1
|
Rizo JA, Ahmad V, Pru JM, Winuthayanon S, Challa S, Kim TH, Jeong JW, Spencer TE, Kelleher AM. Uterine organoids reveal insights into epithelial specification and plasticity in development and disease. Proc Natl Acad Sci U S A 2025; 122:e2422694122. [PMID: 39883834 PMCID: PMC11804710 DOI: 10.1073/pnas.2422694122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025] Open
Abstract
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation. Our findings demonstrate that uterine epithelium undergoes marked age-dependent changes, transitioning from a highly plastic state capable of forming both monolayered and multilayered structures to a more restricted fate as development progresses. Interestingly, parallels emerge between the developmental plasticity of neonatal uterine epithelium and pathological conditions such as endometrial cancer, where similar regulatory mechanisms may reactivate, driving abnormal epithelial differentiation and tumorigenesis. These results not only deepen our understanding of early uterine development but also offer a valuable model for studying the progression of reproductive diseases and cancers.
Collapse
Affiliation(s)
- Jason A. Rizo
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Vakil Ahmad
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Jacob M. Pru
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sarayut Winuthayanon
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL60637
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL60637
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
2
|
Jia S, Zhao F. Decoding Müllerian Duct Epithelial Regionalization. Mol Reprod Dev 2025; 92:e70018. [PMID: 39994938 PMCID: PMC11850963 DOI: 10.1002/mrd.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Müllerian ducts (MD), also known as paramesonephric ducts, are the primordial anlage of the female reproductive tract organs including the oviduct, uterus, cervix and upper vagina along the craniocaudal axis. Although the general architecture of MD-derived organs is conserved, each organ possesses their unique epithelial structures and cell types to confer their region-specific functions, which collectively coordinate successful fertilization and pregnancy. MD epithelial fate decisions and differentiation along the craniocaudal axis is dependent on spatiotemporal regulation of intrinsic transcription factors and extrinsic signals derived from the mesenchyme. Findings from genetic mouse models, single-cell sequencing studies, and organoid cultures have significantly advanced our understanding of the cellular and molecular mechanisms of MD regionalization. In this review, we first discuss the diversity of epithelial morphologies and cell types in the female reproductive tract organs. Then, we discuss the roles of key transcription factors (Hox, transcriptional cascade driving multiciliogenesis, Foxa2, and P63), signaling pathways (estrogen/ESR1, Wnt/β-catenin, hedgehog, and retinoic acid), and epigenetic factors (microRNAs, chromatin remodeling factors, and histone modification enzymes) in region-specific MD differentiation. Further deciphering molecular mechanisms of MD craniocaudal patterning will open new avenues to improve our strategies for prevention, diagnosis, and treatment of Müllerian anomalies and female reproductive tract disorders.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Herlin MK. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: advancements and implications. Front Endocrinol (Lausanne) 2024; 15:1368990. [PMID: 38699388 PMCID: PMC11063329 DOI: 10.3389/fendo.2024.1368990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital anomaly characterized by agenesis/aplasia of the uterus and upper part of the vagina in females with normal external genitalia and a normal female karyotype (46,XX). Patients typically present during adolescence with complaints of primary amenorrhea where the diagnosis is established with significant implications including absolute infertility. Most often cases appear isolated with no family history of MRKH syndrome or related anomalies. However, cumulative reports of familial recurrence suggest genetic factors to be involved. Early candidate gene studies had limited success in their search for genetic causes of MRKH syndrome. More recently, genomic investigations using chromosomal microarray and genome-wide sequencing have been successful in detecting promising genetic variants associated with MRKH syndrome, including 17q12 (LHX1, HNF1B) and 16p11.2 (TBX6) deletions and sequence variations in GREB1L and PAX8, pointing towards a heterogeneous etiology with various genes involved. With uterus transplantation as an emerging fertility treatment in MRKH syndrome and increasing evidence for genetic etiologies, the need for genetic counseling concerning the recurrence risk in offspring will likely increase. This review presents the advancements in MRKH syndrome genetics from early familial occurrences and candidate gene searches to current genomic studies. Moreover, the review provides suggestions for future genetic investigations and discusses potential implications for clinical practice.
Collapse
Affiliation(s)
- Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
4
|
Kimura E, Mongan M, Xiao B, Christianto A, Wang J, Carreira VS, Bolon B, Zhang X, Burns KA, Biesiada J, Medvedovic M, Puga A, Xia Y. MAP3K1 regulates female reproductive tract development. Dis Model Mech 2024; 17:dmm050669. [PMID: 38501211 PMCID: PMC10985838 DOI: 10.1242/dmm.050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.
Collapse
Affiliation(s)
- Eiki Kimura
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Bo Xiao
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Antonius Christianto
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jingjing Wang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Vinicius S. Carreira
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Brad Bolon
- GEMpath Inc., Longmont, CO 80501-1846, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Katherine A. Burns
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Ying Xia
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
5
|
Dube R, Kar SS, Jhancy M, George BT. Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility-A Systematic Review. Int J Mol Sci 2023; 25:120. [PMID: 38203291 PMCID: PMC10778982 DOI: 10.3390/ijms25010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques, women with MA having biological offspring is possible. The exact etiology of MA is unknown, although several genes and mechanisms affect the development of Müllerian ducts. Through this systematic review of the available literature, we searched for the genetic basis of MA. The aims included identification of the genes, chromosomal locations, changes responsible for MA, and fertility options, in order to offer proper management and counseling to these women with MA. A total of 85 studies were identified through searches. Most of the studies identified multiple genes at various locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be multifactorial and complex, involving multiple genes and mechanisms including various mutations and mosaicism.
Collapse
Affiliation(s)
- Rajani Dube
- Department of Obstetrics and Gynaecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Subhranshu Sekhar Kar
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Malay Jhancy
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Biji Thomas George
- Department of General Surgery, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
6
|
Giri J, Modi D. Endometrial and placental stem cells in successful and pathological pregnancies. J Assist Reprod Genet 2023; 40:1509-1522. [PMID: 37338750 PMCID: PMC10352206 DOI: 10.1007/s10815-023-02856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.
Collapse
Affiliation(s)
- Jayeeta Giri
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
7
|
Kimura E, Mongan M, Xiao B, Wang J, Carreira VS, Bolon B, Zhang X, Burns KA, Biesiada J, Medvedovic M, Puga A, Xia Y. The Role of MAP3K1 in the Development of the Female Reproductive Tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 37131749 PMCID: PMC10153227 DOI: 10.1101/2023.04.20.537715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) is a dynamic signaling molecule with a plethora of cell-type specific functions, most of which are yet to be understood. Here we describe a role for MAP3K1 in the development of female reproductive tract (FRT). MAP3K1 kinase domain-deficient ( Map3k1 ΔKD ) females exhibit imperforate vagina, labor failure, and infertility. These defects correspond to a shunted Müllerian duct (MD), the principle precursor of the FRT, in embryos, while they manifest as a contorted caudal vagina with abrogated vaginal-urogenital sinus fusion in neonates. In epithelial cells, MAP3K1 acts through JNK and ERK to activate WNT, yet in vivo MAP3K1 is crucial for WNT activity in mesenchyme associated with the caudal MD. Expression of Wnt7b is high in wild type, but low in Map3k1 knockout MD epithelium and MAP3K1-deficient keratinocytes. Correspondingly, conditioned media derived from MAP3K1-competent epithelial cells activate TCF/Lef-luciferase reporter in fibroblasts, suggesting that MAP3K1-induced factors released from epithelial cells trans-activate WNT signaling in fibroblasts. Our results reveal a temporal-spatial and paracrine MAP3K1-WNT crosstalk contributing to MD caudal elongation and FRT development. Highlights MAP3K1 deficient female mice exhibit imperforate vagina and infertilityLoss of MAP3K1 kinase activity impedes Müllerian duct (MD) caudal elongation and fusion with urogenital sinus (UGS) in embryogenesisThe MAP3K1-MAPK pathway up-regulates WNT signaling in epithelial cellsMAP3K1 deficiency down-regulates Wnt7b expression in the MD epithelium and prevents WNT activity in mesenchyme of the caudal MD.
