1
|
Ikram S, Rege A, Negesse MY, Casanova AG, Reynoird N, Green EM. The SMYD3-MAP3K2 signaling axis promotes tumor aggressiveness and metastasis in prostate cancer. SCIENCE ADVANCES 2023; 9:eadi5921. [PMID: 37976356 PMCID: PMC10656069 DOI: 10.1126/sciadv.adi5921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Aberrant activation of Ras/Raf/mitogen-activated protein kinase (MAPK) signaling is frequently linked to metastatic prostate cancer (PCa); therefore, the characterization of modulators of this pathway is critical for defining therapeutic vulnerabilities for metastatic PCa. The lysine methyltransferase SET and MYND domain 3 (SMYD3) methylates MAPK kinase kinase 2 (MAP3K2) in some cancers, causing enhanced activation of MAPK signaling. In PCa, SMYD3 is frequently overexpressed and associated with disease severity; however, its molecular function in promoting tumorigenesis has not been defined. We demonstrate that SMYD3 critically regulates tumor-associated phenotypes via its methyltransferase activity in PCa cells and mouse xenograft models. SMYD3-dependent methylation of MAP3K2 promotes epithelial-mesenchymal transition associated behaviors by altering the abundance of the intermediate filament vimentin. Furthermore, activation of the SMYD3-MAP3K2 signaling axis supports a positive feedback loop continually promoting high levels of SMYD3. Our data provide insight into signaling pathways involved in metastatic PCa and enhance understanding of mechanistic functions for SMYD3 to reveal potential therapeutic opportunities for PCa.
Collapse
Affiliation(s)
- Sabeen Ikram
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Apurv Rege
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Maraki Y. Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Alexandre G. Casanova
- Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | - Nicolas Reynoird
- Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France
| | - Erin M. Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Moazzen H, Bolaji MD, Leube RE. Desmosomes in Cell Fate Determination: From Cardiogenesis to Cardiomyopathy. Cells 2023; 12:2122. [PMID: 37681854 PMCID: PMC10487268 DOI: 10.3390/cells12172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Desmosomes play a vital role in providing structural integrity to tissues that experience significant mechanical tension, including the heart. Deficiencies in desmosomal proteins lead to the development of arrhythmogenic cardiomyopathy (AC). The limited availability of preventative measures in clinical settings underscores the pressing need to gain a comprehensive understanding of desmosomal proteins not only in cardiomyocytes but also in non-myocyte residents of the heart, as they actively contribute to the progression of cardiomyopathy. This review focuses specifically on the impact of desmosome deficiency on epi- and endocardial cells. We highlight the intricate cross-talk between desmosomal proteins mutations and signaling pathways involved in the regulation of epicardial cell fate transition. We further emphasize that the consequences of desmosome deficiency differ between the embryonic and adult heart leading to enhanced erythropoiesis during heart development and enhanced fibrogenesis in the mature heart. We suggest that triggering epi-/endocardial cells and fibroblasts that are in different "states" involve the same pathways but lead to different pathological outcomes. Understanding the details of the different responses must be considered when developing interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Hoda Moazzen
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (M.D.B.); (R.E.L.)
| | | | | |
Collapse
|
3
|
CDH18 is a fetal epicardial biomarker regulating differentiation towards vascular smooth muscle cells. NPJ Regen Med 2022; 7:14. [PMID: 35110584 PMCID: PMC8810917 DOI: 10.1038/s41536-022-00207-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022] Open
Abstract
The epicardium is a mesothelial layer covering the myocardium serving as a progenitor source during cardiac development. The epicardium reactivates upon cardiac injury supporting cardiac repair and regeneration. Fine-tuned balanced signaling regulates cell plasticity and cell-fate decisions of epicardial-derived cells (EPCDs) via epicardial-to-mesenchymal transition (EMT). However, powerful tools to investigate epicardial function, including markers with pivotal roles in developmental signaling, are still lacking. Here, we recapitulated epicardiogenesis using human induced pluripotent stem cells (hiPSCs) and identified type II classical cadherin CDH18 as a biomarker defining lineage specification in human active epicardium. The loss of CDH18 led to the onset of EMT and specific differentiation towards cardiac smooth muscle cells. Furthermore, GATA4 regulated epicardial CDH18 expression. These results highlight the importance of tracing CDH18 expression in hiPSC-derived epicardial cells, providing a model for investigating epicardial function in human development and disease and enabling new possibilities for regenerative medicine.
Collapse
|
4
|
Yin Y, Shelke GV, Lässer C, Brismar H, Lötvall J. Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respir Res 2020; 21:101. [PMID: 32357878 PMCID: PMC7193353 DOI: 10.1186/s12931-020-01346-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background In the airways, mast cells are present in close vicinity to epithelial cells, and they can interact with each other via multiple factors, including extracellular vesicles (EVs). Mast cell-derived EVs have a large repertoire of cargos, including proteins and RNA, as well as surface DNA. In this study, we hypothesized that these EVs can induce epithelial to mesenchymal transition (EMT) in airway epithelial cells. Methods In this in-vitro study we systematically determined the effects of mast cell-derived EVs on epithelial A549 cells. We determined the changes that are induced by EVs on A549 cells at both the RNA and protein levels. Moreover, we also analyzed the rapid changes in phosphorylation events in EV-recipient A549 cells using a phosphorylated protein microarray. Some of the phosphorylation-associated events associated with EMT were validated using immunoblotting. Results Morphological and transcript analysis of epithelial A549 cells indicated that an EMT-like phenotype was induced by the EVs. Transcript analysis indicated the upregulation of genes involved in EMT, including TWIST1, MMP9, TGFB1, and BMP-7. This was accompanied by downregulation of proteins such as E-cadherin and upregulation of Slug-Snail and matrix metalloproteinases. Additionally, our phosphorylated-protein microarray analysis revealed proteins associated with the EMT cascade that were upregulated after EV treatment. We also found that transforming growth factor beta-1, a well-known EMT inducer, is associated with EVs and mediates the EMT cascade induced in the A549 cells. Conclusion Mast cell-derived EVs mediate the induction of EMT in epithelial cells, and our evidence suggests that this is triggered through the induction of protein phosphorylation cascades.
