1
|
Tsuruoka M, Tokizaki H, Yamasu K. Definition of the characteristic neurogenesis pattern in the neural plate by the Hes1 orthologue gene, her6, during early zebrafish development. Cells Dev 2025:204026. [PMID: 40228713 DOI: 10.1016/j.cdev.2025.204026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
During vertebrate embryonic development, a distinctive, spotty neurogenesis pattern emerges in the early neural plate, which represents proneural clusters. The determination of this pattern depends on the interaction between proneural genes and bHLH-O-type transcription factor (TF) genes, Hes/her, which suppress neurogenesis. In this study, we focused on the mouse Hes1 orthologue, her6, to understand the mechanism that controls neurodevelopmental patterns in the developing brain in zebrafish (Danio rerio). We first assessed the expression pattern of her6 in the neural plate, observing that it is consistently expressed in the entire forebrain throughout somitogenesis, including her9 expression within it. Meanwhile, the expression patterns of her6 changed dynamically in the hindbrain, in contrast to the Notch-independent her genes. The expression pattern was not significantly affected by forced NICD expression and DAPT treatment at the bud stage, showing that her6 expression is Notch-independent in the neural plate at this stage. To analyze the roles of her6, we disrupted her6 using the CRISPR/Cas9 method. The mutants thus obtained showed a deformed midbrain-hindbrain region and failed to grow to adulthood. At the bud stage, ectopic expression of neurogenesis-related genes was observed in her6 mutants in specific regions of the neural plate, where neurogenesis does not occur and which are considered neural progenitor pools (NPPs) in wild-type embryos. Of note, no other Notch-independent her genes are known to be expressed in these NPP regions. In contrast, the expression of regionalization genes in the forebrain and hindbrain was not affected in her6 mutants. These findings suggest that her6 defines the primary neurogenesis pattern in the neural plate, together with other Notch-independent her genes.
Collapse
Affiliation(s)
- Momo Tsuruoka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Hiroki Tokizaki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| |
Collapse
|
2
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Wilson KL, Joseph NI, Onweller LA, Anderson AR, Darling NJ, David-Bercholz J, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis after Stroke. Adv Healthc Mater 2024; 13:e2302081. [PMID: 38009291 PMCID: PMC11128481 DOI: 10.1002/adhm.202302081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here, two novel biomaterial formulations of granular hydrogels are developed for tissue regeneration after stroke: highly porous microgels (i.e., Cryo microgels) and microgels bound with heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials results in perfused vessels throughout the stroke core in only 10 days, in addition to increased neural progenitor cell recruitment, maintenance, and increased neuronal differentiation.
Collapse
Affiliation(s)
- Katrina L. Wilson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Neica I. Joseph
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Lauren A. Onweller
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Alexa R. Anderson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Nicole J. Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281 USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281 USA
| |
Collapse
|
4
|
Damuth DL, Cunningham DD, Silva EM. Sox21 homeologs autoregulate expression levels to control progression through neurogenesis. Genesis 2024; 62:e23612. [PMID: 39054872 PMCID: PMC11584151 DOI: 10.1002/dvg.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid Xenopus laevis, there are two homeologs of sox21, namely sox21.S and sox21.L. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in Xenopus embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing sox21.S and sox21.L mRNA levels, and decreased Sox21.S promoting increased expression of sox21.L. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in Xenopus neurogenesis.
Collapse
Affiliation(s)
- Dillon L Damuth
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Elena M Silva
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Kim Y, Lee HK, Park KY, Ismail T, Lee H, Ryu HY, Cho DH, Kwon TK, Park TJ, Kwon T, Lee HS. Actin depolymerizing factor destrin governs cell migration in neural development during Xenopus embryogenesis. Mol Cells 2024; 47:100076. [PMID: 38825188 PMCID: PMC11227013 DOI: 10.1016/j.mocell.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
The actin-based cytoskeleton is considered a fundamental driving force for cell differentiation and development. Destrin (Dstn), a member of the actin-depolymerizing factor family, regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of dstn have yet to be fully elucidated. Here, we investigated the physiological functions of dstn during early embryonic development using Xenopus laevis as an experimental model organism. dstn is expressed in anterior neural tissue and neural plate during Xenopus embryogenesis. Depleting dstn promoted morphants with short body axes and small heads. Moreover, dstn inhibition extended the neural plate region, impairing cell migration and distribution during neurulation. In addition to the neural plate, dstn knockdown perturbed neural crest cell migration. Our data suggest new insights for understanding the roles of actin dynamics in embryonic neural development, simultaneously presenting a new challenge for studying the complex networks governing cell migration involving actin dynamics.
