1
|
Portela M, Mukherjee S, Paul S, La Marca JE, Parsons LM, Veraksa A, Richardson HE. The Drosophila tumour suppressor Lgl and Vap33 activate the Hippo pathway through a dual mechanism. J Cell Sci 2024; 137:jcs261917. [PMID: 38240353 PMCID: PMC10911279 DOI: 10.1242/jcs.261917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
The tumour suppressor, Lethal (2) giant larvae [Lgl; also known as L(2)gl], is an evolutionarily conserved protein that was discovered in the vinegar fly Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity. Lgl links cell polarity and tissue growth through regulation of the Notch and the Hippo signalling pathways. Lgl regulates the Notch pathway by inhibiting V-ATPase activity via Vap33. How Lgl regulates the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Vap33 physically and genetically interacts with the actin cytoskeletal regulators RtGEF (Pix) and Git, which also bind to the Hippo protein (Hpo) and are involved in the activation of the Hippo pathway. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether, our data suggest that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism: (1) through interaction with RtGEF, Git and Arf79F, and (2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Swastik Mukherjee
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - John E. La Marca
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Blood Cells and Blood Cancer Division, Water and Eliza Hall Institute, Melbourne, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084, Australia
| | - Linda M. Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Helena E. Richardson
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Töpfer U, Guerra Santillán KY, Fischer-Friedrich E, Dahmann C. Distinct contributions of ECM proteins to basement membrane mechanical properties in Drosophila. Development 2022; 149:275413. [DOI: 10.1242/dev.200456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
ABSTRACT
The basement membrane is a specialized extracellular matrix (ECM) that is crucial for the development of epithelial tissues and organs. In Drosophila, the mechanical properties of the basement membrane play an important role in the proper elongation of the developing egg chamber; however, the molecular mechanisms contributing to basement membrane mechanical properties are not fully understood. Here, we systematically analyze the contributions of individual ECM components towards the molecular composition and mechanical properties of the basement membrane underlying the follicle epithelium of Drosophila egg chambers. We find that the Laminin and Collagen IV networks largely persist in the absence of the other components. Moreover, we show that Perlecan and Collagen IV, but not Laminin or Nidogen, contribute greatly towards egg chamber elongation. Similarly, Perlecan and Collagen, but not Laminin or Nidogen, contribute towards the resistance of egg chambers against osmotic stress. Finally, using atomic force microscopy we show that basement membrane stiffness mainly depends on Collagen IV. Our analysis reveals how single ECM components contribute to the mechanical properties of the basement membrane controlling tissue and organ shape.
Collapse
Affiliation(s)
- Uwe Töpfer
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Karla Yanín Guerra Santillán
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
4
|
Sidor C, Stevens TJ, Jin L, Boulanger J, Röper K. Rho-Kinase Planar Polarization at Tissue Boundaries Depends on Phospho-regulation of Membrane Residence Time. Dev Cell 2020; 52:364-378.e7. [PMID: 31902655 PMCID: PMC7008249 DOI: 10.1016/j.devcel.2019.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
The myosin II activator Rho-kinase (Rok) is planar polarized at the tissue boundary of the Drosophila embryonic salivary gland placode through a negative regulation by the apical polarity protein Crumbs that is anisotropically localized at the boundary. However, in inner cells of the placode, both Crumbs and Rok are isotropically enriched at junctions. We propose that modulation of Rok membrane residence time by Crumbs’ downstream effectors can reconcile both behaviors. Using FRAP combined with in silico simulations, we find that the lower membrane dissociation rate (koff) of Rok at the tissue boundary with low Crumbs explains this boundary-specific effect. The S/T kinase Pak1, recruited by Crumbs and Cdc42, negatively affects Rok membrane association in vivo and in vitro can phosphorylate Rok near the pleckstrin homology (PH) domain that mediates membrane association. These data reveal an important mechanism of the modulation of Rok membrane residence time via affecting the koff that may be widely employed during tissue morphogenesis. Rho-kinase is planar polarized at tissue boundaries, complementary to Crumbs Crumbs and downstream Pak1 modulate Rok residence time by affecting koff Pak1 can phosphorylate Rok near the PH and Rho-binding domains Rok phosphorylation affects residence time and allows polarization at boundaries
Collapse
Affiliation(s)
- Clara Sidor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Li Jin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
5
|
Dent LG, Manning SA, Kroeger B, Williams AM, Saiful Hilmi AJ, Crea L, Kondo S, Horne-Badovinac S, Harvey KF. The dPix-Git complex is essential to coordinate epithelial morphogenesis and regulate myosin during Drosophila egg chamber development. PLoS Genet 2019; 15:e1008083. [PMID: 31116733 PMCID: PMC6555532 DOI: 10.1371/journal.pgen.1008083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
How biochemical and mechanical information are integrated during tissue development is a central question in morphogenesis. In many biological systems, the PIX-GIT complex localises to focal adhesions and integrates both physical and chemical information. We used Drosophila melanogaster egg chamber formation to study the function of PIX and GIT orthologues (dPix and Git, respectively), and discovered a central role for this complex in controlling myosin activity and epithelial monolayering. We found that Git's focal adhesion targeting domain mediates basal localisation of this complex to filament structures and the leading edge of migrating cells. In the absence of dpix and git, tissue disruption is driven by contractile forces, as reduction of myosin activators restores egg production and morphology. Further, dpix and git mutant eggs closely phenocopy defects previously reported in pak mutant epithelia. Together, these results indicate that the dPix-Git complex controls egg chamber morphogenesis by controlling myosin contractility and Pak kinase downstream of focal adhesions.
Collapse
Affiliation(s)
- Lucas G. Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (LGD); (KFH)
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | | | - Luke Crea
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
- * E-mail: (LGD); (KFH)
| |
Collapse
|
6
|
Balaji R, Weichselberger V, Classen AK. Response of epithelial cell and tissue shape to external forces in vivo. Development 2019; 146:dev.171256. [DOI: 10.1242/dev.171256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
How actomyosin generates forces at epithelial adherens junctions has been extensively studied. However, less is known about how a balance between internal and external forces establishes epithelial cell, tissue and organ shape. We use the Drosophila egg chamber to investigate how contractility at adherens junction in the follicle epithelium is modulated to accommodate and resist forces arising from the growing germline. We find that between stages 6 and 9 adherens junction tension in the post-mitotic epithelium decreases, suggesting that the junctional network relaxes to accommodate germline growth. At that time, a prominent medial Myosin II network coupled to corrugating adherens junctions develops. Local enrichment of medial Myosin II in main body follicle cells resists germline-derived forces, thus constraining apical areas and consequently cuboidal cell shapes at stage 9. At the tissue and organ level, local reinforcement of medial-junctional architecture ensures the timely contact of main body cells with the expanding oocyte and imposes circumferential constraints on the germline guiding egg elongation. Our study provides insight into how adherens junction tension promotes cell and tissue shape transitions while integrating growth and shape of an internally enclosed structure in vivo.