Collapse
Affiliation(s)
- Yanan Yin
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden. .,Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
6
|
Namvar S, Woolf AS, Zeef LA, Wilm T, Wilm B, Herrick SE. Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J Pathol 2018; 245:491-501. [PMID: 29774544 PMCID: PMC6055603 DOI: 10.1002/path.5101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/01/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial‐to‐mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well‐known mediator of MMT, transforming growth factor (TGF)‐β1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early‐phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin‐like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF‐binding protein 4 (IGFBP4) ameliorated TGF‐β1‐induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF‐β1‐induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury‐induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sara Namvar
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Leo Ah Zeef
- The Bioinformatics Core Facility, The University of Manchester, Manchester, UK
| | - Thomas Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sarah E Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition. Noncoding RNA 2018; 4:ncrna4020014. [PMID: 29843425 PMCID: PMC6027143 DOI: 10.3390/ncrna4020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key biological process involved in a multitude of developmental and pathological events. It is characterized by the progressive loss of cell-to-cell contacts and actin cytoskeletal rearrangements, leading to filopodia formation and the progressive up-regulation of a mesenchymal gene expression pattern enabling cell migration. Epithelial-to-mesenchymal transition is already observed in early embryonic stages such as gastrulation, when the epiblast undergoes an EMT process and therefore leads to the formation of the third embryonic layer, the mesoderm. Epithelial-to-mesenchymal transition is pivotal in multiple embryonic processes, such as for example during cardiovascular system development, as valve primordia are formed and the cardiac jelly is progressively invaded by endocardium-derived mesenchyme or as the external cardiac cell layer is established, i.e., the epicardium and cells detached migrate into the embryonic myocardial to form the cardiac fibrous skeleton and the coronary vasculature. Strikingly, the most important biological event in which EMT is pivotal is cancer development and metastasis. Over the last years, understanding of the transcriptional regulatory networks involved in EMT has greatly advanced. Several transcriptional factors such as Snail, Slug, Twist, Zeb1 and Zeb2 have been reported to play fundamental roles in EMT, leading in most cases to transcriptional repression of cell⁻cell interacting proteins such as ZO-1 and cadherins and activation of cytoskeletal markers such as vimentin. In recent years, a fundamental role for non-coding RNAs, particularly microRNAs and more recently long non-coding RNAs, has been identified in normal tissue development and homeostasis as well as in several oncogenic processes. In this study, we will provide a state-of-the-art review of the functional roles of non-coding RNAs, particularly microRNAs, in epithelial-to-mesenchymal transition in both developmental and pathological EMT.
Collapse
|
8
|
Ma X, Sung DC, Yang Y, Wakabayashi Y, Adelstein RS. Nonmuscle myosin IIB regulates epicardial integrity and epicardium-derived mesenchymal cell maturation. J Cell Sci 2017; 130:2696-2706. [PMID: 28687623 DOI: 10.1242/jcs.202564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/01/2017] [Indexed: 11/20/2022] Open
Abstract
Nonmuscle myosin IIB (NMIIB; heavy chain encoded by MYH10) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development. Ablation of NMIIB in epicardial cells results in disruption of epicardial integrity with a loss of E-cadherin at cell-cell junctions and a focal detachment of epicardial cells from the myocardium. NMIIB-knockout and blebbistatin-treated epicardial explants demonstrate impaired mesenchymal cell maturation during epicardial epithelial-mesenchymal transition. This is manifested by an impaired invasion of collagen gels by the epicardium-derived mesenchymal cells and the reorganization of the cytoskeletal structure. Although there is a marked decrease in the expression of mesenchymal genes, there is no change in Snail (also known as Snai1) or E-cadherin expression. Studies from epicardium-specific NMIIB-knockout mice confirm the importance of NMIIB for epicardial integrity and epicardial functions in promoting cardiac myocyte proliferation and coronary vessel formation during heart development. Our findings provide a novel mechanism linking epicardial formation and epicardial function to the activity of the cytoplasmic motor protein NMIIB.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Derek C Sung
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Yoshi Wakabayashi
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| |
Collapse
|
9
|
Dueñas A, Aranega AE, Franco D. More than Just a Simple Cardiac Envelope; Cellular Contributions of the Epicardium. Front Cell Dev Biol 2017; 5:44. [PMID: 28507986 PMCID: PMC5410615 DOI: 10.3389/fcell.2017.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
The adult pumping heart is formed by distinct tissue layers. From inside to outside, the heart is composed by an internal endothelial layer, dubbed the endocardium, a thick myocardial component which supports the pumping capacity of the heart and exteriorly covered by a thin mesothelial layer named the epicardium. Cardiac insults such as coronary artery obstruction lead to ischemia and thus to an irreversible damage of the myocardial layer, provoking in many cases heart failure and death. Thus, searching for new pathways to regenerate the myocardium is an urgent biomedical need. Interestingly, the capacity of heart regeneration is present in other species, ranging from fishes to neonatal mammals. In this context, several lines of evidences demonstrated a key regulatory role for the epicardial layer. In this manuscript, we provide a state-of-the-art review on the developmental process leading to the formation of the epicardium, the distinct pathways controlling epicardial precursor cell specification and determination and current evidences on the regenerative potential of the epicardium to heal the injured heart.
