1
|
Huang W, Li X, Yang H, Huang H. The impact of maternal age on aneuploidy in oocytes: Reproductive consequences, molecular mechanisms, and future directions. Ageing Res Rev 2024; 97:102292. [PMID: 38582380 DOI: 10.1016/j.arr.2024.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Age-related aneuploidy in human oocytes is a major factor contributing to decreased fertility and adverse reproductive outcomes. As females age, their oocytes are more prone to meiotic chromosome segregation errors, leading primarily to aneuploidy. Elevated aneuploidy rates have also been observed in oocytes from very young, prepubertal conceptions. A key barrier to developing effective treatments for age-related oocyte aneuploidy is our incomplete understanding of the molecular mechanisms involved. The challenge is becoming increasingly critical as more people choose to delay childbearing, a trend that has significant societal implications. In this review, we summarize current knowledge regarding the process of oocyte meiosis and folliculogenesis, highlighting the relationship between age and chromosomal aberrations in oocytes and embryos, and integrate proposed mechanisms of age-related meiotic disturbances across structural, protein, and genomic levels. Our goal is to spur new research directions and therapeutic avenues.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Xinyuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
3
|
Tanga BM, Fang X, Bang S, Seo C, Kang H, Cha D, Qamar AY, Shim J, Choi K, Saadeldin IM, Lee S, Cho J. The combination of rolipram and cilostamide improved the developmental competence of cloned porcine embryos. Sci Rep 2023; 13:5733. [PMID: 37029228 PMCID: PMC10081996 DOI: 10.1038/s41598-023-32677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
In vitro maturation of porcine oocytes is characterized by asynchronous cytoplasmic and nuclear maturation, leading to less competent oocytes supporting embryo development. The purpose of this study was to evaluate the combined effect of rolipram and cilostamide as cyclic Adenine monophosphate (cAMP) modulators to find the maximum cAMP levels that temporarily arrest meiosis. We determined the optimal time to maintain functional gap junction communication during pre-in vitro maturation to be four hours. Oocyte competence was evaluated by the level of glutathione, reactive oxygen species, meiotic progression, and gene expression. We evaluated embryonic developmental competence after parthenogenetic activation and somatic cell nuclear transfer. The combined treatment group showed significantly higher glutathione and lower reactive oxygen species levels and a higher maturation rate than the control and single treatment groups. Cleavage and blastocyst formation rates in parthenogenetic activation and somatic cell nuclear transfer embryos were higher in two-phase in vitro maturation than in the other groups. The relative levels of BMP15and GDF9 expression were increased in two-phase in vitro maturation. Somatic cell nuclear transfer blastocysts from two-phase in vitro maturation oocytes showed a lower level of expression of apoptotic genes than the control, indicating better pre-implantation developmental competence. The combination of rolipram and cilostamide resulted in optimal synchrony of cytoplasmic and nuclear maturation in porcine in vitro matured oocytes and there by enhanced the developmental competence of pre-implantation embryos.
Collapse
Affiliation(s)
- Bereket Molla Tanga
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- School of Veterinary Medicine, Hawassa University, Hawassa, Ethiopia
| | - Xun Fang
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Chaerim Seo
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary & Animal Science, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Islam M Saadeldin
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Lee
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Zhang BB, Li MX, Wang HN, Liu C, Sun YY, Ma TH. An integrative analysis of lncRNAs and mRNAs highlights the potential roles of lncRNAs in the process of follicle selection in Taihang chickens. Theriogenology 2023; 195:122-130. [DOI: 10.1016/j.theriogenology.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
5
|
Del Llano E, Iyyappan R, Aleshkina D, Masek T, Dvoran M, Jiang Z, Pospisek M, Kubelka M, Susor A. SGK1 is essential for meiotic resumption in mammalian oocytes. Eur J Cell Biol 2022; 101:151210. [PMID: 35240557 PMCID: PMC11008056 DOI: 10.1016/j.ejcb.2022.151210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation. In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.
Collapse
Affiliation(s)
- Edgar Del Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic.
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic.
| |
Collapse
|
6
|
Ferencova I, Vaskovicova M, Drutovic D, Knoblochova L, Macurek L, Schultz RM, Solc P. CDC25B is required for the metaphase I-metaphase II transition in mouse oocytes. J Cell Sci 2022; 135:274615. [PMID: 35237831 DOI: 10.1242/jcs.252924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian oocytes are arrested at meiotic prophase I. The dual-specificity phosphatase CDC25B is essential for cyclin-dependent kinase 1 (CDK1) activation that drives resumption of meiosis. CDC25B reverses the inhibitory effect of the protein kinases WEE1/MYT1 on CDK1 activation. Cdc25b-/- female mice are infertile because oocytes cannot activate CDK1. To identify a role for CDC25B following resumption of meiosis, we restored CDK1 activation in Cdc25b-/- oocytes by inhibiting WEE1/MYT1, or expressing EGFP-CDC25A or constitutively active EGFP-CDK1 from microinjected cRNAs. Forced CDK1 activation in Cdc25b-/- oocytes allowed resumption of meiosis, but oocytes mostly arrested at metaphase I (MI) with intact spindles. Similarly, ∼1/3 of Cdc25b+/- oocytes with reduced amount of CDC25B arrest in MI. MI arrested Cdc25b-/- oocytes also display a transient decrease in CDK1 activity similar to Cdc25b+/+ oocytes during the MI-MII transition, whereas Cdc25b+/- oocytes exhibit only a partial APC/C activation and anaphase I entry. Thus, CDC25B is necessary for resumption of meiosis and the MI-MII transition.