Collapse
Affiliation(s)
- Ramya Balaji
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Vanessa Weichselberger
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Anne-Kathrin Classen
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Aguilar-Aragon M, Elbediwy A, Foglizzo V, Fletcher GC, Li VSW, Thompson BJ. Pak1 Kinase Maintains Apical Membrane Identity in Epithelia. Cell Rep 2018; 22:1639-1646. [PMID: 29444419 PMCID: PMC5847184 DOI: 10.1016/j.celrep.2018.01.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 01/03/2023] Open
Abstract
Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.
Collapse
Affiliation(s)
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Valentina Foglizzo
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Georgina C Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
8
|
Alégot H, Pouchin P, Bardot O, Mirouse V. Jak-Stat pathway induces Drosophila follicle elongation by a gradient of apical contractility. eLife 2018; 7:32943. [PMID: 29420170 PMCID: PMC5805408 DOI: 10.7554/elife.32943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/19/2018] [Indexed: 12/25/2022] Open
Abstract
Tissue elongation and its control by spatiotemporal signals is a major developmental question. Currently, it is thought that Drosophila ovarian follicular epithelium elongation requires the planar polarization of the basal domain cytoskeleton and of the extra-cellular matrix, associated with a dynamic process of rotation around the anteroposterior axis. Here we show, by careful kinetic analysis of fat2 mutants, that neither basal planar polarization nor rotation is required during a first phase of follicle elongation. Conversely, a JAK-STAT signaling gradient from each follicle pole orients early elongation. JAK-STAT controls apical pulsatile contractions, and Myosin II activity inhibition affects both pulses and early elongation. Early elongation is associated with apical constriction at the poles and with oriented cell rearrangements, but without any visible planar cell polarization of the apical domain. Thus, a morphogen gradient can trigger tissue elongation through a control of cell pulsing and without a planar cell polarity requirement.
Collapse
Affiliation(s)
- Hervé Alégot
- GReD Laboratory, Université Clermont Auvergne - CNRS UMR 6293- INSERM U1103, Clermont-Ferrand, France
| | - Pierre Pouchin
- GReD Laboratory, Université Clermont Auvergne - CNRS UMR 6293- INSERM U1103, Clermont-Ferrand, France
| | - Olivier Bardot
- GReD Laboratory, Université Clermont Auvergne - CNRS UMR 6293- INSERM U1103, Clermont-Ferrand, France
| | - Vincent Mirouse
- GReD Laboratory, Université Clermont Auvergne - CNRS UMR 6293- INSERM U1103, Clermont-Ferrand, France
| |
Collapse
|
9
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
10
|
Yadav R, Sarkar S. Drosophila glob1 is required for the maintenance of cytoskeletal integrity during oogenesis. Dev Dyn 2016; 245:1048-1065. [PMID: 27503269 DOI: 10.1002/dvdy.24436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hemoglobins (Hbs) are evolutionarily conserved heme-containing metallo-proteins of the Globin protein family that harbour the characteristic "globin fold." Hemoglobins have been functionally diversified during evolution and their usual property of oxygen transport is rather a recent adaptation. Drosophila genome possesses three globin genes (glob1, glob2, and glob3), and we have reported earlier that adequate expression of glob1 is required for various aspects of development, as well as to regulate the cellular level of reactive oxygen species (ROS). The present study illustrates the explicit role of Drosophila globin1 in progression of oogenesis. RESULTS We demonstrate a dynamic expression pattern of glob1 in somatic and germ cell derivatives of developing egg chambers during various stages of oogenesis, which largely confines around the F-actin-rich cellular components. Reduced expression of glob1 leads to various types of abnormalities during oogenesis, which were primarily mediated by the inappropriately formed F-actin-based cytoskeleton. Our subsequent analysis in the somatic and germ line clones shows cell autonomous role of glob1 in the maintenance of the integrity of F-actin-based cytoskeleton components in the somatic and germ cell derivatives. CONCLUSIONS Our study establishes a novel role of glob1 in maintenance of F-actin-based cytoskeleton during progression of oogenesis in Drosophila. Developmental Dynamics 245:1048-1065, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renu Yadav
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India.
| |
Collapse
|
11
|
Conder R, Yu H, Zahedi B, Harden N. Corrigendum to ''The serine/threonine kinase dPak is required for polarized assembly of F-actin bundles and apical-basal polarity in the Drosophila follicular epithelium'' [Dev. Biol. 305 (2007) 470–482]. Dev Biol 2016; 415:168. [DOI: 10.1016/j.ydbio.2016.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
|
12
|
Aurich F, Dahmann C. A Mutation in fat2 Uncouples Tissue Elongation from Global Tissue Rotation. Cell Rep 2016; 14:2503-10. [PMID: 26972006 DOI: 10.1016/j.celrep.2016.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 12/23/2015] [Accepted: 02/05/2016] [Indexed: 01/15/2023] Open
Abstract
Global tissue rotation was proposed as a morphogenetic mechanism controlling tissue elongation. In Drosophila ovaries, global tissue rotation of egg chambers coincides with egg chamber elongation. Egg chamber rotation was put forward to result in circumferential alignment of extracellular fibers. These fibers serve as molecular corsets to restrain growth of egg chambers perpendicular to the anteroposterior axis, thereby leading to the preferential egg chamber elongation along this axis. The atypical cadherin Fat2 is required for egg chamber elongation, rotation, and the circumferential alignment of extracellular fibers. Here, we have generated a truncated form of Fat2 that lacks the entire intracellular region. fat2 mutant egg chambers expressing this truncated protein fail to rotate yet display normal extracellular fiber alignment and properly elongate. Our data suggest that global tissue rotation, even though coinciding with tissue elongation, is not a necessary prerequisite for elongation.
Collapse
Affiliation(s)
- Franziska Aurich
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
13
|
Ng BF, Selvaraj GK, Santa-Cruz Mateos C, Grosheva I, Alvarez-Garcia I, Martín-Bermudo MD, Palacios IM. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium. Development 2016; 143:1388-99. [PMID: 26952981 PMCID: PMC4852512 DOI: 10.1242/dev.130070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using the Drosophila follicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, as α-Spectrin and integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering of α-Spectrin cells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium.
