1
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
2
|
Zhao Y, Chen H, Li C, Chen S, Xiao H. Comparative Transcriptomics Reveals the Molecular Genetic Basis of Cave Adaptability in Sinocyclocheilus Fish Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.589039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cavefish evolved a series of distinct survival mechanisms for adaptation to cave habitat. Such mechanisms include loss of eyesight and pigmentation, sensitive sensory organs, unique dietary preferences, and predation behavior. Thus, it is of great interest to understand the mechanisms underlying these adaptability traits of troglobites. The teleost genus Sinocyclocheilus (Cypriniformes: Cyprinidae) is endemic to China and has more than 70 species reported (including over 30 cavefish species). High species diversity and diverse phenotypes make the Sinocyclocheilus as an outstanding model for studying speciation and adaptive evolution. In this study, we conducted a comparative transcriptomics study on the brain tissues of two Sinocyclocheilus species (surface-dwelling species – Sinocyclocheilus malacopterus and semi-cave-dwelling species – Sinocyclocheilus rhinocerous living in the same water body. A total of 425,188,768 clean reads were generated, which contributed to 102,839 Unigenes. Bioinformatic analysis revealed a total of 3,289 differentially expressed genes (DEGs) between two species Comparing to S. malacopterus, 2,598 and 691 DEGs were found to be respectively, down-regulated and up-regulated in S. rhinocerous. Furthermore, it is also found tens of DEGs related to cave adaptability such as insulin secretion regulation (MafA, MafB, MafK, BRSK, and CDK16) and troglomorphic traits formation (CEP290, nmnat1, coasy, and pqbp1) in the cave-dwelling S. rhinocerous. Interestingly, most of the DEGs were found to be down-regulated in cavefish species and this trend of DEGs expression was confirmed through qPCR experiments. This study would provide an appropriate genetic basis for future studies on the formation of troglomorphic traits and adaptability characters of troglobites, and improve our understanding of mechanisms of cave adaptation.
Collapse
|
3
|
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat Commun 2020; 11:2742. [PMID: 32488111 PMCID: PMC7265500 DOI: 10.1038/s41467-020-16550-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Next generation sequencing studies have highlighted discrepancies in β-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human β-cells postnatally, while its expression is restricted to embryonic and neo-natal β-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to β-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide–positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology. The MAF bZIP transcription factor B (MAFB) is present in postnatal human beta cells but its role is unclear. Here, the authors show that MAFB regulates endocrine pancreatic cell fate specification.
Collapse
Affiliation(s)
- Ronan Russell
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Phichitpol P Carnese
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas G Hennings
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.,Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jennifer S Liu
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Simone Giacometti
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
MafB Is Important for Pancreatic β-Cell Maintenance under a MafA-Deficient Condition. Mol Cell Biol 2019; 39:MCB.00080-19. [PMID: 31208980 PMCID: PMC6692125 DOI: 10.1128/mcb.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
The pancreatic-islet-enriched transcription factors MafA and MafB have unique expression patterns in β cells in rodents. MafA is specifically expressed in β cells and is a key regulatory factor for maintaining adult β-cell function, whereas MafB plays an essential role in β-cell development during embryogenesis, and its expression in β cells gradually decreases and is restricted to α cells after birth in rodents. The pancreatic-islet-enriched transcription factors MafA and MafB have unique expression patterns in β cells in rodents. MafA is specifically expressed in β cells and is a key regulatory factor for maintaining adult β-cell function, whereas MafB plays an essential role in β-cell development during embryogenesis, and its expression in β cells gradually decreases and is restricted to α cells after birth in rodents. However, it was previously observed that MafB started to be reexpressed in insulin-positive (insulin+) β cells in MafA-deficient adult mice. To elucidate how MafB functions in the adult β cell under MafA-deficient conditions, we generated MafA and MafB double-knockout (A0B0) mice in which MafB was specifically deleted from β cells. As a result, the A0B0 mice became more vulnerable to diabetes under a high-fat diet (HFD) treatment, with impaired islet formation and a decreased number of insulin+ β cells because of increased β-cell apoptosis, indicating MafB can take part in the maintenance of adult β cells under certain pathological conditions.
Collapse
|
5
|
MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic α Cells In Vivo. Mol Cell Biol 2018; 38:MCB.00504-17. [PMID: 29378833 DOI: 10.1128/mcb.00504-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The MafB transcription factor is expressed in pancreatic α and β cells during development but becomes exclusive to α cells in adult rodents. Mafb-null (Mafb-/- ) mice were reported to have reduced α- and β-cell numbers throughout embryonic development. To further analyze the postnatal function of MafB in the pancreas, we generated endocrine cell-specific (MafbΔEndo ) and tamoxifen-dependent (MafbΔTAM ) Mafb knockout mice. MafbΔEndo mice exhibited reduced populations of insulin-positive (insulin+) and glucagon+ cells at postnatal day 0, but the insulin+ cell population recovered by 8 weeks of age. In contrast, the Arx+ glucagon+ cell fraction and glucagon expression remained decreased even in adulthood. MafbΔTAM mice, with Mafb deleted after pancreas maturation, also demonstrated diminished glucagon+ cells and glucagon content without affecting β cells. A decreased Arx+ glucagon+ cell population in MafbΔEndo mice was compensated for by an increased Arx+ pancreatic polypeptide+ cell population. Furthermore, gene expression analyses from both MafbΔEndo and MafbΔTAM islets revealed that MafB is a key regulator of glucagon expression in α cells. Finally, both mutants failed to respond to arginine, likely due to impaired arginine transporter gene expression and glucagon production ability. Taken together, our findings reveal that MafB is critical for the functional maintenance of mouse α cells in vivo, including glucagon production and secretion, as well as in development.
Collapse
|
6
|
Matsuda H, Mullapudi ST, Zhang Y, Hesselson D, Stainier DYR. Thyroid Hormone Coordinates Pancreatic Islet Maturation During the Zebrafish Larval-to-Juvenile Transition to Maintain Glucose Homeostasis. Diabetes 2017; 66:2623-2635. [PMID: 28698262 DOI: 10.2337/db16-1476] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/24/2017] [Indexed: 11/13/2022]
Abstract
Thyroid hormone (TH) signaling promotes tissue maturation and adult organ formation. Developmental transitions alter an organism's metabolic requirements, and it remains unclear how development and metabolic demands are coordinated. We used the zebrafish as a model to test whether and how TH signaling affects pancreatic islet maturation, and consequently glucose homeostasis, during the larval to juvenile transition. We found that exogenous TH precociously activates the β-cell differentiation genes pax6b and mnx1 while downregulating arxa, a master regulator of α-cell development and function. Together, these effects induced hypoglycemia, at least in part by increasing insulin and decreasing glucagon expression. We visualized TH target tissues using a novel TH-responsive reporter line and found that both α- and β-cells become targets of endogenous TH signaling during the larval-to-juvenile transition. Importantly, endogenous TH is required during this transition for the functional maturation of α- and β-cells in order to maintain glucose homeostasis. Thus, our study sheds new light on the regulation of glucose metabolism during major developmental transitions.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
7
|
Arregi I, Climent M, Iliev D, Strasser J, Gouignard N, Johansson JK, Singh T, Mazur M, Semb H, Artner I, Minichiello L, Pera EM. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling. Endocrinology 2016; 157:4615-4631. [PMID: 27740873 DOI: 10.1210/en.2016-1745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon+ and insulin+ cells. During the secondary transition, the reduction of Neurogenin3+ endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.