Collapse
Affiliation(s)
- Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Libor Macurek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
7
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Kinterová V, Kaňka J, Bartková A, Toralová T. SCF Ligases and Their Functions in Oogenesis and Embryogenesis-Summary of the Most Important Findings throughout the Animal Kingdom. Cells 2022; 11:234. [PMID: 35053348 PMCID: PMC8774150 DOI: 10.3390/cells11020234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Veronika Kinterová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Jiří Kaňka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Alexandra Bartková
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Tereza Toralová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| |
Collapse
|
9
|
Liu JC, Yan ZH, Li B, Yan HC, De Felici M, Shen W. Di (2-ethylhexyl) phthalate impairs primordial follicle assembly by increasing PDE3A expression in oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116088. [PMID: 33234378 DOI: 10.1016/j.envpol.2020.116088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
It is known that Di (2-ethylhexyl) phthalate (DEHP) may impact mammalian reproduction and that in females one target of the drug's action is follicle assembly. Here we revisited the phthalate's action on the ovary and from bioinformatics analyses of the transcriptome performed on newborn mouse ovaries exposed in vitro to DEHP, up-regulation of PDE3A, as one of the most important alterations caused by DEHP on early folliculogenesis, was identified. We obtained some evidence suggesting that the decrease of cAMP level in oocytes and the parallel decrease of PKA expression, consequent on the PDE3A increase, were a major cause of the reduction of follicle assembly in the DEHP-exposed ovaries. In fact, Pde3a RNAi on cultured ovaries reducing cAMP and PKA decrease counteracted the primordial follicle assembly impairment caused by the compound. Moreover, RNAi normalized the level of Kit, Nobox, Figla mRNA and GDF9, BMP15, CX37, γH2AX proteins in oocytes, and KitL transcripts in granulosa cells as well as their proliferation rate altered by DEHP exposure. Taken together, these results identify PDE3A as a new critical target of the deleterious effects of DEHP on early oogenesis in mammals and highlight cAMP-dependent pathways as major regulators of oocyte and granulosa cell activities crucial for follicle assembly. Moreover, we suggest that the level of intracellular cAMP in the oocytes may be an important determinant for their capability to repair DNA lesions caused by DNA damaging compounds including DEHP.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Li
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Hong-Chen Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Alexandri C, Daniel A, Bruylants G, Demeestere I. The role of microRNAs in ovarian function and the transition toward novel therapeutic strategies in fertility preservation: from bench to future clinical application. Hum Reprod Update 2020; 26:174-196. [PMID: 32074269 DOI: 10.1093/humupd/dmz039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND New therapeutic approaches in oncology have converted cancer from a certain death sentence to a chronic disease. However, there are still challenges to be overcome regarding the off-target toxicity of many of these treatments. Oncological therapies can lead to future infertility in women. Given this negative impact on long-term quality of life, fertility preservation is highly recommended. While gamete and ovarian tissue cryopreservation are the usual methods offered, new pharmacological-based options aiming to reduce ovarian damage during oncological treatment are very attractive. In this vein, advances in the field of transcriptomics and epigenomics have brought small noncoding RNAs, called microRNAs (miRNAs), into the spotlight in oncology. MicroRNAs also play a key role in follicle development as regulators of follicular growth, atresia and steroidogenesis. They are also involved in DNA damage repair responses and they can themselves be modulated during chemotherapy. For these reasons, miRNAs may be an interesting target to develop new protective therapies during oncological treatment. This review summarizes the physiological role of miRNAs in reproduction. Considering recently developed strategies based on miRNA therapy in oncology, we highlight their potential interest as a target in fertility preservation and propose future strategies to make the transition from bench to clinic. OBJECTIVE AND RATIONALE How can miRNA therapeutic approaches be used to develop new adjuvant protective therapies to reduce the ovarian damage caused by cytotoxic oncological treatments? SEARCH METHODS A systematic search of English language literature using PubMed and Google Scholar databases was performed through to 2019 describing the role of miRNAs in the ovary and their use for diagnosis and targeted therapy in oncology. Personal data illustrate miRNA therapeutic strategies to target the gonads and reduce chemotherapy-induced follicular damage. OUTCOMES This review outlines the importance of miRNAs as gene regulators and emphasizes the fact that insights in oncology can inspire new adjuvant strategies in the field of onco-fertility. Recent improvements in nanotechnology offer the opportunity for drug development using next-generation miRNA-nanocarriers. WIDER IMPLICATIONS Although there are still some barriers regarding the immunogenicity and toxicity of these treatments and there is still room for improvement concerning the specific delivery of miRNAs into the ovaries, we believe that, in the future, miRNAs can be developed as powerful and non-invasive tools for fertility preservation.
Collapse
Affiliation(s)
- C Alexandri
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - A Daniel
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Université de Tours, Faculty of Science and Technology, 37200 Tours, France
| | - G Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - I Demeestere
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Fertility Clinic, CUB-Erasme, 1070 Brussels, Belgium
| |
Collapse
|
11
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
12
|
Eisa AA, De S, Detwiler A, Gilker E, Ignatious AC, Vijayaraghavan S, Kline D. YWHA (14-3-3) protein isoforms and their interactions with CDC25B phosphatase in mouse oogenesis and oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2019; 19:20. [PMID: 31640562 PMCID: PMC6805688 DOI: 10.1186/s12861-019-0200-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Background Immature mammalian oocytes are held arrested at prophase I of meiosis by an inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1). Release from this meiotic arrest and germinal vesicle breakdown is dependent on dephosphorylation of CDK1 by the protein, cell cycle division 25B (CDC25B). Evidence suggests that phosphorylated CDC25B is bound to YWHA (14-3-3) proteins in the cytoplasm of immature oocytes and is thus maintained in an inactive form. The importance of YWHA in meiosis demands additional studies. Results Messenger RNA for multiple isoforms of the YWHA protein family was detected in mouse oocytes and eggs. All seven mammalian YWHA isoforms previously reported to be expressed in mouse oocytes, were found to interact with CDC25B as evidenced by in situ proximity ligation assays. Interaction of YWHAH with CDC25B was indicated by Förster Resonance Energy Transfer (FRET) microscopy. Intracytoplasmic microinjection of oocytes with R18, a known, synthetic, non-isoform-specific, YWHA-blocking peptide promoted germinal vesicle breakdown. This suggests that inhibiting the interactions between YWHA proteins and their binding partners releases the oocyte from meiotic arrest. Microinjection of isoform-specific, translation-blocking morpholino oligonucleotides to knockdown or downregulate YWHA protein synthesis in oocytes suggested a role for a specific YWHA isoform in maintaining the meiotic arrest. More definitively however, and in contrast to the knockdown experiments, oocyte-specific and global deletion of two isoforms of YWHA, YWHAH (14-3-3 eta) or YWHAE (14-3-3 epsilon) indicated that the complete absence of either or both isoforms does not alter oocyte development and release from the meiotic prophase I arrest. Conclusions Multiple isoforms of the YWHA protein are expressed in mouse oocytes and eggs and interact with the cell cycle protein CDC25B, but YWHAH and YWHAE isoforms are not essential for normal mouse oocyte maturation, fertilization and early embryonic development.
Collapse
Affiliation(s)
- Alaa A Eisa
- School of Biomedical Sciences, Kent State University, Kent, OH, 22422, USA
| | - Santanu De
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Eva Gilker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
13
|
Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet 2019; 56:271-282. [PMID: 30728173 PMCID: PMC6581078 DOI: 10.1136/jmedgenet-2018-105513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
During reproductive age, approximately one in seven couples are confronted with fertility problems. While the aetiology is diverse, including infections, metabolic diseases, hormonal imbalances and iatrogenic effects, it is becoming increasingly clear that genetic factors have a significant contribution. Due to the complex nature of infertility that often hints at a multifactorial cause, the search for potentially causal gene mutations in idiopathic infertile couples has remained difficult. Idiopathic infertility patients with a suspicion of an underlying genetic cause can be expected to have mutations in genes that do not readily affect general health but are only essential in certain processes connected to fertility. In this review, we specifically focus on genes involved in meiosis and maternal-effect processes, which are of critical importance for reproduction and initial embryonic development. We give an overview of genes that have already been linked to infertility in human, as well as good candidates which have been described in other organisms. Finally, we propose a phenotypic range in which we expect an optimal diagnostic yield of a meiotic/maternal-effect gene panel.