Collapse
Affiliation(s)
- Bing Fu Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Gokul Kannan Selvaraj
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Inna Grosheva
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Ines Alvarez-Garcia
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
14
|
Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci Rep 2016; 6:18850. [PMID: 26732176 PMCID: PMC4702167 DOI: 10.1038/srep18850] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/27/2015] [Indexed: 01/26/2023] Open
Abstract
The Drosophila egg chamber, whose development is divided into 14 stages, is a well-established model for developmental biology. However, visual stage determination can be a tedious, subjective and time-consuming task prone to errors. Our study presents an objective, reliable and repeatable automated method for quantifying cell features and classifying egg chamber stages based on DAPI images. The proposed approach is composed of two steps: 1) a feature extraction step and 2) a statistical modeling step. The egg chamber features used are egg chamber size, oocyte size, egg chamber ratio and distribution of follicle cells. Methods for determining the on-site of the polytene stage and centripetal migration are also discussed. The statistical model uses linear and ordinal regression to explore the stage-feature relationships and classify egg chamber stages. Combined with machine learning, our method has great potential to enable discovery of hidden developmental mechanisms.
Collapse
|
15
|
Sarhan AR, Patel TR, Cowell AR, Tomlinson MG, Hellberg C, Heath JK, Cunningham DL, Hotchin NA. LAR protein tyrosine phosphatase regulates focal adhesions via CDK1. J Cell Sci 2016; 129:2962-71. [DOI: 10.1242/jcs.191379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Focal adhesions are complex multi-molecular structures that link the actin cytoskeleton to the extracellular matrix via integrin adhesion receptors and play a key role in regulation of many cellular functions. LAR is a receptor protein tyrosine phosphatase that regulates PDGF signalling and localises to focal adhesions. We have observed that loss of LAR phosphatase activity in mouse embryonic fibroblasts results in reduced numbers of focal adhesions and decreased adhesion to fibronectin. To understand how LAR regulates cell adhesion we used phosphoproteomic data, comparing global phosphorylation events in wild type and LAR phosphatase-deficient cells, to analyse differential kinase activity. Kinase prediction analysis of LAR-regulated phosphosites identified a node of cytoskeleton- and adhesion-related proteins centred on cyclin-dependent kinase-1 (CDK1). We found that loss of LAR activity resulted in reduced activity of CDK1, and that CDK1 activity was required for LAR-mediated focal adhesion complex formation. We also established that LAR regulates CDK1 activity via c-Abl and PKB/Akt. In summary, we have identified a novel role for a receptor protein tyrosine phosphatase in regulating CDK1 activity and hence cell adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- Adil R. Sarhan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Trushar R. Patel
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Alana R. Cowell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Michael G. Tomlinson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carina Hellberg
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - John K. Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Debbie L. Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Neil A. Hotchin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
16
|
Felix M, Chayengia M, Ghosh R, Sharma A, Prasad M. Pak3 regulates apical-basal polarity in migrating border cells during Drosophila oogenesis. Development 2015; 142:3692-703. [PMID: 26395489 DOI: 10.1242/dev.125682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023]
Abstract
Group cell migration is a highly coordinated process that is involved in a number of physiological events such as morphogenesis, wound healing and tumor metastasis. Unlike single cells, collectively moving cells are physically attached to each other and retain some degree of apical-basal polarity during the migratory phase. Although much is known about direction sensing, how polarity is regulated in multicellular movement remains unclear. Here we report the role of the protein kinase Pak3 in maintaining apical-basal polarity in migrating border cell clusters during Drosophila oogenesis. Pak3 is enriched in border cells and downregulation of its function impedes border cell movement. Time-lapse imaging suggests that Pak3 affects protrusive behavior of the border cell cluster, specifically regulating the stability and directionality of protrusions. Pak3 functions downstream of guidance receptor signaling to regulate the level and distribution of F-actin in migrating border cells. We also provide evidence that Pak3 genetically interacts with the lateral polarity marker Scribble and that it regulates JNK signaling in the moving border cells. Since Pak3 depletion results in mislocalization of several apical-basal polarity markers and overexpression of Jra rescues the polarity of the Pak3-depleted cluster, we propose that Pak3 functions through JNK signaling to modulate apical-basal polarity of the migrating border cell cluster. We also observe loss of apical-basal polarity in Rac1-depleted border cell clusters, suggesting that guidance receptor signaling functions through Rac GTPase and Pak3 to regulate the overall polarity of the cluster and mediate efficient collective movement of the border cells to the oocyte boundary.
Collapse
Affiliation(s)
- Martina Felix
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Mrinal Chayengia
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Ritabrata Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Aditi Sharma
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
17
|
Isabella AJ, Horne-Badovinac S. Building from the Ground up: Basement Membranes in Drosophila Development. CURRENT TOPICS IN MEMBRANES 2015; 76:305-36. [PMID: 26610918 DOI: 10.1016/bs.ctm.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Basement membranes (BMs) are sheetlike extracellular matrices found at the basal surfaces of epithelial tissues. The structural and functional diversity of these matrices within the body endows them with the ability to affect multiple aspects of cell behavior and communication; for this reason, BMs are integral to many developmental processes. The power of Drosophila genetics, as applied to the BM, has yielded substantial insight into how these matrices influence development. Here, we explore three facets of BM biology to which Drosophila research has made particularly important contributions. First, we discuss how newly synthesized BM proteins are secreted to and assembled exclusively on basal epithelial surfaces. Next, we examine how regulation of the structural properties of the BM mechanically supports and guides tissue morphogenesis. Finally, we explore how BMs influence development through the modulation of several major signaling pathways.
Collapse
Affiliation(s)
- Adam J Isabella
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Vlachos S, Jangam S, Conder R, Chou M, Nystul T, Harden N. A Pak-regulated cell intercalation event leading to a novel radial cell polarity is involved in positioning of the follicle stem cell niche in the Drosophila ovary. Development 2015; 142:82-91. [PMID: 25516970 DOI: 10.1242/dev.111039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the germarium of the Drosophila ovary, germline cysts are encapsulated one at a time by a follicular epithelium derived from two follicle stem cells (FSCs). Ovaries in flies mutant for the serine/threonine kinase Pak exhibit a novel phenotype, in which two side-by-side cysts are encapsulated at a time, generating paired egg chambers. This striking phenotype originates in the pupal ovary, where the developing germarium is shaped by the basal stalk, a stack of cells formed by cell intercalation. The process of basal stalk formation is not well understood, and we provide evidence that the cell intercalation is driven by actomyosin contractility of DE-Cadherin-adhered cells, leading to a column of disk-shaped cells exhibiting a novel radial cell polarity. Cell intercalation fails in Pak mutant ovaries, leading to abnormally wide basal stalks and consequently wide germaria with side-by-side cysts. We present evidence that Pak mutant germaria have extra FSCs, and we propose that contact of a germline cyst with the basal stalk in the pupal ovary contributes to FSC niche formation. The wide basal stalk in Pak mutants enables the formation of extra FSC niches which are mispositioned and yet functional, indicating that the FSC niche can be established in diverse locations.
