulatory role in environment-induced CP.
Collapse
Affiliation(s)
- Weiwei Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Pei Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
30
|
Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology, classification, epidemiology, and genetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108373. [PMID: 34083042 DOI: 10.1016/j.mrrev.2021.108373] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023]
Abstract
Orofacial clefts (OFCs) rank as the second most common congenital birth defect in the United States after Down syndrome and are the most common head and neck congenital malformations. They are classified as cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO). OFCs have significant psychological and socio-economic impact on patients and their families and require a multidisciplinary approach for management and counseling. A complex interaction between genetic and environmental factors contributes to the incidence and clinical presentation of OFCs. In this comprehensive review, the embryology, classification, epidemiology and etiology of clefts are thoroughly discussed and a "state-of-the-art" snapshot of the recent advances in the genetics of OFCs is presented.
Collapse
Affiliation(s)
- Ghenwa Nasreddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Joelle El Hajj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801, Beirut, Lebanon.
| |
Collapse
|
31
|
Spatio-Temporal Expression Pattern of Ki-67, pRB, MMP-9 and Bax in Human Secondary Palate Development. Life (Basel) 2021; 11:life11020164. [PMID: 33672637 PMCID: PMC7924200 DOI: 10.3390/life11020164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/11/2023] Open
Abstract
We analyzed the immunohistochemical expression of Ki-67, pRb, Bax, and MMP-9 during the human secondary palate formation (7th to 12th developmental weeks (DWs). The most significant proliferation was observed in the seventh DW with 32% of Ki-67-positive cells in the epithelium, while loose ectomesenchyme condensations (lec) and loose non-condensing ectomesenchyme (lnc) had only 18 and 11%, respectively (Kruskal–Wallis, p < 0.001), and diminished afterwards. Contrarily, pRb-positive cells were mostly located in the lnc (67%), with significant difference in comparison to epithelium and lec in all investigated periods (Kruskal–Wallis, p < 0.001). Ki-67- and pRb-positive cells co-expressed occasionally in all investigated periods. MMP-9 displayed a strong expression pattern with the highest number of positive cells during the seventh DW in the epithelium, with significant difference in comparison to lec and lnc (Kruskal–Wallis, p < 0.0001). The ninth DW is particularly important for the Bax expression, especially in the epithelium (84%), in comparison to lec (58%) and lnc (47%) (Kruskal–Wallis, p < 0.001). The co-expression of Bax and MMP-9 was seen only in the epithelium during seventh and ninth DWs. Our study indicates the parallel persistence of proliferation (Ki-67, pRb) and remodeling (MMP-9) that enables growth and apoptotic activity (Bax) that enable the removal of the epithelial cells at the fusion point during secondary palate formation.
Collapse
|
32
|
Yan F, Jia P, Yoshioka H, Suzuki A, Iwata J, Zhao Z. A developmental stage-specific network approach for studying dynamic co-regulation of transcription factors and microRNAs during craniofacial development. Development 2020; 147:226075. [PMID: 33234712 DOI: 10.1242/dev.192948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Craniofacial development is regulated through dynamic and complex mechanisms that involve various signaling cascades and gene regulations. Disruption of such regulations can result in craniofacial birth defects. Here, we propose the first developmental stage-specific network approach by integrating two crucial regulators, transcription factors (TFs) and microRNAs (miRNAs), to study their co-regulation during craniofacial development. Specifically, we used TFs, miRNAs and non-TF genes to form feed-forward loops (FFLs) using genomic data covering mouse embryonic days E10.5 to E14.5. We identified key novel regulators (TFs Foxm1, Hif1a, Zbtb16, Myog, Myod1 and Tcf7, and miRNAs miR-340-5p and miR-129-5p) and target genes (Col1a1, Sgms2 and Slc8a3) expression of which changed in a developmental stage-dependent manner. We found that the Wnt-FoxO-Hippo pathway (from E10.5 to E11.5), tissue remodeling (from E12.5 to E13.5) and miR-129-5p-mediated Col1a1 regulation (from E10.5 to E14.5) might play crucial roles in craniofacial development. Enrichment analyses further suggested their functions. Our experiments validated the regulatory roles of miR-340-5p and Foxm1 in the Wnt-FoxO-Hippo subnetwork, as well as the role of miR-129-5p in the miR-129-5p-Col1a1 subnetwork. Thus, our study helps understand the comprehensive regulatory mechanisms for craniofacial development.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
33
|
Motch Perrine SM, Wu M, Holmes G, Bjork BC, Jabs EW, Richtsmeier JT. Phenotypes, Developmental Basis, and Genetics of Pierre Robin Complex. J Dev Biol 2020; 8:E30. [PMID: 33291480 PMCID: PMC7768358 DOI: 10.3390/jdb8040030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The phenotype currently accepted as Pierre Robin syndrome/sequence/anomalad/complex (PR) is characterized by mandibular dysmorphology, glossoptosis, respiratory obstruction, and in some cases, cleft palate. A causative sequence of developmental events is hypothesized for PR, but few clear causal relationships between discovered genetic variants, dysregulated gene expression, precise cellular processes, pathogenesis, and PR-associated anomalies are documented. This review presents the current understanding of PR phenotypes, the proposed pathogenetic processes underlying them, select genes associated with PR, and available animal models that could be used to better understand the genetic basis and phenotypic variation of PR.