Collapse
Affiliation(s)
- Alexander Gheldof
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Deborah J G Mackay
- Faculty of Medicine, University of Southampton, Southampton University Hospital, Southampton, UK
| | - Ying Cheong
- Complete Fertility, Human Development of Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Willem Verpoest
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry-Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med 2019; 10:emmm.201708515. [PMID: 29661911 PMCID: PMC5938616 DOI: 10.15252/emmm.201708515] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA‐binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB. However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2−/− animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Emilie Le Blévec
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Thomas Karaouzène
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jessica Escoffier
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Said Assou
- IRMB, INSERM U1183, CHRU Montpellier, Université Montpellier, Montpellier, France
| | - Audrey Guttin
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Emeline Lambert
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Guillaume Martinez
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | - Magalie Boguenet
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | | | - Isabelle Cedrin Durnerin
- Service de Médecine de la Reproduction, Centre Hospitalier Universitaire Jean Verdier, Assistance Publique - Hôpitaux de Paris, Bondy, France
| | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Ouafi Marrakchi
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mounir Makni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Habib Latrous
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Charles Coutton
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge P Bottari
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Jean Paul Issartel
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France
| | - Christophe Arnoult
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
15
|
Yi ZY, Liang QX, Meng TG, Li J, Dong MZ, Hou Y, Ouyang YC, Zhang CH, Schatten H, Sun QY, Qiao J, Qian WP. PKCβ1 regulates meiotic cell cycle in mouse oocyte. Cell Cycle 2019; 18:395-412. [PMID: 30730241 DOI: 10.1080/15384101.2018.1564492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes. Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint.
Collapse
Affiliation(s)
- Zi-Yun Yi
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Qiu-Xia Liang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jian Li
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Ming-Zhe Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying-Chun Ouyang
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Chun-Hui Zhang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri-Columbia , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jie Qiao
- d Reproductive Medical Center , Peking University Third Hospital , Beijing , China
| | - Wei-Ping Qian
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| |
Collapse
|
16
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
17
|
Peng Y, Chang L, Wang Y, Wang R, Hu L, Zhao Z, Geng L, Liu Z, Gong Y, Li J, Li X, Zhang C. Genome-wide differential expression of long noncoding RNAs and mRNAs in ovarian follicles of two different chicken breeds. Genomics 2018; 111:1395-1403. [PMID: 30268779 DOI: 10.1016/j.ygeno.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 01/27/2023]
Abstract
Bashang long-tail chickens are an indigenous breed with dual purpose in China (meat and eggs) but have low egg laying performance. To improve the low egg laying performance, a genome-wide analysis of mRNAs and long noncoding RNAs (lncRNAs) from Bashang long-tail chickens and Hy-Line brown layers was performed. A total of 16,354 mRNAs and 8691 lncRNAs were obtained from ovarian follicles. Between the breeds, 160 mRNAs and 550 lncRNAs were found to be significantly differentially expressed. Integrated network analysis suggested some differentially expressed genes were involved in ovarian follicular development through oocyte meiosis, progesterone-mediated oocyte maturation, and cell cycle. The impact of lncRNAs on cis and trans target genes, indicating some lncRNAs may play important roles in ovarian follicular development. The current results provided a catalog of chicken ovarian follicular lncRNAs and genes for further study to understand their roles in regulation of egg laying performance.
Collapse
Affiliation(s)
- Yongdong Peng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Li Chang
- College of Animal Science and Technology, Agricultural University of Hebei Province, Baoding 071001, Hebei, People's Republic of China; Qinhuangdao Animal Disease Control Center, Qinhuangdao 066001, Hebei, People's Republic of China
| | - Yaqi Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Ruining Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Lulu Hu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Ziya Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Liying Geng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Zhengzhu Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Yuanfang Gong
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Jingshi Li
- College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China.
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China.
| |
Collapse
|
18
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
20
|
In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 2017; 8:15680. [PMID: 28604658 PMCID: PMC5472783 DOI: 10.1038/ncomms15680] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the unique mechanisms of human oogenesis necessitates the development of an in vitro system of stem cell differentiation into oocytes. Specialized cell types and organoids have been derived from human pluripotent stem cells in vitro, but generating a human ovarian follicle remains a challenge. Here we report that human embryonic stem cells can be induced to differentiate into ovarian follicle-like cells (FLCs) in vitro. First, we find that two RNA-binding proteins specifically expressed in germ cells, DAZL and BOULE, regulate the exit from pluripotency and entry into meiosis. By expressing DAZL and BOULE with recombinant human GDF9 and BMP15, these meiotic germ cells are further induced to form ovarian FLCs, including oocytes and granulosa cells. This robust in vitro differentiation system will allow the study of the unique molecular mechanisms underlying human pluripotent stem cell differentiation into late primordial germ cells, meiotic germ cells and ovarian follicles.
Collapse
|
21
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Baran V, Brzakova A, Rehak P, Kovarikova V, Solc P. PLK1 regulates spindle formation kinetics and APC/C activation in mouse zygote. ZYGOTE 2016; 24:338-45. [PMID: 26174739 DOI: 10.1017/s0967199415000246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (PLK1) is involved in essential events of cell cycle including mitosis in which it participates in centrosomal microtubule nucleation, spindle bipolarity establishment and cytokinesis. Although PLK1 function has been studied in cycling cancer cells, only limited data are known about its role in the first mitosis of mammalian zygotes. During the 1-cell stage of mouse embryo development, the acentriolar spindle is formed and the shift from acentriolar to centrosomal spindle formation progresses gradually throughout the preimplantation stage, thus providing a unique possibility to study acentriolar spindle formation. We have shown previously that PLK1 activity is not essential for entry into first mitosis, but is required for correct spindle formation and anaphase onset in 1-cell mouse embryos. In the present study, we extend this knowledge by employing quantitative confocal live cell imaging to determine spindle formation kinetics in the absence of PLK1 activity and answer the question whether metaphase arrest at PLK1-inhibited embryos is associated with low anaphase-promoting complex/cyclosome (APC/C) activity and consequently high securin level. We have shown that inhibition of PLK1 activity induces a delay in onset of acentriolar spindle formation during first mitosis. Although these PLK1-inhibited 1-cell embryos were finally able to form a bipolar spindle, not all chromosomes were aligned at the metaphase equator. PLK1-inhibited embryos were arrested in metaphase without any sign of APC/C activation with high securin levels. Our results document that PLK1 controls the onset of spindle assembly and spindle formation, and is essential for APC/C activation before anaphase onset in mouse zygotes.