Collapse
Affiliation(s)
- Stephanie Vlachos
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Sharayu Jangam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Michael Chou
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Todd Nystul
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143, USA
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
19
|
Cetera M, Horne-Badovinac S. Round and round gets you somewhere: collective cell migration and planar polarity in elongating Drosophila egg chambers. Curr Opin Genet Dev 2015; 32:10-5. [PMID: 25677931 DOI: 10.1016/j.gde.2015.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
Abstract
Planar polarity is a developmental mechanism wherein individual cell behaviors are coordinated across a two-dimensional plane. A great deal of attention has been paid to the roles that the Frizzled/Strabismus and Fat/Dachsous signaling pathways play in this process; however, it is becoming increasingly clear that planar polarity can also be generated through alternate mechanisms. This review focuses on an unconventional form of planar polarity found within the follicular epithelium of the Drosophila egg chamber that helps to create the elongated shape of the egg. We highlight recent studies showing that the planar polarity in this system arises through collective migration of the follicle cells and the resulting rotational motion of the egg chamber.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, United States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, United States.
| |
Collapse
|
20
|
Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ, Tanentzapf G, Gardel ML, Horne-Badovinac S. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 2014; 5:5511. [PMID: 25413675 PMCID: PMC4241503 DOI: 10.1038/ncomms6511] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023] Open
Abstract
Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a “molecular corset”, in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell’s leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis.
Collapse
Affiliation(s)
- Maureen Cetera
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Guillermina R Ramirez-San Juan
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Institute for Biophysical Dynamics, James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Patrick W Oakes
- Institute for Biophysical Dynamics, James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Lindsay Lewellyn
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Department of Biological Sciences, Butler University, 4600 Sunset Boulevard, Indianapolis, Indiana 46208, USA
| | - Michael J Fairchild
- Life Sciences Centre, Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Guy Tanentzapf
- Life Sciences Centre, Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Sally Horne-Badovinac
- 1] Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA [2] Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
21
|
Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry DJ, Martin MC, Rosen MK, Bogdan S, Way M. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev Cell 2014; 30:569-84. [PMID: 25203209 PMCID: PMC4165403 DOI: 10.1016/j.devcel.2014.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 01/25/2023]
Abstract
Ena/VASP proteins and the WAVE regulatory complex (WRC) regulate cell motility by virtue of their ability to independently promote actin polymerization. We demonstrate that Ena/VASP and the WRC control actin polymerization in a cooperative manner through the interaction of the Ena/VASP EVH1 domain with an extended proline rich motif in Abi. This interaction increases cell migration and enables VASP to cooperatively enhance WRC stimulation of Arp2/3 complex-mediated actin assembly in vitro in the presence of Rac. Loss of this interaction in Drosophila macrophages results in defects in lamellipodia formation, cell spreading, and redistribution of Ena to the tips of filopodia-like extensions. Rescue experiments of abi mutants also reveals a physiological requirement for the Abi:Ena interaction in photoreceptor axon targeting and oogenesis. Our data demonstrate that the activities of Ena/VASP and the WRC are intimately linked to ensure optimal control of actin polymerization during cell migration and development.
Collapse
Affiliation(s)
- Xing Judy Chen
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Anna Julia Squarr
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany
| | - Raiko Stephan
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany
| | - Baoyu Chen
- Howard Hughes Medical Institute and Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa E Higgins
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - David J Barry
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Morag C Martin
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Michael K Rosen
- Howard Hughes Medical Institute and Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institute of Neurobiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany.
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
22
|
Haack T, Bergstralh DT, St Johnston D. Damage to the Drosophila follicle cell epithelium produces "false clones" with apparent polarity phenotypes. Biol Open 2013; 2:1313-20. [PMID: 24337115 PMCID: PMC3863415 DOI: 10.1242/bio.20134671] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila follicular epithelium, which surrounds developing egg chambers, is a well-established model for studying epithelial polarity because it is continuously generated from adult stem cells, making it easy to generate homozygous mutant clones in a heterozygous background. Mutant clones are usually marked by the loss of Green Fluorescent Protein (GFP) expression, which distinguishes them from their green, wild-type neighbours. Here we report that damage to the epithelium during dissection can produce groups of GFP-negative cells that resemble mutant clones. Furthermore, several polarity factors, such as aPKC and Discs large, are not localised in these damage-induced false clones. This phenotype is identical to that reported for several mutants, including ampk and Dystroglycan mutant clones under conditions of energetic stress. Using more reliable systems to mark ampk and Dystroglycan null clones such as the MARCM system, we found that neither protein is required for epithelial polarity under low energy conditions. Thus, our previous report of a specific low energy polarity pathway is an artefact of the increased damage caused by dissecting the small ovaries of starved flies. However, ampk mutant cells are larger than normal under both starvation and well-fed conditions, indicating that AMPK restricts follicle cell growth even when dietary sugar is not limiting. We suspect that several other reports of mutants that disrupt follicle cell polarity may also be based on the phenotype of damage-induced false clones, and recommend the use of positively marked clones to avoid this potential artefact.
Collapse
Affiliation(s)
- Timm Haack
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
23
|
Lewellyn L, Cetera M, Horne-Badovinac S. Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila. ACTA ACUST UNITED AC 2013; 200:721-9. [PMID: 23509067 PMCID: PMC3601364 DOI: 10.1083/jcb.201209129] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior-posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ's outer epithelial layer, the follicle cells. Interestingly, this epithelium also undergoes a directed migration that causes the egg chamber to rotate around its anterior-posterior axis. However, the functional relationship between planar polarity and migration in this tissue is unknown. We have previously reported that mutations in the Misshapen kinase disrupt follicle cell planar polarity. Here we show that Misshapen's primary role in this system is to promote individual cell motility. Misshapen decreases integrin levels at the basal surface, which may facilitate detachment of each cell's trailing edge. These data provide mechanistic insight into Misshapen's conserved role in cell migration and suggest that follicle cell planar polarity may be an emergent property of individual cell migratory behaviors within the epithelium.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
24
|
Goulas S, Conder R, Knoblich J. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 2013; 11:529-40. [PMID: 23040479 PMCID: PMC3465556 DOI: 10.1016/j.stem.2012.06.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 03/09/2012] [Accepted: 06/07/2012] [Indexed: 01/25/2023]
Abstract
The adult Drosophila midgut is maintained by intestinal stem cells (ISCs) that generate both self-renewing and differentiating daughter cells. How this asymmetry is generated is currently unclear. Here, we demonstrate that asymmetric ISC division is established by a unique combination of extracellular and intracellular polarity mechanisms. We show that Integrin-dependent adhesion to the basement membrane induces cell-intrinsic polarity and results in the asymmetric segregation of the Par proteins Par-3, Par-6, and aPKC into the apical daughter cell. Cell-specific knockdown and overexpression experiments suggest that increased activity of aPKC enhances Delta/Notch signaling in one of the two daughter cells to induce terminal differentiation. Perturbing this mechanism or altering the orientation of ISC division results in the formation of intestinal tumors. Our data indicate that mechanisms for intrinsically asymmetric cell division can be adapted to allow for the flexibility in lineage decisions that is required in adult stem cells.