Collapse
Affiliation(s)
- Igor Arregi
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Maria Climent
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Dobromir Iliev
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jürgen Strasser
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Nadège Gouignard
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jenny K Johansson
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Tania Singh
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Magdalena Mazur
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Henrik Semb
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Isabella Artner
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Liliana Minichiello
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Edgar M Pera
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| |
Collapse
|
8
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
9
|
Shaer A, Azarpira N, Karimi MH, Soleimani M, Dehghan S. Differentiation of Human-Induced Pluripotent Stem Cells Into Insulin-Producing Clusters by MicroRNA-7. EXP CLIN TRANSPLANT 2016; 14:555-563. [PMID: 26103160 DOI: 10.6002/ect.2014.0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Diabetes results from inadequate insulin production from pancreatic β-cells. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all diabetic patients. Thus, finding a new source with effective maturation of β-cells is the major goal of many studies. MicroRNAs are a class of small noncoding ribonucleic acid that regulate gene expression through posttranscriptional mechanisms. MicroRNA-7 has high expression level during pancreatic islet development in humans, thereby playing a critical role in pancreatic β-cell function. We study aimed to develop a protocol to differentiate human-induced pluripotent stem cells efficiently into isletlike cell clusters in vitro by using microRNA-7. MATERIALS AND METHODS Human-induced pluripotent stem cell colonies were transfected with hsa-microRNA-7 by using siPORT NeoFX transfection agent. Total ribonucleic acid was extracted 24 and 48 hours after transfection. The expression of transcription factors which were important during pancreases development was also performed. On the third day, the potency of the clusters was assessed in response to high glucose levels. Diphenylthiocarbazone was used to identify the existence of the β-cells. The presence of insulin and Neurogenin-3 proteins was investigated by immunocytochemistry. RESULTS Morphologic changes were observed on the first day after chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The isletlike cell clusters were positive for insulin and Neurogenin-3 proteins in immunocytochemistry. The clusters were stained with Diphenylthiocarbazone and secreted insulin in a glucose challenge test. CONCLUSIONS MicroRNA-7 transcription factor network is important in pancreatic endocrine differentiation. Chemical transfection with microRNA-7 can differentiate human induced pluripotent stem cells into functional isletlike cell clusters in a short time.
Collapse
Affiliation(s)
- Anahita Shaer
- From the Department of Genetics, Zarghan Branch, Islamic Azad University, Fars, Iran; and Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
10
|
Ahmad Z, Rafeeq M, Collombat P, Mansouri A. Pax6 Inactivation in the Adult Pancreas Reveals Ghrelin as Endocrine Cell Maturation Marker. PLoS One 2015; 10:e0144597. [PMID: 26658466 PMCID: PMC4676685 DOI: 10.1371/journal.pone.0144597] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Pax6 is an important regulator of development and cell differentiation in various organs. Thus, Pax6 was shown to promote neural development in the cerebral cortex and spinal cord, and to control pancreatic endocrine cell genesis. However, the role of Pax6 in distinct endocrine cells of the adult pancreas has not been addressed. We report the conditional inactivation of Pax6 in insulin and glucagon producing cells of the adult mouse pancreas. In the absence of Pax6, beta- and alpha-cells lose their molecular maturation characteristics. Our findings provide strong evidence that Pax6 is responsible for the maturation of beta-, and alpha-cells, but not of delta-, and PP-cells. Moreover, lineage-tracing experiments demonstrate that Pax6-deficient beta- and alpha-cells are shunted towards ghrelin marked cells, sustaining the idea that ghrelin may represent a marker for endocrine cell maturation.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- * E-mail: (AM); (ZA)
| | - Maria Rafeeq
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
| | - Patrick Collombat
- Université de Nice Sophia Antipolis, Nice, France
- Inserm U1091, IBV, Diabetes Genetics Team, Nice, France
- JDRF, New York, NY, United States of America
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey
| | - Ahmed Mansouri
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- JDRF, New York, NY, United States of America
- University of Goettingen, Department of Clinical Neurophysiology, Goettingen, Germany
- * E-mail: (AM); (ZA)
| |
Collapse
|
11
|
El Khattabi I, Sharma A. Proper activation of MafA is required for optimal differentiation and maturation of pancreatic β-cells. Best Pract Res Clin Endocrinol Metab 2015; 29:821-31. [PMID: 26696512 PMCID: PMC4690007 DOI: 10.1016/j.beem.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key therapeutic approach for the treatment of Type 1 diabetes (T1D) is transplantation of functional islet β-cells. Despite recent advances in generating stem cell-derived glucose-responsive insulin(+) cells, their further maturation to fully functional adult β-cells still remains a daunting task. Conquering this hurdle will require a better understanding of the mechanisms driving maturation of embryonic insulin(+) cells into adult β-cells, and the implementation of that knowledge to improve current differentiation protocols. Here, we will review our current understanding of β-cell maturation, and discuss the contribution of key β-cell transcription factor MafA, to this process. The fundamental importance of MafA in regulating adult β-cell maturation and function indicates that enhancing MafA expression may improve the generation of definitive β-cells for transplantation. Additionally, we suggest that the temporal control of MafA induction at a specific stage of β-cell differentiation will be the next critical challenge for achieving optimum maturation of β-cells.
Collapse
Affiliation(s)
| | - Arun Sharma
- Cardiovascular and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
12
|
Abdellatif AM, Ogata K, Kudo T, Xiafukaiti G, Chang YH, Katoh MC, El-Morsy SE, Oishi H, Takahashi S. Role of large MAF transcription factors in the mouse endocrine pancreas. Exp Anim 2015; 64:305-12. [PMID: 25912440 PMCID: PMC4548003 DOI: 10.1538/expanim.15-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The members of the MAF family of transcription factors are homologs of v-Maf –the
oncogenic component of the avian retrovirus AS42. The MAF family is subdivided into 2
groups, small and large MAFs. To elucidate the role of the large MAF transcription factors
in the endocrine pancreas, we analyzed large MAF gene knockout mice. It has been shown
that Mafa−/− mice develop phenotypes including abnormal islet
structure soon after birth. This study revealed that Ins1 and
Ins2 transcripts and the protein contents were significantly reduced in
Mafa−/− mice at embryonic day 18.5. In addition,
Mafa−/−;Mafb−/− mice contained
less than 10% of the insulin transcript and protein of those of wild-type mice, suggesting
that Mafa and Mafb cooperate to maintain insulin levels
at the embryonic stage. On the other hand, the number of insulin-positive cells in
Mafa−/− mice was comparable to that of wild-type mice, and
even under a Mafb-deficient background the number of insulin-positive
cells was not decreased, suggesting that Mafb plays a dominant role in
embryonic β-cell development. We also found that at 20 weeks of age
Mafa−/−;Mafb+/− mice showed a
higher fasting blood glucose level than single Mafa−/− mice.