Collapse
Affiliation(s)
- Youni Kim
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Kyung Lee
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Kyeong-Yeon Park
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Tayaba Ismail
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Hongchan Lee
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Hong-Yeoul Ryu
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Dong-Hyung Cho
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 41566, Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyun-Shik Lee
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
6
|
Wilson KL, Onweller LA, Joseph NI, David-Bercholz J, Darling NJ, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis After Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547800. [PMID: 37461490 PMCID: PMC10349963 DOI: 10.1101/2023.07.05.547800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here we developed 2 novel biomaterials for tissue regeneration after stroke, a highly porous granular hydrogel termed Cryo microgels, and heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials resulted in fully revascularized vessels throughout the stroke core in only 10 days, as well as increased neural progenitor cell migration and maintenance and increased neurons.
Collapse
|
7
|
Kotov A, Zinovyev A, Monsoro-Burq AH. scEvoNet: a gradient boosting-based method for prediction of cell state evolution. BMC Bioinformatics 2023; 24:83. [PMID: 36879200 PMCID: PMC9990205 DOI: 10.1186/s12859-023-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Exploring the function or the developmental history of cells in various organisms provides insights into a given cell type's core molecular characteristics and putative evolutionary mechanisms. Numerous computational methods now exist for analyzing single-cell data and identifying cell states. These methods mostly rely on the expression of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study the evolution of cell states, particularly how cell states change their molecular profiles. This can include novel gene activation or the novel deployment of programs already existing in other cell types, known as co-option. RESULTS Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a bipartite network connecting genes and cell states. It allows a user to obtain a set of genes shared by the characteristic signature of two cell states even between distantly-related datasets. These genes can be used as indicators of either evolutionary divergence or co-option occurring during organism or tumor evolution. Our results on cancer and developmental datasets indicate that scEvoNet is a helpful tool for the initial screening of such genes as well as for measuring cell state similarities. CONCLUSION The scEvoNet package is implemented in Python and is freely available from https://github.com/monsoro/scEvoNet . Utilizing this framework and exploring the continuum of transcriptome states between developmental stages and species will help explain cell state dynamics.
Collapse
Affiliation(s)
- Aleksandr Kotov
- Faculté Des Sciences d'Orsay, Université Paris Saclay, Orsay, France.,Institut Curie, PSL Research University, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Paris, France.,INSERM, Paris, France.,CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Paris, France
| | - Anne-Helene Monsoro-Burq
- Faculté Des Sciences d'Orsay, Université Paris Saclay, Orsay, France. .,Institut Curie, PSL Research University, Paris, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
8
|
Kelkawi AHA, Hashemzadeh H, Pashandi Z, Tiraihi T, Naderi-Manesh H. Differentiation of PC12 cell line into neuron by Valproic acid encapsulated in the stabilized core-shell liposome-chitosan Nano carriers. Int J Biol Macromol 2022; 210:252-260. [PMID: 35537586 DOI: 10.1016/j.ijbiomac.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022]
Abstract
Valproic acid (VPA) usage in high dose is teratogen with low bioavailability. Hence to improve its efficacy and reduce its side effect it was encapsulated by the Nano liposomes and stabilized by the chitosan at different concentrations. The cellular uptake, biocompatibility, loading and encapsulation efficiency of the six-different formulations (1:1, 2:1, and 4:1 of chitosan-phospholipids: VPA), PC12 differentiation to neuron cells assays (gene-expression level by qRT-PCR) were conducted for the efficacy assessment of the Nano carriers. The encapsulation efficiency (EE) results revealed that the encapsulation of the VPA corresponds to the phospholipids dose, where 2:1 formulations showed higher encapsulating rate (64.5% for non-coated and 80% for coated by chitosan). The time monitored released of VPA also showed that the chitosan could enhance its controlled release too. The cellular uptake exhibited similar uptake behavior for both the coated and the non-coated Nano carriers and cytoplasmic distribution. We witnessed no toxicity effects, at different concentrations, for both formulations. Moreover, the results indicated that the gene expression level of SOX2, NeuroD1, and Neurofilament 200 increased from 1 to 5 folds for different genes. The qRT-PCR data were confirmed by the immunofluorescence antibodies staining, where Neurofilament 68 and SOX2 cell markers were modulated during differentiation of PC12 cells. Finally, our findings suggest promising potential for the Lip-VPA-Chit Nano carrier in inducing the differentiation of PC12 into neuron for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Ali Hamad Abd Kelkawi