Collapse
Affiliation(s)
- Vladimir Baran
- Institute of Animal Physiology,Slovak Academy of Sciences,Soltesovej 4,040 01 Kosice,Slovakia
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics,Academy of Sciences of the Czech Republic,Libechov,Czech Republic
| | - Pavol Rehak
- Institute of Animal Physiology,Slovak Academy of Sciences,Kosice,Slovakia
| | | | - Petr Solc
- Institute of Animal Physiology and Genetics,Academy of Sciences of the Czech Republic,Libechov,Czech Republic
| |
Collapse
|
23
|
Mayer A, Baran V, Sakakibara Y, Brzakova A, Ferencova I, Motlik J, Kitajima TS, Schultz RM, Solc P. DNA damage response during mouse oocyte maturation. Cell Cycle 2016; 15:546-58. [PMID: 26745237 DOI: 10.1080/15384101.2015.1128592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II. Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation.
Collapse
Affiliation(s)
- Alexandra Mayer
- a Institute of Animal Physiology and Genetics AS CR , Libechov , Czech Republic
| | - Vladimir Baran
- a Institute of Animal Physiology and Genetics AS CR , Libechov , Czech Republic.,b Institute of Animal Physiology , Kosice , Slovakia
| | - Yogo Sakakibara
- c Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology , Kobe , Japan
| | - Adela Brzakova
- a Institute of Animal Physiology and Genetics AS CR , Libechov , Czech Republic
| | - Ivana Ferencova
- a Institute of Animal Physiology and Genetics AS CR , Libechov , Czech Republic
| | - Jan Motlik
- a Institute of Animal Physiology and Genetics AS CR , Libechov , Czech Republic
| | - Tomoya S Kitajima
- c Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology , Kobe , Japan
| | - Richard M Schultz
- d Department of Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - Petr Solc
- a Institute of Animal Physiology and Genetics AS CR , Libechov , Czech Republic
| |
Collapse
|
24
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
25
|
Abstract
SummaryAurora-A kinase (AURKA), a member of the serine/threonine protein kinase family, is involved in multiple steps of mitotic progression. It regulates centrosome maturation, mitotic spindle formation, and cytokinesis. While studied extensively in somatic cells, little information is known about AURKA in the early cleavage mouse embryo with respect to acentrosomal spindle assembly. In vitro experiments in which AURKA was inactivated with specific inhibitor MLN8237 during the early stages of embryogenesis documented gradual arrest in the cleavage ability of the mouse embryo. In the AURKA-inhibited 1-cell embryos, spindle formation and anaphase onset were delayed and chromosome segregation was defective. AURKA inhibition increased apoptosis during early embryonic development. In conclusion these data suggest that AURKA is essential for the correct chromosome segregation in the first mitosis as a prerequisite for normal later development after first cleavage.
Collapse
|
26
|
Ezoe K, Yabuuchi A, Tani T, Mori C, Miki T, Takayama Y, Beyhan Z, Kato Y, Okuno T, Kobayashi T, Kato K. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation. PLoS One 2015; 10:e0126801. [PMID: 25965267 PMCID: PMC4429023 DOI: 10.1371/journal.pone.0126801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.
Collapse
Affiliation(s)
- Kenji Ezoe
- Kato Ladies Clinic, Shinjuku-ku, Tokyo, Japan
| | - Akiko Yabuuchi
- Kato Ladies Clinic, Shinjuku-ku, Tokyo, Japan
- * E-mail: (AY); (KK)
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, Japan
| | - Chiemi Mori
- Kato Ladies Clinic, Shinjuku-ku, Tokyo, Japan
| | | | | | - Zeki Beyhan
- Sher Institute for Reproductive Medicine-Las Vegas, Las Vegas, NV, United States of America
| | - Yoko Kato
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, Japan
| | | | | | - Keiichi Kato
- Kato Ladies Clinic, Shinjuku-ku, Tokyo, Japan
- * E-mail: (AY); (KK)
| |
Collapse
|
27
|
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 2015; 10:e0116783. [PMID: 25658810 PMCID: PMC4319955 DOI: 10.1371/journal.pone.0116783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Tomoya S. Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | - Alexandra Mayer
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Samalova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
28
|
Pauletto M, Milan M, de Sousa JT, Huvet A, Joaquim S, Matias D, Leitão A, Patarnello T, Bargelloni L. Insights into molecular features of Venerupis decussata oocytes: a microarray-based study. PLoS One 2014; 9:e113925. [PMID: 25470487 PMCID: PMC4254928 DOI: 10.1371/journal.pone.0113925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 11/18/2022] Open
Abstract
The production of Venerupis decussata relies on wild seed collection, which has been recently compromised due to recruitment failure and severe mortalities. To address this issue and provide an alternative source of seed, artificial spawning and larval rearing programs were developed. However, hatchery-based seed production is a relatively new industry and it is still underdeveloped. A major hurdle in the European clam seed production is the control of spawning and reproduction, which is further hindered by the impossibility of obtaining fertile gametes by gonadal "stripping", as meiosis re-initiation is constrained to a maturation process along the genital ducts. In the present study, oocytes were collected from 15 females and microarray analyses was performed to investigate gene expression profiles characterizing released and stripped ovarian oocytes. A total of 198 differentially expressed transcripts between stripped and spawned oocytes were detected. Functional analysis carried out on these transcripts highlighted the importance of a few biological processes, which are most probably implicated in the control of oocyte competence. Significant differences were observed for transcripts encoding proteins involved in meiosis progression (e.g. dual specificity phosphatase CDC25), WNT signalling (e.g. frizzled class receptor 8, wingless-type MMTV integration site family member 4), steroid synthesis (e.g. progestin and adipoQ receptor family member 3, cytochrome P450-C17), mRNA processing (e.g. zinc finger protein XlCOF28), calcium regulation (e.g. regucalcin, calmodulin) and ceramide metabolism (ceramidase B, sphingomyelinase). This study provides new information on transcriptional profiles putatively associated with ovarian egg infertility, and suggests potential mechanisms regulating early oocyte development in clams. Genes which were differentially expressed between stripped and spawned oocytes might have a pivotal role during maturation process in the gonadal duct and could be interesting targets for further functional studies aiming to make ovarian oocytes fertilizable.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
- * E-mail:
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Joana Teixeira de Sousa
- IFREMER, Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire des Sciences de l’Environnement Marin, Plouzané, France
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
| | - Arnaud Huvet
- IFREMER, Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire des Sciences de l’Environnement Marin, Plouzané, France
| | - Sandra Joaquim
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Domitília Matias