In summary, our results indicate that Mafa is necessary for the
maintenance of normal insulin levels even in embryos and that Mafb is
important for the maintenance of fasting blood glucose levels in the
Mafa-deficient background in adults.
Collapse
Affiliation(s)
- Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heddad Masson M, Poisson C, Guérardel A, Mamin A, Philippe J, Gosmain Y. Foxa1 and Foxa2 regulate α-cell differentiation, glucagon biosynthesis, and secretion. Endocrinology 2014; 155:3781-92. [PMID: 25057789 DOI: 10.1210/en.2013-1843] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.
Collapse
Affiliation(s)
- Mounia Heddad Masson
- Department of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Medical School, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Li W, Nakanishi M, Zumsteg A, Shear M, Wright C, Melton DA, Zhou Q. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife 2014; 3:e01846. [PMID: 24714494 PMCID: PMC3977343 DOI: 10.7554/elife.01846] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin(+) β-cells, glucagon(+) α-cells, and somatostatin(+) δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001.
Collapse
Affiliation(s)
- Weida Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Mio Nakanishi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
- Stem Cell and Cancer Research Institute, McMaster University, Ontario, Canada
| | - Adrian Zumsteg
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Matthew Shear
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Christopher Wright
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
15
|
Nishimura W, Eto K, Miki A, Goto M, Kawaguchi M, Nammo T, Udagawa H, Hiramoto M, Shimizu Y, Okamura T, Fujiwara T, Yasuda Y, Yasuda K. Quantitative assessment of Pdx1 promoter activity in vivo using a secreted luciferase reporter system. Endocrinology 2013; 154:4388-95. [PMID: 24029239 DOI: 10.1210/en.2012-2248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The luciferase reporter system is useful for the assessment of various biological processes in vivo. The transcription factor pancreatic and duodenal homeobox 1 (Pdx1) is critical for the formation and the function of pancreatic β-cells. A novel reporter system using secreted Gaussia princeps luciferase (GLuc) under the control of a Pdx1 promoter was generated and activated in rat and mouse β-cell lines. This Pdx1-GLuc construct was used as a transgene for the generation of reporter mice to monitor Pdx1 promoter activity in vivo via the measurement of secreted GLuc activity in a small aliquot of blood. Significantly increased plasma GLuc activity was observed in Pdx1-GLuc mice. Analysis of Pdx1-GLuc mice by bioluminescence imaging, GLuc reporter assays using homogenates of various organs, and immunohistochemistry revealed that GLuc expression and activity were exponentially higher in pancreatic β-cells than in pancreatic non-β-cells, the duodenum, and other organs. In addition, GLuc activity secreted into the culture medium from islets isolated from Pdx1-GLuc mice correlated with the number of islets. The transplantation of Pdx1-GLuc islets into severe combined immunodeficiency mice elevated their plasma GLuc activity. Conversely, a partial pancreatectomy in Pdx1-GLuc mice reduced plasma GLuc activity. These results suggest that a secreted luciferase reporter system in vivo enables not only the monitoring of promoter activity but also a quantitative and minimally invasive assessment of physiological and pathological changes in small cell masses, such as pancreatic β-cells.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic Disorders, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol 2013; 385:2-12. [PMID: 24183936 DOI: 10.1016/j.ydbio.2013.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Specification and maturation of insulin(+) cells accompanies a transition in expression of Maf family of transcription factors. In development, MafA is expressed after specification of insulin(+) cells that are expressing another Maf factor, MafB; after birth, these insulin(+) MafA(+) cells stop MafB expression and gain glucose responsiveness. Current differentiation protocols for deriving insulin-producing β-cells from stem cells result in β-cells lacking both MafA expression and glucose-stimulated insulin secretion. So driving expression of MafA, a β-cell maturation factor in endocrine precursors could potentially generate glucose-responsive MafA(+) β cells. Using inducible transgenic mice, we characterized the final stages of β-cell differentiation and maturation with MafA pause/release experiments. We found that forcing MafA transgene expression, out of its normal developmental context, in Ngn3(+) endocrine progenitors blocked endocrine differentiation and prevented the formation of hormone(+) cells. However, this arrest was reversible such that with stopping the transgene expression, the cells resumed their differentiation to hormone(+) cells, including α-cells, indicating that the block likely occurred after progenitors had committed to a specific hormonal fate. Interestingly, this delayed resumption of endocrine differentiation resulted in a greater proportion of immature insulin(+)MafB(+) cells at P5, demonstrating that during maturation the inhibition of MafB in β-cell transitioning from insulin(+)MafB(+) to insulin(+)MafB(-) stage is regulated by cell-autonomous mechanisms. These results demonstrate the importance of proper context of initiating MafA expression on the endocrine differentiation and suggest that generating mature Insulin(+)MafA(+) β-cells will require the induction of MafA in a narrow temporal window to achieve normal endocrine differentiation.
Collapse
Affiliation(s)
- KaiHui Hu He
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Kirstine Juhl
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Michael Karadimos
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Connor Fitzpatrick
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| |
Collapse
|
17
|
Abstract
Persistent nutrient excess results in a compensatory increase in the β-cell number in mammals. It is unknown whether this response occurs in nonmammalian vertebrates, including zebrafish, a model for genetics and chemical genetics. We investigated the response of zebrafish β-cells to nutrient excess and the underlying mechanisms by culturing transgenic zebrafish larvae in solutions of different nutrient composition. The number of β-cells rapidly increases after persistent, but not intermittent, exposure to glucose or a lipid-rich diet. The response to glucose, but not the lipid-rich diet, required mammalian target of rapamycin activity. In contrast, inhibition of insulin/IGF-1 signaling in β-cells blocked the response to the lipid-rich diet, but not to glucose. Lineage tracing and marker expression analyses indicated that the new β-cells were not from self-replication but arose through differentiation of postmitotic precursor cells. On the basis of transgenic markers, we identified two groups of newly formed β-cells: one with nkx2.2 promoter activity and the other with mnx1 promoter activity. Thus, nutrient excess in zebrafish induces a rapid increase in β-cells though differentiation of two subpopulations of postmitotic precursor cells. This occurs through different mechanisms depending on the nutrient type and likely involves paracrine signaling between the differentiated β-cells and the precursor cells.