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran; Biology Department, College of Science, University of Kerbala, Karbala, Iraq
| | - Hadi Hashemzadeh
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Zaiddodine Pashandi
- Biophysics Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran; Biophysics Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
10
|
Patients' Stem Cells Differentiation in a 3D Environment as a Promising Experimental Tool for the Study of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23105344. [PMID: 35628156 PMCID: PMC9141644 DOI: 10.3390/ijms23105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease (NDD) that affects motor neurons, causing weakness, muscle atrophy and spasticity. Unfortunately, there are only symptomatic treatments available. Two important innovations in recent years are three-dimensional (3D) bioprinting and induced pluripotent stem cells (iPSCs). The aim of this work was to demonstrate the robustness of 3D cultures for the differentiation of stem cells for the study of ALS. We reprogrammed healthy and sALS peripheral blood mononuclear cells (PBMCs) in iPSCs and differentiated them in neural stem cells (NSCs) in 2D. NSCs were printed in 3D hydrogel-based constructs and subsequently differentiated first in motor neuron progenitors and finally in motor neurons. Every step of differentiation was tested for cell viability and characterized by confocal microscopy and RT-qPCR. Finally, we tested the electrophysiological characteristics of included NSC34. We found that NSCs maintained good viability during the 3D differentiation. Our results suggest that the hydrogel does not interfere with the correct differentiation process or with the electrophysiological features of the included cells. Such evidence confirmed that 3D bioprinting can be considered a good model for the study of ALS pathogenesis.
Collapse
|
11
|
Kanwore K, Kanwore K, Adzika GK, Abiola AA, Guo X, Kambey PA, Xia Y, Gao D. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Front Immunol 2022; 13:831636. [PMID: 35392088 PMCID: PMC8980436 DOI: 10.3389/fimmu.2022.831636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is a type of brain and spinal cord tumor that begins in glial cells that support the nervous system neurons functions. Age, radiation exposure, and family background of glioma constitute are risk factors of glioma initiation. Gliomas are categorized on a scale of four grades according to their growth rate. Grades one and two grow slowly, while grades three and four grow faster. Glioblastoma is a grade four gliomas and the deadliest due to its aggressive nature (accelerated proliferation, invasion, and migration). As such, multiple therapeutic approaches are required to improve treatment outcomes. Recently, studies have implicated the significant roles of immune cells in tumorigenesis and the progression of glioma. The energy demands of gliomas alter their microenvironment quality, thereby inducing heterogeneity and plasticity change of stromal and immune cells via the PI3K/AKT/mTOR pathway, which ultimately results in epigenetic modifications that facilitates tumor growth. PI3K is utilized by many intracellular signaling pathways ensuring the proper functioning of the cell. The activation of PI3K/AKT/mTOR regulates the plasma membrane activities, contributing to the phosphorylation reaction necessary for transcription factors activities and oncogenes hyperactivation. The pleiotropic nature of PI3K/AKT/mTOR makes its activity unpredictable during altered cellular functions. Modification of cancer cell microenvironment affects many cell types, including immune cells that are the frontline cells involved in inflammatory cascades caused by cancer cells via high cytokines synthesis. Typically, the evasion of immunosurveillance by gliomas and their resistance to treatment has been attributed to epigenetic reprogramming of immune cells in the tumor microenvironment, which results from cancer metabolism. Hence, it is speculative that impeding cancer metabolism and/or circumventing the epigenetic alteration of immune cell functions in the tumor microenvironment might enhance treatment outcomes. Herein, from an oncological and immunological perspective, this review discusses the underlying pathomechanism of cell-cell interactions enhancing glioma initiation and metabolism activation and tumor microenvironment changes that affect epigenetic modifications in immune cells. Finally, prospects for therapeutic intervention were highlighted.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Konimpo Kanwore
- Faculty Mixed of Medicine and Pharmacy, Lomé-Togo, University of Lomé, Lomé, Togo
| | | | - Ayanlaja Abdulrahman Abiola
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Guo
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Leon A, Subirana L, Magre K, Cases I, Tena JJ, Irimia M, Gomez-Skarmeta JL, Escriva H, Bertrand S. Gene regulatory networks of epidermal and neural fate choice in a chordate. Mol Biol Evol 2022; 39:6547258. [PMID: 35276009 PMCID: PMC9004418 DOI: 10.1093/molbev/msac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.