Collapse
Affiliation(s)
- Angel Dueñas
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Amelia E Aranega
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Muscle Research Group, Department of Experimental Biology, University of JaénJaén, Spain
| |
Collapse
|
10
|
Li Y, Urban A, Midura D, Simon HG, Wang QT. Proteomic characterization of epicardial-myocardial signaling reveals novel regulatory networks including a role for NF-κB in epicardial EMT. PLoS One 2017; 12:e0174563. [PMID: 28358917 PMCID: PMC5373538 DOI: 10.1371/journal.pone.0174563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
Signaling between the epicardium and underlying myocardium is crucial for proper heart development. The complex molecular interactions and regulatory networks involved in this communication are not well understood. In this study, we integrated mass spectrometry with bioinformatics to systematically characterize the secretome of embryonic chicken EPDC-heart explant (EHE) co-cultures. The 150-protein secretome dataset established greatly expands the knowledge base of the molecular players involved in epicardial-myocardial signaling. We identified proteins and pathways that are implicated in epicardial-myocardial signaling for the first time, as well as new components of pathways that are known to regulate the crosstalk between epicardium and myocardium. The large size of the dataset enabled bioinformatics analysis to deduce networks for the regulation of specific biological processes and predicted signal transduction nodes within the networks. We performed functional analysis on one of the predicted nodes, NF-κB, and demonstrate that NF-κB activation is an essential step in TGFβ2/PDGFBB-induced cardiac epithelial-to-mesenchymal transition. In summary, we have generated a global perspective of epicardial-myocardial signaling for the first time, and our findings open exciting new avenues for investigating the molecular basis of heart development and regeneration.
Collapse
Affiliation(s)
- Yanyang Li
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alexander Urban
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Devin Midura
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
- * E-mail: (QTW); (HGS)
| | - Q. Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (QTW); (HGS)
| |
Collapse
|
11
|
Tandon P, Wilczewski CM, Williams CE, Conlon FL. The Lhx9-integrin pathway is essential for positioning of the proepicardial organ. Development 2016; 143:831-40. [PMID: 26811386 DOI: 10.1242/dev.129551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022]
Abstract
The development of the vertebrate embryonic heart occurs by hyperplastic growth as well as the incorporation of cells from tissues outside of the initial heart field. Amongst these tissues is the epicardium, a cell structure that develops from the precursor proepicardial organ on the right side of the septum transversum caudal to the developing heart. During embryogenesis, cells of the proepicardial organ migrate, adhere and envelop the maturing heart, forming the epicardium. The cells of the epicardium then delaminate and incorporate into the heart giving rise to cardiac derivatives, including smooth muscle cells and cardiac fibroblasts. Here, we demonstrate that the LIM homeodomain protein Lhx9 is transiently expressed in Xenopus proepicardial cells and is essential for the position of the proepicardial organ on the septum transversum. Utilizing a small-molecule screen, we found that Lhx9 acts upstream of integrin-paxillin signaling and consistently demonstrate that either loss of Lhx9 or disruption of the integrin-paxillin pathway results in mis-positioning of the proepicardial organ and aberrant deposition of extracellular matrix proteins. This leads to a failure of proepicardial cell migration and adhesion to the heart, and eventual death of the embryo. Collectively, these studies establish a requirement for the Lhx9-integrin-paxillin pathway in proepicardial organ positioning and epicardial formation.