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Alexandra Leitão
- IPMA, Instituto Português do Mar e da Atmosfera, Olhão, Portugal
- Environmental Studies Center, Qatar University, Doha, Qatar
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| |
Collapse
|
29
|
Zhao X, Feng C, Yu D, Deng X, Wu D, Jin M, Wang E, Wang X, Yu B. Successive recruitment of p-CDC25B-Ser351 and p-cyclin B1-Ser123 to centrosomes contributes to the release of mouse oocytes from prophase I arrest. Dev Dyn 2014; 244:110-21. [PMID: 25349079 DOI: 10.1002/dvdy.24220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The molecular mechanism that controls the activation of Cyclin B1-CDK1 complex has been widely investigated. It is generally believed that CDC25B acts as a "starter phosphatase" of mitosis. In this study, we investigate the sequential regulation of meiotic resumption by CDC25B and Cyclin B1 in mouse oocytes. RESULTS Injection of mRNAs coding for CDC25B-Ser351A and/or Cyclin B1-Ser123A shows a more potent maturation-inhibiting ability than their respective wild type. Co-injection of mRNAs coding for phosphor-mimic CDC25B-Ser351D and Cyclin B1-Ser123D can rescue this prophase I arrest induced by CDC25B-Ser351A or Cyclin B1-Ser123A. In addition, p-CDC25B-Ser351 is co-localized at the microtubule-organizing centers (MTOCs) with Aurora kinase A (AURKA) during maturation and p-Cyclin B1-Ser123 is only captured on MTOCs shortly before germinal vesicle breakdown (GVBD). Depletion of AURKA not only resulted in metaphase I (MI) spindle defects and anaphase I (AI) abnormal chromosomes separation but also prevented the phosphorylation of CDC25B-Ser351 at centrosomes. AURKA depletion induced deficiencies of spindle assembly and progression to MII can be rescued by CDC25B-Ser351D mRNA injection. CONCLUSIONS AURKA induced phosphorylation and recruitment of CDC25B to MTOCs prior to p-Cyclin B1-Ser123, and this sequential regulation is essential for the commitment of the oocytes to resume meiosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mammalian oocytes are particularly error prone in segregating their chromosomes during their two meiotic divisions. This results in the creation of an embryo that has inherited the wrong number of chromosomes: it is aneuploid. The incidence of aneuploidy rises significantly with maternal age and so there is much interest in understanding this association and the underlying causes of aneuploidy. The spindle assembly checkpoint, a surveillance mechanism that operates in all cells to prevent chromosome mis-segregation, and the cohesive ties that hold those chromosomes together, have thus both been the subject of intensive investigation in oocytes. It is possible that a lowered sensitivity of the spindle assembly checkpoint to certain types of chromosome attachment error may endow oocytes with an innate susceptibility to aneuploidy, which is made worse by an age-related loss in the factors that hold the chromosomes together.
Collapse
Affiliation(s)
- Keith T Jones
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | | |
Collapse
|
31
|
Kang H, Hwang SC, Park YS, Oh JS. Cdc25B phosphatase participates in maintaining metaphase II arrest in mouse oocytes. Mol Cells 2013; 35:514-8. [PMID: 23661366 PMCID: PMC3887874 DOI: 10.1007/s10059-013-0029-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022] Open
Abstract
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca(2+)-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1.
Collapse
Affiliation(s)
- Hyoeun Kang
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Seok Cheol Hwang
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Yong Seok Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746,
Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746,
Korea
| |
Collapse
|
32
|
Ma JY, Ou-Yang YC, Luo YB, Wang ZB, Hou Y, Han ZM, Liu Z, Schatten H, Sun QY. Cyclin O regulates germinal vesicle breakdown in mouse oocytes. Biol Reprod 2013; 88:110. [PMID: 23515676 DOI: 10.1095/biolreprod.112.103374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is well accepted that oocyte meiotic resumption is mainly regulated by the maturation-promoting factor (MPF), which is composed of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDC2). Maturation-promoting factor activity is regulated by the expression level of CCNB1, phosphorylation of CDC2, and their germinal vesicle (GV) localization. In addition to CCNB1, cyclin O (CCNO) is highly expressed in oocytes, but its biological functions are still not clear. By employing short interfering RNA microinjection of GV-stage oocytes, we found that Ccno knockdown inhibited CDC2 (Tyr15) dephosphorylation and arrested oocytes at the GV stage. To rescue meiotic resumption, cell division cycle 25 B kinase (Cdc25b) and Ccnb1 were overexpressed in the Ccno knockdown oocytes. Unexpectedly, we found that Ccno knockdown did not affect CDC25B entry into the GV, and overexpression of CDC25B was not able to rescue resumption of oocyte meiosis. However, GV breakdown (GVBD) was significantly increased after overexpression of Ccnb1 in Ccno knockdown oocytes, indicating that GVBD block caused by cyclin O knockdown can be rescued by cyclin B1 overexpression. We thus conclude that cyclin O, as an upstream regulator of MPF, plays an important role in oocyte meiotic resumption in mouse oocytes.
Collapse
Affiliation(s)
- Jun-Yu Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Meng J, Cui C, Liu Y, Jin M, Wu D, Liu C, Wang E, Yu B. The role of 14-3-3ε interaction with phosphorylated Cdc25B at its Ser321 in the release of the mouse oocyte from prophase I arrest. PLoS One 2013; 8:e53633. [PMID: 23326474 PMCID: PMC3542359 DOI: 10.1371/journal.pone.0053633] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 12/03/2012] [Indexed: 01/13/2023] Open
Abstract
The protein kinase A (PKA)/Cdc25B pathway plays a critical role in maintaining meiotic arrest in mouse oocytes. However, the molecular mechanism underlying this interchange is not known. In this study, we assessed the role of 14-3-3ε interaction with phosphorylated Cdc25B at its Ser321 as the mouse oocyte is released from prophase I arrest. The 14-3-3ε isoform is a highly conserved protein with various regulatory roles, including maintenance of meiotic arrest. Cdc25B phosphatase is also a key cell cycle regulator. 14-3-3ε binds to Cdc25B-WT, which was abrogated when Ser321 of Cdc25B was mutated to Ala. In addition, we found that 14-3-3ε and Cdc25B were co-localized. Cdc25B was translocated from the cytoplasm to the nucleus shortly before germinal vesicle breakdown (GVBD) during the primary oocyte stage of oogenesis. However, mutation of Ser321 to Ala completely abolished the cytoplasmic localization of Cdc25B. Furthermore, oocytes co-expressing of Cdc25B-WT or Cdc25B-Ser321D and 14-3-3ε were unable to undergo GVBD. In contrast, co-expression of 14-3-3ε and Cdc25B-Ser321A induced GVBD and allowed the process to continue. Down-regulation of 14-3-3ε caused partial meiotic resumption. Taken together, these data indicate that Ser321 of Cdc25B is the specific binding site for 14-3-3ε binding, and that 14-3-3ε is the significant factor in Cdc25B regulation during meiotic resumption of GV stage.