Collapse
Affiliation(s)
- Spyros Goulas
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ryan Conder
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Juergen A. Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Corresponding author
| |
Collapse
|
25
|
Duan R, Jin P, Luo F, Zhang G, Anderson N, Chen EH. Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo. ACTA ACUST UNITED AC 2012; 199:169-85. [PMID: 23007650 PMCID: PMC3461515 DOI: 10.1083/jcb.201204065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Group I p21-activated kinases organize actin filaments in myoblasts into dense foci, which promote podosome invasion and subsequent myoblast fusion. The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell–cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion in vivo, with DPak3 playing a major role. DPak3 is enriched at the site of fusion colocalizing with the F-actin focus within a podosome-like structure (PLS), and promotes actin filament assembly during PLS invasion. Although the small GTPase Rac is involved in DPak3 activation and recruitment to the PLS, the kinase activity of DPak3 is required for effective PLS invasion. We propose a model whereby group I PAKs act downstream of Rac to organize the actin filaments within the PLS into a dense focus, which in turn promotes PLS invasion and fusion pore initiation during myoblast fusion.
Collapse
Affiliation(s)
- Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gates J. Drosophila egg chamber elongation: insights into how tissues and organs are shaped. Fly (Austin) 2012; 6:213-27. [PMID: 22940759 PMCID: PMC3519655 DOI: 10.4161/fly.21969] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.
Collapse
Affiliation(s)
- Julie Gates
- Department of Biology, Bucknell University,Lewisburg, PA, USA.
| |
Collapse
|
27
|
Urwyler O, Cortinas-Elizondo F, Suter B. Drosophila sosie functions with β(H)-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability. Biol Open 2012; 1:994-1005. [PMID: 23213377 PMCID: PMC3507177 DOI: 10.1242/bio.20122154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022] Open
Abstract
Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie) is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side), are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.
Collapse
Affiliation(s)
- Olivier Urwyler
- Present address: Vesalius Research Center, Flanders Institute of Biotechnology (VIB), University of Leuven (KUL), 3000 Leuven, Belgium
| | | | | |
Collapse
|
28
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
29
|
deLeon O, Puglise JM, Liu F, Smits J, ter Beest MB, Zegers MM. Pak1 regulates the orientation of apical polarization and lumen formation by distinct pathways. PLoS One 2012; 7:e41039. [PMID: 22815903 PMCID: PMC3399788 DOI: 10.1371/journal.pone.0041039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/21/2012] [Indexed: 02/06/2023] Open
Abstract
The development of the basic architecture of branching tubules enclosing a central lumen that characterizes most epithelial organs crucially depends on the apico-basolateral polarization of epithelial cells. Signals from the extracellular matrix control the orientation of the apical surface, so that it faces the lumen interior, opposite to cell-matrix adhesion sites. This orientation of the apical surface is thought to be intrinsically linked to the formation of single lumens. We previously demonstrated in three-dimensional cyst cultures of Madin-Darby canine kidney (MDCK) cells that signaling by β1 integrins regulates the orientation of the apical surface, via a mechanism that depends on the activity of the small GTPase Rac1. Here, we investigated whether the Rac1 effector Pak1 is a downstream effector in this pathway. Expression of constitutive active Pak1 phenocopies the effect of β1 integrin inhibition in that it misorients the apical surface and induces a multilumen phenotype. The misorientation of apical surfaces depends on the interaction of active Pak1 with PIX proteins and is linked to defects in basement membrane assembly. In contrast, the multilumen phenotype was independent of PIX and the basement membrane. Therefore, Pak1 likely regulates apical polarization and lumen formation by two distinct pathways.
Collapse
Affiliation(s)
- Orlando deLeon
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Jason M. Puglise
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Fengming Liu
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Jos Smits
- Department of Cell Biology, NCMLS, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin B. ter Beest
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Mirjam M. Zegers
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
- Genitourinary Medical Oncology UT MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cell Biology, NCMLS, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
30
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
31
|
Baek SH, Cho HW, Kwon YC, Lee JH, Kim MJ, Lee H, Choe KM. Requirement for Pak3 in Rac1-induced organization of actin and myosin during Drosophila larval wound healing. FEBS Lett 2012; 586:772-7. [PMID: 22449966 DOI: 10.1016/j.febslet.2012.01.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/16/2012] [Accepted: 01/29/2012] [Indexed: 01/02/2023]
Abstract
Rho-family small GTPases regulate epithelial cell sheet migration by organizing actin and myosin during wound healing. Here, we report that Pak3, but not Pak1, is a downstream target protein for Rac1 in wound closure of the Drosophila larval epidermis. Pak3-deficient larvae failed to close a wound hole and this defect was not rescued by Pak1 expression, indicating differential functions of the two proteins. Pak3 localized to the wound margin, which selectively required Rac1. Pak3-deficient larvae showed severe defects in actin-myosin organization at the wound margin and in submarginal cells, which was reminiscent of the phenotypes of Rac1-deficient larvae. These results suggest that Pak3 specifically mediates Rac1 signaling in organizing actin and myosin during Drosophila epidermal wound healing.
Collapse
Affiliation(s)
- Seung Hee Baek
- Department of Biology, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Tissue and organ architectures are incredibly diverse, yet our knowledge of the morphogenetic behaviors that generate them is relatively limited. Recent studies have revealed unexpected mechanisms that drive axis elongation in the Drosophila egg, including an unconventional planar polarity signaling pathway, a distinctive type of morphogenetic movement termed "global tissue rotation," a molecular corset-like role of extracellular matrix, and oscillating basal cellular contractions. We review here what is known about Drosophila egg elongation, compare it to other instances of morphogenesis, and highlight several issues of general developmental relevance.
Collapse
Affiliation(s)
- David Bilder
- Department of Molecular & Cell Biology, 379 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
33
|
Chartier FJM, Hardy ÉJL, Laprise P. Crumbs controls epithelial integrity by inhibiting Rac1 and PI3K. J Cell Sci 2011; 124:3393-8. [PMID: 21984807 DOI: 10.1242/jcs.092601] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila Crumbs (Crb) and its mammalian ortholog CRB3 control epithelial polarity through poorly understood molecular mechanisms. Elucidating these mechanisms is crucial, because the physiology of epithelia largely depends on the polarized architecture of individual epithelial cells. In addition, loss of CRB3 favors tumor cell growth, metastasis and epithelial to mesenchymal transition (EMT). Using Drosophila embryos, we report that Rac1 sustains PI3K signaling, which is required for Rac1 activation. Crb represses this positive-feedback loop. Notably, this property confers to Crb its ability to promote epithelial integrity in vivo, because attenuation of either Rac1 or PI3K activity rescues the crb mutant phenotype. Moreover, inhibition of Rac1 or PI3K results in Crb-dependent apical membrane growth, whereas Rac1 activation restricts membrane localization of Crb and interferes with apical domain formation. This illustrates that Crb and the Rac1-PI3K module are antagonists, and that the fine balance between the activities of these proteins is crucial to maintain epithelial organization and an appropriate apical to basolateral ratio. Together, our results elucidate a mechanism that mediates Crb function and further define the role of PI3K and Rac1 in epithelial morphogenesis, allowing for a better understanding of how distinct membrane domains are regulated in polarized epithelial cells.