Collapse
|
8
|
Prozorowska E, Gruszka W, Jackowiak H. Morphogenesis of the uterine tube in the European shorthair cat in the prenatal and postnatal period: Light microscopy and three-dimensional reconstruction study. Theriogenology 2023; 195:7-23. [DOI: 10.1016/j.theriogenology.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
9
|
Jia S, Wilbourne J, Crossen MJ, Zhao F. Morphogenesis of the female reproductive tract along antero-posterior and dorso-ventral axes is dependent on Amhr2+ mesenchyme in mice†. Biol Reprod 2022; 107:1477-1489. [PMID: 36130202 PMCID: PMC9752753 DOI: 10.1093/biolre/ioac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e., perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - McKenna J Crossen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Role of EZH2 in Uterine Gland Development. Int J Mol Sci 2022; 23:ijms232415665. [PMID: 36555314 PMCID: PMC9779349 DOI: 10.3390/ijms232415665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core component of polycomb repressive complex 2 that plays a vital role in transcriptional repression of gene expression. Conditional ablation of EZH2 using progesterone receptor (Pgr)-Cre in the mouse uterus has uncovered its roles in regulating uterine epithelial cell growth and stratification, suppressing decidual myofibroblast activation, and maintaining normal female fertility. However, it is unclear whether EZH2 plays a role in the development of uterine glands, which are required for pregnancy success. Herein, we created mice with conditional deletion of Ezh2 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase that is expressed in mesenchyme-derived cells of the female reproductive tract. Strikingly, these mice showed marked defects in uterine adenogenesis. Unlike Ezh2 Pgr-Cre conditional knockout mice, deletion of Ezh2 using Amhr2-Cre did not lead to the differentiation of basal-like cells in the uterus. The deficient uterine adenogenesis was accompanied by impaired uterine function and pregnancy loss. Transcriptomic profiling using next generation sequencing revealed dysregulation of genes associated with signaling pathways that play fundamental roles in development and disease. In summary, this study has identified an unrecognized role of EZH2 in uterine gland development, a postnatal event critical for pregnancy success and female fertility.
Collapse
|
11
|
Zhao F, Grimm SA, Jia S, Yao HHC. Contribution of the Wolffian duct mesenchyme to the formation of the female reproductive tract. PNAS NEXUS 2022; 1:pgac182. [PMID: 36204418 PMCID: PMC9523451 DOI: 10.1093/pnasnexus/pgac182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
The female reproductive tract develops from its embryonic precursor, the Müllerian duct. In close proximity to the Müllerian duct lies the precursor for the male reproductive tract, the Wolffian duct, which is eliminated in the female embryo during sexual differentiation. We discovered that a component of the Wolffian duct, its mesenchyme, is not eliminated after sexual differentiation. Instead, the Wolffian duct mesenchyme underwent changes in transcriptome and chromatin accessibility from male tract to female tract identity, and became a unique mesenchymal population in the female reproductive tract with localization and transcriptome distinct from the mesenchyme derived from the Müllerian duct. Partial ablation of the Wolffian duct mesenchyme stunted the growth of the fetal female reproductive tract in ex vivo organ culture. These findings reveal a new fetal origin of mesenchymal tissues for female reproductive tract formation and reshape our understanding of sexual differentiation of reproductive tracts.
Collapse
Affiliation(s)
- Fei Zhao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Shua Jia
- Present address: Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Development and characterization of human fetal female reproductive tract organoids to understand Müllerian duct anomalies. Proc Natl Acad Sci U S A 2022; 119:e2118054119. [PMID: 35858415 PMCID: PMC9335258 DOI: 10.1073/pnas.2118054119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Müllerian ducts are paired tubular structures that give rise to most of the female reproductive organs. Any abnormalities in the development and differentiation of these ducts lead to anatomical defects in the female reproductive tract organs categorized as Müllerian duct anomalies. Due to the limited access to fetal tissues, little is understood of human reproductive tract development and the associated anomalies. Although organoids represent a powerful model to decipher human development and disease, such organoids from fetal reproductive organs are not available. Here, we developed organoids from human fetal fallopian tubes and uteri and compared them with their adult counterparts. Our results demonstrate that human fetal reproductive tract epithelia do not express some of the typical markers of adult reproductive tract epithelia. Furthermore, fetal organoids are grossly, histologically, and proteomically different from adult organoids. While external supplementation of WNT ligands or activators in culture medium is an absolute requirement for the adult reproductive tract organoids, fetal organoids are able to grow in WNT-deficient conditions. We also developed decellularized tissue scaffolds from adult human fallopian tubes and uteri. Transplantation of fetal organoids onto these scaffolds led to the regeneration of the adult fallopian tube and uterine epithelia. Importantly, suppression of Wnt signaling, which is altered in patients with Müllerian duct anomalies, inhibits the regenerative ability of human fetal organoids and causes severe anatomical defects in the mouse reproductive tract. Thus, our fetal organoids represent an important platform to study the underlying basis of human female reproductive tract development and diseases.
Collapse
|
13
|
Oncogenic Events Dictate the Types and Locations of Gynecological Malignancies Originating from Krt8+ Mesothelial and Müllerian-Derived Epithelial Cells. Cancers (Basel) 2022; 14:cancers14030841. [PMID: 35159108 PMCID: PMC8834519 DOI: 10.3390/cancers14030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian and uterine cancers are the most common gynecological malignancies in women. The early detection, prevention, and treatment of these gynecological cancers can benefit from a better understanding of how tumor-initiating cells in them are formed from their corresponding target cell populations in the female reproductive system. To study this, we utilized a genetic approach in mice to introduce driver mutations commonly found in these cancers to Keratin 8 positive (K8+) mesothelial and epithelial cells in the ovary, fallopian tube, and uterus. We found that p53-loss appears to preferentially affect K8+ epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies or adenoma on the fallopian tube surface. Collectively, our data suggest that oncogenic driver mutations may dominantly determine the locations and types of gynecological malignancies developed from K8+ mesothelial and epithelial cells in the female reproductive system. Abstract Ovarian and uterine cancers are the most prevalent types of gynecological malignancies originating from mesothelial and/or Müllerian-derived epithelial cells. Recent genomic studies have identified common mutations in them that affect signaling pathways such as p53, PTEN/PI3K, RAS, and WNT pathways. However, how these mutations and their corresponding deregulated pathways affect gynecological cancer development from their cells-of-origin remains largely elusive. To address this, we performed the intrabursal injection of Cre-expressing adenovirus under the control of Krt8 promoter (Ad-K8-Cre) to mice carrying combinations of various conditional alleles for cancer genes. We found that Ad-K8-Cre specifically targeted mesothelial cells, including ovarian surface epithelial (OSE) cells (mainly the LGR5+ subset of OSE cells) and mesothelial cells lining the fallopian tube (FT) serosa; the injected Ad-K8-Cre also targeted Müllerian-derived epithelial cells, including FT epithelial cells and uterine endometrial epithelial cells. The loss of p53 may preferentially affect Müllerian-derived epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies (upon KRAS-activation or APC-loss) or adenoma on the FT surface (upon DICER-loss). Overall, our data suggest that different Krt8+ mesothelial and epithelial cell types in the female reproductive system may have different sensitivities toward oncogenic mutations and, as a result, oncogenic events may dominantly determine the locations and types of the gynecological malignancies developed from them.
Collapse
|
14
|
Abdul Khaliq S, Umair Z, Baek MO, Chon SJ, Yoon MS. C-Peptide Promotes Cell Migration by Controlling Matrix Metallopeptidase-9 Activity Through Direct Regulation of β-Catenin in Human Endometrial Stromal Cells. Front Cell Dev Biol 2022; 10:800181. [PMID: 35127683 PMCID: PMC8814361 DOI: 10.3389/fcell.2022.800181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
The motility of endometrial stromal cells (ESCs) contributes to the restoration of the endometrial functional layer and subsequently supports the trophoblast invasion during early pregnancy. Following ESCs differentiation through decidualization in response to progesterone during the menstrual cycle and embryo implantation, decidualized ESCs (D-ESCs) have greater motility and invasive activity. The human proinsulin-connecting peptide (C-peptide) is produced in equimolar amounts during the proteolysis of insulin in pancreatic β-cells. However, the function of C-peptide in the cellular motility of the human endometrium remains unexamined. In the present study, C-peptide was identified as a determinant of undecidualized human endometrial stromal cells (UnD-ESCs) migration. C-peptide promoted the migration and invasion of UnD-ESCs and trophoblast-derived Jeg3 cells, but not that of ESCs post decidualization, a functional and biochemical differentiation of UnD-ESCs. Both Akt and protein phosphatase 1 regulated β-catenin phosphorylation in UnD-ESCs, not D-ESCs, thereby promoting β-catenin nuclear translocation in C-peptide-treated UnD-ESCs. C-peptide was also observed to increase matrix metallopeptidase-9 (MMP9) activity by increasing MMP9 expression and decreasing the expression of metallopeptidase inhibitor 1 (TIMP1) and TIMP3. Their expression was modulated by the direct binding of β-catenin in the regulatory region of the promoter of MMP9, TIMP1, and TIMP3. Inhibition of either β-catenin or MMP9 dampened C-peptide-enhanced migration in UnD-ESCs. Together, these findings suggest that C-peptide levels are critical for the regulation of UnD-ESC migration, providing evidence for the association between C-peptide levels and the failure rate of trophoblast invasion by inducing abnormal migration in UnD-ESCs in hyperinsulinemia or PCOS patients.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Zobia Umair
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Mi-Ock Baek
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- *Correspondence: Mee-Sup Yoon,
| |
Collapse
|
15
|
Cate RL. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Front Endocrinol (Lausanne) 2022; 13:905324. [PMID: 35721723 PMCID: PMC9201060 DOI: 10.3389/fendo.2022.905324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Over seventy years ago it was proposed that the fetal testis produces a hormone distinct from testosterone that is required for complete male sexual development. At the time the hormone had not yet been identified but was invoked by Alfred Jost to explain why the Müllerian duct, which develops into the female reproductive tract, regresses in the male fetus. That hormone, anti-Müllerian hormone (AMH), and its specific receptor, AMHR2, have now been extensively characterized and belong to the transforming growth factor-β families of protein ligands and receptors involved in growth and differentiation. Much is now known about the downstream events set in motion after AMH engages AMHR2 at the surface of specific Müllerian duct cells and initiates a cascade of molecular interactions that ultimately terminate in the nucleus as activated transcription factors. The signals generated by the AMH signaling pathway are then integrated with signals coming from other pathways and culminate in a complex gene regulatory program that redirects cellular functions and fates and leads to Müllerian duct regression.