Collapse
Affiliation(s)
- Lisette A. Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
18
|
A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J 2012; 31:3704-17. [PMID: 22903061 PMCID: PMC3442275 DOI: 10.1038/emboj.2012.227] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022] Open
Abstract
Transgenic expression of the MafB oncogene in haematopoietic stem/progenitor cells induces plasma cell neoplasia reminiscent of human multiple myeloma and suggests DNA methylation as cause of malignant transformation. Understanding the cellular origin of cancer can help to improve disease prevention and therapeutics. Human plasma cell neoplasias are thought to develop from either differentiated B cells or plasma cells. However, when the expression of Maf oncogenes (associated to human plasma cell neoplasias) is targeted to mouse B cells, the resulting animals fail to reproduce the human disease. Here, to explore early cellular changes that might take place in the development of plasma cell neoplasias, we engineered transgenic mice to express MafB in haematopoietic stem/progenitor cells (HS/PCs). Unexpectedly, we show that plasma cell neoplasias arise in the MafB-transgenic mice. Beyond their clinical resemblance to human disease, these neoplasias highly express genes that are known to be upregulated in human multiple myeloma. Moreover, gene expression profiling revealed that MafB-expressing HS/PCs were more similar to B cells and tumour plasma cells than to any other subset, including wild-type HS/PCs. Consistent with this, genome-scale DNA methylation profiling revealed that MafB imposes an epigenetic program in HS/PCs, and that this program is preserved in mature B cells of MafB-transgenic mice, demonstrating a novel molecular mechanism involved in tumour initiation. Our findings suggest that, mechanistically, the haematopoietic progenitor population can be the target for transformation in MafB-associated plasma cell neoplasias.
Collapse
|
19
|
Kredo-Russo S, Mandelbaum AD, Ness A, Alon I, Lennox KA, Behlke MA, Hornstein E. Pancreas-enriched miRNA refines endocrine cell differentiation. Development 2012; 139:3021-31. [PMID: 22764048 DOI: 10.1242/dev.080127] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome-encoded microRNAs (miRNAs) provide a post-transcriptional regulatory layer that is important for pancreas development. However, how specific miRNAs are intertwined into the transcriptional network, which controls endocrine differentiation, is not well understood. Here, we show that microRNA-7 (miR-7) is specifically expressed in endocrine precursors and in mature endocrine cells. We further demonstrate that Pax6 is an important target of miR-7. miR-7 overexpression in developing pancreas explants or in transgenic mice led to Pax6 downregulation and inhibition of α- and β-cell differentiation, resembling the molecular changes caused by haploinsufficient expression of Pax6. Accordingly, miR-7 knockdown resulted in Pax6 upregulation and promoted α- and β-cell differentiation. Furthermore, Pax6 downregulation reversed the effect of miR-7 knockdown on insulin promoter activity. These data suggest a novel miR-7-based circuit that ensures precise control of endocrine cell differentiation.
Collapse
Affiliation(s)
- Sharon Kredo-Russo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012401. [PMID: 22587935 DOI: 10.1101/cshperspect.a012401] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5329, USA
| | | | | |
Collapse
|
21
|
Gosmain Y, Katz LS, Masson MH, Cheyssac C, Poisson C, Philippe J. Pax6 is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol Endocrinol 2012; 26:696-709. [PMID: 22403172 DOI: 10.1210/me.2011-1256] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Pax6 transcription factor is crucial for endocrine cell differentiation and function. Indeed, mutations of Pax6 are associated with a diabetic phenotype and a drastic decrease of insulin-positive cell number. Our aim was to better define the β-cell Pax6 transcriptional network and thus provide further information concerning the role of Pax6 in β-cell function. We developed a Pax6-deficient model in rat primary β-cells with specific small interfering RNA leading to a 75% knockdown of Pax6 expression. Through candidate gene approach, we confirmed that Pax6 controls the mRNA levels of the insulin 1 and 2, Pdx1, MafA, GLUT2, and PC1/3 genes in β-cells. Importantly, we identified new Pax6 target genes coding for GK, Nkx6.1, cMaf, PC2, GLP-1R and GIPR which are all involved in β-cell function. Furthermore, we demonstrated that Pax6 directly binds and activates specific elements on the promoter region of these genes. We also demonstrated that Pax6 knockdown led to decreases in insulin cell content, in insulin processing, and a specific defect of glucose-induced insulin secretion as well as a significant reduction of GLP-1 action in primary β-cells. Our results strongly suggest that Pax6 is crucial for β-cells through transcriptional control of key genes coding for proteins that are involved in insulin biosynthesis and secretion as well as glucose and incretin actions on β-cells. We provide further evidence that Pax6 represents a key element of mature β-cell function.