Collapse
Affiliation(s)
- François J-M Chartier
- Department of Molecular Biology, Medical Biochemistry and Pathology/Cancer Research Center, Laval University and CRCHUQ-Hôtel-Dieu de Québec, 9 McMahon, Québec, QC, G1R 2J6, Canada
| | | | | |
Collapse
|
34
|
Vichas A, Zallen JA. Translating cell polarity into tissue elongation. Semin Cell Dev Biol 2011; 22:858-64. [PMID: 21983030 PMCID: PMC4752253 DOI: 10.1016/j.semcdb.2011.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Planar cell polarity, the orientation of single-cell asymmetries within the plane of a multicellular tissue, is essential to generating the shape and dimensions of organs and organisms. Planar polarity systems align cell behavior with the body axes and orient the cellular processes that lead to tissue elongation. Using Drosophila as a model system, significant progress has been made toward understanding how planar polarity is generated by biochemical and mechanical signals. Recent studies using time-lapse imaging reveal that cells engage in a number of active behaviors whose orientation and dynamics translate planar cell polarity into tissue elongation. Here we review recent progress in understanding the cellular mechanisms that link planar polarity to large-scale changes in tissue structure.
Collapse
Affiliation(s)
- Athea Vichas
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Jennifer A. Zallen
- Howard Hughes Medical Institute, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
35
|
Loss of Drosophila melanogaster p21-activated kinase 3 suppresses defects in synapse structure and function caused by spastin mutations. Genetics 2011; 189:123-35. [PMID: 21705760 DOI: 10.1534/genetics.111.130831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubules are dynamic structures that must elongate, disassemble, and be cleaved into smaller pieces for proper neuronal development and function. The AAA ATPase Spastin severs microtubules along their lengths and is thought to regulate the balance between long, stable filaments and shorter fragments that seed extension or are transported. In both Drosophila and humans, loss of Spastin function results in reduction of synaptic connections and disabling motor defects. To gain insight into how spastin is regulated, we screened the Drosophila melanogaster genome for deletions that modify a spastin overexpression phenotype, eye size reduction. One suppressor region deleted p21-activated kinase 3 (pak3), which encodes a member of the Pak family of actin-regulatory enzymes, but whose in vivo function is unknown. We show that pak3 mutants have only mild synaptic defects at the larval neuromuscular junction, but exhibit a potent genetic interaction with spastin mutations. Aberrant bouton morphology, microtubule distribution, and synaptic transmission caused by spastin loss of function are all restored to wild type when pak3 is simultaneously reduced. Neuronal overexpression of pak3 induces actin-rich thin projections, suggesting that it functions in vivo to promote filopodia during presynaptic terminal arborization. pak3 therefore regulates synapse development in vivo, and when mutated, suppresses the synaptic defects that result from spastin loss.
Collapse
|
36
|
M6 membrane protein plays an essential role in Drosophila oogenesis. PLoS One 2011; 6:e19715. [PMID: 21603606 PMCID: PMC3095610 DOI: 10.1371/journal.pone.0019715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/14/2011] [Indexed: 12/03/2022] Open
Abstract
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.
Collapse
|
37
|
Abstract
Polarized cell behaviors drive axis elongation in animal embryos, but the mechanisms underlying elongation of many tissues remain unknown. Eggs of Drosophila undergo elongation from a sphere to an ellipsoid during oogenesis. We used live imaging of follicles (developing eggs) to elucidate the cellular basis of egg elongation. We find that elongating follicles undergo repeated rounds of circumferential rotation around their long axes. Follicle epithelia mutant for integrin or collagen IV fail to rotate and elongate, which results in round eggs. We present evidence that polarized rotation is required to build a polarized, fibrillar extracellular matrix (ECM) that constrains tissue shape. Thus, global tissue rotation is a morphogenetic behavior that uses planar polarity information in the ECM to control tissue elongation.
Collapse
Affiliation(s)
- Saori L. Haigo
- Department of Molecular & Cell Biology, 379 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, Phone:(510) 642-8605, Fax: (510) 642-8614
| | - David Bilder
- Department of Molecular & Cell Biology, 379 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, Phone:(510) 642-8605, Fax: (510) 642-8614
| |
Collapse
|
38
|
Vlachos S, Harden N. Genetic evidence for antagonism between Pak protein kinase and Rho1 small GTPase signaling in regulation of the actin cytoskeleton during Drosophila oogenesis. Genetics 2011; 187:501-12. [PMID: 21098722 PMCID: PMC3030492 DOI: 10.1534/genetics.110.120998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/18/2010] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.
Collapse
Affiliation(s)
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
39
|
He L, Wang X, Tang HL, Montell DJ. Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat Cell Biol 2010; 12:1133-42. [PMID: 21102441 PMCID: PMC3056411 DOI: 10.1038/ncb2124] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/28/2010] [Indexed: 12/13/2022]
Abstract
Understanding how molecular dynamics leads to cellular behaviours that ultimately sculpt organs and tissues is a major challenge not only in basic developmental biology but also in tissue engineering and regenerative medicine. Here we use live imaging to show that the basal surfaces of Drosophila follicle cells undergo a series of directional, oscillating contractions driven by periodic myosin accumulation on a polarized actin network. Inhibition of the actomyosin contractions or their coupling to extracellular matrix (ECM) blocked elongation of the whole tissue, whereas enhancement of the contractions exaggerated it. Myosin accumulated in a periodic manner before each contraction and was regulated by the small GTPase Rho, its downstream kinase, ROCK, and cytosolic calcium. Disrupting the link between the actin cytoskeleton and the ECM decreased the amplitude and period of the contractions, whereas enhancing cell-ECM adhesion increased them. In contrast, disrupting cell-cell adhesions resulted in loss of the actin network. Our findings reveal a mechanism controlling organ shape and an experimental model for the study of the effects of oscillatory actomyosin activity within a coherent cell sheet.