Collapse
Affiliation(s)
- Panna Tandon
- Department of Biology, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Caralynn M Wilczewski
- Department of Genetics, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Clara E Williams
- Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Frank L Conlon
- Department of Biology, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Department of Genetics, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA University of North Carolina McAllister Heart Institute, UNC at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
12
|
Ariza L, Carmona R, Cañete A, Cano E, Muñoz-Chápuli R. Coelomic epithelium-derived cells in visceral morphogenesis. Dev Dyn 2015; 245:307-22. [DOI: 10.1002/dvdy.24373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Affiliation(s)
- Laura Ariza
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| | - Rita Carmona
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| | - Ana Cañete
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| | - Elena Cano
- Integrative Vascular Biology Lab, Max Delbrück Center for Molecular Medicine; Robert-Rössle-Str. 10 13092, Berlin Germany
| | - Ramón Muñoz-Chápuli
- University of Málaga, Faculty of Science, Department of Animal Biology; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND); Campanillas Spain
| |
Collapse
|
13
|
Artamonov MV, Jin L, Franke AS, Momotani K, Ho R, Dong XR, Majesky MW, Somlyo AV. Signaling pathways that control rho kinase activity maintain the embryonic epicardial progenitor state. J Biol Chem 2015; 290:10353-67. [PMID: 25733666 DOI: 10.1074/jbc.m114.613190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Aaron S Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Xiu Rong Dong
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Mark W Majesky
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Avril V Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
14
|
Soluble VCAM-1 Alters Lipid Phosphatase Activity in Epicardial Mesothelial Cells: Implications for Lipid Signaling During Epicardial Formation. J Dev Biol 2013. [DOI: 10.3390/jdb1020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Tao G, Miller LJ, Lincoln J. Snai1 is important for avian epicardial cell transformation and motility. Dev Dyn 2013; 242:699-708. [PMID: 23553854 DOI: 10.1002/dvdy.23967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Formation of the epicardium requires several cellular processes including migration, transformation, invasion, and differentiation in order to give rise to fibroblast, smooth muscle, coronary endothelial and myocyte cell lineages within the developing myocardium. Snai1 is a zinc finger transcription factor that plays an important role in regulating cell survival and fate during embryonic development and under pathological conditions. However, its role in avian epicardial development has not been examined. RESULTS Here we show that Snai1 is highly expressed in epicardial cells from as early as the proepicardial cell stage and its expression is maintained as proepicardial cells migrate and spread over the surface of the myocardium and undergo epicardial-to-mesenchymal transformation in the generation of epicardial-derived cells. Using multiple in vitro assays, we show that Snai1 overexpression in chick explants enhances proepicardial cell migration at Hamburger Hamilton Stage (HH St.) 16, and epicardial-to-mesenchymal transformation, cell migration, and invasion at HH St. 24. Further, we demonstrate that Snai1-mediated cell migration requires matrix metalloproteinase activity, and MMP15 is sufficient for this process. CONCLUSIONS Together our data provide new insights into the multiple roles that Snai1 has in regulating avian epicardial development.
Collapse
Affiliation(s)
- Ge Tao
- Molecular Cell and Developmental Biology Graduate Program, Leonard M. Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
16
|
Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y. The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One 2013; 8:e57829. [PMID: 23469079 PMCID: PMC3585213 DOI: 10.1371/journal.pone.0057829] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023] Open
Abstract
During cardiac development, a subpopulation of epicardial cells migrates into the heart as part of the epicardial epithelial-mesenchymal transition (EMT) and differentiates into smooth muscle cells and fibroblasts. However, the roles of transcription factors in the epicardial EMT are poorly understood. Here, we show that two transcription factors expressed in the developing epicardium, T-box18 (Tbx18) and Wilms’ tumor 1 homolog (Wt1), bi-directionally control the epicardial EMT through their effects on Slug expression in murine primary epicardial cells. Knockdown of Wt1 induced the epicardial EMT, which was accompanied by an increase in the migration and expression of N-cadherin and a decrease in the expression of ZO-1 as an epithelial marker. By contrast, knockdown of Tbx18 inhibited the mesenchymal transition induced by TGFβ1 treatment and Wt1 knockdown. The expression of Slug but not Snail decreased as a result of Tbx18 knockdown, but Slug expression increased following knockdown of Wt1. Knockdown of Slug also attenuated the epicardial EMT induced by TGFβ1 treatment and Wt1 knockdown. Furthermore, in normal murine mammary gland-C7 (NMuMG-C7) cells, Tbx18 acted to increase Slug expression, while Wt1 acted to decrease Slug expression. Chromatin immunoprecipitation and promoter assay revealed that Tbx18 and Wt1 directly bound to the Slug promoter region and regulated Slug expression. These results provide new insights into the regulatory mechanisms that control the epicardial EMT.
Collapse
Affiliation(s)
- Makiko Takeichi
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Hironori Nakagami
- Division of Vascular Medicine and Epigenetics, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
- * E-mail: (HN); (YK)
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail: (HN); (YK)
| |
Collapse
|
17
|
Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Dev Biol 2013; 376:136-49. [PMID: 23384563 DOI: 10.1016/j.ydbio.2013.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 11/20/2022]
Abstract
During cardiogenesis, a subset of epicardial cells undergoes epithelial-mesenchymal-transition (EMT) and the resulting epicardial-derived cells (EPDCs) contribute to the formation of coronary vessels. Our previous data showed hypoxia inducible factor-1α (HIF-1α) expression at specific sites within the epicardium and support a link between hypoxia inducible factors (HIFs) and the patterning of coronary vasculogenesis. To better understand the autocrine role of HIFs in the epicardium, we transduced adenovirus mediated expression of constitutively active HIF-1α (AdcaHIF1α) into the embryonic avian epicardium where the vascular precursors reside. We found that introducing caHIF1α into the epicardial mesothelium prevented EPDCs from proper migration into the myocardium. In vitro collagen gel assays and ex vivo organ culture data further confirmed that infection with AdcaHIF1α impaired the ability of EPDCs to invade. However, the proficiency of epicardial cells to undergo EMT was enhanced while the movement of EPDCs within the sub-epicardium and their differentiation into smooth muscle cells were not disrupted by caHIF1α. We also showed that the transcript level of Flt-1 (VEGFR1), which can act as a VEGF signaling inhibitor, increased several fold after introducing caHIF1α into epicardial cells. Blocking the activation of the VEGF pathway in epicardial cells recapitulated the inhibition of EPDC invasion. These results suggest that caHIF1α mediated up-regulation of Flt-1, which blocks the activation of the VEGF pathway, is responsible for the inhibition of EPDC myocardial migration. In conclusion, our studies demonstrate that HIF signaling potentially regulates the degree of epicardial EMT and the extent of EPDC migration into the myocardium, both of which are likely critical in patterning the coronary vasculature during early cardiac vasculogenesis. These signals could explain why the larger coronaries appear and remain on the epicardial surface.