Collapse
|
16
|
Machado DA, Ontiveros AE, Behringer RR. Mammalian uterine morphogenesis and variations. Curr Top Dev Biol 2022; 148:51-77. [DOI: 10.1016/bs.ctdb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Kyei-Barffour I, Margetts M, Vash-Margita A, Pelosi E. The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:657-672. [PMID: 34970104 PMCID: PMC8686787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and variable expressivity. Mutations of several candidate genes have been proposed as possible causes based on genetic analyses of human patients and animal models. In addition, studies of monozygotic twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions of shared developmental pathways or signals during early organogenesis. However, the lack of functional validation and translational studies have limited our understanding of the molecular mechanisms involved in this condition. The clinical management of affected women, including early diagnosis, genetic testing of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will explore the genetics of this condition, as well as the potential role of environmental factors, and discuss their implications to clinical practice.
Collapse
Affiliation(s)
- Isaac Kyei-Barffour
- Department of Biomedical Sciences, University of Cape
Coast, Cape Coast, Ghana
| | - Miranda Margetts
- Center for American Indian and Rural Health Equity,
Montana State University, Bozeman, MT, USA
| | - Alla Vash-Margita
- Department of Obstetrics, Gynecology and Reproductive
Sciences, Division of Pediatric and Adolescent Gynecology, Yale University
School of Medicine, New Haven, CT, USA
| | - Emanuele Pelosi
- Centre for Clinical Research, The University of
Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Tan X, Zhang L, Li T, Zhan J, Qiao K, Wu H, Sun S, Huang M, Zhang F, Zhang M, Li C, Li R, Pan H. Lgr4 Regulates Oviductal Epithelial Secretion Through the WNT Signaling Pathway. Front Cell Dev Biol 2021; 9:666303. [PMID: 34631693 PMCID: PMC8497904 DOI: 10.3389/fcell.2021.666303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays a crucial role in oviduct/fallopian development. However, the specific physiological processes regulated by the WNT pathway in the fallopian/oviduct function remain obscure. Benefiting from the Lgr4 knockout mouse model, we report the regulation of oviduct epithelial secretion by LGR4. Specifically, the loss of Lgr4 altered the mouse oviduct size and weight, severely reduced the number of oviductal epithelial cells, and ultimately impaired the epithelial secretion. These alterations were mediated by a failure of CTNNB1 protein accumulation in the oviductal epithelial cytoplasm, by the modulation of WNT pathways, and subsequently by a profound change of the gene expression profile of epithelial cells. In addition, selective activation of the WNT pathway triggered the expression of steroidogenic genes, like Cyp11a1 and 3β-Hsd1, through the activation of the transcriptional factor NR5A2 in an oviduct primary cell culture system. As demonstrated, the LGR4 protein modulates a WNT-NR5A2 signaling cascade facilitating epithelial secretory cell maturation and steroidogenesis to safeguard oviduct development and function in mice.
Collapse
Affiliation(s)
- Xue Tan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingling Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Tianqi Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Kun Qiao
- Center for Reproductive Medicine, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Haili Wu
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai, China
| | - Shenfei Sun
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Meina Huang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangxi Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Meixing Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runsheng Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Bergmann S, Schindler M, Munger C, Penfold CA, Boroviak TE. Building a stem cell-based primate uterus. Commun Biol 2021; 4:749. [PMID: 34140619 PMCID: PMC8211708 DOI: 10.1038/s42003-021-02233-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Wellcome Trust - Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
20
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Chang CY, Lu YCA, Ting WC, Shen TWD, Peng WC. An artificial immune system with bootstrap sampling for the diagnosis of recurrent endometrial cancers. Open Med (Wars) 2021; 16:237-245. [PMID: 33585700 PMCID: PMC7863001 DOI: 10.1515/med-2021-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies in developed countries. The prevention of the recurrence of endometrial cancer has always been a clinical challenge. Endometrial cancer is asymptomatic in the early stage, and there remains a lack of time-series correlation patterns of clinical pathway transfer, recurrence, and treatment. In this study, the artificial immune system (AIS) combined with bootstrap sampling was compared with other machine learning techniques, which included both supervised and unsupervised learning categories. The back propagation neural network, support vector machine (SVM) with a radial basis function kernel, fuzzy c-means, and ant k-means were compared with the proposed method to verify the sensitivity and specificity of the datasets, and the important factors of recurrent endometrial cancer were predicted. In the unsupervised learning algorithms, the AIS algorithm had the highest accuracy (83.35%), sensitivity (77.35%), and specificity (92.31%); in supervised learning algorithms, the SVM algorithm had the highest accuracy (97.51%), sensitivity (95.02%), and specificity (99.29%). The results of our study showed that histology and chemotherapy are important factors affecting the prediction of recurrence. Finally, behavior code and radiotherapy for recurrent endometrial cancer are important factors for future adjuvant treatment.
Collapse
Affiliation(s)
- Chih-Yen Chang
- Department of Medical Education and Research, Jen-Ai Hospital, Taichung, Taiwan.,Department of Elderly Care, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yen-Chiao Angel Lu
- School of Nursing, College of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Wen-Chien Ting
- Division of Colorectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsu-Wang David Shen
- Department of Automatic Control Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung, 40724, Taiwan.,Master's Program in Biomedical Informatics and Biomedical Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung, 40724, Taiwan
| | - Wen-Chen Peng
- Department of Long-Term Care, Jen-Ai hospital, Taichung, Taiwan
| |
Collapse
|
22
|
St-Jean G, Tsoi M, Abedini A, Levasseur A, Rico C, Morin M, Djordjevic B, Miinalainen I, Kaarteenaho R, Paquet M, Gévry N, Boyer A, Vanderhyden B, Boerboom D. Lats1 and Lats2 are required for the maintenance of multipotency in the Müllerian duct mesenchyme. Development 2019; 146:dev.180430. [PMID: 31575647 DOI: 10.1242/dev.180430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
WNT signaling plays essential roles in the development and function of the female reproductive tract. Although crosstalk with the Hippo pathway is a key regulator of WNT signaling, whether Hippo itself plays a role in female reproductive biology remains largely unknown. Here, we show that conditional deletion of the key Hippo kinases Lats1 and Lats2 in mouse Müllerian duct mesenchyme cells caused them to adopt the myofibroblast cell fate, resulting in profound reproductive tract developmental defects and sterility. Myofibroblast differentiation was attributed to increased YAP and TAZ expression (but not to altered WNT signaling), leading to the direct transcriptional upregulation of Ctgf and the activation of the myofibroblast genetic program. Müllerian duct mesenchyme cells also became myofibroblasts in male mutant embryos, which impeded the development of the male reproductive tract and resulted in cryptorchidism. The inactivation of Lats1/2 in differentiated uterine stromal cells in vitro did not compromise their ability to decidualize, suggesting that Hippo is dispensable during implantation. We conclude that Hippo signaling is required to suppress the myofibroblast genetic program and maintain multipotency in Müllerian mesenchyme cells.
Collapse
Affiliation(s)
- Guillaume St-Jean
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Mayra Tsoi
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Adrien Levasseur
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Bojana Djordjevic
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | | | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu and Medical Research Center Oulu, Oulu University Hospital, 90029, Oulu, Finland
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexandre Boyer
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
23
|
Zhao F, Yao HHC. A tale of two tracts: history, current advances, and future directions of research on sexual differentiation of reproductive tracts†. Biol Reprod 2019; 101:602-616. [PMID: 31058957 PMCID: PMC6791057 DOI: 10.1093/biolre/ioz079] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Alfred Jost's work in the 1940s laid the foundation of the current paradigm of sexual differentiation of reproductive tracts, which contends that testicular hormones drive the male patterning of reproductive tract system whereas the female phenotype arises by default. Once established, the sex-specific reproductive tracts undergo morphogenesis, giving rise to anatomically and functionally distinct tubular organs along the rostral-caudal axis. Impairment of sexual differentiation of reproductive tracts by genetic alteration and environmental exposure are the main causes of disorders of sex development, and infertility at adulthood. This review covers past and present work on sexual differentiation and morphogenesis of reproductive tracts, associated human disorders, and emerging technologies that have made impacts or could radically expand our knowledge in this field.