Collapse
Affiliation(s)
- Li He
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205 USA
| | - Xiaobo Wang
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205 USA
| | - Ho Lam Tang
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205 USA
| | - Denise J. Montell
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205 USA
| |
Collapse
|
40
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
41
|
Bahri S, Wang S, Conder R, Choy J, Vlachos S, Dong K, Merino C, Sigrist S, Molnar C, Yang X, Manser E, Harden N. The leading edge during dorsal closure as a model for epithelial plasticity: Pak is required for recruitment of the Scribble complex and septate junction formation. Development 2010; 137:2023-32. [DOI: 10.1242/dev.045088] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dorsal closure (DC) of the Drosophila embryo is a model for the study of wound healing and developmental epithelial fusions, and involves the sealing of a hole in the epidermis through the migration of the epidermal flanks over the tissue occupying the hole, the amnioserosa. During DC, the cells at the edge of the migrating epidermis extend Rac- and Cdc42-dependent actin-based lamellipodia and filopodia from their leading edge (LE), which exhibits a breakdown in apicobasal polarity as adhesions are severed with the neighbouring amnioserosa cells. Studies using mammalian cells have demonstrated that Scribble (Scrib), an important determinant of apicobasal polarity that functions in a protein complex, controls polarized cell migration through recruitment of Rac, Cdc42 and the serine/threonine kinase Pak, an effector for Rac and Cdc42, to the LE. We have used DC and the follicular epithelium to study the relationship between Pak and the Scrib complex at epithelial membranes undergoing changes in apicobasal polarity and adhesion during development. We propose that, during DC, the LE membrane undergoes an epithelial-to-mesenchymal-like transition to initiate epithelial sheet migration, followed by a mesenchymal-to-epithelial-like transition as the epithelial sheets meet up and restore cell-cell adhesion. This latter event requires integrin-localized Pak, which recruits the Scrib complex in septate junction formation. We conclude that there are bidirectional interactions between Pak and the Scrib complex modulating epithelial plasticity. Scrib can recruit Pak to the LE for polarized cell migration but, as migratory cells meet up, Pak can recruit the Scrib complex to restore apicobasal polarity and cell-cell adhesion.
Collapse
Affiliation(s)
- Sami Bahri
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | - Simon Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Juliana Choy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | - Stephanie Vlachos
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Kevin Dong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Carlos Merino
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Stephan Sigrist
- Department of Genetics, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientifícas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Xiaohang Yang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | - Edward Manser
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
- Institute of Medical Biology, 61 Biopolis Drive, 138673, Singapore
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
42
|
Hamanaka Y, Meinertzhagen IA. Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster. J Comp Neurol 2010; 518:1133-55. [PMID: 20127822 DOI: 10.1002/cne.22268] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The location of proteins that contribute to synaptic function has been widely studied in vertebrate synapses, far more than at model synapses of the genetically manipulable fruit fly, Drosophila melanogaster. Drosophila photoreceptor terminals have been extensively exploited to characterize the actions of synaptic genes, and their distinct and repetitive synaptic ultrastructure is anatomically well suited for such studies. Synaptic release sites include a bipartite T-bar ribbon, comprising a platform surmounting a pedestal. So far, little is known about the composition and precise location of proteins at either the T-bar ribbon or its associated synaptic organelles, knowledge of which is required to understand many details of synaptic function. We studied the localization of candidate proteins to pre- or postsynaptic organelles, by using immuno-electron microscopy with the pre-embedding method, after first validating immunolabeling by confocal microscopy. We used monoclonal antibodies against Bruchpilot, epidermal growth factor receptor pathway substrate clone 15 (EPS-15), and cysteine string protein (CSP), all raised against a fly head homogenate, as well as sea urchin kinesin (antibody SUK4) and Discs large (DLG). All these antibodies labeled distinct synaptic structures in photoreceptor terminals in the first optic neuropil, the lamina, as did rabbit anti-DPAK (Drosophila p21 activated kinase) and anti-Dynamin. Validating reports from light microscopy, immunoreactivity to Bruchpilot localized to the edge of the platform, and immunoreactivity to SUK4 localized to the pedestal of the T-bar ribbon. Anti-DLG recognized the photoreceptor head of capitate projections, invaginating organelles from surrounding glia. For synaptic vesicles, immunoreactivity to EPS-15 localized to sites of endocytosis, and anti-CSP labeled vesicles lying close to the T-bar ribbon. These results provide markers for synaptic sites, and a basis for further functional studies.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
43
|
Biz MT, Marques MR, Crema VO, Moriscot AS, dos Santos MF. GTPases RhoA and Rac1 are important for amelogenin and DSPP expression during differentiation of ameloblasts and odontoblasts. Cell Tissue Res 2010; 340:459-70. [DOI: 10.1007/s00441-010-0961-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/24/2010] [Indexed: 01/15/2023]
|
44
|
Pines MK, Housden BE, Bernard F, Bray SJ, Röper K. The cytolinker Pigs is a direct target and a negative regulator of Notch signalling. Development 2010; 137:913-22. [PMID: 20150280 PMCID: PMC2834460 DOI: 10.1242/dev.043224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2010] [Indexed: 02/02/2023]
Abstract
Gas2-like proteins harbour putative binding sites for both the actin and the microtubule cytoskeleton and could thus mediate crosstalk between these cytoskeletal systems. Family members are highly conserved in all metazoans but their in vivo role is not clear. The sole Drosophila Gas2-like gene, CG3973 (pigs), was recently identified as a transcriptional target of Notch signalling and might therefore link cell fate decisions through Notch activation directly to morphogenetic changes. We have generated a null mutant in CG3973 (pigs): pigs(1) mutants are semi-viable but adult flies are flightless, showing indirect flight muscle degeneration, and females are sterile, showing disrupted oogenesis and severe defects in follicle cell differentiation, similar to phenotypes seen when levels of Notch/Delta signalling are perturbed in these tissues. Loss of Pigs leads to an increase in Notch signalling activity in several tissues. These results indicate that Gas2-like proteins are essential for development and suggest that Pigs acts downstream of Notch as a morphogenetic read-out, and also as part of a regulatory feedback loop to relay back information about the morphogenetic state of cells to restrict Notch activation to appropriate levels in certain target tissues.