Collapse
|
18
|
Cross EE, Thomason RT, Martinez M, Hopkins CR, Hong CC, Bader DM. Application of small organic molecules reveals cooperative TGFβ and BMP regulation of mesothelial cell behaviors. ACS Chem Biol 2011; 6:952-61. [PMID: 21740033 PMCID: PMC3177035 DOI: 10.1021/cb200205z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epicardial development is a process during which epithelial sheet movement, single cell migration, and differentiation are coordinated to generate coronary arteries. Signaling cascades regulate the concurrent and complex nature of these three events. Through simple and highly reproducible assays, we identified small organic molecules that impact signaling pathways regulating these epicardial behaviors. Subsequent biochemical analyses confirmed the specificity of these reagents and revealed novel targets for the widely used dorsomorphin (DM) and LDN-193189 molecules. Using these newly characterized reagents, we show the broad regulation of epicardial cell differentiation, sheet movement, and single cell migration by Transforming Growth Factor β (TGFβ). With the DM analogue DMH1, a highly specific Bone Morphogenetic Protein (BMP) inhibitor, we demonstrate the cooperative yet exclusive role for BMP signaling in regulation of sheet migration. The action of DMH1 reveals that small organic molecules (SOM) can intervene on a single epicardial behavior while leaving other concurrent behaviors intact. All SOM data were confirmed by reciprocal experiments using growth factor addition and/or application of established non-SOM inhibitors. These compounds can be applied to cell lines or native proepicardial tissue. Taken together, these data establish the efficacy of chemical intervention for analysis of epicardial behaviors and provide novel reagents for analysis of epicardial development and repair.
Collapse
Affiliation(s)
- Emily E. Cross
- Department of Cell and Developmental Biology, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Rebecca T. Thomason
- Department of Cell and Developmental Biology, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Mitchell Martinez
- Department of Cell and Developmental Biology, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Corey R. Hopkins
- Department of Pharmacology, Chemistry and Program in Drug Discovery, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Charles C. Hong
- Department of Cell and Developmental Biology, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
- Department of Medicine, Division of Cardiovascular Medicine, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
- Department of Pharmacology, Research Medicine, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - David M. Bader
- Department of Cell and Developmental Biology, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
- Department of Medicine, Division of Cardiovascular Medicine, Veterans Affairs TVHS, Nashville, TN 37212, Vanderbilt University, School of Medicine, Nashville, TN 37232
| |
Collapse
|
19
|
Chua KN, Poon KL, Lim J, Sim WJ, Huang RYJ, Thiery JP. Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Adv Drug Deliv Rev 2011; 63:558-67. [PMID: 21335038 DOI: 10.1016/j.addr.2011.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 01/04/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental mechanism in development driving body plan formation. EMT describes a transition process wherein polarized epithelial cells lose their characteristics and acquire a mesenchymal phenotype. The apico-basal polarity of epithelial cells is replaced by a front-rear polarity in mesenchymal cells which favor cell-extracellular matrix than intercellular adhesion. These events serve as a prerequisite to the context-dependent migratory and invasive functions of mesenchymal cells. In solid tumors, carcinoma cells undergoing EMT not only invade and metastasize but also exhibit cancer stem cell-like properties, providing resistance to conventional and targeted therapies. In cardiovascular systems, epicardial cells engaged in EMT contribute to myocardial regeneration. Conversely, cardiovascular endothelial cells undergoing EMT cause cardiac fibrosis. Growing evidence has shed light on the potential development of novel therapeutics that target cell movement by applying the EMT concept, and this may provide new therapeutic strategies for the treatment of cancer and heart diseases.
Collapse
Affiliation(s)
- Kian-Ngiap Chua
- Institute of Molecular Cell Biology, Experimental Therapeutic Centre, Biopolis A*STAR, Cancer Science Institute National University of Singapore and Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
20
|
Li P, Cavallero S, Gu Y, Chen THP, Hughes J, Hassan AB, Brüning JC, Pashmforoush M, Sucov HM. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 2011; 138:1795-805. [PMID: 21429986 PMCID: PMC3074453 DOI: 10.1242/dev.054338] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2011] [Indexed: 11/20/2022]
Abstract
Secreted factors from the epicardium are believed to be important in directing heart ventricular cardiomyocyte proliferation and morphogenesis, although the specific factors involved have not been identified or characterized adequately. We found that IGF2 is the most prominent mitogen made by primary mouse embryonic epicardial cells and by a newly derived immortalized mouse embryonic epicardial cell line called MEC1. In vivo, Igf2 is expressed in the embryonic mouse epicardium during midgestation heart development. Using a whole embryo culture assay in the presence of inhibitors, we confirmed that IGF signaling is required to activate the ERK proliferation pathway in the developing heart, and that the epicardium is required for this response. Global disruption of the Igf2 gene, or conditional disruption of the two IGF receptor genes Igf1r and Insr together in the myocardium, each resulted in a significant decrease in ventricular wall proliferation and in ventricular wall hypoplasia. Ventricular cardiomyocyte proliferation in mutant embryos was restored to normal at E14.5, concurrent with the establishment of coronary circulation. Our results define IGF2 as a previously unexplored epicardial mitogen that is required for normal ventricular chamber development.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Embryo, Mammalian
- Gene Expression Regulation, Developmental/drug effects
- Heart/drug effects
- Heart/embryology
- Heart Ventricles/cytology
- Heart Ventricles/metabolism
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Insulin-Like Growth Factor II/pharmacology
- Insulin-Like Growth Factor II/physiology
- Mice
- Mice, Inbred ICR
- Mice, Transgenic
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- RNA, Small Interfering/pharmacology
- Receptor, IGF Type 2/genetics
- Receptor, IGF Type 2/metabolism
- Receptor, IGF Type 2/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Peng Li
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Susana Cavallero
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Ying Gu
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Tim H. P. Chen
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jennifer Hughes
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - A. Bassim Hassan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Max Planck Institute for Neurological Research, D-50674 Cologne, Germany
- Department for Internal Medicine, University Hospital Cologne, D-50924 Cologne, Germany
| | - Mohammad Pashmforoush
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Henry M. Sucov
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1. Basic Res Cardiol 2011; 106:829-47. [PMID: 21516490 PMCID: PMC3149675 DOI: 10.1007/s00395-011-0181-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 11/16/2022]
Abstract
Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair.