Collapse
Affiliation(s)
- Fei Zhao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
24
|
Schteingart HF, Picard JY, Valeri C, Marshall I, Treton D, di Clemente N, Rey RA, Josso N. A mutation inactivating the distal SF1 binding site on the human anti-Müllerian hormone promoter causes persistent Müllerian duct syndrome. Hum Mol Genet 2019; 28:3211-3218. [DOI: 10.1093/hmg/ddz147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 01/10/2023] Open
Abstract
AbstractThe persistent Müllerian duct syndrome (PMDS) is a 46,XY disorder of sexual development characterized by the persistence of Müllerian duct derivatives, uterus and tubes, in otherwise normally masculinized males. The condition, transmitted as a recessive autosomal trait, is usually due to mutations in either the anti-Müllerian hormone (AMH) gene or its main receptor. Many variants of these genes have been described, all targeting the coding sequences. We report the first case of PMDS due to a regulatory mutation. The AMH promoter contains two binding sites for steroidogenic factor 1 (SF1), one at −102 and the other at −228. Our patient carries a single base deletion at −225, significantly decreasing its capacity for binding SF1, as measured by the electrophoresis mobility shift assay. Furthermore, by linking the AMH promoter to the luciferase gene, we show that the transactivation capacity of the promoter is significantly decreased by the mutation, in contrast to the disruption of the −102 binding site. To explain the difference in impact we hypothesize that SF1 could partially overcome the lack of binding to the −102 binding site by interacting with a GATA4 molecule linked to a nearby response element. We show that disruption of both the −102 SF1 and the −84 GATA response elements significantly decreases the transactivation capacity of the promoter. In conclusion, we suggest that the distance between mutated SF1 sites and potentially rescuing GATA binding motifs might play a role in the development of PMDS.
Collapse
Affiliation(s)
- Helena F Schteingart
- Centro de Investigaciones Endocrinológicas ‘Dr. César Bergadá’ (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Jean-Yves Picard
- Inserm UMR_S938, Centre de Recherche Saint Antoine, Sorbonne Université, IHU ICAN, Paris, France
| | - Clara Valeri
- Centro de Investigaciones Endocrinológicas ‘Dr. César Bergadá’ (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ian Marshall
- Division of Pediatric Endocrinology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Dominique Treton
- Inserm UMR_S938, Centre de Recherche Saint Antoine, Sorbonne Université, IHU ICAN, Paris, France
| | - Nathalie di Clemente
- Inserm UMR_S938, Centre de Recherche Saint Antoine, Sorbonne Université, IHU ICAN, Paris, France
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas ‘Dr. César Bergadá’ (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Nathalie Josso
- Inserm UMR_S938, Centre de Recherche Saint Antoine, Sorbonne Université, IHU ICAN, Paris, France
| |
Collapse
|
25
|
Goad J, Ko YA, Kumar M, Jamaluddin MFB, Tanwar PS. Oestrogen fuels the growth of endometrial hyperplastic lesions initiated by overactive Wnt/β-catenin signalling. Carcinogenesis 2019; 39:1105-1116. [PMID: 29912292 DOI: 10.1093/carcin/bgy079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Unopposed oestrogen is responsible for approximately 80% of all the endometrial cancers. The relationship between unopposed oestrogen and endometrial cancer was indicated by the increase in the number of endometrial cancer cases due to the widespread use of oestrogen replacement therapy. Approximately 30% of the endometrial cancer patients have mutations in the Wnt signalling pathway. How the unbalanced ratios of ovarian hormones and the mutations in Wnt signalling pathway interact to cause endometrial cancer is currently unclear. To study this, we have developed a uterine epithelial cell-specific inducible cre mouse model and used 3D in vitro culture of human endometrial cancer cell lines. We showed that activating mutations in the Wnt signalling pathway for a prolonged period leads to endometrial hyperplasia but not endometrial cancer. Interestingly, unopposed oestrogen and activating mutations in Wnt signalling together drive the progression of endometrial hyperplasia to endometrial cancer. We have provided evidence that progesterone can be used as a targeted therapy against endometrial cancer cases presented with the activating mutations in Wnt signalling pathway.
Collapse
Affiliation(s)
- Jyoti Goad
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales Australia
| | - Yi-An Ko
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales Australia
| | - Manish Kumar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales Australia
| | - M Fairuz B Jamaluddin
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales Australia
| |
Collapse
|
26
|
Generation of Progesterone-Responsive Endometrial Stromal Fibroblasts from Human Induced Pluripotent Stem Cells: Role of the WNT/CTNNB1 Pathway. Stem Cell Reports 2018; 11:1136-1155. [PMID: 30392973 PMCID: PMC6234962 DOI: 10.1016/j.stemcr.2018.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Defective endometrial stromal fibroblasts (EMSFs) contribute to uterine factor infertility, endometriosis, and endometrial cancer. Induced pluripotent stem cells (iPSCs) derived from skin or bone marrow biopsies provide a patient-specific source that can be differentiated to various cells types. Replacement of abnormal EMSFs is a potential novel therapeutic approach for endometrial disease; however, the methodology or mechanism for differentiating iPSCs to EMSFs is unknown. The uterus differentiates from the intermediate mesoderm (IM) to form coelomic epithelium (CE) followed by the Müllerian duct (MD). Here, we successfully directed the differentiation of human iPSCs (hiPSCs) through IM, CE, and MD to EMSFs under molecularly defined embryoid body culture conditions using specific hormonal treatments. Activation of CTNNB1 was essential for expression of progesterone receptor that mediated the final differentiation step of EMSFs before implantation. These hiPSC-derived tissues illustrate the potential for iPSC-based endometrial regeneration for future cell-based treatments. We developed a molecularly defined system for differentiating hiPSCs to EMSFs hiPSC-derived EMSFs undergo decidualization in response to hormonal stimulation D14 embryoid bodies recapitulate the molecular signature of primary EMSFs The WNT/CTNNB1 pathway is required for induction of EMSF from hiPSCs
Collapse
|
27
|
Nagendra PB, Goad J, Nielsen S, Rassam L, Lombard JM, Nahar P, Tanwar PS. Ovarian hormones through Wnt signalling regulate the growth of human and mouse ovarian cancer initiating lesions. Oncotarget 2018; 7:64836-64853. [PMID: 27588493 PMCID: PMC5323120 DOI: 10.18632/oncotarget.11711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer (OC) is the most deadly gynaecological disease largely because the majority of patients are asymptomatic and diagnosed at later stages when cancer has spread to other vital organs. Therefore, the initial stages of this disease are poorly characterised. Women with BRCA1/2 mutations have a genetic predisposition for developing OC, but not all of these women develop the disease. Epidemiological findings show that lifestyle factors such as contraceptive use and pregnancy, a progesterone dominant state, decrease the risk of getting OC. How ovarian hormones modify the risk of OC is currently unclear. Our study identifies activated Wnt signalling to be a marker for precursor lesions of OC and successfully develops a mouse model that mimics the earliest events in pathogenesis of OC by constitutively activating βcatenin. Using this model and human OC cells, we show that oestrogen promotes and progesterone suppresses the growth of OC cells.
Collapse
Affiliation(s)
- Prathima B Nagendra
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jyoti Goad
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah Nielsen
- Hunter Cancer Biobank, University of Newcastle, Callaghan, New South Wales, Australia
| | - Loui Rassam
- Hunter Cancer Biobank, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Area Pathology Services, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Janine M Lombard
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Medical Oncology, Gynaecology Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Gynaecology and Obstetrics, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
28
|
Roly ZY, Backhouse B, Cutting A, Tan TY, Sinclair AH, Ayers KL, Major AT, Smith CA. The cell biology and molecular genetics of Müllerian duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e310. [DOI: 10.1002/wdev.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zahida Yesmin Roly
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Brendan Backhouse
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew Cutting
- Biology Laboratory, Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew H. Sinclair
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Katie L. Ayers
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew T. Major
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Craig A. Smith
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
29
|
Dietrich JE, Adeyemi O, Hakim J, Santos X, Bercaw-Pratt JL, Bournat JC, Chen CH, Jorgez CJ. Paratubal Cyst Size Correlates With Obesity and Dysregulation of the Wnt Signaling Pathway. J Pediatr Adolesc Gynecol 2017; 30:571-577. [PMID: 28456695 DOI: 10.1016/j.jpag.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/27/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
STUDY OBJECTIVE Paratubal cysts (PTCs) occur in 7%-10% of women, regardless of age. Although common, PTCs often are found incidentally because of the potential for these cysts to be asymptomatic. The specific aims of the study were to determine if PTC number and size correlated with signs of hyperandrogenism and obesity, as well as to investigate the molecular profiles of these PTCs in samples derived from female adolescents. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: A prospective cohort study was performed in a single children's hospital. Girls 18 years of age or younger who underwent surgery for PTC suspected on the basis of the presence of a persistent adnexal cyst on imaging or a concern for adnexal torsion involving a cyst were consented to participate in the study. RESULTS Nineteen patients met enrollment criteria with a mean age at menarche of 11.2 ± 1.3 years. Most of the patients (84%; n = 16/19) had adnexal torsion at the time of diagnosis of PTC. Irregular menses and hirsutism was found in 52.6% (n = 10/19) of the patients, among whom 36.8% (n = 7/19) were obese. The mean PTC size was 10.4 ± 4.3 cm with 57.9% (n = 11/19) of the cohort having more than 1 PTC. When patients were compared on the basis of their body mass index, the size of PTCs was significantly larger in the overweight/obese group. The wingless-type (WNT) signaling members catenin beta 1 (CTNBB1) and wingless-type MMTV integration site family, member 7A (WNT7A) were upregulated in 86% (n = 12/14) and 79% (n = 11/14) of the patients, respectively. WNT7A was significantly upregulated in girls with 1 cyst and low body mass index. CONCLUSION A correlation exists between obesity, cyst size, and hyperandrogenism. Activation of the WNT/CTNBB1 pathway via WNT7A might play a role in PTC development.