Collapse
Affiliation(s)
- Anthony Leon
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Kevin Magre
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
13
|
Shi Y, Yao G, Zhang H, Jia H, Xiong P, He M. Proteome and Transcriptome Analysis of Gonads Reveals Intersex in Gigantidas haimaensis. BMC Genomics 2022; 23:174. [PMID: 35240981 PMCID: PMC8892766 DOI: 10.1186/s12864-022-08407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sex has proven to be one of the most intriguing areas of research across evolution, development, and ecology. Intersex or sex change occurs frequently in molluscs. The deep-sea mussel Gigantidas haimaensis often dominates within Haima cold seep ecosystems, but details of their reproduction remain unknown. Herein, we conducted a combined proteomic and transcriptomic analysis of G. haimaensis gonads to provide a systematic understanding of sexual development in deep-sea bivalves. A total of 2,452 out of 42,238 genes (5.81%) and 288 out of 7,089 proteins (4.06%) were significantly differentially expressed between ovaries and testes with a false discovery rate (FDR) <0.05. Candidate genes involved in sexual development were identified; among 12 differentially expressed genes between sexes, four ovary-biased genes (β-catenin, fem-1, forkhead box L2 and membrane progestin receptor α) were expressed significantly higher in males than females. Combining histological characteristics, we speculate that the males maybe intersex undergoing sex change, and implied that these genes may be involved in the process of male testis converting into female gonads in G. haimaensis. The results suggest that this adaptation may be based on local environmental factors, sedentary lifestyles, and patchy distribution, and sex change may facilitate adaptation to a changing environment and expansion of the population. The findings provide a valuable genetic resource to better understand the mechanisms of sex change and survival strategies in deep-sea bivalves.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Gaoyou Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Huixia Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Xiong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
14
|
Pu Q, Ma Y, Zhong Y, Guo J, Gui L, Li M. Characterization and expression analysis of sox3 in medaka gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Kanwore K, Kambey PA, Guo XX, Abiola AA, Xia Y, Gao D. Extracellular and Intracellular Factors in Brain Cancer. Front Cell Dev Biol 2021; 9:699103. [PMID: 34513834 PMCID: PMC8429835 DOI: 10.3389/fcell.2021.699103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
The external and internal factors of the cell are critical to glioma initiation. Several factors and molecules have been reported to be implicated in the initiation and progression of brain cancer. However, the exact sequence of events responsible for glioma initiation is still unknown. Existing reports indicate that glioma stem cells are the cell of glioma origin. During cell division, chromosome breakage, DNA alteration increases the chance of cell genome modifications and oncogene overexpression. Although there is a high risk of gene alteration and oncogene overexpression, not everyone develops cancer. During embryogenesis, the same oncogenes that promote cancers have also been reported to be highly expressed, but this high expression which does not lead to carcinogenesis raises questions about the role of oncogenes in carcinogenesis. The resistance of cancer cells to drugs, apoptosis, and immune cells does not rely solely on oncogene overexpression but also on the defect in cell organelle machinery (mitochondria, endoplasmic reticulum, and cytoskeleton). This review discusses factors contributing to cancer; we report the dysfunction of the cell organelles and their contribution to carcinogenesis, while oncogene overexpression promotes tumorigenesis, maintenance, and progression through cell adhesion. All these factors together represent a fundamental requirement for cancer and its development.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ayanlaja Abdulrahman Abiola
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Yuikawa T, Ikeda M, Tsuda S, Saito S, Yamasu K. Involvement of Oct4-type transcription factor Pou5f3 in posterior spinal cord formation in zebrafish embryos. Dev Growth Differ 2021; 63:306-322. [PMID: 34331767 DOI: 10.1111/dgd.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.