Collapse
Affiliation(s)
- Susan M. Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Bryan C. Bjork
- Department of Biochemistry and Molecular Genetics, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Joan T. Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Abstract
Orofacial clefts (OFCs) are the most common congenital birth defects in humans and immediately recognized at birth. The etiology remains complex and poorly understood and seems to result from multiple genetic and environmental factors along with gene-environment interactions. It can be classified into syndromic (30%) and nonsyndromic (70%) clefts. Nonsyndromic OFCs include clefts without any additional physical or cognitive deficits. Recently, various genetic approaches, such as genome-wide association studies (GWAS), candidate gene association studies, and linkage analysis, have identified multiple genes involved in the etiology of OFCs. This article provides an insight into the multiple genes involved in the etiology of OFCs. Identification of specific genetic causes of clefts helps in a better understanding of the molecular pathogenesis of OFC. In the near future, it helps to provide a more accurate diagnosis, genetic counseling, personalized medicine for better clinical care, and prevention of OFCs.
Collapse
Affiliation(s)
- Mahamad Irfanulla Khan
- Department of Orthodontics & Dentofacial Orthopedics, The Oxford Dental College, Bangalore, Karnataka, India
| | - Prashanth CS
- Department of Orthodontics & Dentofacial Orthopedics, DAPM R.V. Dental College, Bangalore, Karnataka, India
| | - Narasimha Murthy Srinath
- Department of Oral & Maxillofacial Surgery, Krishnadevaraya College of Dental Sciences, Bangalore, Karnataka, India
| |
Collapse
|
35
|
Degen M, Girousi E, Feldmann J, Parisi L, La Scala GC, Schnyder I, Schaller A, Katsaros C. A Novel Van der Woude Syndrome-Causing IRF6 Variant Is Subject to Incomplete Non-sense-Mediated mRNA Decay Affecting the Phenotype of Keratinocytes. Front Cell Dev Biol 2020; 8:583115. [PMID: 33117810 PMCID: PMC7552806 DOI: 10.3389/fcell.2020.583115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Van der Woude syndrome (VWS) is a genetic syndrome that leads to typical phenotypic traits, including lower lip pits and cleft lip/palate (CLP). The majority of VWS-affected patients harbor a pathogenic variant in the gene encoding for the transcription factor interferon regulatory factor 6 (IRF6), a crucial regulator of orofacial development, epidermal differentiation and tissue repair. However, most of the underlying mechanisms leading from pathogenic IRF6 gene variants to phenotypes observed in VWS remain poorly understood and elusive. The availability of one VWS individual within our cohort of CLP patients allowed us to identify a novel VWS-causing IRF6 variant and to functionally characterize it. Using VWS patient-derived keratinocytes, we reveal that most of the mutated IRF6_VWS transcripts are subject to a non-sense-mediated mRNA decay mechanism, resulting in IRF6 haploinsufficiency. While moderate levels of IRF6_VWS remain detectable in the VWS keratinocytes, our data illustrate that the IRF6_VWS protein, which lacks part of its protein-binding domain and its whole C-terminus, is noticeably less stable than its wild-type counterpart. Still, it maintains transcription factor function. As we report and characterize a so far undescribed VWS-causing IRF6 variant, our results shed light on the physiological as well as pathological role of IRF6 in keratinocytes. This acquired knowledge is essential for a better understanding of the molecular mechanisms leading to VWS and CLP.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Julia Feldmann