Collapse
Affiliation(s)
- Jennifer E Dietrich
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Oluyemisi Adeyemi
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Julie Hakim
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Xiomara Santos
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Jennifer L Bercaw-Pratt
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Carolina J Jorgez
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Urology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
30
|
Patterson AL, Pirochta J, Tufano SY, Teixeira JM. Gain-of-function β-catenin in the uterine mesenchyme leads to impaired implantation and decidualization. J Endocrinol 2017; 233:119-130. [PMID: 28183999 PMCID: PMC5436143 DOI: 10.1530/joe-16-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Embryo implantation and endometrial decidualization are critical events that occur during early pregnancy in humans and mice, and perturbation in either can result in infertility. WNT signaling through the canonical β-catenin pathway plays a pivotal role in embryonic Müllerian duct development, postnatal uterine maturation and establishment of pregnancy. Loss of β-catenin in the Müllerian duct mesenchyme (MDM)-derived stroma and myometrium results in impaired decidualization and infertility, whereas gain-of-function (GOF) results in the formation of mesenchymal tumors and sub-fertility attributed to malformed oviducts. We hypothesized that GOF β-catenin further contributes to sub-fertility through improper stromal and epithelial cell signaling during embryo implantation and decidualization. We show that mice with GOF β-catenin in MDM-derived stroma and myometrium have reduced implantation sites after embryo transfer and decreased decidualization. On day 4.5 of pseudopregnancy or in mice treated with progesterone and estrogen to mimic early pregnancy, the estrogen-LIF-ERK and progesterone-IHH pathways remain predominantly intact in GOF β-catenin mice; however, JAK/STAT signaling is altered. pSTAT3 is significantly reduced in GOF β-catenin mice and expression of downstream epithelial junctional complex factors, Ctnna1 and Cldn1, is increased. We also show that purified stromal cells from GOF β-catenin uteri, when removed from epithelial cell influence and provided with the appropriate hormonal stimuli, are able to decidualize in vitro indicating that the cells are intrinsically capable of decidualization. Taken together, these results suggest that dysregulated β-catenin activity in the stroma affects epithelial cell STAT3 signaling and ultimately embryo implantation and stromal decidualization.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Jamieson Pirochta
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Stephanie Y Tufano
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Jose M Teixeira
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
31
|
Li S, O'Neill SRS, Zhang Y, Holtzman MJ, Takemaru KI, Korach KS, Winuthayanon W. Estrogen receptor α is required for oviductal transport of embryos. FASEB J 2017; 31:1595-1607. [PMID: 28082352 DOI: 10.1096/fj.201601128r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023]
Abstract
Newly fertilized embryos spend the first few days within the oviduct and are transported to the uterus, where they implant onto the uterine wall. An implantation of the embryo before reaching the uterus could result in ectopic pregnancy and lead to maternal death. Estrogen is necessary for embryo transport in mammals; however, the mechanism involved in estrogen-mediated cellular function within the oviduct remains unclear. In this study, we show in mouse models that ciliary length and beat frequency of the oviductal epithelial cells are regulated through estrogen receptor α (ESR1) but not estrogen receptor β (ESR2). Gene profiling indicated that transcripts in the WNT/β-catenin (WNT/CTNNB1) signaling pathway were regulated by estrogen in mouse oviduct, and inhibition of this pathway in a whole oviduct culture system resulted in a decreased embryo transport distance. However, selective ablation of CTNNB1 from the oviductal ciliated cells did not affect embryo transport, possibly because of a compensatory mechanism via intact CTNNB1 in the adjacent secretory cells. In summary, we demonstrated that disruption of estrogen signaling in oviductal epithelial cells alters ciliary function and impairs embryo transport. Therefore, our findings may provide a better understanding of etiology of the ectopic pregnancy that is associated with alteration of estrogen signals.-Li, S., O'Neill, S. R. S., Zhang, Y., Holtzman, M. J., Takemaru, K.-I., Korach, K. S., Winuthayanon, W. Estrogen receptor α is required for oviductal transport of embryos.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sofia R S O'Neill
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, New York, USA; and
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA;
| |
Collapse
|
32
|
Wang X, Khatri S, Broaddus R, Wang Z, Hawkins SM. Deletion of Arid1a in Reproductive Tract Mesenchymal Cells Reduces Fertility in Female Mice. Biol Reprod 2016; 94:93. [PMID: 26962117 PMCID: PMC4861168 DOI: 10.1095/biolreprod.115.133637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Women with endometriosis can suffer from decreased fecundity or complete infertility via abnormal oocyte function or impaired placental-uterine interactions required for normal pregnancy establishment and maintenance. Although AT-rich interactive domain 1A (SWI-like) (ARID1A) is a putative tumor suppressor in human endometrial cancers and endometriosis-associated ovarian cancers, little is known about its role in normal uterine function. To study the potential function of ARID1A in the female reproductive tract, we generated mice with a conditional knockout of Arid1a using anti-Müllerian hormone receptor 2-Cre. Female Arid1a conditional knockout mice exhibited a progressive decrease in number of pups per litter, with a precipitous decline after the second litter. We observed no tumors in virgin mice, although one knockout mouse developed a uterine tumor after pregnancy. Unstimulated virgin female knockout mice showed normal oviductal, ovarian, and uterine histology. Uteri of Arid1a knockout mice showed a normal decidualization response and appropriate responses to estradiol and progesterone stimulation. In vitro studies using primary cultures of human endometrial stromal fibroblasts revealed that small interfering RNA knockdown of ARID1A did not affect decidualization in vitro. Timed pregnancy studies revealed the significant resorption of embryos at Embryonic Day 16.5 in knockout mice in the third pregnancy. In addition to evidence of implantation site hemorrhage, pregnant Arid1a knockout mice showed abnormal placental morphology. These results suggest that Arid1a supports successful pregnancy through its role in placental function.
Collapse
Affiliation(s)
- Xiyin Wang
- Indiana University, Department of Obstetrics and Gynecology, Indianapolis, Indiana
| | - Shikha Khatri
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Houston, Texas
| | - Russell Broaddus
- University of Texas MD Anderson Cancer Center, Department of Pathology, Houston, Texas
| | - Zhong Wang
- University of Michigan, Department of Cardiac Surgery, Ann Arbor, Michigan
| | - Shannon M Hawkins
- Indiana University, Department of Obstetrics and Gynecology, Indianapolis, Indiana
| |
Collapse
|
33
|
Ferguson L, Kaftanovskaya EM, Manresa C, Barbara AM, Poppiti RJ, Tan Y, Agoulnik AI. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract. Biol Reprod 2016; 94:67. [PMID: 26843448 DOI: 10.1095/biolreprod.115.134569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/25/2016] [Indexed: 11/01/2022] Open
Abstract
The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, Rosa(Notch1) females were infertile, whereas control Rosa(Notch1) mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities.