Collapse
Affiliation(s)
- Tatsuya Yuikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Sachiko Tsuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Saito
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| |
Collapse
|
17
|
Aberrant Gcm1 expression mediates Wnt/β-catenin pathway activation in folate deficiency involved in neural tube defects. Cell Death Dis 2021; 12:234. [PMID: 33664222 PMCID: PMC7933360 DOI: 10.1038/s41419-020-03313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Wnt signaling plays a major role in early neural development. An aberrant activation in Wnt/β-catenin pathway causes defective anteroposterior patterning, which results in neural tube closure defects (NTDs). Changes in folate metabolism may participate in early embryo fate determination. We have identified that folate deficiency activated Wnt/β-catenin pathway by upregulating a chorion-specific transcription factor Gcm1. Specifically, folate deficiency promoted formation of the Gcm1/β-catenin/T-cell factor (TCF4) complex formation to regulate the Wnt targeted gene transactivation through Wnt-responsive elements. Moreover, the transcription factor Nanog upregulated Gcm1 transcription in mESCs under folate deficiency. Lastly, in NTDs mouse models and low-folate NTDs human brain samples, Gcm1 and Wnt/β-catenin targeted genes related to neural tube closure are specifically overexpressed. These results indicated that low-folate level promoted Wnt/β-catenin signaling via activating Gcm1, and thus leaded into aberrant vertebrate neural development.
Collapse
|
18
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
19
|
Salem NA, Mahnke AH, Tseng AM, Garcia CR, Jahromi HK, Geoffroy CG, Miranda RC. A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicol Teratol 2021; 83:106943. [PMID: 33221301 PMCID: PMC7856281 DOI: 10.1016/j.ntt.2020.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Prenatal ethanol exposure can result in loss of neural stem cells (NSCs) and decreased brain growth. Here, we assessed whether a noncoding RNA (ncRNA) related to the NSC self-renewal factor Oct4/Pou5f1, and transcribed from a processed pseudogene locus on mouse chromosome 9 (mOct4pg9), contributed to the loss of NSCs due to ethanol. Mouse fetal cortical-derived NSCs, cultured ex vivo to mimic the early neurogenic environment of the fetal telencephalon, expressed mOct4pg9 ncRNA at significantly higher levels than the parent Oct4/Pou5f1 mRNA. Ethanol exposure increased expression of mOct4pg9 ncRNA, but decreased expression of Oct4/Pou5f1. Gain- and loss-of-function analyses indicated that mOct4pg9 overexpression generally mimicked effects of ethanol exposure, resulting in increased proliferation and expression of transcripts associated with neural maturation. Moreover, mOct4pg9 associated with Ago2 and with miRNAs, including the anti-proliferative miR-328-3p, whose levels were reduced following mOct4pg9 overexpression. Finally, mOct4pg9 inhibited Oct4/Pou5f1-3'UTR-dependent protein translation. Consistent with these observations, data from single-cell transcriptome analysis showed that mOct4pg9-expressing progenitors lack Oct4/Pou5f1, but instead overexpress transcripts for increased mitosis, suggesting initiation of transit amplification. Collectively, these data suggest that the inhibitory effects of ethanol on brain development are explained, in part, by a novel ncRNA which promotes loss of NSC identity and maturation.