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Freiberger K, Hemker S, McAnally R, King R, Meyers-Wallen VN, Schutte BC, Fyfe JC. Secondary Palate Development in the Dog ( Canis lupus familiaris). Cleft Palate Craniofac J 2020; 58:230-236. [PMID: 32705901 DOI: 10.1177/1055665620943771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To investigate the gestational timing of morphologic events in normal canine secondary palate development as a baseline for studies in dog models of isolated cleft palate (CP). METHODS Beagle and beagle/cocker spaniel-hybrid fetal dogs were obtained by cesarean-section on various days of gestation, timed from the initial rise of serum progesterone concentration. Morphology of fetal heads was determined by examining serial coronal sections. RESULTS On gestational day 35 (d35), the palatal shelves pointed ventrally alongside the tongue. On d36, palatal shelves were elongated and elevated to a horizontal position above the tongue but were not touching. On d37, palatine shelves and vomer were touching, but the medial epithelial seam (MES) between the apposed shelves remained. Immunostaining with epithelial protein markers showed that the MES gradually dissolved and was replaced by mesenchyme during d37-d44, and palate fusion was complete by d44. Examination of remnant MES suggested that fusion of palatal shelves began in mid-palate and moved rostrally and caudally. CONCLUSION Palate development occurs in dogs in the steps described in humans and mice, but palate closure occurs at an intermediate time in gestation. These normative data will form the basis of future studies to determine pathophysiologic mechanisms in dog models of CP. Added clinical significance is the enhancement of dogs as a large animal model to test new approaches for palate repair, with the obvious advantage of achieving full maturity within 2 years rather than 2 decades.
Collapse
Affiliation(s)
- Katharina Freiberger
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | - Shelby Hemker
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | - Ryan McAnally
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | - Rachel King
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| | | | - Brian C Schutte
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA.,Pediatrics & Human Development, 3078Michigan State University, East Lansing, MI, USA
| | - John C Fyfe
- Microbiology & Molecular Genetics, 3078Michigan State University, East Lansing, MI, USA
| |
Collapse
|
37
|
Wang XH, Peng Y, Meng LY. IL-12p40 and sRAGE in serum correlate with chemically induced cleft palate in mice. Hum Exp Toxicol 2020; 39:1661-1670. [PMID: 32633565 DOI: 10.1177/0960327120937342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cleft palate (CP), a congenital defect in the oral and maxillofacial regions, is difficult to detect prenatally. This study investigated the correlation between differentially expressed proteins in serum and CP induced by all-trans retinoic acid (atRA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. We studied 80 mice in the following groups: male mice (male; n = 6), nonpregnant female control mice (NP-CRL; n = 6), healthy pregnant controls (P-CRL; Con; n = 24), pregnant mice with CP induced by atRA (n = 24), or pregnant mice with CP induced by TCDD (TCDD; n = 20). Pregnant mice were given with atRA (100 mg/kg) or TCDD (40 μg/kg), or corn oil by oral gavage at E10.5. The serum samples were collected and eight proteins-including interleukin (IL)-12p40, IL-12p70, receptor for advanced glycation end products (RAGE), interferon (IFN)-γ, IFN-β, IL-10, leukemia inhibitory factor (LIF), and epiregulin-were detected by enzyme-linked immunosorbent assay. Placental tissues were immunostained for IL-12p40 and RAGE from stages E13.5 to E16.5. In P-CRL mice, serum IL-12p40 was significantly increased at E13.5 and declined over E14.5-E16.5. P-CRL had lower IFN-γ levels at E13.5 compared with NP-CRL. The CP groups showed lower concentrations of IL-12p40 at E13.5-E14.5 and clearly higher concentrations of soluble RAGE (sRAGE) at E13.5 when compared with P-CRL. IL-12p40 immunostaining clearly decreased in placental tissue sections obtained from E13.5 to E14.5 in both CP groups. These findings suggest that reduced levels of IL-12p40 and increased levels of sRAGE in serum may be correlated with chemically induced CP in mice, but further studies would be required to establish this.