Collapse
Affiliation(s)
- Lydia Ferguson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Carmen Manresa
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Agustin M Barbara
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Robert J Poppiti
- Department of Pathology, Mount Sinai Medical Center, Miami Beach, Florida Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Yingchun Tan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida Department of Gynecology, Shandong Qianfoshan Hospital, Shandong University, Jinan, China
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Prunskaite-Hyyryläinen R, Skovorodkin I, Xu Q, Miinalainen I, Shan J, Vainio SJ. Wnt4 coordinates directional cell migration and extension of the Müllerian duct essential for ontogenesis of the female reproductive tract. Hum Mol Genet 2015; 25:1059-73. [PMID: 26721931 PMCID: PMC4764189 DOI: 10.1093/hmg/ddv621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/21/2015] [Indexed: 12/27/2022] Open
Abstract
The Müllerian duct (MD) is the anlage of the oviduct, uterus and upper part of the vagina, the main parts of the female reproductive tract. Several wingless-type mouse mammary tumor virus (MMTV) integration site family member (Wnt) genes, including Wnt4, Wnt5a and Wnt7a, are involved in the development of MD and its derivatives, with Wnt4 particularly critical, since the MD fails to develop in its absence. We use, here, Wnt4(EGFPCre)-based fate mapping to demonstrate that the MD tip cells and the subsequent MD cells are derived from Wnt4+ lineage cells. Moreover, Wnt4 is required for the initiation of MD-forming cell migration. Application of anti-Wnt4 function-blocking antibodies after the initiation of MD elongation indicated that Wnt4 is necessary for the elongation as well, and consistent with this, cell culture wound-healing assays with NIH3T3 cells overexpressing Wnt4 promoted cell migration by comparison with controls. In contrast to the Wnt4 null embryos, some Wnt4(monomeric cherry/monomeric cherry) (Wnt4(mCh/mCh)) hypomorphic mice survived to adulthood and formed MD in ∼45% of cases. Nevertheless, the MD of the Wnt4(mCh/mCh) females had altered cell polarization and basement membrane deposition relative to the controls. Examination of the reproductive tract of the Wnt4(mCh/mCh) females indicated a poorly coiled oviduct, absence of the endometrial glands and an undifferentiated myometrium, and these mice were prone to develop a hydro-uterus. In conclusion, the results suggest that the Wnt4 gene encodes signals that are important for various aspects of female reproductive tract development.
Collapse
Affiliation(s)
- Renata Prunskaite-Hyyryläinen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland and
| | - Ilya Skovorodkin
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland and
| | - Qi Xu
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland and
| | | | - Jingdong Shan
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland and
| | - Seppo J Vainio
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland and
| |
Collapse
|
35
|
Zhang Q, Yan J. Update of Wnt signaling in implantation and decidualization. Reprod Med Biol 2015; 15:95-105. [PMID: 29259425 DOI: 10.1007/s12522-015-0226-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Embryonic development into an implantation-competent blastocyst, synchronized uterine transformation into a receptive stage, and an intimate cross-talk between the activated blastocyst and the receptive uterus are essential for successful implantation, and therefore for subsequent pregnancy outcome. Evidence accumulating during recent years has underlined the importance of the Wnt signaling pathway in mammalian implantation and decidualization. Herein, this review focuses on the current state of knowledge regarding Wnt signaling in multiple implantation and decidualization events: pre-implantation embryo development, blastocyst activation for implantation, uterine development, and decidualization.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine Shandong Provincial Hospital Affiliated to Shandong University 250021 Jinan China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education Jinan China.,Shandong Provincial Key Laboratory of Reproductive Medicine Jinan China
| | - Junhao Yan
- Center for Reproductive Medicine Shandong Provincial Hospital Affiliated to Shandong University 250021 Jinan China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education Jinan China.,Shandong Provincial Key Laboratory of Reproductive Medicine Jinan China
| |
Collapse
|
36
|
Kaftanovskaya EM, Huang Z, Lopez C, Conrad K, Agoulnik AI. Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol Reprod 2015; 92:91. [PMID: 25715795 DOI: 10.1095/biolreprod.114.127209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined. Using transgenic mice with a knockin LacZ reporter in the Rxfp1 allele, we showed strong expression of this gene in vaginal and cervical stromal cells, as well as pubic ligament cells. We produced a floxed Rxfp1 allele that was used in combination with the Tagln-cre transgene to generate mice with a smooth muscle-specific gene knockout. In pregnant females, the ROSA26 reporter activated by Tagln-cre was detected in smooth muscle cells of the cervix, vagina, uterine artery, and in cells of the pubic symphysis. In late pregnant females with conditional gene ablation, the length of pubic symphysis was significantly reduced compared with wild-type or heterozygous Rxfp1(+/-) females. Denser collagen content was revealed by Masson trichrome staining in reproductive tract organs, uterine artery, and pubic symphysis. The cervical and vaginal epithelium was less developed than in heterozygous or wild-type females, although nipple size was normal and the dams were able to nurse their pups. In summary, our data indicate that relaxin/RXFP1 signaling in smooth muscle cells is important for normal collagen turnover and relaxation of the pubic symphysis during pregnancy.
Collapse
Affiliation(s)
- Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Zaohua Huang
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Carolina Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Kirk Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
37
|
DMRT1 is required for Müllerian duct formation in the chicken embryo. Dev Biol 2015; 400:224-36. [PMID: 25684667 DOI: 10.1016/j.ydbio.2015.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
DMRT1 is a conserved transcription factor with a central role in gonadal sex differentiation. In all vertebrates studied, DMRT1 plays an essential function in testis development and/or maintenance. No studies have reported a role for DMRT1 outside the gonads. Here, we show that DMRT1 is expressed in the paired Müllerian ducts in the chicken embryo, where it is required for duct formation. DMRT1 mRNA and protein are expressed in the early forming Müllerian ridge, and in cells undergoing an epithelial to mesenchyme transition during duct morphogenesis. RNAi-mediated knockdown of DMRT1 in ovo causes a greatly reduced mesenchymal layer, which blocks caudal extension of the duct luminal epithelium. Critical markers of Müllerian duct formation in mammals, Pax2 in the duct epithelium and Wnt4 in the mesenchyme, are conserved in chicken and their expression disrupted in DMRT1 knockdown ducts. We conclude that DMRT1 is required for the early steps of Müllerian duct development. DMRT1 regulates Müllerian ridge and mesenchyme formation and its loss blocks caudal extension of the duct. While DMRT1 plays an important role during testis development and maintenance in many vertebrate species, this is the first report showing a requirement for DMRT1 in Müllerian duct development.
Collapse
|
38
|
Murata T, Ishitsuka Y, Karouji K, Kaneda H, Toki H, Nakai Y, Makino S, Fukumura R, Kotaki H, Wakana S, Noda T, Gondo Y. β-CateninC429S mice exhibit sterility consequent to spatiotemporally sustained Wnt signalling in the internal genitalia. Sci Rep 2014; 4:6959. [PMID: 25376241 PMCID: PMC4223658 DOI: 10.1038/srep06959] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Wnt/β-catenin signalling regulates numerous developmental and homeostatic processes. Ctnnb1 (also known as β-catenin) is the only protein that transmits signals from various Wnt ligands to downstream genes. In this study, we report that our newly established mouse strain, which harbours a Cys429 to Ser missense mutation in the β-catenin gene, exhibited specific organ defects in contrast to mice with broadly functioning Wnt/β-catenin signalling. Both homozygous mutant males and females produced normal gametes but were infertile because of abnormal seminal vesicle and vaginal morphogenesis. An ins-TOPGAL transgenic reporter spatiotemporally sustained Wnt/β-catenin signalling during the corresponding organogenesis. Therefore, β-catenin(C429S) should provide new insights into β-catenin as a universal component of Wnt/β-catenin signal transduction.
Collapse
Affiliation(s)
- Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yuichi Ishitsuka
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Kumiko Karouji
- Population and Quantitative Genomics Team, RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan
| | - Hideki Kaneda
- Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Hideaki Toki
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yuji Nakai
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Makino
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Hayato Kotaki
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Tetsuo Noda
- Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Yu Z, Kim J, He L, Creighton CJ, Gunaratne PH, Hawkins SM, Matzuk MM. Functional analysis of miR-34c as a putative tumor suppressor in high-grade serous ovarian cancer. Biol Reprod 2014; 91:113. [PMID: 25273528 DOI: 10.1095/biolreprod.114.121988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Altered microRNA expression patterns are implicated in the formation of many human diseases, including ovarian cancer. Our laboratory previously created Dicer(fl/fl)/Pten(fl/fl)/Amhr2(cre/+) mice, which developed high-grade serous carcinomas originating from mouse fallopian tubes, while neither Dicer(fl/fl)/Amhr2(cre/+) nor Pten(fl/fl)/Amhr2(cre/+) mice developed tumors. To explore miRNAs involved in the tumorigenesis in the double-knockout (DKO) mice, tumor cell lines were established from mouse primary tumors, and the most abundant miRNAs present in mouse normal fallopian tubes, let-7b and miR-34c, were expressed in these cell lines. We found that miR-34c had a more dramatic effect on inhibiting tumor cell viability than let-7b. The action of miR-34c induced tumor cell cycle arrest in G1 phase and apoptosis, and was accompanied with the regulation of key genes involved in cell proliferation and cell cycle G1/S transition. miR-34c suppressed the expression of Ezh2 and Mybl2, which may transcriptionally and functionally activate Cdkn1c. Furthermore, miR-34c levels are extremely low in human serous adenocarcinomas compared with human normal fallopian tubes. Expression of miR-34c in human ovarian cancer cells phenocopied its effects in DKO mouse tumor cells. However, miR-34b/c(-/-)/Pten(fl/fl)/Amhr2(cre/+) mice failed to develop high-grade serous carcinomas, implicating a combination of miRNAs in the tumorigenesis process. Thus, while miR-34c is a putative tumor suppressor in high-grade serous ovarian carcinoma with potential therapeutic advantages, screening of additional miRNAs for their effects alone and in combination with miR-34c is highly warranted to uncover miRNAs that synergize with miR-34c against cancer.
