1
|
Duran M, Barkan E, Tresenrider A, Lee H, Friedman RZ, Lammers N, Colón M, Franks J, Ewing B, Kimelman D, Trapnell C. A statistical framework for inferring genetic requirements from embryo-scale single-cell sequencing experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646654. [PMID: 40236139 PMCID: PMC11996557 DOI: 10.1101/2025.04.03.646654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Improvements in single-cell sequencing protocols have democratized their use for phenotyping at organism-scale and molecular resolution, but interpreting such experiments poses computational challenges. Identifying the genes and cell types directly impacted by genetic, chemical, or environmental perturbations requires explicit modeling of lineage relationships amongst many cell types, over time, from datasets with millions of cells collected from thousands of specimens. We describe two software tools, "Hooke" and "Platt", which exploit the rich statistical patterns within single-cell datasets to characterize the direct molecular and cellular consequences of experimental perturbations. We apply Hooke and Platt to a single-cell atlas of thousands of perturbed zebrafish embryos to synthesize a coherent map of lineage dependencies and leverage it to reveal previously unappreciated roles for fate-determining transcription factors. We show that the co-variation between cell types in single-cell datasets is a powerful source of information for inferring how cells depend on genes and one another in the program of vertebrate development.
Collapse
|
2
|
Xu M, Li J, Li H, Qi P, Ye Y, Yan X. Regulatory Genes in Eyespot Formation and Function of Mytilus coruscus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:13. [PMID: 39601898 DOI: 10.1007/s10126-024-10396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Light sensitivity is important for marine benthic invertebrates, and it plays a vital role in the marine bivalves settling. Animal visual systems are enormously diverse; their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Eyespots, as the simplest animal eyes, their appearance indicates the important effect on mussel larvae attachment. Nevertheless, the molecular mechanism of the eyespot's development in Mytilus coruscus larvae is not clear. In this study, we identified 11 genes which play a regulatory role in the visual system (i.e. Pax1/9, Pax2/5/8, Pax6, Pax3/7, Six1/2, Six3/6, Six4/5, Dach, Eya, Brn and Tbx2) from transcriptome data and the whole genome sequence of M. coruscus. The results of chromosome localization showed that 11 genes were distributed on different chromosomes. Subcellular mapping revealed that all the proteins except Brn were located in the nucleus. Phylogeny and gene structure analyses revealed that the Pax members were divided into four subfamilies, the Six members were divided into three subfamilies and structures within the same subfamily were relatively conserved. Quantitative real-time PCR (qPCR) showed that Dach, Pax6, Pax3/7, Six1/2 and Six4/5 were expressed at high levels during the pediveliger stage. Moreover, Six1/2 and Six4/5 were highly expressed in mantle tissues. Subsequent overall in situ hybridization experiments in the planktonic larval stage revealed that Pax6, Six1/2 and Six4/5 detected signals in the region of the eyespot. Based on these analyses, we suggested that the development of vision in M. coruscus not only depended on the expression pattern of Pax6, but perhaps also related to Six1/2 and Six4/5 in the planktonic larval stage, while Six1/2 and Six4/5 were the dominant genes for visual function in the adult mussel. This study made a comprehensive analysis of the visual function of M. coruscus at the genome level, which helps us to understand the intrinsic mechanism of the visual system of marine bivalves, and also provides a molecular basis for improving the attachment and metamorphosis rate of M. coruscus larvae.
Collapse
Affiliation(s)
- Minhui Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Xiaojun Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
3
|
Sánchez RS, Lazarte MA, Abdala VSL, Sánchez SS. Antagonistic regulation of homeologous uncx.L and uncx.S genes orchestrates myotome and sclerotome differentiation in the evolutionarily divergent vertebral column of Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:350-367. [PMID: 38155515 DOI: 10.1002/jez.b.23235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.
Collapse
Affiliation(s)
- Romel S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Fisiología, Departamento Biomédico, Facultad de Medicina, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - María A Lazarte
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Virginia S L Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Sara S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
4
|
Rallière C, Jagot S, Sabin N, Gabillard JC. Dynamics of pax7 expression during development, muscle regeneration, and in vitro differentiation of satellite cells in rainbow trout (Oncorhynchus mykiss). PLoS One 2024; 19:e0300850. [PMID: 38718005 PMCID: PMC11078358 DOI: 10.1371/journal.pone.0300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
Essential for muscle fiber formation and hypertrophy, muscle stem cells, also called satellite cells, reside beneath the basal lamina of the muscle fiber. Satellite cells have been commonly identified by the expression of the Paired box 7 (Pax7) due to its specificity and the availability of antibodies in tetrapods. In fish, the identification of satellite cells remains difficult due to the lack of specific antibodies in most species. Based on the development of a highly sensitive in situ hybridization (RNAScope®) for pax7, we showed that pax7+ cells were detected in the undifferentiated myogenic epithelium corresponding to the dermomyotome at day 14 post-fertilization in rainbow trout. Then, from day 24, pax7+ cells gradually migrated into the deep myotome and were localized along the muscle fibers and reach their niche in satellite position of the fibres after hatching. Our results showed that 18 days after muscle injury, a large number of pax7+ cells accumulated at the wound site compared to the uninjured area. During the in vitro differentiation of satellite cells, the percentage of pax7+ cells decreased from 44% to 18% on day 7, and some differentiated cells still expressed pax7. Taken together, these results show the dynamic expression of pax7 genes and the follow-up of these muscle stem cells during the different situations of muscle fiber formation in trout.
Collapse
Affiliation(s)
| | - Sabrina Jagot
- INRAE, LPGP, Rennes, France
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, Nantes, France
| | | | | |
Collapse
|
5
|
Manning E, Placzek M. Organizing activities of axial mesoderm. Curr Top Dev Biol 2024; 157:83-123. [PMID: 38556460 DOI: 10.1016/bs.ctdb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.
Collapse
Affiliation(s)
- Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom; Bateson Centre, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Karuppasamy M, English KG, Henry CA, Manzini MC, Parant JM, Wright MA, Ruparelia AA, Currie PD, Gupta VA, Dowling JJ, Maves L, Alexander MS. Standardization of zebrafish drug testing parameters for muscle diseases. Dis Model Mech 2024; 17:dmm050339. [PMID: 38235578 PMCID: PMC10820820 DOI: 10.1242/dmm.050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.