Collapse
Affiliation(s)
- Yvan Gosmain
- Diabetes Unit, Division of Endocrinology, Diabetes, and Nutrition, University Hospital, University of Geneva Medical School, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S. Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 2012; 7:e30415. [PMID: 22299040 PMCID: PMC3267725 DOI: 10.1371/journal.pone.0030415] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/15/2011] [Indexed: 12/20/2022] Open
Abstract
The stresses encountered during islet isolation and culture may have deleterious effects on beta-cell physiology. However, the biological response of human islet cells to isolation remains poorly characterized. A better understanding of the network of signaling pathways induced by islet isolation and culturing may lead to strategies aimed at improving islet graft survival and function. Laser capture microdissection (LCM) was used to extract beta-cell RNA from 1) intact pancreatic islets, 2) freshly isolated islets, 3) islets cultured for 3 days, and changes in gene expression were examined by microarray analysis. We identified a strong inflammatory response induced by islet isolation that continues during in-vitro culture manifested by upregulation of several cytokines and cytokine-receptors. The most highly upregulated gene, interleukin-8 (IL-8), was induced by 3.6-fold following islet isolation and 56-fold after 3 days in culture. Immunofluorescence studies showed that the majority of IL-8 was produced by beta-cells themselves. We also observed that several pancreas-specific transcription factors were down-regulated in cultured islets. Concordantly, several pancreatic progenitor cell-specific transcription factors like SOX4, SOX9, and ID2 were upregulated in cultured islets, suggesting progressive transformation of mature beta-cell phenotype toward an immature endocrine cell phenotype. Our findings suggest islet isolation and culture induces an inflammatory response and loss of the mature endocrine cell phenotype. A better understanding of the signals required to maintain a mature beta-cell phenotype may help improve the efficacy of islet transplantation.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Arif Jetha
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Reid Aikin
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Craig Hasilo
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Rob Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Steven Paraskevas
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
23
|
Reexpression of oncoprotein MafB in proliferative β-cells and Men1 insulinomas in mouse. Oncogene 2011; 31:3647-54. [DOI: 10.1038/onc.2011.538] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, Nishikawa K, Takayanagi H, Hitoshi S, Ikenaka K, Hosoya T, Hotta Y, Takahashi S, Kataoka K. MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res 2011; 26:2463-72. [PMID: 21713993 DOI: 10.1002/jbmr.458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serum calcium and phosphate homeostasis is critically regulated by parathyroid hormone (PTH) secreted by the parathyroid glands. Parathyroid glands develop from the bilateral parathyroid-thymus common primordia. In mice, the expression of transcription factor Glial cell missing 2 (Gcm2) begins in the dorsal/anterior part of the primordium on embryonic day 9.5 (E9.5), specifying the parathyroid domain. The parathyroid primordium then separates from the thymus primordium and migrates to its adult location beside the thyroid gland by E15.5. Genetic ablation of gcm2 results in parathyroid agenesis in mice, indicating that Gcm2 is essential for early parathyroid organogenesis. However, the regulation of parathyroid development at later stages is not well understood. Here we show that transcriptional activator v-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MafB) is developmentally expressed in parathyroid cells after E11.5. MafB expression was lost in the parathyroid primordium of gcm2 null mice. The parathyroid glands of mafB(+/-) mice were mislocalized between the thymus and thyroid. In mafB(-/-) mice, the parathyroid did not separate from the thymus. Furthermore, in mafB(-/-) mice, PTH expression and secretion were impaired; expression levels of renal cyp27b1, one of the target genes of PTH, was decreased; and bone mineralization was reduced. We also demonstrate that although Gcm2 alone does not stimulate the PTH gene promoter, it associates with MafB to synergistically activate PTH expression. Taken together, our results suggest that MafB regulates later steps of parathyroid development, that is, separation from the thymus and migration toward the thyroid. MafB also regulates the expression of PTH in cooperation with Gcm2.
Collapse
Affiliation(s)
- Akiyo Kamitani-Kawamoto
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J. Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in α-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab 2011; 13 Suppl 1:31-8. [PMID: 21824254 DOI: 10.1111/j.1463-1326.2011.01445.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glucagon gene is expressed in α-cells of the pancreas, L cells of the intestine and the hypothalamus. The determinants of the α-cell-specific expression of the glucagon gene are not fully characterized, although Arx, Pax6 and Foxa2 are critical for α-cell differentiation and glucagon gene expression; in addition, the absence of the β-cell-specific transcription factors Pdx1, Pax4 and Nkx6.1 may allow for the glucagon gene to be expressed. Pax6, along with cMaf and MafB, binds to the DNA control element G(1) which confers α-cell specificity to the promoter and to G(3) and potently activates glucagon gene transcription. In addition, to its direct role on the transcription of the glucagon gene, Pax6 controls several transcription factors involved in the activation of the glucagon gene such as cMaf, MafB and NeuroD1/Beta2 as well as different steps of glucagon biosynthesis and secretion. We conclude that Pax6 independently of Arx and Foxa2 is critical for α-cell function by coordinating glucagon gene expression as well as glucagon biosynthesis and secretion.
Collapse
Affiliation(s)
- Y Gosmain
- Division of Endocrinology, Diabetes and Nutrition, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Hang Y, Stein R. MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab 2011; 22:364-73. [PMID: 21719305 PMCID: PMC3189696 DOI: 10.1016/j.tem.2011.05.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/03/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
Abstract
Analyses in mouse models have revealed crucial roles for MafA (musculoaponeurotic fibrosarcoma oncogene family A) and MafB in islet β cells, with MafB being required during development and MafA in adults. These two closely related transcription factors regulate many genes essential for glucose sensing and insulin secretion in a cooperative and sequential manner. Significantly, the switch from MafB to MafA expression also appears to be vital for functional maturation of β cells produced by human embryonic stem (hES) cell differentiation. This review summarizes the discovery, distribution, and function of MafA and MafB in rodent pancreatic β cells, and describes some key questions regarding their importance to β cells.
Collapse
Affiliation(s)
- Yan Hang
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center Nashville, TN 37232, USA
| | - Roland Stein
- Correspondence: 723 Light Hall, 2215 Garland Ave Nashville, TN 37232 Phone: 615-322-7026 Facsimile: 615-322-7236
| |
Collapse
|
27
|
Kordowich S, Collombat P, Mansouri A, Serup P. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC DEVELOPMENTAL BIOLOGY 2011; 11:52. [PMID: 21880149 PMCID: PMC3179930 DOI: 10.1186/1471-213x-11-52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/31/2011] [Indexed: 12/20/2022]
Abstract
Background Nkx2.2 and Arx represent key transcription factors implicated in the specification of islet cell subtypes during pancreas development. Mice deficient for Arx do not develop any alpha-cells whereas beta- and delta-cells are found in considerably higher numbers. In Nkx2.2 mutant animals, alpha- and beta-cell development is severely impaired whereas a ghrelin-expressing cell population is found augmented. Notably, Arx transcription is clearly enhanced in Nkx2.2-deficient pancreata. Hence in order to precise the functional link between both factors we performed a comparative analysis of Nkx2.2/Arx single- and double-mutants but also of Pax6-deficient animals. Results We show that most of the ghrelin+ cells emerging in pancreata of Nkx2.2- and Pax6-deficient mice, express the alpha-cell specifier Arx, but also additional beta-cell related genes. In Nkx2.2-deficient mice, Arx directly co-localizes with iAPP, PC1/3 and Pdx1 suggesting an Nkx2.2-dependent control of Arx in committed beta-cells. The combined loss of Nkx2.2 and Arx likewise results in the formation of a hyperplastic ghrelin+ cell population at the expense of mature alpha- and beta-cells. Surprisingly, such Nkx2.2-/-Arx- ghrelin+ cells also express the somatostatin hormone. Conclusions Our data indicate that Nkx2.2 acts by reinforcing the transcriptional networks initiated by Pax4 and Arx in early committed beta- and alpha-cell, respectively. Our analysis also suggests that one of the coupled functions of Nkx2.2 and Pax4 is to counteract Arx gene activity in early committed beta-cells.