Collapse
|
22
|
Hanato T, Nakagawa M, Okamoto N, Nishijima S, Fujino H, Shimada M, Takeuchi Y, Imanaka-Yoshida K. Developmental defects of coronary vasculature in rat embryos administered bis-diamine. ACTA ACUST UNITED AC 2010; 92:10-6. [PMID: 21312320 DOI: 10.1002/bdrb.20279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Conotruncal anomalies are often associated with abnormal coronary arteries. Although bis-diamine is known to induce conotruncal defects, its pathological effects on coronary vascular development have not been demonstrated. This study sought to assess the teratogenic effects of bis-diamine on coronary vascular development and the pathogenesis of this anomalous association. METHODS AND RESULTS A single 200 mg dose of bis-diamine was administered to pregnant Wistar rats at 10.5 days of gestation. Fifty-two embryos from 10 mother rats underwent morphological analysis of the coronary arteries. Three embryos each were removed from four mothers on embryonic days (ED) 14.5, 15.5, 16.5, and 17.5 and used for immunohistochemical studies using the anti-vascular cell adhesion molecule (VCAM)-1 antibody. Conotruncal anomalies were detected in 48 of 52 embryos, and an aplastic or hypoplastic left coronary artery was found in all of them. In control embryos at ED 16.5, VCAM-1-positive epicardial cells were transformed into mesenchymal cells in vascular plexus, which appeared to differentiate into the endothelial cells of coronary vasculature. In the heart at ED 17.5, coronary vasculature was well developed and connected with coronary ostia near the aorta. However, poor epicardial-mesenchymal transformation and subsequent differentiation was revealed in bis-diamine-treated embryos at EDs 16.5 and 17.5, causing abnormal development of the coronary vasculature and incomplete connections with coronary ostia of the aorta. CONCLUSIONS Anomalous coronary arteries in the bis-diamine-treated embryos are induced by the disruption of epicardial-mesenchymal transformation and subsequent poor development of coronary vasculature. Incomplete hatching of the coronary ostium is associated with abnormal truncal division.
Collapse
Affiliation(s)
- Takashi Hanato
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The establishment of the coronary circulation is critical for the development of the embryonic heart. Over the last several years, there has been tremendous progress in elucidating the pathways that control coronary development. Interestingly, many of the pathways that regulate the development of the coronary vasculature are distinct from those governing vasculogenesis in the rest of the embryo. It is becoming increasingly clear that coronary development depends on a complex communication between the epicardium, the subepicardial mesenchyme, and the myocardium mediated in part by secreted growth factors. This communication coordinates the growth of the myocardium with the formation of the coronary vasculature. This review summarizes our present understanding of the role of these growth factors in the regulation of coronary development. Continued progress in this field holds the potential to lead to novel therapeutics for the treatment of patients with coronary artery disease.
Collapse
Affiliation(s)
- Harold E. Olivey
- Department of Medicine, The University of Chicago, Chicago, IL 60637
| | - Eric C. Svensson
- Department of Medicine, The University of Chicago, Chicago, IL 60637
- Committee on Developmental Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
24
|
Icardo JM, Guerrero A, Durán AC, Colvee E, Domezain A, Sans-Coma V. The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec (Hoboken) 2009; 292:1593-601. [PMID: 19714666 DOI: 10.1002/ar.20939] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article reports on the development of the epicardium in alevins of the sturgeon Acipenser naccarii, aged 4-25 days post-hatching (dph). Epicardial development starts at 4 dph with formation of the proepicardium (PE) that arises as a bilateral structure at the boundary between the sinus venosus and the duct of Cuvier. The PE later becomes a midline organ arising from the wall of the sinus venosus and ending at the junction between the liver, the sinus venosus and the transverse septum. This relative displacement appears related to venous reorganization at the caudal pole of the heart. The mode and time of epicardium formation is different in the various heart chambers. The conus epicardium develops through migration of a cohesive epithelium from the PE villi, and is completed through bleb-like aggregates detached from the PE. The ventricular epicardium develops a little later, and mostly through bleb-like aggregates. The bulbus epicardium appears to derive from the mesothelium located at the junction between the outflow tract and the pericardial cavity. Strikingly, formation of the epicardium of the atrium and the sinus venosus is a very late event occurring after the third month of development. Associated to the PE, a sino-ventricular ligament develops as a permanent connection. This ligament contains venous vessels that communicate the subepicardial coronary plexus and the sinus venosus, and carries part of the heart innervation. The development of the sturgeon epicardium shares many features with that of other vertebrate groups. This speaks in favour of conservative mechanisms across the evolutionary scale.