Collapse
Affiliation(s)
- Zhifeng Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Jaeyeon Kim
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Lin He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Preethi H Gunaratne
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas Department of Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas Department of Pharmacology, Baylor College of Medicine, Houston, Texas
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas Department of Pharmacology, Baylor College of Medicine, Houston, Texas Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Mullen RD, Behringer RR. Molecular genetics of Müllerian duct formation, regression and differentiation. Sex Dev 2014; 8:281-96. [PMID: 25033758 DOI: 10.1159/000364935] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Müllerian duct (MD) forms the female reproductive tract (FRT) consisting of the oviducts, uterus, cervix, and upper vagina. FRT function is vital to fertility, providing the site of fertilization, embryo implantation and fetal development. Developmental defects in the formation and diseases of the FRT, including cancer and endometriosis, are prevalent in humans and can result in infertility and death. Furthermore, because the MDs are initially formed regardless of genotypic sex, mesenchymal to epithelial signaling is required in males to mediate MD regression and prevents the development of MD-derived organs. In males, defects in MD regression result in the retention of FRT organs and have been described in several human syndromes. Although to date not reported in humans, ectopic activation of MD regression signaling components in females can result in aplasia of the FRT. Clearly, MD development is important to human health; however, the molecular mechanisms remain largely undetermined. Molecular genetics studies of human diseases and mouse models have provided new insights into molecular signaling during MD development, regression and differentiation. This review will provide an overview of MD development and important genes and signaling mechanisms involved.
Collapse
Affiliation(s)
- Rachel D Mullen
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Tex., USA
| | | |
Collapse
|
41
|
Tevosian SG. Transgenic mouse models in the study of reproduction: insights into GATA protein function. Reproduction 2014; 148:R1-R14. [DOI: 10.1530/rep-14-0086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or ‘floxed’ byloxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent.
Collapse
|
42
|
Shao R, Feng Y, Zou S, Li X, Billig H. The inflammatory regulation of tubal -catenin expression in human ectopic pregnancy: is it too early to propose a cause-and-effect relationship? Hum Reprod 2013; 28:3378-80. [DOI: 10.1093/humrep/det364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Stewart CA, Wang Y, Bonilla-Claudio M, Martin JF, Gonzalez G, Taketo MM, Behringer RR. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol 2013; 27:1442-54. [PMID: 23904126 DOI: 10.1210/me.2012-1126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Müllerian duct differentiation and development into the female reproductive tract is essential for fertility, but mechanisms regulating these processes are poorly understood. WNT signaling is critical for proper development of the female reproductive tract as evident by the phenotypes of Wnt4, Wnt5a, Wnt7a, and β-catenin (Ctnnb1) mutant mice. Here we extend these findings by determining the effects of constitutive CTNNB1 activation within the mesenchyme of the developing Müllerian duct and its differentiated derivatives. This was accomplished by crossing Amhr2-Cre knock-in mice with Ctnnb1 exon (ex) 3(f/f) mice. Amhr2-Cre(Δ/+); Ctnnb1 ex3(f/+) females did not form an oviduct, had smaller uteri, endometrial gland defects, and were infertile. At the cellular level, stabilization of CTNNB1 in the mesenchyme caused alterations within the epithelium, including less proliferation, delayed uterine gland formation, and induction of an epithelial-mesenchymal transition (EMT) event. This EMT event is observed before birth and is complete within 5 days after birth. Misexpression of estrogen receptor α in the epithelia correlated with the EMT before birth, but not after. These studies indicate that regulated CTNNB1 in mesenchyme is important for epithelial cell differentiation during female reproductive tract development.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovée JVMG. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol 2013; 44:1597-604. [PMID: 23517922 DOI: 10.1016/j.humpath.2013.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Recently, heterozygous mutations in exon 2 of the mediator complex subunit 12 gene have been described in 50% to 70% of uterine leiomyomas; the recurrent nature of these mutations suggests an important role in their pathogenesis. Mediator complex subunit 12 is involved in regulation of transcription and Wnt signaling. So far, little is known about the pathogenesis of the different subtypes of extrauterine leiomyomas and leiomyosarcomas. We performed mutation analysis of mediator complex subunit 12 and immunohistochemistry for β-catenin, using 69 tumors of 64 patients including 19 uterine leiomyomas, 6 abdominal leiomyomas, 9 angioleiomyomas, 5 piloleiomyomas, and 7 uterine and 23 soft tissue leiomyosarcomas. In line with previous observations, 58% of uterine leiomyomas carried a mediator complex subunit 12 mutation. However, all other extrauterine leiomyomas were negative with the exception of 1 abdominal leiomyoma with a likely primary uterine origin. Of the 30 leiomyosarcomas, only 1 uterine tumor harbored a mutation. A new observation is the identification of 3 tumors with a homozygous mutation; a monosomy X or interstitial deletion was excluded. β-Catenin immunohistochemistry showed nuclear positivity in only 55% of the mediator complex subunit 12-mutated uterine leiomyomas, suggesting the involvement of pathways other than canonical Wnt signaling in tumorigenesis. Interestingly, 80% of mediator complex subunit 12 wild-type sporadic piloleiomyomas displayed nuclear β-catenin positivity, indicating its involvement in this leiomyoma subtype. The lack of mediator complex subunit 12 mutations in extrauterine leiomyomas and leiomyosarcomas indicates that these tumors arise through a different pathway, emphasizing the genetic heterogeneity of smooth muscle tumors.
Collapse
Affiliation(s)
- Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | | | |
Collapse
|
45
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Tanwar PS, Kaneko-Tarui T, Lee HJ, Zhang L, Teixeira JM. PTEN loss and HOXA10 expression are associated with ovarian endometrioid adenocarcinoma differentiation and progression. Carcinogenesis 2012; 34:893-901. [PMID: 23276799 DOI: 10.1093/carcin/bgs405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epithelial ovarian cancer is a heterogeneous disease that is subdivided into five major histotypes but the mechanisms driving their differentiation are not clear. Mutations in adenomatous polyposis coli (APC) and β-catenin are commonly observed in the human ovarian endometrioid adenocarcinoma (OEA) patients. However, the mechanisms subsequent to APC deletion in ovarian tumorigenesis have not been well characterized. We have conditionally deleted APC in the murine ovarian surface epithelium (OSE) and showed that its loss leads to development of epithelial inclusion cysts. High-grade OEAs with tightly packed villoglandular histology were observed in older APC-deleted mice. Phosphatase and tensin homolog (PTEN) expression was elevated in the early lesions but lost after progression to the more advanced tumors. Knockdown of APC or expression of a gain-of-function β-catenin similarly induced human OSE cells to develop tumors with endometrioid histology in xenografts. Expression of HOXA10 was induced in both the advanced APC-deleted murine tumors and in the tumor xenografts of human OSE cells with knocked-down APC. These results show that reduced APC activity is sufficient to induce formation of epithelial inclusion cysts and support OEA development and suggest that induced HOXA10 expression and loss of PTEN are key mechanisms driving endometrioid histotype differentiation and progression.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenomatous Polyposis Coli/genetics
- Animals
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Carcinoma, Ovarian Epithelial
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Female
- Homeobox A10 Proteins
- Homeodomain Proteins/genetics
- Humans
- Mice
- Mice, Knockout
- Neoplasm Transplantation
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovary/pathology
- PTEN Phosphohydrolase/genetics
- Transplantation, Heterologous
- Tumor Cells, Cultured
- Wnt Signaling Pathway/genetics
- beta Catenin/genetics
Collapse
Affiliation(s)
- Pradeep S Tanwar
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
47
|
Lapointe E, Boyer A, Rico C, Paquet M, Franco HL, Gossen J, DeMayo FJ, Richards JS, Boerboom D. FZD1 regulates cumulus expansion genes and is required for normal female fertility in mice. Biol Reprod 2012; 87:104. [PMID: 22954793 DOI: 10.1095/biolreprod.112.102608] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
WNT4 is required for normal ovarian follicle development and female fertility in mice, but how its signal is transduced remains unknown. Fzd1 encodes a WNT receptor whose expression is markedly induced in both mural granulosa cells and cumulus cells during the preovulatory period, in a manner similar to Wnt4. To study the physiological roles of FZD1 in ovarian physiology and to determine whether it serves as receptor for WNT4, Fzd1-null mice were created by gene targeting. Whereas rare Fzd1(-/-) females were sterile because of uterine fibrosis and ovarian tubulostromal hyperplasia, most were subfertile, producing ≈1 fewer pup per litter on average relative to controls. Unlike WNT4-deficient mice, ovaries from Fzd1(-/-) mice had normal weights, numbers of follicles, steroid hormone production, and WNT4 target gene expression levels. Microarray analyses of granulosa cells from periovulatory follicles revealed few genes whose expression was altered in Fzd1(-/-) mice. However, gene expression analyses of cumulus-oocyte complexes (COCs) revealed a blunted response of both oocyte (Zp3, Dppa3, Nlrp5, and Bmp15) and cumulus (Btc, Ptgs2, Sema3a, Ptx3, Il6, Nts, Alcam, and Cspg2) genes to the ovulatory signal, whereas the expression of these genes was not altered in WNT4-deficient COCs from Wnt4(tm1.1Boer/tm1.1Boer);Tg (CYP19A1-cre)1Jri mice. Despite altered gene expression, cumulus expansion appeared normal in Fzd1(-/-) COCs both in vitro and in vivo. Together, these results indicate that Fzd1 is required for normal female fertility and may act in part to regulate oocyte maturation and cumulus cell function, but it is unlikely to function as the sole ovarian WNT4 receptor.