Collapse
Affiliation(s)
- Simon Kordowich
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg, Göttingen, Germany
| | | | | | | |
Collapse
|
28
|
Vargas N, Álvarez-Cubela S, Giraldo JA, Nieto M, Fort NM, Cechin S, García E, Espino-Grosso P, Fraker CA, Ricordi C, Inverardi L, Pastori RL, Domínguez-Bendala J. TAT-mediated transduction of MafA protein in utero results in enhanced pancreatic insulin expression and changes in islet morphology. PLoS One 2011; 6:e22364. [PMID: 21857924 PMCID: PMC3150355 DOI: 10.1371/journal.pone.0022364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023] Open
Abstract
Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Female
- Gene Expression
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Insulin/genetics
- Insulin/metabolism
- Islets of Langerhans/cytology
- Islets of Langerhans/metabolism
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Pancreas/embryology
- Pancreas/metabolism
- Pregnancy
- Promoter Regions, Genetic/genetics
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Uterus/metabolism
Collapse
Affiliation(s)
- Nancy Vargas
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Jaime A. Giraldo
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Biomedical Engineering, University of Miami, Miami, Florida, United States of America
| | - Margarita Nieto
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nicholas M. Fort
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Sirlene Cechin
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Enrique García
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Pedro Espino-Grosso
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Christopher A. Fraker
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Biomedical Engineering, University of Miami, Miami, Florida, United States of America
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ricardo L. Pastori
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
29
|
Kanai K, Aramata S, Katakami S, Yasuda K, Kataoka K. Proteasome activator PA28{gamma} stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA. J Mol Endocrinol 2011; 47:119-27. [PMID: 21646385 DOI: 10.1530/jme-11-0044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MAFA is a member of the MAF family of basic leucine zipper transcription factors and is a critical regulator of insulin gene expression and islet β-cell function. To be degraded by the proteasome, MAFA must be phosphorylated by GSK3 and MAP kinases at multiple serine and threonine residues (Ser49, Thr53, Thr57, Ser61, and Ser65) within its amino-terminal domain. In this study, we report that MAFA degradation is stimulated by PA28γ (REGγ and PSME3), a member of a family of proteasome activators that bind and activate the 20S proteasome. To date, only a few PA28γ-proteasome pathway substrates have been identified, including steroid receptor coactivator 3 (SRC3) and the cell cycle inhibitor p21 (CIP1). PA28γ binds to MAFA, induces its proteasomal degradation, and thereby attenuates MAFA-driven transcriptional activation of the insulin promoter. Co-expression of GSK3 enhanced the PA28γ-mediated degradation of MAFA, but mutants that contained alanine substitutions at the MAFA phosphorylation sites did not bind PA28γ and were resistant to degradation. We also found that a PA28γ mutant (N151Y) that did not stimulate p21 degradation enhanced MAFA degradation, and another mutant (K188D) that promoted greater p21 degradation did not enhance MAFA degradation. These results suggest that PA28γ stimulates MAFA degradation through a novel molecular mechanism that is distinct from that for the degradation of p21.
Collapse
Affiliation(s)
- Kenichi Kanai
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | | | | | | | | |
Collapse
|
30
|
Kanai K, Reza HM, Kamitani A, Hamazaki Y, Han SI, Yasuda K, Kataoka K. SUMOylation negatively regulates transcriptional and oncogenic activities of MafA. Genes Cells 2010; 15:971-82. [PMID: 20718938 DOI: 10.1111/j.1365-2443.2010.01431.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysregulated expression of Maf proteins (namely c-Maf, MafA and MafB) leads to multiple myeloma in humans and oncogenic transformation of chicken embryonic fibroblasts. Maf proteins are transcriptional activators of tissue-specific gene expression and regulators of cell differentiation. For example, MafA is a critical regulator of crystallin genes and the lens differentiation program in chickens. In mammals, MafA is essential for the development of mature insulin-producing beta-cells of pancreas. It has been shown that MafA protein stability is regulated by phosphorylations at multiple serine and threonine residues. Here, we report that Maf proteins are also post-translationally modified by small ubiquitin-like modifier (SUMO) proteins at a conserved lysine residue in the amino-terminal transactivator domain. A SUMOylation-deficient mutant of MafA (K32R) was more potent than wild-type MafA in transactivating luciferase reporter construct driven by alphaA-crystallin or insulin gene promoter. In ovo electroporation into developing chicken embryo showed that the K32R mutant induced ectopic delta-crystallin gene expression more efficiently than the wild-type MafA. We also demonstrated that the K32R mutant had enhanced ability to induce colony formation of a chicken fibroblast cell line DF-1. Therefore, SUMOylation is a functional post-translational modification of MafA that negatively regulates its transcriptional and transforming activities.
Collapse
Affiliation(s)
- Kenichi Kanai
- Nara Institute of Science and Technology, Takayama-cho, Ikoma, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Li WC, Rukstalis JM, Nishimura W, Tchipashvili V, Habener JF, Sharma A, Bonner-Weir S. Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J Cell Sci 2010; 123:2792-802. [PMID: 20663919 DOI: 10.1242/jcs.065268] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The adult pancreas has considerable capacity to regenerate in response to injury. We hypothesized that after partial pancreatectomy (Px) in adult rats, pancreatic-duct cells serve as a source of regeneration by undergoing a reproducible dedifferentiation and redifferentiation. We support this hypothesis by the detection of an early loss of the ductal differentiation marker Hnf6 in the mature ducts, followed by the transient appearance of areas composed of proliferating ductules, called foci of regeneration, which subsequently form new pancreatic lobes. In young foci, ductules express markers of the embryonic pancreatic epithelium - Pdx1, Tcf2 and Sox9 - suggesting that these cells act as progenitors of the regenerating pancreas. The endocrine-lineage-specific transcription factor Neurogenin3, which is found in the developing embryonic pancreas, was transiently detected in the foci. Islets in foci initially resemble embryonic islets in their lack of MafA expression and lower percentage of beta-cells, but with increasing maturation have increasing numbers of MafA(+) insulin(+) cells. Taken together, we provide a mechanism by which adult pancreatic duct cells recapitulate aspects of embryonic pancreas differentiation in response to injury, and contribute to regeneration of the pancreas. This mechanism of regeneration relies mainly on the plasticity of the differentiated cells within the pancreas.
Collapse
Affiliation(s)
- Wan-Chun Li
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Gosmain Y, Marthinet E, Cheyssac C, Guérardel A, Mamin A, Katz LS, Bouzakri K, Philippe J. Pax6 controls the expression of critical genes involved in pancreatic {alpha} cell differentiation and function. J Biol Chem 2010; 285:33381-33393. [PMID: 20592023 DOI: 10.1074/jbc.m110.147215] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The paired box homeodomain Pax6 is crucial for endocrine cell development and function and plays an essential role in glucose homeostasis. Indeed, mutations of Pax6 are associated with diabetic phenotype. Importantly, homozygous mutant mice for Pax6 are characterized by markedly decreased β and δ cells and absent α cells. To better understand the critical role that Pax6 exerts in glucagon-producing cells, we developed a model of primary rat α cells. To study the transcriptional network of Pax6 in adult and differentiated α cells, we generated Pax6-deficient primary rat α cells and glucagon-producing cells, using either specific siRNA or cells expressing constitutively a dominant-negative form of Pax6. In primary rat α cells, we confirm that Pax6 controls the transcription of the Proglucagon and processing enzyme PC2 genes and identify three new target genes coding for MafB, cMaf, and NeuroD1/Beta2, which are all critical for Glucagon gene transcription and α cell differentiation. Furthermore, we demonstrate that Pax6 directly binds and activates the promoter region of the three genes through specific binding sites and that constitutive expression of a dominant-negative form of Pax6 in glucagon-producing cells (InR1G9) inhibits the activities of the promoters. Finally our results suggest that the critical role of Pax6 action on α cell differentiation is independent of those of Arx and Foxa2, two transcription factors that are necessary for α cell development. We conclude that Pax6 is critical for α cell function and differentiation through the transcriptional control of key genes involved in glucagon gene transcription, proglucagon processing, and α cell differentiation.