Collapse
Affiliation(s)
- Muthukumar Karuppasamy
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Katherine G. English
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Clarissa A. Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - M. Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Melissa A. Wright
- Department of Pediatrics, Section of Child Neurology, University of Colorado at Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Avnika A. Ruparelia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter D. Currie
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria 3800, Australia
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Zizioli D, Codenotti S, Benaglia G, Manzoni M, Massardi E, Fanzani A, Borsani G, Monti E. Downregulation of Zebrafish Cytosolic Sialidase Neu3.2 Affects Skeletal Muscle Development. Int J Mol Sci 2023; 24:13578. [PMID: 37686385 PMCID: PMC10487903 DOI: 10.3390/ijms241713578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sialidases remove terminal sialic acids residues from the non-reducing ends of glycoconjugates. They have been recognized as catabolic enzymes that work within different subcellular compartments and can ensure the proper turn-over of glycoconjugates. Four mammalian sialidases (NEU1-4) exist, with different subcellular localization, pH optimum and substrate specificity. In zebrafish, seven different sialidases, with high homology to mammalian counterparts, have been identified. Zebrafish Neu3.2 is similar to the human cytosolic sialidase NEU2, which is involved in skeletal muscle differentiation and exhibits a broad substrate specificity toward gangliosides and glycoproteins. In zebrafish neu3.2, mRNA is expressed during somite development, and its enzymatic activity has been detected in the skeletal muscle and heart of adult animals. In this paper, 1-4-cell-stage embryos injected with neu3.2 splice-blocking morpholino showed severe embryonic defects, mainly in somites, heart and anterior-posterior axis formation. Myog and myod1 expressions were altered in morphants, and impaired musculature formation was associated with a defective locomotor behavior. Finally, the co-injection of Neu2 mouse mRNA in morphants rescued the phenotype. These data are consistent with the involvement of cytosolic sialidase in pathologies related to muscle formation and support the validity of the model to investigate the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Daniela Zizioli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Silvia Codenotti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Giuliana Benaglia
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Marta Manzoni
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Elena Massardi
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (E.M.); (G.B.)
| | - Alessandro Fanzani
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| | - Giuseppe Borsani
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (E.M.); (G.B.)
| | - Eugenio Monti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (D.Z.); (S.C.); (G.B.); (M.M.); (A.F.)
| |
Collapse
|
8
|
Ma RC, Kocha KM, Méndez-Olivos EE, Ruel TD, Huang P. Origin and diversification of fibroblasts from the sclerotome in zebrafish. Dev Biol 2023; 498:35-48. [PMID: 36933633 DOI: 10.1016/j.ydbio.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Fibroblasts play an important role in maintaining tissue integrity by secreting components of the extracellular matrix and initiating response to injury. Although the function of fibroblasts has been extensively studied in adults, the embryonic origin and diversification of different fibroblast subtypes during development remain largely unexplored. Using zebrafish as a model, we show that the sclerotome, a sub-compartment of the somite, is the embryonic source of multiple fibroblast subtypes including tenocytes (tendon fibroblasts), blood vessel associated fibroblasts, fin mesenchymal cells, and interstitial fibroblasts. High-resolution imaging shows that different fibroblast subtypes occupy unique anatomical locations with distinct morphologies. Long-term Cre-mediated lineage tracing reveals that the sclerotome also contributes to cells closely associated with the axial skeleton. Ablation of sclerotome progenitors results in extensive skeletal defects. Using photoconversion-based cell lineage analysis, we find that sclerotome progenitors at different dorsal-ventral and anterior-posterior positions display distinct differentiation potentials. Single-cell clonal analysis combined with in vivo imaging suggests that the sclerotome mostly contains unipotent and bipotent progenitors prior to cell migration, and the fate of their daughter cells is biased by their migration paths and relative positions. Together, our work demonstrates that the sclerotome is the embryonic source of trunk fibroblasts as well as the axial skeleton, and local signals likely contribute to the diversification of distinct fibroblast subtypes.
Collapse
Affiliation(s)
- Roger C Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Emilio E Méndez-Olivos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Tyler D Ruel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
9
|
Ganassi M, Zammit PS, Hughes SM. Isolation, Culture, and Analysis of Zebrafish Myofibers and Associated Muscle Stem Cells to Explore Adult Skeletal Myogenesis. Methods Mol Biol 2023; 2640:21-43. [PMID: 36995585 DOI: 10.1007/978-1-0716-3036-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult skeletal musculature experiences continuous physical stress, and hence requires maintenance and repair to ensure its continued efficient functioning. The population of resident muscle stem cells (MuSCs), termed satellite cells, resides beneath the basal lamina of adult myofibers, contributing to both muscle hypertrophy and regeneration. Upon exposure to activating stimuli, MuSCs proliferate to generate new myoblasts that differentiate and fuse to regenerate or grow myofibers. Moreover, many teleost fish undergo continuous growth throughout life, requiring continual nuclear recruitment from MuSCs to initiate and grow new fibers, a process that contrasts with the determinate growth observed in most amniotes. In this chapter, we describe a method for the isolation, culture, and immunolabeling of adult zebrafish myofibers that permits examination of both myofiber characteristics ex vivo and the MuSC myogenic program in vitro. Morphometric analysis of isolated myofibers is suitable to assess differences among slow and fast muscles or to investigate cellular features such as sarcomeres and neuromuscular junctions. Immunostaining for Pax7, a canonical stemness marker, identifies MuSCs on isolated myofibers for study. Furthermore, the plating of viable myofibers allows MuSC activation and expansion and downstream analysis of their proliferative and differentiative dynamics, thus providing a suitable, parallel alternative to amniote models for the study of vertebrate myogenesis.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
10
|
Paulissen E, Martin BL. Myogenic regulatory factors Myod and Myf5 are required for dorsal aorta formation and angiogenic sprouting. Dev Biol 2022; 490:134-143. [PMID: 35917935 DOI: 10.1016/j.ydbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United States
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United States.
| |
Collapse
|
11
|
Hughes SM, Escaleira RC, Wanders K, Koth J, Wilkinson DG, Xu Q. Clonal behaviour of myogenic precursor cells throughout the vertebrate lifespan. Biol Open 2022; 11:276275. [PMID: 35972050 PMCID: PMC9399818 DOI: 10.1242/bio.059476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
To address questions of stem cell diversity during skeletal myogenesis, a Brainbow-like genetic cell lineage tracing method, dubbed Musclebow2, was derived by enhancer trapping in zebrafish. It is shown that, after initial formation of the primary myotome, at least 15 muscle precursor cells (mpcs) seed each somite, where they proliferate but contribute little to muscle growth prior to hatching. Thereafter, dermomyotome-derived mpc clones rapidly expand while some progeny undergo terminal differentiation, leading to stochastic clonal drift within the mpc pool. No evidence of cell-lineage-based clonal fate diversity was obtained. Neither fibre nor mpc death was observed in uninjured animals. Individual marked muscle fibres persist across much of the lifespan indicating low rates of nuclear turnover. In adulthood, early-marked mpc clones label stable blocks of tissue comprising a significant fraction of either epaxial or hypaxial somite. Fusion of cells from separate early-marked clones occurs in regions of clone overlap. Wounds are regenerated from several local mpcs; no evidence for specialised stem mpcs was obtained. In conclusion, our data indicate that most mpcs in muscle tissue contribute to local growth and repair and suggest that cellular turnover is low in the absence of trauma.