Collapse
Affiliation(s)
- X-H Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, 499766Wuhan University, Wuhan, People's Republic of China
| | - Y Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, 499766Wuhan University, Wuhan, People's Republic of China
| | - L-Y Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, 499766Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
38
|
Hall EG, Wenger LW, Wilson NR, Undurty-Akella SS, Standley J, Augustine-Akpan EA, Kousa YA, Acevedo DS, Goering JP, Pitstick L, Natsume N, Paroya SM, Busch TD, Ito M, Mori A, Imura H, Schultz-Rogers LE, Klee EW, Babovic-Vuksanovic D, Kroc SA, Adeyemo WL, Eshete MA, Bjork BC, Suzuki S, Murray JC, Schutte BC, Butali A, Saadi I. SPECC1L regulates palate development downstream of IRF6. Hum Mol Genet 2020; 29:845-858. [PMID: 31943082 PMCID: PMC7104672 DOI: 10.1093/hmg/ddaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
SPECC1L mutations have been identified in patients with rare atypical orofacial clefts and with syndromic cleft lip and/or palate (CL/P). These mutations cluster in the second coiled-coil and calponin homology domains of SPECC1L and severely affect the ability of SPECC1L to associate with microtubules. We previously showed that gene-trap knockout of Specc1l in mouse results in early embryonic lethality. We now present a truncation mutant mouse allele, Specc1lΔC510, that results in perinatal lethality. Specc1lΔC510/ΔC510 homozygotes showed abnormal palate rugae but did not show cleft palate. However, when crossed with a gene-trap allele, Specc1lcGT/ΔC510 compound heterozygotes showed a palate elevation delay with incompletely penetrant cleft palate. Specc1lcGT/ΔC510 embryos exhibit transient oral epithelial adhesions at E13.5, which may delay shelf elevation. Consistent with oral adhesions, we show periderm layer abnormalities, including ectopic apical expression of adherens junction markers, similar to Irf6 hypomorphic mutants and Arhgap29 heterozygotes. Indeed, SPECC1L expression is drastically reduced in Irf6 mutant palatal shelves. Finally, we wanted to determine if SPECC1L deficiency also contributed to non-syndromic (ns) CL/P. We sequenced 62 Caucasian, 89 Filipino, 90 Ethiopian, 90 Nigerian and 95 Japanese patients with nsCL/P and identified three rare coding variants (p.Ala86Thr, p.Met91Iso and p.Arg546Gln) in six individuals. These variants reside outside of SPECC1L coiled-coil domains and result in milder functional defects than variants associated with syndromic clefting. Together, our data indicate that palate elevation is sensitive to deficiency of SPECC1L dosage and function and that SPECC1L cytoskeletal protein functions downstream of IRF6 in palatogenesis.
Collapse
Affiliation(s)
- Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luke W Wenger
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sraavya S Undurty-Akella
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eno-Abasi Augustine-Akpan
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef A Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Shahnawaz M Paroya
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tamara D Busch
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Akihiro Mori
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sarah A Kroc
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, PMB 12003, Nigeria
| | - Mekonen A Eshete
- Department of Plastic and Reconstructive Surgery, Addis Ababa University, Addis Ababa, PO Box 26493, Ethiopia
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Satoshi Suzuki
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Jeffrey C Murray
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
39
|
Belair DG, Wolf CJ, Moorefield SD, Wood C, Becker C, Abbott BD. A Three-Dimensional Organoid Culture Model to Assess the Influence of Chemicals on Morphogenetic Fusion. Toxicol Sci 2019; 166:394-408. [PMID: 30496568 DOI: 10.1093/toxsci/kfy207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Embryologic development involves cell differentiation and organization events that are unique to each tissue and organ and are susceptible to developmental toxicants. Animal models are the gold standard for identifying putative teratogens, but the limited throughput of developmental toxicological studies in animals coupled with the limited concordance between animal and human teratogenicity motivates a different approach. In vitro organoid models can mimic the three-dimensional (3D) morphogenesis of developing tissues and can thus be useful tools for studying developmental toxicology. Common themes during development like the involvement of epithelial-mesenchymal transition and tissue fusion present an opportunity to develop in vitro organoid models that capture key morphogenesis events that occur in the embryo. We previously described organoids composed of human stem and progenitor cells that recapitulated the cellular features of palate fusion, and here we further characterized the model by examining pharmacological inhibitors targeting known palatogenesis and epithelial morphogenesis pathways as well as 12 cleft palate teratogens identified from rodent models. Organoid survival was dependent on signaling through EGF, IGF, HGF, and FGF pathways, and organoid fusion was disrupted by inhibition of BMP signaling. We observed concordance between the effects of EGF, FGF, and BMP inhibitors on organoid fusion and epithelial cell migration in vitro, suggesting that organoid fusion is dependent on epithelial morphogenesis. Three of the 12 putative cleft palate teratogens studied here (theophylline, triamcinolone, and valproic acid) significantly disrupted in vitro organoid fusion, while tributyltin chloride and all-trans retinoic acid were cytotoxic to fusing organoids. The study herein demonstrates the utility of the in vitro fusion assay for identifying chemicals that disrupt human organoid morphogenesis in a scalable format amenable to toxicology screening.