Collapse
Affiliation(s)
- Yvan Gosmain
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland.
| | - Eric Marthinet
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Claire Cheyssac
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Audrey Guérardel
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Aline Mamin
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Liora S Katz
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, University Medical Center, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jacques Philippe
- From the Diabetes Unit, Division of Endocrinology, Diabetes and Nutrition, University Hospital, 1211 Geneva 4, Switzerland
| |
Collapse
|
33
|
Juhl K, Bonner-Weir S, Sharma A. Regenerating pancreatic beta-cells: plasticity of adult pancreatic cells and the feasibility of in-vivo neogenesis. Curr Opin Organ Transplant 2010; 15:79-85. [PMID: 19907327 PMCID: PMC2834213 DOI: 10.1097/mot.0b013e3283344932] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes results from inadequate functional mass of pancreatic beta-cells and therefore replenishing with new glucose-responsive beta-cells is an important therapeutic option. In addition to replication of pre-existing beta-cells, new beta-cells can be produced from differentiated adult cells using in-vitro or in-vivo approaches. This review will summarize recent advances in in-vivo generation of beta-cells from cells that are not beta-cells (neogenesis) and discuss ways to overcome the limitations of this process. RECENT FINDINGS Multiple groups have shown that adult pancreatic ducts, acinar and even endocrine cells exhibit cellular plasticity and can differentiate into beta-cells in vivo. Several different approaches, including misexpression of transcription factors and tissue injury, have induced neogenesis of insulin-expressing cells in vivo and ameliorated diabetes. SUMMARY Recent breakthroughs demonstrating cellular plasticity of adult pancreatic cells to form new beta-cells are a positive first step towards developing in-vivo regeneration-based therapy for diabetes. Currently, neogenesis processes are inefficient and do not generate sufficient amounts of beta-cells required to normalize hyperglycemia. However, an improved understanding of mechanisms regulating neogenesis of beta-cells from adult pancreatic cells and of their maturation into functional glucose-responsive beta-cells can make therapies based on in-vivo regeneration a reality.
Collapse
Affiliation(s)
- Kirstine Juhl
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
34
|
Kawamori D, Welters HJ, Kulkarni RN. Molecular Pathways Underlying the Pathogenesis of Pancreatic α-Cell Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:421-45. [DOI: 10.1007/978-90-481-3271-3_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Anderson KR, White P, Kaestner KH, Sussel L. Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:65. [PMID: 20003319 PMCID: PMC2799404 DOI: 10.1186/1471-213x-9-65] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The homeodomain containing transcription factor Nkx2.2 is essential for the differentiation of pancreatic endocrine cells. Deletion of Nkx2.2 in mice leads to misspecification of islet cell types; insulin-expressing beta cells and glucagon-expressing alpha cells are replaced by ghrelin-expressing cells. Additional studies have suggested that Nkx2.2 functions both as a transcriptional repressor and activator to regulate islet cell formation and function. To identify genes that are potentially regulated by Nkx2.2 during the major wave of endocrine and exocrine cell differentiation, we assessed gene expression changes that occur in the absence of Nkx2.2 at the onset of the secondary transition in the developing pancreas. RESULTS Microarray analysis identified 80 genes that were differentially expressed in e12.5 and/or e13.5 Nkx2.2-/- embryos. Some of these genes encode transcription factors that have been previously identified in the pancreas, clarifying the position of Nkx2.2 within the islet transcriptional regulatory pathway. We also identified signaling factors and transmembrane proteins that function downstream of Nkx2.2, including several that have not previously been described in the pancreas. Interestingly, a number of known exocrine genes are also misexpressed in the Nkx2.2-/- pancreas. CONCLUSIONS Expression profiling of Nkx2.2-/- mice during embryogenesis has allowed us to identify known and novel pancreatic genes that function downstream of Nkx2.2 to regulate pancreas development. Several of the newly identified signaling factors and transmembrane proteins may function to influence islet cell fate decisions. These studies have also revealed a novel function for Nkx2.2 in maintaining appropriate exocrine gene expression. Most importantly, Nkx2.2 appears to function within a complex regulatory loop with Ngn3 at a key endocrine differentiation step.
Collapse
Affiliation(s)
- Keith R Anderson
- Department of Biochemistry and Program in Molecular Biology, University of Colorado Health Science Center, Denver, CO 80045, USA
| | | | | | | |
Collapse
|
36
|
Nishimura W, Bonner-Weir S, Sharma A. Expression of MafA in pancreatic progenitors is detrimental for pancreatic development. Dev Biol 2009; 333:108-20. [PMID: 19576197 PMCID: PMC2737322 DOI: 10.1016/j.ydbio.2009.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/11/2009] [Accepted: 06/22/2009] [Indexed: 12/27/2022]
Abstract
The transcription factor MafA regulates glucose-responsive expression of insulin. MafA-deficient mice have a normal proportion of insulin+ cells at birth but develop diabetes gradually with age, suggesting that MafA is required for maturation and not specification of pancreatic beta-cells. However, several studies show that ectopic expression of MafA may have a role in specification as it induces insulin+ cells in chicken gut epithelium, reprograms adult murine acinar cells into insulin+ cells in combination with Ngn3 and Pdx1, and triggers the lens differentiation. Hence, we examined whether MafA can induce specification of beta-cells during pancreatic development. When the MafA transgene is expressed in Pdx1+ pancreatic progenitors, both pancreatic mass and proliferation of progenitors are reduced, at least partially due to induction of cyclin kinase inhibitors p27 and p57. Expression of MafA in Pdx1+ cells until E12.5 was sufficient to cause these effects and to disproportionately inhibit the formation of endocrine cells in the remnant pancreas. Thus, in mice, MafA expression in Pdx1+ pancreatic progenitors is not sufficient to specify insulin+ cells but in fact deters pancreatic development and the differentiation of endocrine cells. These findings imply that MafA should be used to enhance maturation, rather than specification, of beta-cells from stem/progenitor cells.