Collapse
Affiliation(s)
- Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Roberta C Escaleira
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Kees Wanders
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Jana Koth
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | | | - Qiling Xu
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
12
|
Ikeda T, Inamori K, Kawanishi T, Takeda H. Reemployment of Kupffer's vesicle cells into axial and paraxial mesoderm via transdifferentiation. Dev Growth Differ 2022; 64:163-177. [PMID: 35129208 DOI: 10.1111/dgd.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer and degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments in zebrafish embryos indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after the collapse of KV. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of dand5, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells undergo epithelial-mesenchymal transition upon KV collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.
Collapse
Affiliation(s)
- Takafumi Ikeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiichi Inamori
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Ganassi M, Zammit PS, Hughes SM. Isolation of Myofibres and Culture of Muscle Stem Cells from Adult Zebrafish. Bio Protoc 2021; 11:e4149. [PMID: 34604454 PMCID: PMC8443456 DOI: 10.21769/bioprotoc.4149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/02/2022] Open
Abstract
Skeletal muscles generate force throughout life and require maintenance and repair to ensure efficiency. The population of resident muscle stem cells (MuSCs), termed satellite cells, dwells beneath the basal lamina of adult myofibres and contributes to both muscle growth and regeneration. Upon exposure to activating signals, MuSCs proliferate to generate myoblasts that differentiate and fuse to grow or regenerate myofibres. This myogenic progression resembles aspects of muscle formation and development during embryogenesis. Therefore, the study of MuSCs and their associated myofibres permits the exploration of muscle stem cell biology, including the cellular and molecular mechanisms underlying muscle formation, maintenance and repair. As most aspects of MuSC biology have been described in rodents, their relevance to other species, including humans, is unclear and would benefit from comparison to an alternative vertebrate system. Here, we describe a procedure for the isolation and immunolabelling or culture of adult zebrafish myofibres that allows examination of both myofibre characteristics and MuSC biology ex vivo. Isolated myofibres can be analysed for morphometric characteristics such as the myofibre volume and myonuclear domain to assess the dynamics of muscle growth. Immunolabelling for canonical stemness markers or reporter transgenes identifies MuSCs on isolated myofibres for cellular/molecular studies. Furthermore, viable myofibres can be plated, allowing MuSC myogenesis and analysis of proliferative and differentiative dynamics in primary progenitor cells. In conclusion, we provide a comparative system to amniote models for the study of vertebrate myogenesis, which will reveal fundamental genetic and cellular mechanisms of MuSC biology and inform aquaculture. Graphic abstract: Schematic of Myofibre Isolation and Culture of Muscle Stem Cells from Adult Zebrafish.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, King’s College London, SE1 1UL, UK
| |
Collapse
|
14
|
Nord H, Kahsay A, Dennhag N, Pedrosa Domellöf F, von Hofsten J. Genetic compensation between Pax3 and Pax7 in zebrafish appendicular muscle formation. Dev Dyn 2021; 251:1423-1438. [PMID: 34435397 DOI: 10.1002/dvdy.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Migrating muscle progenitors delaminate from the somite and subsequently form muscle tissue in distant anatomical regions such as the paired appendages, or limbs. In amniotes, this process requires a signaling cascade including the transcription factor paired box 3 (Pax3). RESULTS In this study, we found that, unlike in mammals, pax3a/3b double mutant zebrafish develop near to normal appendicular muscle. By analyzing numerous mutant combinations of pax3a, pax3b and pax7a, and pax7b, we determined that there is a feedback system and a compensatory mechanism between Pax3 and Pax7 in this developmental process, even though Pax7 alone is not required for appendicular myogenesis. pax3a/3b/7a/7b quadruple mutant developed muscle-less pectoral fins. CONCLUSIONS We found that Pax3 and Pax7 are redundantly required during appendicular myogenesis in zebrafish, where Pax7 is able to activate the same developmental programs as Pax3 in the premigratory progenitor cells.
Collapse
Affiliation(s)
- Hanna Nord
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nils Dennhag
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
16
|
Dessauge F, Schleder C, Perruchot MH, Rouger K. 3D in vitro models of skeletal muscle: myopshere, myobundle and bioprinted muscle construct. Vet Res 2021; 52:72. [PMID: 34011392 PMCID: PMC8136231 DOI: 10.1186/s13567-021-00942-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Typical two-dimensional (2D) culture models of skeletal muscle-derived cells cannot fully recapitulate the organization and function of living muscle tissues, restricting their usefulness in in-depth physiological studies. The development of functional 3D culture models offers a major opportunity to mimic the living tissues and to model muscle diseases. In this respect, this new type of in vitro model significantly increases our understanding of the involvement of the different cell types present in the formation of skeletal muscle and their interactions, as well as the modalities of response of a pathological muscle to new therapies. This second point could lead to the identification of effective treatments. Here, we report the significant progresses that have been made the last years to engineer muscle tissue-like structures, providing useful tools to investigate the behavior of resident cells. Specifically, we interest in the development of myopshere- and myobundle-based systems as well as the bioprinting constructs. The electrical/mechanical stimulation protocols and the co-culture systems developed to improve tissue maturation process and functionalities are presented. The formation of these biomimetic engineered muscle tissues represents a new platform to study skeletal muscle function and spatial organization in large number of physiological and pathological contexts.