Collapse
Affiliation(s)
- David G Belair
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| | - Cynthia J Wolf
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| | | | - Carmen Wood
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| | - Carrie Becker
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | - Barbara D Abbott
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, North Carolina 27711
| |
Collapse
|
40
|
Activation of sonic hedgehog signaling by a Smoothened agonist restores congenital defects in mouse models of endocrine-cerebro-osteodysplasia syndrome. EBioMedicine 2019; 49:305-317. [PMID: 31662288 PMCID: PMC6945271 DOI: 10.1016/j.ebiom.2019.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background Endocrine-cerebro-osteodysplasia (ECO) syndrome is a genetic disorder associated with congenital defects of the endocrine, cerebral, and skeletal systems in humans. ECO syndrome is caused by mutations of the intestinal cell kinase (ICK) gene, which encodes a mitogen-activated protein (MAP) kinase-related kinase that plays a critical role in controlling the length of primary cilia. Lack of ICK function disrupts transduction of sonic hedgehog (SHH) signaling, which is important for development and homeostasis in humans and mice. Craniofacial structure abnormalities, such as cleft palate, are one of the most common defects observed in ECO syndrome patients, but the role of ICK in palatal development has not been studied. Methods Using Ick-mutant mice, we investigated the mechanisms by which ICK function loss causes cleft palate and examined pharmacological rescue of the congenital defects. Findings SHH signaling was compromised with abnormally elongated primary cilia in the developing palate of Ick-mutant mice. Cell proliferation was significantly decreased, resulting in failure of palatal outgrowth, although palatal adhesion and fusion occurred normally. We thus attempted to rescue the congenital palatal defects of Ick mutants by pharmacological activation of SHH signaling. Treatment of Ick-mutant mice with an agonist for Smoothened (SAG) rescued several congenital defects, including cleft palate. Interpretations The recovery of congenital defects by pharmacological intervention in the mouse models for ECO syndrome highlights prenatal SHH signaling modulation as a potential therapeutic measure to overcome congenital defects of ciliopathies.
Collapse
|
41
|
AlMegbel AM, Shuler CF. SMAD2 overexpression rescues the TGF-β3 null mutant mice cleft palate by increased apoptosis. Differentiation 2019; 111:60-69. [PMID: 31677482 DOI: 10.1016/j.diff.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 01/10/2023]
Abstract
During palatal development, medial edge epithelium (MEE) disappearance is one of the crucial steps in the process of fusion. The fate of these cells is still debated, and controversies remain. During secondary palate fusion, TGF-β3 signaling mediated in the cell through the SMAD2 protein plays an important role and leads to the disappearance of the midline epithelial seam (MES) and the confluence of the palatal mesenchyme. In mice, TGF-β3 knock-out is lethal and mice are born with a cleft in the secondary palate. This phenotype has been rescued by targeted overexpression of SMAD2 in the medial edge epithelium (MEE). The goal of this research was to understand the mechanism of palatal fusion in the rescue mice. METHODS The heads of embryos with four different genotypes (wild-type, K14-SMAD2/TGF-β3(-/-), K14-SMAD2/TGF-β3(±), and TGF-β3 null) were collected at embryonic day E14.5, genotyped, fixed and embedded in paraffin. Serial sections were studied for detection of apoptosis and epithelial mesenchymal transition using immunofluorescence. RESULTS TGF-β3 null mice developed a cleft in the secondary palate while both mice with K14-SMAD2 overexpression had fusion of the secondary palate. The MEE of both the rescue mice and K14-SMAD2 overexpression had a much higher ratio of apoptotic cells than wild-type mice. The increase in apoptosis was correlated with increased phospho-SMAD2 in the MEE. CONCLUSION SMAD2 overexpression rescued the cleft in the secondary palate by increasing apoptosis in the medial edge epithelium.