Collapse
Affiliation(s)
- Jun Meng
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
- Center of Clinical Laboratory, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Cheng Cui
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Yanchun Liu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Minglin Jin
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Didi Wu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Chao Liu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
| | - Enhua Wang
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, China
| | - Bingzhi Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning Province, China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, China
- * E-mail:
| |
Collapse
|
34
|
Chuderland D, Dvashi Z, Kaplan-Kraicer R, Ben-Meir D, Shalgi R, Lavi S. De novo synthesis of protein phosphatase 1A, magnesium dependent, alpha isoform (PPM1A) during oocyte maturation. Cell Mol Biol Lett 2012; 17:433-45. [PMID: 22669481 PMCID: PMC6275799 DOI: 10.2478/s11658-012-0022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/28/2012] [Indexed: 11/20/2022] Open
Abstract
Oocyte maturation in mammals is a multiple-stage process that generates fertilizable oocytes. Ovarian oocytes are arrested at prophase of the first meiotic division characterized by the presence of a germinal vesicle. Towards ovulation, the oocytes resume meiosis and proceed to the second metaphase in a process known as maturation; they undergo nuclear and cytoplasmic changes that are accompanied by translation and degradation of mRNA. Protein phosphatase 1A, magnesium dependent, alpha isoform (PPM1A), which belongs to the metal-dependent serine/threonine protein phosphatase family, is highly conserved during evolution. PPM1A plays a significant role in many cellular functions such as cell cycle progression, apoptosis and cellular differentiation. It works through diverse signaling pathways, including p38 MAP kinase JNK and transforming growth factor beta (TGF-β). Herein we report that PPM1A is expressed in mouse oocytes and that its mRNA level rises during oocyte maturation. Using quantitative real-time polymerase chain reaction (qPCR) and western blot analysis, we found that PPM1A mRNA is synthesized at the beginning of the maturation process and remains elevated in the mature oocytes, promoting the accumulation of PPM1A protein. Since PPM1A function is mainly affected by its level, we propose that it might have an important role in oocyte maturation.
Collapse
Affiliation(s)
- Dana Chuderland
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Zeev Dvashi
- Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978 Israel
| | - Ruth Kaplan-Kraicer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Daniella Ben-Meir
- Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978 Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Sara Lavi
- Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978 Israel
| |
Collapse
|
35
|
Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol 2012; 356:24-30. [PMID: 21684319 DOI: 10.1016/j.mce.2011.05.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling is a fundamental pathway for the regulation of cell proliferation, survival, migration, and metabolism in a variety of physiological and pathological processes. In recent years information provided by genetically modified mouse models has revealed that PI3K signaling plays vital roles in oogenesis, folliculogenesis, ovulation, and carcinogenesis in mouse ovary. In this review, we summarize (1) the physiological function of intra-oocyte PI3K signaling in regulation of primordial follicle survival and activation; (2) intra-granulosa cell PI3K signaling in regulation of cyclic follicular recruitment and ovulation; (3) intra-oocyte PI3K signaling in regulation of meiosis resumption and early embryogenesis; and also (4) the pathological function of PI3K signaling in ovarian diseases such as premature ovarian failure, granulosa cell tumors, and ovarian surface epithelium carcinomas. This updated info hopefully will lead to a better understanding of the human ovary and provide potential therapies for treating human infertility.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden.
| | | | | | | |
Collapse
|
36
|
Chen L, Chao SB, Wang ZB, Qi ST, Zhu XL, Yang SW, Yang CR, Zhang QH, Ouyang YC, Hou Y, Schatten H, Sun QY. Checkpoint kinase 1 is essential for meiotic cell cycle regulation in mouse oocytes. Cell Cycle 2012; 11:1948-55. [PMID: 22544319 DOI: 10.4161/cc.20279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) plays key roles in all currently defined cell cycle checkpoints, but its functions in mouse oocyte meiosis remain unclear. In this study, we report the expression, localization and functions of Chk1 in mouse oocyte meiosis. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages and localized to the spindle from pro-metaphase I (pro-MI) to MII stages in mouse oocytes. Chk1 depletion facilitated the G 2/M transition while Chk1 overexpression inhibited the G 2/M transition as indicated by germinal vesicle breakdown (GVBD), through regulation of Cdh1 and Cyclin B1. Chk1 depletion did not affect meiotic cell cycle progression after GVBD, but its overexpression after GVBD activated the spindle assembly checkpoint and prevented homologous chromosome segregation, thus arresting oocytes at pro-MI or metaphase I (MI) stages. These results suggest that Chk1 is indispensable for prophase I arrest and functions in G 2/M checkpoint regulation in meiotic oocytes. Moreover, Chk1 overexpression affects meiotic spindle assembly checkpoint regulation and thus chromosome segregation.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology; Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Differentially expressed micoRNAs in human oocytes. J Assist Reprod Genet 2011; 28:559-66. [PMID: 21647640 DOI: 10.1007/s10815-011-9590-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/23/2011] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To identify differentially expressed microRNAs (miRNAs) and expression patterns of specific miRNAs during meiosis in human oocytes. MATERIALS AND METHODS To identify differentially expressed miRNAs, GV oocytes and MII oocytes matured at conventional FSH levels (5.5 ng/ml) were analyzed by miRNA microarray. Real-time RT-PCR was used to confirm the changed miRNAs. To validate the dynamic changes of miRNAs from GV to MII stages, oocytes were divided into four groups (#1-4), corresponding to GV oocytes, MI oocytes, MII oocytes matured in conventional FSH level and MII oocytes matured in high FSH level (2,000 ng/ml) respectively. RESULTS Compared with GV oocytes, MII oocytes exhibited up-regulation of 4 miRNAs (hsa-miR-193a-5p, hsa-miR-297, hsa-miR-625 and hsa-miR-602), and down-regulation of 11 miRNAs (hsa-miR-888*, hsa-miR-212, hsa-miR-662, hsa-miR-299-5p, hsa-miR-339-5p, hsa-miR-20a, hsa-miR-486-5p, hsa-miR-141*, hsa-miR-768-5p, hsa-miR-376a and hsa-miR-15a). RT-PCR analysis of hsa-miR-15a and hsa-miR-20a expression revealed concordant dynamic changes in oocytes from group 1 to group 4. CONCLUSION(S) Specific miRNAs in human oocytes had dynamic changes during meiosis. High-concentration FSH in IVM medium led to reverse effect on the expression of hsa-miR-15a and hsa-miR-20a.