Collapse
|
17
|
Yong LW, Lu TM, Tung CH, Chiou RJ, Li KL, Yu JK. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9:607057. [PMID: 34041233 PMCID: PMC8141804 DOI: 10.3389/fcell.2021.607057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
Collapse
Affiliation(s)
- Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Aquatic Biology, Chia-Yi University, Chia-Yi, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
18
|
Ka HI, Seo H, Choi Y, Kim J, Cho M, Choi SY, Park S, Han S, An J, Chung HS, Yang Y, Kim MJ. Loss of splicing factor IK impairs normal skeletal muscle development. BMC Biol 2021; 19:44. [PMID: 33789631 PMCID: PMC8015194 DOI: 10.1186/s12915-021-00980-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND IK is a splicing factor that promotes spliceosome activation and contributes to pre-mRNA splicing. Although the molecular mechanism of IK has been previously reported in vitro, the physiological role of IK has not been fully understood in any animal model. Here, we generate an ik knock-out (KO) zebrafish using the CRISPR/Cas9 system to investigate the physiological roles of IK in vivo. RESULTS The ik KO embryos display severe pleiotropic phenotypes, implying an essential role of IK in embryonic development in vertebrates. RNA-seq analysis reveals downregulation of genes involved in skeletal muscle differentiation in ik KO embryos, and there exist genes having improper pre-mRNA splicing among downregulated genes. The ik KO embryos display impaired neuromuscular junction (NMJ) and fast-twitch muscle development. Depletion of ik reduces myod1 expression and upregulates pax7a, preventing normal fast muscle development in a non-cell-autonomous manner. Moreover, when differentiation is induced in IK-depleted C2C12 myoblasts, myoblasts show a reduced ability to form myotubes. However, inhibition of IK does not influence either muscle cell proliferation or apoptosis in zebrafish and C2C12 cells. CONCLUSION This study provides that the splicing factor IK contributes to normal skeletal muscle development in vivo and myogenic differentiation in vitro.
Collapse
Affiliation(s)
- Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.,Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyemin Seo
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Youngsook Choi
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Mina Cho
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sujeong Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea. .,Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
19
|
Ganassi M, Badodi S, Wanders K, Zammit PS, Hughes SM. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. eLife 2020; 9:e60445. [PMID: 33001028 PMCID: PMC7599067 DOI: 10.7554/elife.60445] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Growth and maintenance of skeletal muscle fibres depend on coordinated activation and return to quiescence of resident muscle stem cells (MuSCs). The transcription factor Myogenin (Myog) regulates myocyte fusion during development, but its role in adult myogenesis remains unclear. In contrast to mice, myog-/-zebrafish are viable, but have hypotrophic muscles. By isolating adult myofibres with associated MuSCs, we found that myog-/- myofibres have severely reduced nuclear number, but increased myonuclear domain size. Expression of fusogenic genes is decreased, Pax7 upregulated, MuSCs are fivefold more numerous and mis-positioned throughout the length of myog-/-myofibres instead of localising at myofibre ends as in wild-type. Loss of Myog dysregulates mTORC1 signalling, resulting in an 'alerted' state of MuSCs, which display precocious activation and faster cell cycle entry ex vivo, concomitant with myod upregulation. Thus, beyond controlling myocyte fusion, Myog influences the MuSC:niche relationship, demonstrating a multi-level contribution to muscle homeostasis throughout life.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Kees Wanders
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
20
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
21
|
Potassium Channel-Associated Bioelectricity of the Dermomyotome Determines Fin Patterning in Zebrafish. Genetics 2020; 215:1067-1084. [PMID: 32546498 PMCID: PMC7404225 DOI: 10.1534/genetics.120.303390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.
Collapse
|
22
|
Abe K, Shimada A, Tayama S, Nishikawa H, Kaneko T, Tsuda S, Karaiwa A, Matsui T, Ishitani T, Takeda H. Horizontal Boundary Cells, a Special Group of Somitic Cells, Play Crucial Roles in the Formation of Dorsoventral Compartments in Teleost Somite. Cell Rep 2020; 27:928-939.e4. [PMID: 30995487 DOI: 10.1016/j.celrep.2019.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/27/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Establishment of robust gene expression boundary is crucial for creating elaborate morphology during development. However, mechanisms underlying boundary formation have been extensively studied only in a few model systems. We examined the establishment of zic1/zic4-expression boundary demarcating dorsoventral boundary of the entire trunk of medaka fish (Oryzias latipes) and identified a subgroup of dermomyotomal cells called horizontal boundary cells (HBCs) as crucial players for the boundary formation. Embryological and genetic analyses demonstrated that HBCs play crucial roles in the two major events of the process, i.e., refinement and maintenance. In the refinement, HBCs could serve as a chemical barrier against Wnts from the neural tube by expressing Hhip. At later stages, HBCs participate in the maintenance of the boundary by differentiating into the horizontal myoseptum physically inhibiting cell mixing across the boundary. These findings reveal the mechanisms underlying the dorsoventral boundary in the teleost trunk by specialized boundary cells.
Collapse
Affiliation(s)
- Kota Abe
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sayaka Tayama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hotaka Nishikawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Kaneko
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Tsuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Saitama University Brain Science Institute, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Research and Development Bureau, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Akari Karaiwa
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tohru Ishitani
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
23
|
Lewandowski D, Dubińska-Magiera M, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Haczkiewicz-Leśniak K, Dzięgiel P, Daczewska M. Everybody wants to move-Evolutionary implications of trunk muscle differentiation in vertebrate species. Semin Cell Dev Biol 2019; 104:3-13. [PMID: 31759871 DOI: 10.1016/j.semcdb.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
In our review we have completed current knowledge on myotomal myogenesis in model and non-model vertebrate species (fishes, amphibians, reptiles, birds and mammals) at morphological and molecular levels. Data obtained from these studies reveal distinct similarities and differences between amniote and anamniote species. Based on the available data, we decided to present evolutionary implications in vertebrate trunk muscle development. Despite the fact that in all vertebrates muscle fibres are multinucleated, the pathways leading to them vary between vertebrate taxa. In fishes during early myogenesis myoblasts differentiate into multinucleated lamellae or multinucleate myotubes. In amphibians, myoblasts fuse to form multinucleated myotubes or, bypassing fusion, directly differentiate into mononucleated myotubes. Furthermore, mononucleated myotubes were also observed during primary myogenesis in amniotes. The mononucleated state of myogenic cells could be considered as an old phylogenetic, plesiomorphic feature, whereas direct multinuclearity of myotubes has a synapomorphic character. On the other hand, the explanation of this phenomenon could also be linked to the environmental conditions in which animals develop. The similarities observed in vertebrate myogenesis might result from a conservative myogenic programme governed by the Pax3/Pax7 and myogenic regulatory factor (MRF) network, whereas differences in anamniotes and amniotes are established by spatiotemporal pattern expression of MRFs during muscle differentiation and/or environmental conditions.