Collapse
Affiliation(s)
- Abdullah M AlMegbel
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Charles F Shuler
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Vanyai HK, Garnham A, May RE, McRae HM, Collin C, Wilcox S, Smyth GK, Thomas T, Voss AK. MOZ directs the distal-less homeobox gene expression program during craniofacial development. Development 2019; 146:146/14/dev175042. [DOI: 10.1242/dev.175042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Oral clefts are common birth defects. Individuals with oral clefts who have identical genetic mutations regularly present with variable penetrance and severity. Epigenetic or chromatin-mediated mechanisms are commonly invoked to explain variable penetrance. However, specific examples of these are rare. Two functional copies of the MOZ (KAT6A, MYST3) gene, encoding a MYST family lysine acetyltransferase chromatin regulator, are essential for human craniofacial development, but the molecular role of MOZ in this context is unclear. Using genetic interaction and genomic studies, we have investigated the effects of loss of MOZ on the gene expression program during mouse development. Among the more than 500 genes differentially expressed after loss of MOZ, 19 genes had previously been associated with cleft palates. These included four distal-less homeobox (DLX) transcription factor-encoding genes, Dlx1, Dlx2, Dlx3 and Dlx5 and DLX target genes (including Barx1, Gbx2, Osr2 and Sim2). MOZ occupied the Dlx5 locus and was required for normal levels of histone H3 lysine 9 acetylation. MOZ affected Dlx gene expression cell-autonomously within neural crest cells. Our study identifies a specific program by which the chromatin modifier MOZ regulates craniofacial development.
Collapse
Affiliation(s)
- Hannah K. Vanyai
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Alexandra Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Rose E. May
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Helen M. McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Caitlin Collin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
43
|
Sarper SE, Inubushi T, Kurosaka H, Ono Minagi H, Murata Y, Kuremoto KI, Sakai T, Taniuchi I, Yamashiro T. Anterior cleft palate due to Cbfb deficiency and its rescue by folic acid. Dis Model Mech 2019; 12:dmm.038851. [PMID: 31171577 PMCID: PMC6602316 DOI: 10.1242/dmm.038851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Core binding factor β (Cbfb) is a cofactor of the Runx family of transcription factors. Among these transcription factors, Runx1 is a prerequisite for anterior-specific palatal fusion. It was previously unclear, however, whether Cbfb served as a modulator or as an obligatory factor in the Runx signaling process that regulates palatogenesis. Here, we report that Cbfb is essential and indispensable in mouse anterior palatogenesis. Palatal fusion in Cbfb mutants is disrupted owing to failed disintegration of the fusing epithelium specifically at the anterior portion, as observed in Runx1 mutants. In these mutants, expression of TGFB3 is disrupted in the area of failed palatal fusion, in which phosphorylation of Stat3 is also affected. TGFB3 protein has been shown to rescue palatal fusion in vitro. TGFB3 also activated Stat3 phosphorylation. Strikingly, the anterior cleft palate in Cbfb mutants is further rescued by pharmaceutical application of folic acid, which activates suppressed Stat3 phosphorylation and Tgfb3 expression in vitro. With these findings, we provide the first evidence that Cbfb is a prerequisite for anterior palatogenesis and acts as an obligatory cofactor in the Runx1/Cbfb-Stat3-Tgfb3 signaling axis. Furthermore, the rescue of the mutant cleft palate using folic acid might highlight potential therapeutic targets aimed at Stat3 modification for the prevention and pharmaceutical intervention of cleft palate. Summary: Epithelial deletion of Cbfb results in an anterior cleft palate with impaired fusion of the palatal process; folic acid application rescues the mutant phenotype with Stat3 activation in vitro.
Collapse
Affiliation(s)
- Safiye E Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.,Laboratory of Theoretical Biology, Graduate School of Sciences, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yuka Murata
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Koh-Ichi Kuremoto
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Li KE, Shu X, Gong H, Cheng L, Dong Z, Shu S. Position-dependent correlation between TBX22 exon 5 methylation and palatal shelf fusion in the development of cleft palate. AN ACAD BRAS CIENC 2019; 91:e20180945. [PMID: 31241704 DOI: 10.1590/0001-3765201920180945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is essential for spatiotemporally-regulated gene expression in embryonic development. TBX22 (Chr X: 107667964-107688978) functioning as a transcriptional repressor affects DNA binding, sumoylation, and transcriptional repression associated with X-linked cleft palate. This study aimed to explore the relationship and potential mechanism between TBX22 exon 5 methylation and palatal shelf fusion induced by all-trans retinoic acid (ATRA). We performed DNA methylation profiling, using MethylRAD-seq, after high throughput sequencing of mouse embryos from control (n=9) and ATRA-treated (to induce cleft palate, n=9) C57BL/6J mice at embryonic gestation days(E) 13.5, 14.5 and 16.5. TBX22 exon 5 was hyper-methylated at the CpG site at E13.5 (P=0.025, log2FC=1.5) and E14.5 (P=0.011, log2FC:1.5) in ATRA-treated, whereas methylation TBX22 exon 5 at the CpG site was not significantly different at E16.5 (P=0.808, log2FC=-0.2) between control and ATRA-treated. MSP results showed a similar trend consistent with the MethylRAD-seq results. qPCR showed the change in TBX22 exon 5 expression level negatively correlated with its TBX22 exon 5 methylation level. These results indicate that changes in TBX22 exon 5 methylation might play an important regulatory role during palatal shelf fusion, and may enlighten the development of novel epigenetic biomarkers in the treatment of CP in the future.