Collapse
|
38
|
Pandey AN, Tripathi A, Premkumar KV, Shrivastav TG, Chaube SK. Reactive oxygen and nitrogen species during meiotic resumption from diplotene arrest in mammalian oocytes. J Cell Biochem 2011; 111:521-8. [PMID: 20568115 DOI: 10.1002/jcb.22736] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian ovary is metabolically active organ and generates by-products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H(2)O(2)) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H(2)O(2) can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)-activated protein kinase A (PRKA)-or Ca(2+)-mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase-mediated pathway that results in the reduced production of cyclic 3',5'-guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3',5'-adenosine monophosphate (cAMP)-phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H(2)O(2) level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
39
|
Ding J, Swain JE, Smith GD. Aurora kinase-A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone-H3 phosphorylation in mouse oocytes. Mol Reprod Dev 2011; 78:80-90. [PMID: 21274965 DOI: 10.1002/mrd.21272] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/14/2010] [Indexed: 01/08/2023]
Abstract
Aurora kinases (AURKs) are conserved serine/threonine kinases, crucial in regulating cell cycle events. Mammalian oocytes express all three Aurk isoforms throughout meiosis, with AurkA being the predominant isoform. Inhibition of all AURK isoforms by pharmacological means disrupts oocyte meiosis. Therefore, AurkA short interfering RNA (siRNA) was performed to silence AurkA gene expression in mouse oocytes and to further assess the function of AurkA during meiosis by analyzing subsequent loss-of-function oocyte phenotypes. Results indicated that AurkA siRNA applied in our experiments specifically knocked down both AurkA gene and protein expression without influencing transcript levels of AurkB/AurkC and other endogenous protein expression, such as GAPDH and ERK-2. AURKA was not essential for resumption of meiosis, but it potentiated oocyte meiotic progression. Knockdown of AurkA led to a significant reduction in the number of oocytes proceeding to metaphase II (MII). AurkA siRNA resulted in abnormal spindle assembly, improper localization of microtubule organizing centers (MTOCs) and misalignment of chromosomes in metaphase I (MI) oocytes. Co-immunoprecipitations demonstrated that AURKA was physically associated with phospho-Histone H3 ser10 in meiotic oocytes. AurkA siRNA dramatically reduced Histone H3 ser10 phosphorylation, but not ser28, and resulted in a significant increase of abnormal chromosome segregation in MII oocytes. In conclusion, as a predominant isoform among Aurks in oocytes, AurkA plays critical roles in mouse oocyte meiosis by regulating spindle and chromosome dynamics.
Collapse
Affiliation(s)
- Jun Ding
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
40
|
Heindryckx B, Lierman S, Combelles CM, Cuvelier CA, Gerris J, De Sutter P. Aberrant spindle structures responsible for recurrent human metaphase I oocyte arrest with attempts to induce meiosis artificially. Hum Reprod 2011; 26:791-800. [DOI: 10.1093/humrep/deq400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Xiao J, Liu C, Hou J, Cui C, Wu D, Fan H, Sun X, Meng J, Yang F, Wang E, Yu B. Ser149 is another potential PKA phosphorylation target of Cdc25B in G2/M transition of fertilized mouse eggs. J Biol Chem 2011; 286:10356-66. [PMID: 21212267 DOI: 10.1074/jbc.m110.150524] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well documented that protein kinase A (PKA) acts as a negative regulator of M phase promoting factor (MPF) by phosphorylating cell division cycle 25 homolog B (Cdc25B) in mammals. However, the molecular mechanism remains unclear. In this study, we identified PKA phosphorylation sites in vitro by LC-MS/MS analysis, including Ser(149), Ser(229), and Ser(321) of Cdc25B, and explored the role of Ser(149) in G(2)/M transition of fertilized mouse eggs. The results showed that the overexpressed Cdc25B-S149A mutant initiated efficient MPF activation by direct dephosphorylation of Cdc2-Tyr(15), resulting in triggering mitosis prior to Cdc25B-WT. Conversely, overexpression of the phosphomimic Cdc25B-S149D mutant showed no significant difference in comparison with the control groups. Furthermore, we found that Cdc25B-Ser(149) was phosphorylated at G(1) and S phases, whereas dephosphorylated at G(2) and M phases, and the phosphorylation of Cdc25B-Ser(149) was modulated by PKA in vivo. In addition, we examined endogenous and exogenous Cdc25B, which were expressed mostly in the cytoplasm at the G(1) and S phases and translocated to the nucleus at the G(2) phase. Collectively, our findings provide evidence that Ser(149) may be another potential PKA phosphorylation target of Cdc25B in G(2)/M transition of fertilized mouse eggs and Cdc25B as a direct downstream substrate of PKA in mammals, which plays important roles in the regulation of early development of mouse embryos.
Collapse
Affiliation(s)
- Jianying Xiao
- Institute of Pathology and Pathopysiology, China Medical University, Shenyang, Liaoning Province 110001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
44
|
Shen W, Ahmad F, Hockman S, Ma J, Omi H, Raghavachari N, Manganiello V. Female infertility in PDE3A(-/-) mice: polo-like kinase 1 (Plk1) may be a target of protein kinase A (PKA) and involved in meiotic arrest of oocytes from PDE3A(-/-) mice. Cell Cycle 2010; 9:4720-34. [PMID: 21099356 PMCID: PMC3048038 DOI: 10.4161/cc.9.23.14090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 01/01/2023] Open
Abstract
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A(-/-) murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A(-/-) oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A(-/-) oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A(-/-) oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A(-/-) mice.
Collapse
Affiliation(s)
- Weixing Shen
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Faiyaz Ahmad
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Steven Hockman
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - John Ma
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Hitoshi Omi
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Nalini Raghavachari
- Genomics Core Facility; Pulmonary and Vascular Medicine Branch (PVMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| | - Vincent Manganiello
- Translational Medicine Branch (TMB); National Heart, Lung and Blood Institute (NHLBI); National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
45
|
Beall S, Brenner C, Segars J. Oocyte maturation failure: a syndrome of bad eggs. Fertil Steril 2010; 94:2507-13. [PMID: 20378111 PMCID: PMC2946974 DOI: 10.1016/j.fertnstert.2010.02.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 11/29/2022]
Abstract
To show that disruption of meiotic competence results in cell cycle arrest, and the production of immature oocytes that are not capable of fertilization. Through an extensive review of animal studies and clinical case reports, we define the syndrome of oocyte maturation failure as a distinct oocyte disorder, present a classification system based on clinical parameters, and discuss the potential molecular origins for the disease.