Collapse
Affiliation(s)
- Damian Lewandowski
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368 Wrocław, Poland; Department of Physiotherapy, University School of Physical Education, Paderewskiego 35, 51-612 Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
24
|
El-Magd MA, Elsayed SA, El-Shetry ES, Abdelfattah-Hassan A, Saleh AA, Allen S, McGonnell I, Patel K. The role of chick Ebf genes in the mediolateral patterning of the somites. Genesis 2019; 57:e23339. [PMID: 31724301 DOI: 10.1002/dvg.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kfrelsheikh, Egypt
| | - Shafika A Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Steve Allen
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Imelda McGonnell
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
25
|
Tan X, Xu P, Zhang Y, Zhang PJ. Olive flounder (Paralichthys olivaceus) myogenic regulatory factor 4 and its muscle-specific promoter activity. Comp Biochem Physiol B Biochem Mol Biol 2019; 236:110310. [PMID: 31255700 DOI: 10.1016/j.cbpb.2019.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Myogenic regulatory factor 4 (MRF4) is a basic helix-loop-helix (bHLH) transcription factor that plays crucial roles in myoblast differentiation and maturation. Here, we report the isolation of the olive flounder (Paralichthys olivaceus) mrf4 gene and the spatiotemporal analysis of its expression patterns. Sequence analysis indicated that flounder mrf4 shared a similar structure with other vertebrate MRF4, including the conserved bHLH domain. Flounder mrf4 contains 3 exons and 2 introns. Sequence alignment and phylogenetic analysis showed that it was highly homologous with Salmo salar, Danio rerio, Takifugu rubripes, and Tetraodon nigroviridis mrf4. Flounder mrf4 was first expressed in the medial region of somites that give rise to slow muscles, and later spread to the lateral region of somites that give rise to fast muscles. Mrf4 transcript levels decreased significantly in mature somites in the trunk region, and expression could only be detected in the caudal somites, consistent with the timing of somite maturation. Transient expression analysis showed that the 506 bp flounder mrf4 promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos.
Collapse
Affiliation(s)
- Xungang Tan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| | - Peng Xu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuqing Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Pei-Jun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| |
Collapse
|
26
|
Sharma P, Ruel TD, Kocha KM, Liao S, Huang P. Single cell dynamics of embryonic muscle progenitor cells in zebrafish. Development 2019; 146:dev.178400. [PMID: 31253635 DOI: 10.1242/dev.178400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/13/2023]
Abstract
Muscle stem cells hold a great therapeutic potential in regenerating damaged muscles. However, the in vivo behavior of muscle stem cells during muscle growth and regeneration is still poorly understood. Using zebrafish as a model, we describe the in vivo dynamics and function of embryonic muscle progenitor cells (MPCs) in the dermomyotome. These cells are located in a superficial layer external to muscle fibers and express many extracellular matrix (ECM) genes, including collagen type 1 α2 (col1a2). Utilizing a new col1a2 transgenic line, we show that col1a2+ MPCs display a ramified morphology with dynamic cellular processes. Cell lineage tracing demonstrates that col1a2+ MPCs contribute to new myofibers in normal muscle growth and also during muscle regeneration. A combination of live imaging and single cell clonal analysis reveals a highly choreographed process of muscle regeneration. Activated col1a2+ MPCs change from the quiescent ramified morphology to a polarized and elongated morphology, generating daughter cells that fuse with existing myofibers. Partial depletion of col1a2+ MPCs severely compromises muscle regeneration. Our work provides a dynamic view of embryonic muscle progenitor cells during zebrafish muscle growth and regeneration.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | - Tyler D Ruel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | - Shan Liao
- Inflammation Research Network, The Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
27
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
28
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|
30
|
Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun 2018; 9:4232. [PMID: 30315160 PMCID: PMC6185967 DOI: 10.1038/s41467-018-06583-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
Abstract
Each skeletal muscle acquires its unique size before birth, when terminally differentiating myocytes fuse to form a defined number of multinucleated myofibres. Although mice in which the transcription factor Myogenin is mutated lack most myogenesis and die perinatally, a specific cell biological role for Myogenin has remained elusive. Here we report that loss of function of zebrafish myog prevents formation of almost all multinucleated muscle fibres. A second, Myogenin-independent, fusion pathway in the deep myotome requires Hedgehog signalling. Lack of Myogenin does not prevent terminal differentiation; the smaller myotome has a normal number of myocytes forming more mononuclear, thin, albeit functional, fast muscle fibres. Mechanistically, Myogenin binds to the myomaker promoter and is required for expression of myomaker and other genes essential for myocyte fusion. Adult myog mutants display reduced muscle mass, decreased fibre size and nucleation. Adult-derived myog mutant myocytes show persistent defective fusion ex vivo. Myogenin is therefore essential for muscle homeostasis, regulating myocyte fusion to determine both muscle fibre number and size. Loss of the transcription factor Myogenin in mice reduces skeletal myogenesis and leads to perinatal death but how Myogenin regulates muscle formation is unclear. Here, the authors show that zebrafish Myogenin enhances Myomaker expression, muscle cell fusion and myotome size, yet decreases fast muscle fibre number.
Collapse
|
31
|
Tichy ED, Sidibe DK, Greer CD, Oyster NM, Rompolas P, Rosenthal NA, Blau HM, Mourkioti F. A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of muscle stem cells. Skelet Muscle 2018; 8:27. [PMID: 30139374 PMCID: PMC6107960 DOI: 10.1186/s13395-018-0169-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023] Open
Abstract
Background Pax7 is a transcription factor involved in the specification and maintenance of muscle stem cells (MuSCs). Upon injury, MuSCs leave their quiescent state, downregulate Pax7 and differentiate, contributing to skeletal muscle regeneration. In the majority of regeneration studies, MuSCs are isolated by fluorescence-activated sorting (FACS), based on cell surface markers. It is known that MuSCs are a heterogeneous population and only a small percentage of isolated cells are true stem cells that are able to self-renew. A strong Pax7 reporter line would be valuable to study the in vivo behavior of Pax7-expressing stem cells. Methods We generated and characterized the muscle properties of a new transgenic Pax7EGFP mouse. Utilizing traditional immunofluorescence assays, we analyzed whole embryos and muscle sections by fluorescence microscopy, in addition to whole skeletal muscles by 2-photon microscopy, to detect the specificity of EGFP expression. Skeletal muscles from Pax7EGFP mice were also evaluated in steady state and under injury conditions. Finally, MuSCs-derived from Pax7EGFP and control mice were sorted and analyzed by FACS and their myogenic activity was comparatively examined. Results Our studies provide a new Pax7 reporter line with robust EGFP expression, detectable by both flow cytometry and fluorescence microscopy. Pax7EGFP-derived MuSCs have identical properties to that of wild-type MuSCs, both in vitro and in vivo, excluding any positional effect due to the transgene insertion. Furthermore, we demonstrated high specificity of EGFP to label MuSCs in a temporal manner that recapitulates the reported Pax7 expression pattern. Interestingly, immunofluorescence analysis showed that the robust expression of EGFP marks cells in the satellite cell position of adult muscles in fixed and live tissues. Conclusions This mouse could be an invaluable tool for the study of a variety of questions related to MuSC biology, including but not limited to population heterogeneity, polarity, aging, regeneration, and motility, either by itself or in combination with mice harboring additional genetic alterations. Electronic supplementary material The online version of this article (10.1186/s13395-018-0169-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - David K Sidibe
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Greer
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Program, The University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas M Oyster
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Panteleimon Rompolas
- Cell and Molecular Biology Graduate Program, The University of Pennsylvania, Philadelphia, PA, USA.,Department of Dermatology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA. .,Cell and Molecular Biology Graduate Program, The University of Pennsylvania, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, Penn Institute of Regenerative Medicine, Musculoskeletal Regeneration Program, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA. .,Musculoskeletal Regeneration Program, Department of Orthopaedic Surgery and Cell and Developmental Biology, Penn Institute of Regenerative Medicine, The University of Pennsylvania, 3450 Hamilton Walk, 112A Stemmler Hall, Philadelphia, PA, 19104-6081, USA.