Collapse
Affiliation(s)
- K E Li
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, 69, Dongxia North Road, Jinping District, Shantou, 515041, China
| | - Xuan Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, 69, Dongxia North Road, Jinping District, Shantou, 515041, China
| | - Hui Gong
- The Department of Gynaecology, Second Affiliated Hospital of Shantou University Medical College, 69, Dongxia North Road, Jinping District, Shantou, 515041, China
| | - Liuhanghang Cheng
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, 69, Dongxia North Road, Jinping District, Shantou, 515041, China
| | - Zejun Dong
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, 69, Dongxia North Road, Jinping District, Shantou, 515041, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, 69, Dongxia North Road, Jinping District, Shantou, 515041, China
| |
Collapse
|
45
|
Sonic Hedgehog Signaling Is Required for Cyp26 Expression during Embryonic Development. Int J Mol Sci 2019; 20:ijms20092275. [PMID: 31072004 PMCID: PMC6540044 DOI: 10.3390/ijms20092275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear. Using genetic and experimental approaches in the mouse, we show that during development of ontogenetically different organs, including the tail, genital tubercle, and secondary palate, Sonic hedgehog (SHH) loss-of-function causes anomalies phenocopying those induced by enhanced retinoic acid signaling and that SHH is required to prevent supraphysiological activation of retinoic signaling through maintenance and reinforcement of expression of the Cyp26 genes. Furthermore, in other tissues and organs, disruptions of the Hedgehog or the retinoic acid pathways during development generate similar phenotypes. These findings reveal that rigidly calibrated Hedgehog and retinoic acid activities are required for normal organogenesis and tissue patterning.
Collapse
|
46
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
47
|
Belus MT, Rogers MA, Elzubeir A, Josey M, Rose S, Andreeva V, Yelick PC, Bates EA. Kir2.1 is important for efficient BMP signaling in mammalian face development. Dev Biol 2018; 444 Suppl 1:S297-S307. [PMID: 29571612 PMCID: PMC6148416 DOI: 10.1016/j.ydbio.2018.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/23/2022]
Abstract
Mutations that disrupt the inwardly rectifying potassium channel Kir2.1 lead to Andersen-Tawil syndrome that includes periodic paralysis, cardiac arrhythmia, cognitive deficits, craniofacial dysmorphologies and limb defects. The molecular mechanism that underlies the developmental consequences of inhibition of these channels has remained a mystery. We show that while loss of Kir2.1 function does not affect expression of several early facial patterning genes, the domain in which Pou3f3 is expressed in the maxillary arch is reduced. Pou3f3 is important for development of the jugal and squamosal bones. The reduced expression domain of Pou3f3 is consistent with the reduction in the size of the squamosal and jugal bones in Kcnj2KO/KO animals, however it does not account for the diverse craniofacial defects observed in Kcnj2KO/KO animals. We show that Kir2.1 function is required in the cranial neural crest for morphogenesis of several craniofacial structures including palate closure. We find that while the palatal shelves of Kir2.1-null embryos elevate properly, they are reduced in size due to decreased proliferation of the palatal mesenchyme. While we find no reduction in expression of BMP ligands, receptors, and associated Smads in this setting, loss of Kir2.1 reduces the efficacy of BMP signaling as shown by the reduction of phosphorylated Smad 1/5/8 and reduced expression of BMP targets Smad6 and Satb2.