Collapse
Affiliation(s)
- Stephanie Beall
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carol Brenner
- Program on Reproductive and Adult Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland
| | - James Segars
- Program on Reproductive and Adult Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
46
|
Abstract
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell-cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin-triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
47
|
Lane SIR, Chang HY, Jennings PC, Jones KT. The Aurora kinase inhibitor ZM447439 accelerates first meiosis in mouse oocytes by overriding the spindle assembly checkpoint. Reproduction 2010; 140:521-30. [DOI: 10.1530/rep-10-0223] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have established that when maturing mouse oocytes are continuously incubated with the Aurora inhibitor ZM447439, meiotic maturation is blocked. In this study, we observe that by altering the time of addition of the inhibitor, oocyte maturation can actually be accelerated by 1 h as measured by the timing of polar body extrusion. ZM447439 also had the ability to overcome a spindle assembly checkpoint (SAC) arrest caused by nocodazole and so rescue polar body extrusion. Consistent with the ability of the SAC to inhibit cyclin B1 degradation by blocking activation of the anaphase-promoting complex, we could also observe a rescue in cyclin B1 degradation when ZM447439 was added to nocodazole-treated oocytes. The acceleration of the first meiotic division by ZM447439, which has not been achieved previously, and its effects on the SAC are all consistent with the proposed mitotic role of Aurora B in activating the SAC. We hypothesize that Aurora kinase activity controls the SAC in meiosis I, despite differences to the mitotic cell cycle division in spindle architecture brought about by the meiotic mono-orientation of sister kinetochores.
Collapse
|
48
|
Lisková L, Susor A, Pivonková K, Sasková A, Karabínová P, Kubelka M. Detection of condensin I and II in maturing pig oocytes. Reprod Fertil Dev 2010; 22:644-52. [PMID: 20353724 DOI: 10.1071/rd09068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 10/03/2009] [Indexed: 12/30/2022] Open
Abstract
The multiprotein complexes known as condensins (I and II) are major players in chromosome dynamics in mitotic and meiotic cells. Here, we report for the first time the detection of different condensin subunits from both complexes in mammalian oocytes. Using immunoblotting analysis we examined expression levels of condensin subunits during meiotic maturation of porcine oocytes. The expression of the core subunit structural maintenance of chromosomes 2 (SMC2), identical in both condensin complexes, did not change significantly during maturation. Similarly, there was no significant change in the expression of the chromosome associated protein (CAP)-H and CAP-H2 subunits, components of condensin I and II, respectively. Conversely, the expression profiles of CAP-G, CAP-D2 (condensin I) and CAP-D3 (condensin II) were more interesting. At least two isoforms of the CAP-D2 subunit were detected, along with three isoforms of the CAP-D3 and CAP-G subunits. We suggest that this diverse migration of subunit isoforms is due to post-translational modification. Earlier, it was reported that non-SMC proteins are phosphorylated by cyclin-dependent kinase 1. In the present study, we analysed the phosphorylation status of the three subunits in oocyte extracts using alkaline phosphatase treatment and we found that at least the fastest migrating form of CAP-D3 was likely to be phosphorylated in maturing porcine oocytes. In addition, the localisation of CAP-H and CAP-H2 subunits was examined using immunofluorescence staining with specific antibodies, as well as following microinjection of their enhanced green fluorescent protein-tagged mRNA into germinal vesicle-stage oocytes. CAP-H was found in the cytoplasm, whereas CAP-H2 was localised within the nucleus.
Collapse
Affiliation(s)
- Lucie Lisková
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21 Libechov, Czech Republic
| | | | | | | | | | | |
Collapse
|
49
|
Solc P, Schultz RM, Motlik J. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod 2010; 16:654-64. [PMID: 20453035 DOI: 10.1093/molehr/gaq034] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian oocytes are arrested at prophase I until puberty when luteinizing hormone (LH) induces resumption of meiosis of follicle-enclosed oocytes. Resumption of meiosis is tightly coupled with regulating cyclin-dependent kinase 1 (CDK1) activity. Prophase I arrest depends on inhibitory phosphorylation of CDK1 and anaphase-promoting complex-(APC-CDH1)-mediated regulation of cyclin B levels. Prophase I arrest is maintained by endogenously produced cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) that in turn phosphorylates (and activates) the nuclear kinase WEE2. In addition, PKA-mediated phosphorylation of the phosphatase CDC25B results in its cytoplasmic retention. The combined effect maintains low levels of CDK1 activity that are not sufficient to initiate resumption of meiosis. LH triggers synthesis of epidermal growth factor-like factors in mural granulosa cells and leads to reduced cGMP transfer from cumulus cells to oocytes via gap junctions that couple the two cell types. cGMP inhibits oocyte phosphodiesterase 3A (PDE3A) and a decline in oocyte cGMP results in increased PDE3A activity. The ensuing decrease in oocyte cAMP triggers maturation by alleviating the aforementioned phosphorylations of WEE2 and CDC25B. As a direct consequence CDC25B translocates into the nucleus. The resulting activation of CDK1 also promotes extrusion of WEE2 from the nucleus thereby providing a positive amplification mechanism for CDK1 activation. Other kinases, e.g. protein kinase B, Aurora kinase A and polo-like kinase 1, also participate in resumption of meiosis. Mechanisms governing meiotic prophase I arrest and resumption of meiosis share common features with DNA damage-induced mitotic G2-checkpoint arrest and checkpoint recovery, respectively. These common features include CDC14B-dependent activation of APC-CDH1 in prophase I arrested oocytes or G2-arrested somatic cells, and CDC25B-dependent cell cycle resumption in both oocytes and somatic cells.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, Libechov CZ-27721, Czech Republic.
| | | | | |
Collapse
|
50
|
Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol 2010; 223:592-600. [PMID: 20232297 DOI: 10.1002/jcp.22108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meiotic cell cycle in mammalian oocytes is a dynamic process that involves several stop/go channels. The cell cycle arrest in oocyte occurs at various stages such as diplotene, metaphase-I (M-I), metaphase-II (M-II), and so called metaphase-like arrest (M-III). Leutinizing hormone surge induces meiotic resumption from diplotene arrest in follicular microenvironment by overriding several factors responsible for the maintenance of meiotic arrest. The inhibitory factors are synthesized in oocyte or in the associated follicular somatic cells and transferred to the oocyte. The major factors include hypoxanthine, cyclic adenosine 3', 5'-monophosphate, cyclic guanosine 3', 5'-monophosphate, reactive oxygen species, protein kinase A, and protein kinase C. In the presence of active protein kinases, epidermal-like growth factors are produced that activate mitogen-activated protein kinase in cumulus granulosa cells. The maturation promoting factor, cytostatic factors, and spindle assembly checkpoint proteins are also involved in that maintenance of arrest at various stages of meiotic cell cycle in mammalian oocytes. In this review, we briefly summarize the role of these factors in the maintenance of meiotic cell cycle arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Anima Tripathi
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|