| |
Collapse
|
32
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
33
|
Roy SD, Williams VC, Pipalia TG, Li K, Hammond CL, Knappe S, Knight RD, Hughes SM. Myotome adaptability confers developmental robustness to somitic myogenesis in response to fibre number alteration. Dev Biol 2017; 431:321-335. [PMID: 28887016 PMCID: PMC5667637 DOI: 10.1016/j.ydbio.2017.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/22/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022]
Abstract
Balancing the number of stem cells and their progeny is crucial for tissue development and repair. Here we examine how cell numbers and overall muscle size are tightly regulated during zebrafish somitic muscle development. Muscle stem/precursor cell (MPCs) expressing Pax7 are initially located in the dermomyotome (DM) external cell layer, adopt a highly stereotypical distribution and thereafter a proportion of MPCs migrate into the myotome. Regional variations in the proliferation and terminal differentiation of MPCs contribute to growth of the myotome. To probe the robustness of muscle size control and spatiotemporal regulation of MPCs, we compared the behaviour of wild type (wt) MPCs with those in mutant zebrafish that lack the muscle regulatory factor Myod. Myodfh261 mutants form one third fewer multinucleate fast muscle fibres than wt and show a significant expansion of the Pax7+ MPC population in the DM. Subsequently, myodfh261 mutant fibres generate more cytoplasm per nucleus, leading to recovery of muscle bulk. In addition, relative to wt siblings, there is an increased number of MPCs in myodfh261 mutants and these migrate prematurely into the myotome, differentiate and contribute to the hypertrophy of existing fibres. Thus, homeostatic reduction of the excess MPCs returns their number to normal levels, but fibre numbers remain low. The GSK3 antagonist BIO prevents MPC migration into the deep myotome, suggesting that canonical Wnt pathway activation maintains the DM in zebrafish, as in amniotes. BIO does not, however, block recovery of the myodfh261 mutant myotome, indicating that homeostasis acts on fibre intrinsic growth to maintain muscle bulk. The findings suggest the existence of a critical window for early fast fibre formation followed by a period in which homeostatic mechanisms regulate myotome growth by controlling fibre size. The feedback controls we reveal in muscle help explain the extremely precise grading of myotome size along the body axis irrespective of fish size, nutrition and genetic variation and may form a paradigm for wider matching of organ size. A critical window for early muscle fibre formation is proposed. Fish lacking MyoD1 form fewer muscle fibres, but have more myogenic stem cells. Stem cell numbers rapidly return to normal during subsequent development. GSK3 activity promotes and MyoD1 delays myoblast migration into the myotome. Compensatory fibre size increase ensures robustness of overall muscle size.
Collapse
Affiliation(s)
- Shukolpa D Roy
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Victoria C Williams
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Tapan G Pipalia
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Kuoyu Li
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Christina L Hammond
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Stefanie Knappe
- Division of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College London, UK
| | - Robert D Knight
- Division of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College London, UK
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
34
|
|
35
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Abreu P, Mendes SVD, Ceccatto VM, Hirabara SM. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents. Life Sci 2016; 170:33-40. [PMID: 27888112 DOI: 10.1016/j.lfs.2016.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
Abstract
Although the requirement of satellite cells activation and expansion following injury, mechanical load or growth stimulus provoked by resistance exercise has been well established, their function in response to aerobic exercise adaptation remains unclear. A clear relationship between satellite cell expansion in fiber-type specific myosin heavy chain and aerobic performance has been related, independent of myonuclear accretion or muscle growth. However, the trigger for this activation process is not fully understood yet and it seems to be a multi-faceted and well-orchestrated process. Emerging in vitro studies suggest a role for metabolic pathways and oxygen availability for satellite cell activation, modulating the self-renewal potential and cell fate control. The goal of this review is to describe and discuss the current knowledge about the satellite cell activation and expansion in response to aerobic exercise adaptation in human and rodent models. Additionally, findings about the in vitro metabolic control, which seems be involved in the satellite cell activation and cell fate control, are presented and discussed.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil; Institute of Biomedical Sciences, State University of Ceará, CE, Brazil.
| | | | | | - Sandro Massao Hirabara
- Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil; Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, SP, Brazil
| |
Collapse
|
37
|
Pipalia TG, Koth J, Roy SD, Hammond CL, Kawakami K, Hughes SM. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. Dis Model Mech 2016; 9:671-84. [PMID: 27149989 PMCID: PMC4920144 DOI: 10.1242/dmm.022251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 04/27/2016] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7(+) cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular complexity in muscle wound repair raises the possibility that distinct populations of myogenic cells contribute differentially to repair in other vertebrates.
Collapse
Affiliation(s)
- Tapan G Pipalia
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jana Koth
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, UK
| | - Shukolpa D Roy
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Christina L Hammond
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
38
|
Sørhus E, Incardona JP, Furmanek T, Jentoft S, Meier S, Edvardsen RB. Developmental transcriptomics in Atlantic haddock: Illuminating pattern formation and organogenesis in non-model vertebrates. Dev Biol 2016; 411:301-313. [DOI: 10.1016/j.ydbio.2016.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/19/2023]
|
39
|
Kaji T, Reimer JD, Morov AR, Kuratani S, Yasui K. Amphioxus mouth after dorso-ventral inversion. ZOOLOGICAL LETTERS 2016; 2:2. [PMID: 26855789 PMCID: PMC4744632 DOI: 10.1186/s40851-016-0038-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/03/2016] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Deuterostomes (animals with 'secondary mouths') are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been fully explained in the evolutionary developmental context. We studied the developmental process of the amphioxus mouth to understand whether amphioxus acquired a new mouth, and if so, how it is related to or differs from mouths in other deuterostomes. RESULTS The left first somite in amphioxus produces a coelomic vesicle between the epidermis and pharynx that plays a crucial role in the mouth opening. The vesicle develops in association with the amphioxus-specific Hatschek nephridium, and first opens into the pharynx and then into the exterior as a mouth. This asymmetrical development of the anterior-most somites depends on the Nodal-Pitx signaling unit, and the perturbation of laterality-determining Nodal signaling led to the disappearance of the vesicle, producing a symmetric pair of anterior-most somites that resulted in larvae lacking orobranchial structures. The vesicle expressed bmp2/4, as seen in ambulacrarian coelomic pore-canals, and the mouth did not open when Bmp2/4 signaling was blocked. CONCLUSIONS We conclude that the amphioxus mouth, which uniquely involves a mesodermal coelomic vesicle, shares its evolutionary origins with the ambulacrarian coelomic pore-canal. Our observations suggest that there are at least three types of mouths in deuterostomes, and that the new acquisition of chordate mouths was likely related to the dorso-ventral inversion that occurred in the last common ancestor of chordates.