Collapse
Affiliation(s)
- Matthew T Belus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Madison A Rogers
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alaaeddin Elzubeir
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Megan Josey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Steven Rose
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, Boston, MA 02111, United States
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University, Boston, MA 02111, United States
| | - Emily A Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
48
|
TGF-β Signaling and the Epithelial-Mesenchymal Transition during Palatal Fusion. Int J Mol Sci 2018; 19:ijms19113638. [PMID: 30463190 PMCID: PMC6274911 DOI: 10.3390/ijms19113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/27/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Signaling by transforming growth factor (TGF)-β plays an important role in development, including in palatogenesis. The dynamic morphological process of palatal fusion occurs to achieve separation of the nasal and oral cavities. Critically and specifically important in palatal fusion are the medial edge epithelial (MEE) cells, which are initially present at the palatal midline seam and over the course of the palate fusion process are lost from the seam, due to cell migration, epithelial-mesenchymal transition (EMT), and/or programed cell death. In order to define the role of TGF-β signaling during this process, several approaches have been utilized, including a small interfering RNA (siRNA) strategy targeting TGF-β receptors in an organ culture context, the use of genetically engineered mice, such as Wnt1-cre/R26R double transgenic mice, and a cell fate tracing through utilization of cell lineage markers. These approaches have permitted investigators to distinguish some specific traits of well-defined cell populations throughout the palatogenic events. In this paper, we summarize the current understanding on the role of TGF-β signaling, and specifically its association with MEE cell fate during palatal fusion. TGF-β is highly regulated both temporally and spatially, with TGF-β3 and Smad2 being the preferentially expressed signaling molecules in the critical cells of the fusion processes. Interestingly, the accessory receptor, TGF-β type 3 receptor, is also critical for palatal fusion, with evidence for its significance provided by Cre-lox systems and siRNA approaches. This suggests the high demand of ligand for this fine-tuned signaling process. We discuss the new insights in the fate of MEE cells in the midline epithelial seam (MES) during the palate fusion process, with a particular focus on the role of TGF-β signaling.
Collapse
|
49
|
Wolf CJ, Belair DG, Becker CM, Das KP, Schmid JE, Abbott BD. Development of an organotypic stem cell model for the study of human embryonic palatal fusion. Birth Defects Res 2018; 110:1322-1334. [PMID: 30347137 DOI: 10.1002/bdr2.1394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cleft palate (CP) is a common birth defect, occurring in an estimated 1 in 1,000 births worldwide. The secondary palate is formed by paired palatal shelves, consisting of a mesenchymal core with an outer layer of epithelial cells that grow toward each other, attach, and fuse. One of the mechanisms that can cause CP is failure of fusion, that is, failure to remove the epithelial seam between the palatal shelves to allow the mesenchyme confluence. Epidermal growth factor (EGF) plays an important role in palate growth and differentiation, while it may impede fusion. METHODS We developed a 3D organotypic model using human mesenchymal and epithelial stem cells to mimic human embryonic palatal shelves, and tested the effects of human EGF (hEGF) on proliferation and fusion. Spheroids were generated from human umbilical-derived mesenchymal stem cells (hMSCs) directed down an osteogenic lineage. Heterotypic spheroids, or organoids, were constructed by coating hMSC spheroids with extracellular matrix solution followed by a layer of human progenitor epithelial keratinocytes (hPEKs). Organoids were incubated in co-culture medium with or without hEGF and assessed for cell proliferation and time to fusion. RESULTS Osteogenic differentiation in hMSC spheroids was highest by Day 13. hEGF delayed fusion of organoids after 12 and 18 hr of contact. hEGF increased proliferation in organoids at 4 ng/ml, and proliferation was detected in hPEKs alone. CONCLUSION Our results show that this model of human palatal fusion appropriately mimics the morphology of the developing human palate and responds to hEGF as expected.
Collapse
Affiliation(s)
- Cynthia J Wolf
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - David G Belair
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - Carrie M Becker
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Kaberi P Das
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - Judith E Schmid
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| | - Barbara D Abbott
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratories, Office of Research and Development, US EPA Research Triangle Park, North Carolina
| |
Collapse
|
50
|
Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface. J Anat 2018; 233:222-242. [PMID: 29797482 PMCID: PMC6036936 DOI: 10.1111/joa.12821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology.
Collapse
Affiliation(s)
- Ian C Welsh
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Joel M Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Karissa Hansen
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Marcelo Rocha Marques
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Robert J Aho
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Romulo Hurtado
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Doris Herzlinger
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | | | - Licia Selleri
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|