Collapse
Affiliation(s)
- Evelyne Lapointe
- Centre de Recherche en Reproduction Animale, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang L, Patterson AL, Zhang L, Teixeira JM, Pru JK. Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod Biol Endocrinol 2012; 10:75. [PMID: 22958837 PMCID: PMC3462133 DOI: 10.1186/1477-7827-10-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Beta-catenin is part of a protein complex associated with adherens junctions. When allowed to accumulate to sufficient levels in its dephosphorylated form, beta-catenin serves as a transcriptional co-activator associated with a number of signaling pathways, including steroid hormone signaling pathways. METHODS To investigate the role of beta-catenin in progesterone (P₄) signaling and female reproductive physiology, conditional ablation of Ctnnb1 from the endometrial mesenchymal (i.e. stromal and myometrial), but not epithelial, compartment was accomplished using the Amhr2-Cre mice. Experiments were conducted to assess the ability of mutant female mice to undergo pregnancy and pseudopregnancy by or through oil-induced decidualization. The ability of uteri from mutant female mice to respond to estrogen (E₂) and P₄ was also determined. RESULTS Conditional deletion of Ctnnb1 from the mesenchymal compartment of the uterus resulted in infertility stemming, in part, from complete failure of the uterus to decidualize. E₂-stimulated epithelial cell mitosis and edematization were not altered in mutant uteri indicating that the mesenchyme is capable of responding to E₂. However, exposure of ovariectomized mutant female mice to a combined E₂ and P₄ hormone regimen consistent with early pregnancy revealed that mesenchymal beta-catenin is essential for indirectly opposing E₂-induced epithelial proliferation by P₄ and in some mice resulted in development of endometrial metaplasia. Lastly, beta-catenin is also required for the induced expression of genes that are known to play a fundamental role in decidualization such as Ihh, Ptch1, Gli1 and Muc1 CONCLUSIONS Three salient points derive from these studies. First, the findings demonstrate a mechanistic linkage between the P₄ and beta-catenin signaling pathways. Second, they highlight an under appreciated role for the mesenchymal compartment in indirectly mediating P₄ signaling to the epithelium, a process that intimately involves mesenchymal beta-catenin. Third, the technical feasibility of deleting genes in the mesenchymal compartment of the uterus in an effort to understand decidualization and post-natal interactions with the overlying epithelium has been demonstrated. It is concluded that beta-catenin plays an integral role in selective P₄-directed epithelial-mesenchymal communication in both the estrous cycling and gravid uterus.
Collapse
Affiliation(s)
- Ling Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Amanda L Patterson
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Lihua Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jose M Teixeira
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
49
|
Tanwar PS, Kaneko-Tarui T, Zhang L, Tanaka Y, Crum CP, Teixeira JM. Stromal liver kinase B1 [STK11] signaling loss induces oviductal adenomas and endometrial cancer by activating mammalian Target of Rapamycin Complex 1. PLoS Genet 2012; 8:e1002906. [PMID: 22916036 PMCID: PMC3420942 DOI: 10.1371/journal.pgen.1002906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023] Open
Abstract
Germline mutations of the Liver Kinase b1 (LKB1/STK11) tumor suppressor gene have been linked to Peutz-Jeghers Syndrome (PJS), an autosomal-dominant, cancer-prone disorder in which patients develop neoplasms in several organs, including the oviduct, ovary, and cervix. We have conditionally deleted Lkb1 in Müllerian duct mesenchyme-derived cells of the female reproductive tract and observed expansion of the stromal compartment and hyperplasia and/or neoplasia of adjacent epithelial cells throughout the reproductive tract with paratubal cysts and adenomyomas in oviducts and, eventually, endometrial cancer. Examination of the proliferation marker phospho-histone H3 and mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway members revealed increased proliferation and mTORC1 activation in stromal cells of both the oviduct and uterus. Treatment with rapamycin, an inhibitor of mTORC1 activity, decreased tumor burden in adult Lkb1 mutant mice. Deletion of the genes for Tuberous Sclerosis 1 (Tsc1) or Tsc2, regulators of mTORC1 that are downstream of LKB1 signaling, in the oviductal and uterine stroma phenocopies some of the defects observed in Lkb1 mutant mice, confirming that dysregulated mTORC1 activation in the Lkb1-deleted stroma contributes to the phenotype. Loss of PTEN, an upstream regulator of mTORC1 signaling, along with Lkb1 deletion significantly increased tumor burden in uteri and induced tumorigenesis in the cervix and vagina. These studies show that LKB1/TSC1/TSC2/mTORC1 signaling in mesenchymal cells is important for the maintenance of epithelial integrity and suppression of carcinogenesis in adjacent epithelial cells. Because similar changes in the stromal population are also observed in human oviductal/ovarian adenoma and endometrial adenocarcinoma patients, we predict that dysregulated mTORC1 activity by upstream mechanisms similar to those described in these model systems contributes to the pathogenesis of these human diseases. Peutz-Jeghers Syndrome patients have autosomal dominant mutations in the LKB1/STK11 gene and are prone to developing cancer, predominantly in the intestinal tract but also in other tissues, including the reproductive tracts and gonads. To elucidate the mechanisms disrupted by the loss of LKB1 in the reproductive tract, we have developed a mouse model with deletion of Lkb1 specifically in stromal cells of gynecologic tissues. These mice show stromal cell expansion and develop oviductal adenomas and endometrial cancer. Deletion of either Tsc1 or Tsc2 genes, which are mutated in patients with Tuberous Sclerosis Complex and whose protein products are indirect downstream targets of LKB1 signaling, resulted in some of the same defects observed in Lkb1 mutant mice. Activation of mammalian Target Of Rapamycin Complex 1 (mTORC1), a common effector of disrupted LKB1, TSC1, and TSC2 signaling, was observed in all mutant tissues examined, suggesting that uninhibited mTORC1 activity is necessary for the phenotypes. Suppression of mTORC1 signaling by rapamycin reduced tumor burden in Lkb1 mutant mice, confirming the link between dysregulation of mTORC1 to development of the Lkb1 mutant phenotype and suggesting that therapeutic targeting of LKB1/TSC1/TSC2/mTORC1 signaling would benefit human Peutz-Jeghers Syndrome and Tuberous Sclerosis patients with reproductive tract disease.
Collapse
Affiliation(s)
- Pradeep S. Tanwar
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tomoko Kaneko-Tarui
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - LiHua Zhang
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Yoshihiro Tanaka
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Christopher P. Crum
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose M. Teixeira
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
van der Horst PH, Wang Y, van der Zee M, Burger CW, Blok LJ. Interaction between sex hormones and WNT/β-catenin signal transduction in endometrial physiology and disease. Mol Cell Endocrinol 2012; 358:176-84. [PMID: 21722706 DOI: 10.1016/j.mce.2011.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 12/20/2022]
Abstract
Wnt/β-catenin signalling plays a rate-limiting role in early development of many different organs in a broad spectrum of organisms. In the developing Müllerian duct, Wnt/β-catenin signalling is important for initiation, outgrowth, patterning and differentiation into vagina, cervix, uterus and oviducts. In adult life, sex hormones modulate Wnt/β-catenin signalling in the endometrium to maintain the monthly balance between estrogen-induced proliferation and progesterone-induced differentiation, and enhanced Wnt/β-catenin signalling seems to be involved in endometrial carcinogenesis. However, early in pregnancy enhanced Wnt/β-catenin signalling is prerequisite for proper implantation and invasion of trophoblast cells into endometrium and myometrium thus helping to form a placenta. Overall, it seems that tight control of Wnt/β-catenin signalling in time and space is important for initiation, development and normal function of the female reproductive tract. However, if Wnt/β-catenin signalling is not kept in check, it easily seems to initiate or contribute to development of a number of uterine disorders.
Collapse
Affiliation(s)
- Paul H van der Horst
- Department of Obstetrics and Gynaecology, Erasmus University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|