Collapse
Affiliation(s)
- Takao Kaji
- />Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526 Japan
- />Present address: Department of Diabetes Technology, Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579 Japan
| | - James D. Reimer
- />Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 Japan
| | - Arseniy R. Morov
- />Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526 Japan
- />Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., Kazan, 420008 Republic of Tatarstan Russian Federation
| | - Shigeru Kuratani
- />Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Kinya Yasui
- />Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526 Japan
| |
Collapse
|
40
|
Characterization of Pax3 and Pax7 genes and their expression patterns during different development and growth stages of Japanese pufferfish Takifugu rubripes. Gene 2015; 575:21-8. [PMID: 26297555 DOI: 10.1016/j.gene.2015.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/19/2015] [Accepted: 08/14/2015] [Indexed: 11/23/2022]
Abstract
Pax3 and Pax7 are the regulators and markers of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. However, information regarding them in vertebrate genome model, torafugu Takifugu rubripes, has remained unknown. Therefore, as an initial step, here we characterized Pax3 and Pax7 from torafugu and investigated their expression patterns during different developmental stages by RT-PCR. In silico analysis with the Fugu genome database (ver. 4.0) yielded two distinct genes each for Pax3 (Pax3a and Pax3b) and Pax7 (Pax7a and Pax7b). The 75th amino acid, glutamine (Gln75), from the N-terminus was replaced by proline in the paired box domain (PD) of Pax3a. One single cDNA clone encoding Pax3a had deletion of Gln75 in PD, suggesting the presence of alternatively spliced variants (Q+/Q-). This was further supported by identification of two adjacent alternative 3' splice acceptor sites which produce Pax3b Q+ (aagCAGGGA) and Q- (aagcagGGA) variants. Interestingly, torafugu Pax7a, but not Pax7b, had an insert encoding five amino acid residues (SGEAS) in a C-terminal region of PD in two out of three cDNA clones. Genomic analysis showed two alternate splice donor sites at exon 4 of Pax7a. In synteny analysis, torafugu Pax3a showed syntenic relationship with the corresponding regions in other teleosts only, whereas Pax3b and Pax7b showed high syntenic relationship with the corresponding regions of both mammals and other teleosts. RT-PCR revealed that expression of Pax3a and Pax3b transcripts was restricted to embryonic stages only, whereas those of Pax7a and Pax7b was continued to be expressed in larvae and importantly those of Pax7a were found in adult skeletal muscles. Therefore, Pax3 appears to be most important for primary myogenesis and Pax7 for secondary myogenesis and growth by hyperplasia in fish. In this regard, the transcripts of torafugu Pax3 and Pax7 genes might be used for further investigation as a marker for identification of muscle precursor cells during different phases of growth, and this ambiguity is the next target of our research.
Collapse
|
41
|
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci 2015; 72:2989-3008. [PMID: 25833128 PMCID: PMC11114051 DOI: 10.1007/s00018-015-1897-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| |
Collapse
|
42
|
Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S. The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. Front Aging Neurosci 2015; 7:62. [PMID: 26042028 PMCID: PMC4436886 DOI: 10.3389/fnagi.2015.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dystrophies affect head and body skeletal muscle differently. Moreover, these muscles develop differently. Specifically, head muscle and its stem cells develop from the non-somitic head mesoderm which also has cardiac competence. To which extent head muscle stem cells retain properties of the early head mesoderm and might even be able to switch between a skeletal muscle and cardiac fate is not known. This is due to the fact that the timing and mechanisms underlying head muscle stem cell development are still obscure. Consequently, it is not clear at which time point one should compare the properties of head mesodermal cells and head muscle stem cells. To shed light on this, we traced the emergence of head muscle stem cells in the key vertebrate models for myogenesis, chicken, mouse, frog and zebrafish, using Pax7 as key marker. Our study reveals a common theme of head muscle stem cell development that is quite different from the trunk. Unlike trunk muscle stem cells, head muscle stem cells do not have a previous history of Pax7 expression, instead Pax7 expression emerges de-novo. The cells develop late, and well after the head mesoderm has committed to myogenesis. We propose that this unique mechanism of muscle stem cell development is a legacy of the evolutionary history of the chordate head mesoderm.
Collapse
Affiliation(s)
- Julia Meireles Nogueira
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK ; Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Katarzyna Hawrot
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK
| | - Colin Sharpe
- School of Biological Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK
| | - Anna Noble
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth Portsmouth, UK
| | - William M Wood
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut Storrs, CT, USA
| | - Erika C Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut Storrs, CT, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah Salt Lake City, UT, USA
| | - Susanne Dietrich
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth Portsmouth, UK
| |
Collapse
|
43
|
Windner SE, Doris RA, Ferguson CM, Nelson AC, Valentin G, Tan H, Oates AC, Wardle FC, Devoto SH. Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish. Development 2015; 142:1159-68. [PMID: 25725067 PMCID: PMC4360180 DOI: 10.1242/dev.113431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
During embryonic development, the paraxial mesoderm becomes segmented into somites, within which proliferative muscle progenitors and muscle fibers establish the skeletal musculature. Here, we demonstrate that a gene network previously implicated in somite boundary formation, involving the transcriptional regulators Tbx6, Mesp-b and Ripply1, also confers spatial and temporal regulation to skeletal myogenesis in zebrafish. We show that Tbx6 directly regulates mesp-b and ripply1 expression in vivo, and that the interactions within the regulatory network are largely conserved among vertebrates. Mesp-b is necessary and sufficient for the specification of a subpopulation of muscle progenitors, the central proportion of the Pax3(+)/Pax7(+) dermomyotome. Conditional ubiquitous expression indicates that Mesp-b acts by inhibiting myogenic differentiation and by inducing the dermomyotome marker meox1. By contrast, Ripply1 induces a negative-feedback loop by promoting Tbx6 protein degradation. Persistent Tbx6 expression in Ripply1 knockdown embryos correlates with a deficit in dermomyotome and myotome marker gene expression, suggesting that Ripply1 promotes myogenesis by terminating Tbx6-dependent inhibition of myogenic maturation. Together, our data suggest that Mesp-b is an intrinsic upstream regulator of skeletal muscle progenitors and that, in zebrafish, the genes regulating somite boundary formation also regulate the development of the dermomyotome in the anterior somite compartment.