Collapse
Affiliation(s)
- Wataru Nishimura
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bonner-Weir
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Sharma
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Kondo T, El Khattabi I, Nishimura W, Laybutt DR, Geraldes P, Shah S, King G, Bonner-Weir S, Weir G, Sharma A. p38 MAPK is a major regulator of MafA protein stability under oxidative stress. Mol Endocrinol 2009; 23:1281-90. [PMID: 19407223 PMCID: PMC2718751 DOI: 10.1210/me.2008-0482] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 04/21/2009] [Indexed: 12/13/2022] Open
Abstract
Mammalian MafA/RIPE3b1 is an important glucose-responsive transcription factor that regulates function, maturation, and survival of beta-cells. Increased expression of MafA results in improved glucose-stimulated insulin secretion and beta-cell function. Because MafA is a highly phosphorylated protein, we examined whether regulating activity of protein kinases can increase MafA expression by enhancing its stability. We demonstrate that MafA protein stability in MIN6 cells and isolated mouse islets is regulated by both p38 MAPK and glycogen synthase kinase 3. Inhibiting p38 MAPK enhanced MafA stability in cells grown under both low and high concentrations of glucose. We also show that the N-terminal domain of MafA plays a major role in p38 MAPK-mediated degradation; simultaneous mutation of both threonines 57 and 134 into alanines in MafA was sufficient to prevent this degradation. Under oxidative stress, a condition detrimental to beta-cell function, a decrease in MafA stability was associated with a concomitant increase in active p38 MAPK. Interestingly, inhibiting p38 MAPK but not glycogen synthase kinase 3 prevented oxidative stress-dependent degradation of MafA. These results suggest that the p38 MAPK pathway may represent a common mechanism for regulating MafA levels under oxidative stress and basal and stimulatory glucose concentrations. Therefore, preventing p38 MAPK-mediated degradation of MafA represents a novel approach to improve beta-cell function.
Collapse
Affiliation(s)
- Takuma Kondo
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nitta Y, Shigeyoshi Y, Nakagata N, Kaneko T, Nitta K, Harada T, Ishizaki F, Townsend J. Kinetics of blood glucose in mice carrying hemizygous Pax6. Exp Anim 2009; 58:105-12. [PMID: 19448333 DOI: 10.1538/expanim.58.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genotype-phenotype relationship was examined experimentally for the Pax6(Sey-4H) mutant, which carries deletion of its chromosome 2 middle region hemizygously. The genotyping has indicated that this deleted segment is between 102.6 and 109.2 Mb from the centromere. The glucose-6-phosphatase gene followed by the glucagon and carboxyl ester lipase genes were mapped adjacent to the deleted region. Phenotyping indicates that the Pax6(Sey-4H) mutant is more susceptible to diabetes. The glucose tolerance test showed that the mutants were less capable of reducing their level of blood glucose to the standard level than the normal sibs. The insulin-loading test revealed their inability to elevate their blood glucose levels up to normal levels. The time it took for the onset of diabetes induced by streptozotocin was shorter in the mutants than in normal sibs. Both the haploinsufficiency of the genes in the hemizygous segment of chromosome 2 and the quantitative imbalance of the whole genome could contribute the development of this phenotype in the mutant.
Collapse
Affiliation(s)
- Yumiko Nitta
- Department of Anatomy and Neuroscience, Faculty of Medicine, Kinki University, Osaka-Sayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo S, Burnette R, Zhao L, Vanderford NL, Poitout V, Hagman DK, Henderson E, Ozcan S, Wadzinski BE, Stein R. The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation. J Biol Chem 2009; 284:759-65. [PMID: 19004825 PMCID: PMC2613637 DOI: 10.1074/jbc.m806314200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/07/2008] [Indexed: 11/06/2022] Open
Abstract
The level of the MafA transcription factor is regulated by a variety of effectors of beta cell function, including glucose, fatty acids, and insulin. Here, we show that phosphorylation at Ser(65) of mammalian MafA influences both protein stability and transactivation potential. Replacement of Ser(65) with Glu to mimic phosphorylation produced a protein that was as unstable as the wild type, whereas Asp or Ala mutation blocked degradation. Analysis of MafA chimeric and deletion constructs suggests that protein phosphorylation at Ser(65) alone represents the initial degradation signal, with ubiquitinylation occurring within the C terminus (amino acids 234-359). Although only wild type MafA and S65E were polyubiquitinylated, both S65D and S65E potently stimulated transactivation compared with S65A. Phosphorylation at Ser(14) also enhanced activation, although it had no impact on protein turnover. The mobility of MafA S65A was profoundly affected upon SDS-PAGE, with the S65E and S65D mutants influenced less due to their ability to serve as substrates for glycogen synthase kinase 3, which acts at neighboring N-terminal residues after Ser(65) phosphorylation. Our observations not only illustrate the sensitivity of the cellular transcriptional and degradation machinery to phosphomimetic mutants at Ser(65), but also demonstrate the singular importance of phosphorylation at this amino acid in regulating MafA activity.
Collapse
Affiliation(s)
- Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer--overexpression of the large Maf genes promotes the development of multiple myeloma--they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.
Collapse
Affiliation(s)
- Alain Eychène
- Institut Curie, Centre de Recherche, Orsay F-91405, France
| | | | | |
Collapse
|
41
|
Abstract
As successful generation of insulin-producing cells could be used for diabetes treatment, a concerted effort is being made to understand the molecular programs underlying islet beta-cell formation and function. The closely related MafA and MafB transcription factors are both key mammalian beta-cell regulators. MafA and MafB are co-expressed in insulin+beta-cells during embryogenesis, while in the adult pancreas only MafA is produced in beta-cells and MafB in glucagon+alpha-cells. MafB-/- animals are also deficient in insulin+ and glucagon+ cell production during embryogenesis. However, only MafA over-expression selectively induced endogenous Insulin mRNA production in cell line-based assays, while MafB specifically promoted Glucagon expression. Here, we analyzed whether these factors were sufficient to induce insulin+ and/or glucagon+ cell formation within embryonic endoderm using the chick in ovo electroporation assay. Ectopic expression of MafA, but not MafB, promoted Insulin production; however, neither MafA nor MafB were capable of inducing Glucagon. Co-electroporation of MafA with the Ngn3 transcription factor resulted in the development of more organized cell clusters containing both insulin- and glucagon-producing cells. Analysis of chimeric proteins of MafA and MafB demonstrated that chick Insulin activation depended on sequences within the MafA C-terminal DNA-binding domain. MafA was also bound to Insulin and Glucagon transcriptional control sequences in mouse embryonic pancreas and beta-cell lines. Collectively, these results demonstrate a unique ability for MafA to independently activate Insulin transcription.
Collapse
Affiliation(s)
- Isabella Artner
- Departments of, Molecular Physiology and Biophysics Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37205, USA.
| | | | | | | | | |
Collapse
|