Collapse
Affiliation(s)
- José M Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Polígono de Cazoña, s/n, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Wengerhoff SM, Weiss AR, Dwyer KL, Dettman RW. A migratory role for EphrinB ligands in avian epicardial mesothelial cells. Dev Dyn 2009; 239:598-609. [DOI: 10.1002/dvdy.22163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Sucov HM, Gu Y, Thomas S, Li P, Pashmforoush M. Epicardial control of myocardial proliferation and morphogenesis. Pediatr Cardiol 2009; 30:617-25. [PMID: 19277768 DOI: 10.1007/s00246-009-9391-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/19/2009] [Indexed: 11/30/2022]
Abstract
The epicardium is a critical tissue that directs several aspects of heart development, particularly via the secretion of soluble factors. This review summarizes recent approaches that implicate the epicardium as the source of mitogenic factors promoting cardiomyocyte proliferation, as the source of instructive signals that direct compact zone organization (morphogenesis), and as the tissue that directs formation of the coronary vasculature.
Collapse
Affiliation(s)
- Henry M Sucov
- Institute for Genetic Medicine, University of Southern California Keck School of Medicine, 2250 Alcazar St., IGM240, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
27
|
Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol 2009; 328:148-59. [PMID: 19389363 PMCID: PMC2724599 DOI: 10.1016/j.ydbio.2009.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/09/2009] [Accepted: 01/16/2009] [Indexed: 12/11/2022]
Abstract
Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.
Collapse
Affiliation(s)
- David J Pennisi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
28
|
Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH, Kim YL, Kang DH. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 2009; 20:567-81. [PMID: 19193779 DOI: 10.1681/asn.2008040424] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Over time, peritoneal dialysis results in functional and structural alterations of the peritoneal membrane, but the underlying mechanisms and whether these changes are reversible are not completely understood. Here, we studied the effects of high levels of glucose, which are found in the dialysate, on human peritoneal mesothelial cells (HPMCs). We found that high concentrations of glucose induced epithelial-to-mesenchymal transition (EMT) of HPMC, suggested by decreased expression of E-cadherin and increased expression of alpha-smooth muscle actin, fibronectin, and type I collagen and by increased cell migration. Normalization of glucose concentration on day 2 reversed the phenotypic transformation, but the changes were irreversible after 7 d of stimulation with high glucose. In addition, exposure of HPMC to high glucose resulted in a decreased expression of the antifibrotic cytokines, hepatocyte growth factor (HGF) and bone morphogenic protein 7 (BMP-7). Exogenous treatment with HGF resulted in a dosage-dependent prevention of high glucose-induced EMT. Both BMP-7 peptide and gene transfection with an adenoviral vector of BMP-7 also protected HPMCs from EMT. Furthermore, adenoviral BMP-7 transfection decreased peritoneal EMT and ameliorated peritoneal thickening in an animal model of peritoneal dialysis. In summary, high concentrations of glucose induce a reversible EMT of HPMCs, associated with decreased production of HGF and BMP-7. Treatment of HPMCs with HGF or BMP-7 blocks high glucose-induced EMT, and BMP-7 ameliorates peritoneal fibrosis in an animal model of peritoneal dialysis.
Collapse
Affiliation(s)
- Min-A Yu
- Division of Nephrology, Ewha University School of Medicine, Yangchun-Ku, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nesbitt TL, Roberts A, Tan H, Junor L, Yost MJ, Potts JD, Dettman RW, Goodwin RL. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn 2009; 238:423-30. [PMID: 19161222 PMCID: PMC3991472 DOI: 10.1002/dvdy.21847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Though development of the coronary vasculature is a critical event during embryogenesis, the molecular mechanisms that regulate its formation are not well characterized. Two unique approaches were used to investigate interactions between cardiac myocytes and proepicardial (PE) cells, which are the coronary anlagen. One of these experimental approaches used a 3-D collagen scaffold system on which specific cell-cell and cell-matrix interactions were studied. The other approach used a whole heart culture system that allowed for the analysis of epicardial to mesenchymal transformation (EMT). The VEGF signaling system has been implicated previously as an important regulator of coronary development. Our results demonstrated that a specific isoform of VEGF-A, VEGF(164), increased PE-derived endothelial cell proliferation and also increased EMT. However, VEGF-stimulated endothelial cells did not robustly coalesce into endothelial tubes as they did when cocultured with cardiac myocytes. Interestingly, blocking VEGF signaling via flk-1 inhibition reduced endothelial tube formation despite the presence of cardiac myocytes. These results indicate that VEGF signaling is complex during coronary development and that combinatorial signaling by other VEGF-A isoforms or other flk-1-binding VEGFs are likely to regulate endothelial tube formation.