Collapse
Affiliation(s)
| | - Rosemarie A Doris
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | | - Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Guillaume Valentin
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Haihan Tan
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Andrew C Oates
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
44
|
Li J, Yue Y, Dong X, Jia W, Li K, Liang D, Dong Z, Wang X, Nan X, Zhang Q, Zhao Q. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J Biol Chem 2015; 290:10216-28. [PMID: 25724646 DOI: 10.1074/jbc.m114.612572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/06/2022] Open
Abstract
Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.
Collapse
Affiliation(s)
- Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and the Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing 210004, China
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Kui Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Dong Liang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxiao Wang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxi Nan
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qinxin Zhang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| |
Collapse
|
45
|
Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW. The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle 2015; 5:2. [PMID: 25671076 PMCID: PMC4323260 DOI: 10.1186/s13395-014-0026-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. Methods The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Results Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. Conclusions The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0026-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harriet E Jackson
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Yosuke Ono
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Xingang Wang
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Stone Elworthy
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Vincent T Cunliffe
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Philip W Ingham
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Lee Kong Chian School of Medicine, Nanyang Technological University, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
46
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
47
|
Applebaum M, Kalcheim C. Mechanisms of myogenic specification and patterning. Results Probl Cell Differ 2015; 56:77-98. [PMID: 25344667 DOI: 10.1007/978-3-662-44608-9_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesodermal somites are initially composed of columnar cells arranged as a pseudostratified epithelium that undergoes sequential and spatially restricted changes to generate the sclerotome and dermomyotome, intermediate structures that develop into vertebrae, striated muscles of the body and limbs, dermis, smooth muscle, and endothelial cells. Regional cues were elucidated that impart differential traits upon the originally multipotent progenitors. How do somite cells and their intermediate progenitors interpret these extrinsic cues and translate them into various levels and/or modalities of intracellular signaling that lead to differential gene expression profiles remains a significant challenge. So is the understanding of how differential fate specification relates to complex cellular migrations prefiguring the formation of body muscles and vertebrae. Research in the past years has largely transited from a descriptive phase in which the lineages of distinct somite-derived progenitors and their cellular movements were traced to a more mechanistic understanding of the local function of genes and regulatory networks underlying lineage segregation and tissue organization. In this chapter, we focus on some major advances addressing the segregation of lineages from the dermomyotome, while discussing both cellular as well as molecular mechanisms, where possible.
Collapse
Affiliation(s)
- Mordechai Applebaum
- Department of Medical Neurobiology, IMRIC and ELSC-Hebrew University-Hadassah Medical School, Jerusalem, 9101201, 12272, Israel,
| | | |
Collapse
|
48
|
Ng'oma E, Groth M, Ripa R, Platzer M, Cellerino A. Transcriptome profiling of natural dichromatism in the annual fishes Nothobranchius furzeri and Nothobranchius kadleci. BMC Genomics 2014; 15:754. [PMID: 25183398 PMCID: PMC4168119 DOI: 10.1186/1471-2164-15-754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Background The annual fish Nothobranchius furzeri is characterized by a natural dichromatism with yellow-tailed and red-tailed male individuals. These differences are due to different distributions of xanthophores and erythrophores in the two morphs. Previous crossing studies have showed that dichromatism in N. furzeri is inherited as a simple Mendelian trait with the yellow morph dominant over the red morph. The causative genetic variation was mapped by linkage analysis in a chromosome region containing the Mc1r locus. However, subsequent mapping showed that Mc1r is most likely not responsible for the color difference in N. furzeri. To gain further insight into the molecular basis of this phenotype, we performed RNA-seq on F2 progeny of a cross between N. furzeri male and N. kadleci female. Results We identified 210 differentially-expressed genes between yellow and red fin samples. Functional annotation analysis revealed that genes with higher transcript levels in the yellow morph are enriched for the melanin synthesis pathway indicating that xanthophores are more similar to melanophores than are the erythrophores. Genes with higher expression levels in red-tails included xanthine dehydrogenase (Xdh), coding for a biosynthetic enzyme in the pteridine synthesis pathway, and genes related to muscle contraction. Comparison of DEGs obtained in this study with genes associated with pigmentation in the Midas cichlid (A. citrinellus) reveal similarities like involvement of the melanin biosynthesis pathway, the genes Ptgir, Rasef (RAS and EF-hand domain containing), as well as genes primarily expressed in muscle such as Ttn and Ttnb (titin, titin b). Conclusions Regulation of genes in the melanin synthetic pathway is an expected finding and shows that N. furzeri is a genetically-tractable species for studying the genetic basis of natural phenotypic variations. The current list of differentially-expressed genes can be compared with the results of fine-mapping, to reveal the genetic architecture of this natural phenotype. However, an evolutionarily-conserved role of muscle-related genes in tail fin pigmentation is novel finding and interesting perspective for the future. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-754) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Cellerino
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany.
| |
Collapse
|
49
|
Tu CF, Tsao KC, Lee SJ, Yang RB. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development. J Biol Chem 2014; 289:18928-42. [PMID: 24849601 DOI: 10.1074/jbc.m114.551929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and
| | - Ku-Chi Tsao
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Jye Lee
- the Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and the Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan,
| |
Collapse
|
50
|
Rossi G, Messina G. Comparative myogenesis in teleosts and mammals. Cell Mol Life Sci 2014; 71:3081-99. [PMID: 24664432 PMCID: PMC4111864 DOI: 10.1007/s00018-014-1604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Skeletal myogenesis has been and is currently under extensive study in both mammals and teleosts, with the latter providing a good model for skeletal myogenesis because of their flexible and conserved genome. Parallel investigations of muscle studies using both these models have strongly accelerated the advances in the field. However, when transferring the knowledge from one model to the other, it is important to take into account both their similarities and differences. The main difficulties in comparing mammals and teleosts arise from their different temporal development. Conserved aspects can be seen for muscle developmental origin and segmentation, and for the presence of multiple myogenic waves. Among the divergences, many fish have an indeterminate growth capacity throughout their entire life span, which is absent in mammals, thus implying different post-natal growth mechanisms. This review covers the current state of the art on myogenesis, with a focus on the most conserved and divergent aspects between mammals and teleosts.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|