Collapse
Affiliation(s)
- Mary K Pines
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | | | | | | | | |
Collapse
|
45
|
Viktorinová I, König T, Schlichting K, Dahmann C. The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 2009; 136:4123-32. [DOI: 10.1242/dev.039099] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Planar cell polarity is an important characteristic of many epithelia. In the Drosophila wing, eye and abdomen, establishment of planar cell polarity requires the core planar cell polarity genes and two cadherins, Fat and Dachsous. Drosophila Fat2 is a cadherin related to Fat; however, its role during planar cell polarity has not been studied. Here, we have generated mutations in fat2 and show that Fat2 is required for the planar polarity of actin filament orientation at the basal side of ovarian follicle cells. Defects in actin filament orientation correlate with a failure of egg chambers to elongate during oogenesis. Using a functional fosmid-based fat2-GFP transgene, we show that the distribution of Fat2 protein in follicle cells is planar polarized and that Fat2 localizes where basal actin filaments terminate. Mosaic analysis demonstrates that Fat2 acts non-autonomously in follicle cells, indicating that Fat2 is required for the transmission of polarity information. Our results suggest a principal role for Fat-like cadherins during the establishment of planar cell polarity.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Tina König
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Karin Schlichting
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Christian Dahmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
46
|
Delon I, Brown NH. The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium. J Cell Sci 2009; 122:4363-74. [PMID: 19903692 PMCID: PMC2779134 DOI: 10.1242/jcs.055996] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is mediated by the integrin family of transmembrane receptors. Integrins link ECM ligands to the cytoskeleton, providing strong attachment to enable cell-shape change and tissue integrity. This connection is made possible by an intracellular complex of proteins, which links to actin filaments and controls signalling cascades that regulate cytoskeletal rearrangements. We have identified stress-fibre-associated focal adhesions that change their composition during tissue morphogenesis. Early expression of alphaPS1betaPS integrin decreases the levels of the actin-nucleating factors Enabled, Diaphanous and profilin, as well as downregulating the amount of F-actin incorporated into the stress fibres. As follicle cells mature in their developmental pathway and become squamous, the integrin in the focal adhesions changes from alphaPS1betaPS to alphaPS2betaPS. During the switch, stress fibres increase their length and change orientation, first changing by 90 degrees and then reorienting back. The normal rapid reorientation requires new expression of alphaPS2betaPS, which also permits recruitment of the adaptor protein tensin. Unexpectedly, it is the extracellular portion of the alphaPS2 subunit that provides the specificity for intracellular recruitment of tensin. Molecular variation of the integrin complex is thus a key component of developmentally programmed morphogenesis.
Collapse
Affiliation(s)
- Isabelle Delon
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
47
|
Ramachandran P, Barria R, Ashley J, Budnik V. A critical step for postsynaptic F-actin organization: regulation of Baz/Par-3 localization by aPKC and PTEN. Dev Neurobiol 2009; 69:583-602. [PMID: 19472188 PMCID: PMC2885019 DOI: 10.1002/dneu.20728] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin remodeling has emerged as a critical process during synapse development and plasticity. Thus, understanding the regulatory mechanisms controlling actin organization at synapses is exceedingly important. Here, we used the highly plastic Drosophila neuromuscular junction (NMJ) to understand mechanisms of actin remodeling at postsynaptic sites. Previous studies have suggested that the actin-binding proteins Spectrin and Coracle play a critical role in NMJ development and the anchoring of glutamate receptors most likely through actin regulation. Here, we show that an additional determinant of actin organization at the postsynaptic region is the PDZ protein Baz/Par-3. Decreasing Baz levels in postsynaptic muscles has dramatic consequences for the size of F-actin and spectrin domains at the postsynaptic region. In turn, proper localization of Baz at this site depends on both phosphorylation and dephosphorylation events. Baz phosphorylation by its binding partner, atypical protein kinase C (aPKC), is required for normal Baz targeting to the postsynaptic region. However, the retention of Baz at this site depends on its dephosphorylation mediated by the lipid and protein phosphatase PTEN. Misregulation of the phosphorylation state of Baz by genetic alterations in PTEN or aPKC activity has detrimental consequences for postsynaptic F-actin and spectrin localization, synaptic growth, and receptor localization. Our results provide a novel mechanism of postsynaptic actin regulation through Baz, governed by the antagonistic actions of aPKC and PTEN. Given the conservation of these proteins from worms to mammals, these results are likely to provide new insight into actin organization pathways. (c) 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009.
Collapse
Affiliation(s)
- Preethi Ramachandran
- Department of Neurobiology, University of Massachusetts Medical School, Worcester MA
| | - Romina Barria
- Department of Neurobiology, University of Massachusetts Medical School, Worcester MA
| | - James Ashley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester MA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester MA
| |
Collapse
|
48
|
Loo TH, Balasubramanian M. Schizosaccharomyces pombe Pak-related protein, Pak1p/Orb2p, phosphorylates myosin regulatory light chain to inhibit cytokinesis. ACTA ACUST UNITED AC 2008; 183:785-93. [PMID: 19029336 PMCID: PMC2592837 DOI: 10.1083/jcb.200806127] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p21-activated kinases (Paks) have been identified in a variety of eukaryotic cells as key effectors of the Cdc42 family of guanosine triphosphatases. Pak kinases play important roles in regulating the filamentous actin cytoskeleton. In this study, we describe a function for the Schizosaccharomyces pombe Pak-related protein Pak1p/Orb2p in cytokinesis. Pak1p localizes to the actomyosin ring during mitosis and cytokinesis. Loss of Pak1p function leads to accelerated cytokinesis. Pak1p mediates phosphorylation of myosin II regulatory light chain Rlc1p at serine residues 35 and 36 in vivo. Interestingly, loss of Pak1p function or substitution of serine 35 and serine 36 of Rlc1p with alanines, thereby mimicking a dephosphorylated state of Rlc1p, leads to defective coordination of mitosis and cytokinesis. This study reveals a new mechanism involving Pak1p kinase that helps ensure the fidelity of cytokinesis.
Collapse
Affiliation(s)
- Tsui-Han Loo
- Cell Division Laboratory, Temasek Life Sciences Laboratory, Singapore
| | | |
Collapse
|
49
|
Kreis P, Barnier JV. PAK signalling in neuronal physiology. Cell Signal 2008; 21:384-93. [PMID: 19036346 DOI: 10.1016/j.cellsig.2008.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
Group I p21-activated kinases are a family of key effectors of Rac1 and Cdc42 and they regulate many aspects of cellular function, such as cytoskeleton dynamics, cell movement and cell migration, cell proliferation and differentiation, and gene expression. The three genes PAK1/2/3 are expressed in brain and recent evidence indicates their crucial roles in neuronal cell fate, in axonal guidance and neuronal polarisation, and in neuronal migration. Moreover they are implicated in neurodegenerative diseases and play an important role in synaptic plasticity, with PAK3 being specifically involved in mental retardation. The main goal of this review is to describe the molecular mechanisms that govern the different functions of group I PAK in neuronal signalling and to discuss the specific functions of each isoform.
Collapse
Affiliation(s)
- Patricia Kreis
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, Gif sur Yvette, France.
| | | |
Collapse
|
50
|
Zegers M. Roles of P21-activated kinases and associated proteins in epithelial wound healing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:253-98. [PMID: 18544501 PMCID: PMC3142609 DOI: 10.1016/s1937-6448(08)00606-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.
Collapse
Affiliation(s)
- Mirjam Zegers
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|