Collapse
Affiliation(s)
- Tresa L. Nesbitt
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Andrea Roberts
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Hong Tan
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Lorain Junor
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Michael J. Yost
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Jay D. Potts
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Robert W. Dettman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard L. Goodwin
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
30
|
Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol 2008; 322:208-18. [PMID: 18718461 PMCID: PMC2677203 DOI: 10.1016/j.ydbio.2008.07.038] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
Trophic factors secreted both from the endocardium and epicardium regulate appropriate growth of the myocardium during cardiac development. Epicardially-derived cells play also a key role in development of the coronary vasculature. This process involves transformation of epithelial (epicardial) cells to mesenchymal cells (EMT). Similarly, a subset of endocardial cells undergoes EMT to form the mesenchyme of endocardial cushions, which function as primordia for developing valves and septa. While it has been suggested that transforming growth factor-betas (Tgf-beta) play an important role in induction of EMT in the avian epi- and endocardium, the function of Tgf-betas in corresponding mammalian tissues is still poorly understood. In this study, we have ablated the Tgf-beta type I receptor Alk5 in endo-, myo- and epicardial lineages using the Tie2-Cre, Nkx2.5-Cre, and Gata5-Cre driver lines, respectively. We show that while Alk5-mediated signaling does not play a major role in the myocardium during mouse cardiac development, it is critically important in the endocardium for induction of EMT both in vitro and in vivo. Moreover, loss of epicardial Alk5-mediated signaling leads to disruption of cell-cell interactions between the epicardium and myocardium resulting in a thinned myocardium. Furthermore, epicardial cells lacking Alk5 fail to undergo Tgf-beta-induced EMT in vitro. Late term mutant embryos lacking epicardial Alk5 display defective formation of a smooth muscle cell layer around coronary arteries, and aberrant formation of capillary vessels in the myocardium suggesting that Alk5 is controlling vascular homeostasis during cardiogenesis. To conclude, Tgf-beta signaling via Alk5 is not required in myocardial cells during mammalian cardiac development, but plays an irreplaceable cell-autonomous role regulating cellular communication, differentiation and proliferation in endocardial and epicardial cells.
Collapse
Affiliation(s)
- Somyoth Sridurongrit
- University of Michigan, Department of Biologic and Materials Sciences, Ann Arbor, MI 48109, USA
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund University Hospital, 221 84 Lund, Sweden
| | | | | | - Vesa Kaartinen
- University of Michigan, Department of Biologic and Materials Sciences, Ann Arbor, MI 48109, USA
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
31
|
Kang J, Gu Y, Li P, Johnson BL, Sucov HM, Thomas PS. PDGF-A as an epicardial mitogen during heart development. Dev Dyn 2008; 237:692-701. [PMID: 18297729 DOI: 10.1002/dvdy.21469] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the developing heart, reciprocal interactions between the epicardium and myocardium drive further sublineage specification and ventricular chamber morphogenesis. Several observations suggest that the epicardium is a source of secreted factors that influence cardiomyocyte proliferation, and these factors may have other roles as well. However, the identity of these epicardial factors remains mostly unknown. We have identified platelet-derived growth factor-A (PDGF-A) as one of several mitogens expressed by the rat EMC epicardial cell line (epicardial mesothelial cells), by embryonic epicardium and myocardium during mouse heart development, and by adult epicardium. Expression of the cognate receptor gene Pdgfra was detected in the epicardium, although a low level of expression in myocardium could not be ruled out. To address the potential role of PDGF signaling in heart development, we mutated both PDGF receptor genes in the myocardial and mesodermal compartments of the heart; however, this did not result in an observable cardiac phenotype. This finding suggests that mesodermal PDGF signaling is not essential in heart development, although its role may be redundant with other signaling pathways. Indeed, our results demonstrate the presence of additional mitogens that may have such an overlapping role.
Collapse
Affiliation(s)
- Jione Kang
- Institute for Genetic Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pae SH, Dokic D, Dettman RW. Communication between integrin receptors facilitates epicardial cell adhesion and matrix organization. Dev Dyn 2008; 237:962-78. [DOI: 10.1002/dvdy.21488] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
Hamada S, Satoh K, Hirota M, Kimura K, Kanno A, Masamune A, Shimosegawa T. Bone morphogenetic protein 4 induces epithelial-mesenchymal transition through MSX2 induction on pancreatic cancer cell line. J Cell Physiol 2007; 213:768-74. [PMID: 17516553 DOI: 10.1002/jcp.21148] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our study, we found that bone morphogenetic protein 4 (BMP4) has a novel effect as an inducer of epithelial-mesenchymal transition (EMT) on Panc-1 cells, a human pancreatic carcinoma cell line. BMP4-treated Panc-1 cells showed loose cell contacts and a scattered, fibroblast-like appearance along with E-cadherin downregulation, Vimentin upregulation and enhanced cell migration, which are characteristic of EMT. BMP4 treatment also induced homeobox gene MSX2 expression, which we previously showed to be associated with EMT in pancreatic carcinoma cells. BMP4 treatment activated the Smad signaling pathway, and extracellular signal-related kinase (ERK) and p38 mitogen-activated kinase (MAPK) pathways in these cells. MSX2 was markedly induced by BMP4 through the ERK and p38 MAPK pathways in collaboration with the Smad signaling pathway. The repression of E-cadherin, induction of Vimentin and enhanced cell migration disappeared when siRNA-based MSX2 downregulated pancreatic cancer cells were treated with BMP4. These findings indicate that BMP4 may be involved in pancreatic carcinoma development through the promotion of EMT and that MSX2 is indispensable to this process.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|