Collapse
Affiliation(s)
- Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cadianna R Garcia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hooman K Jahromi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
20
|
Ahmad A, Strohbuecker S, Scotti C, Tufarelli C, Sottile V. In Silico Identification of SOX1 Post-Translational Modifications Highlights a Shared Protein Motif. Cells 2020; 9:E2471. [PMID: 33202879 PMCID: PMC7696889 DOI: 10.3390/cells9112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022] Open
Abstract
The transcription factor SOX1 is a key regulator of neural stem cell development, acting to keep neural stem cells (NSCs) in an undifferentiated state. Postnatal expression of Sox1 is typically confined to the central nervous system (CNS), however, its expression in non-neural tissues has recently been implicated in tumorigenesis. The mechanism through which SOX1 may exert its function is not fully understood, and studies have mainly focused on changes in SOX1 expression at a transcriptional level, while its post-translational regulation remains undetermined. To investigate this, data were extracted from different publicly available databases and analysed to search for putative SOX1 post-translational modifications (PTMs). Results were compared to PTMs associated with SOX2 in order to identify potentially key PTM motifs common to these SOXB1 proteins, and mapped on SOX1 domain structural models. This approach identified several putative acetylation, phosphorylation, glycosylation and sumoylation sites within known functional domains of SOX1. In particular, a novel SOXB1 motif (xKSExSxxP) was identified within the SOX1 protein, which was also found in other unrelated proteins, most of which were transcription factors. These results also highlighted potential phospho-sumoyl switches within this SOXB1 motif identified in SOX1, which could regulate its transcriptional activity. This analysis indicates different types of PTMs within SOX1, which may influence its regulatory role as a transcription factor, by bringing changes to its DNA binding capacities and its interactions with partner proteins. These results provide new research avenues for future investigations on the mechanisms regulating SOX1 activity, which could inform its roles in the contexts of neural stem cell development and cancer.
Collapse
Affiliation(s)
- Azaz Ahmad
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
| | - Stephanie Strohbuecker
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
| | - Claudia Scotti
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy;
| | - Cristina Tufarelli
- Department of Genetics and Genome Biology/Leicester Cancer Research Centre, The University of Leicester, Leicester LE2 7LX, UK;
| | - Virginie Sottile
- School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; (A.A.); (S.S.)
- Department of Molecular Medicine, The University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
21
|
Abdullah MAA, Amini N, Yang L, Paluh JL, Wang J. Multiplexed analysis of neural cytokine signaling by a novel neural cell-cell interaction microchip. LAB ON A CHIP 2020; 20:3980-3995. [PMID: 32945325 PMCID: PMC7606659 DOI: 10.1039/d0lc00401d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multipotent neural stem cells (NSCs) are widely applied in pre-clinical and clinical trials as a cell source to promote tissue regeneration in neurodegenerative diseases. Frequently delivered as dissociated cells, aggregates or self-organized rosettes, it is unknown whether disruption of the NSC rosette morphology or method of formation affect signaling profiles of these cells that may impact uniformity of outcomes in cell therapies. Here we generate a neural cell-cell interaction microchip (NCCIM) as an in vitro platform to simultaneously track an informed panel of cytokines and co-evaluate cell morphology and biomarker expression coupled to a sandwich ELISA platform. We apply multiplex in situ tagging technology (MIST) to evaluate ten cytokines (PDGF-AA, GDNF, BDNF, IGF-1, FGF-2, IL-6, BMP-4, CNTF, β-NGF, NT-3) on microchips for EB-derived rosettes, single cell dissociated rosettes and reformed rosette neurospheres. Of the cytokines evaluated, EB-derived rosettes secrete PDGF-AA, GDNF and FGF-2 prominently, whereas this profile is temporarily lost upon dissociation to single cells and in reformed neurospheres two additional cytokines, BDNF and β-NGF, are also secreted. This study on NSC rosettes demonstrates the development, versatility and utility of the NCCIM as a sensitive multiplex detector of cytokine signaling in a high throughput and controlled microenvironment. The NCCIM is expected to provide important new information to refine cell source choices in therapies as well as to support development of informative 2D or 3D in vitro models including areas of neurodegeneration or neuroplasticity.
Collapse
Affiliation(s)
- Mohammed A. A. Abdullah
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222
| | - Nooshin Amini
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Janet L. Paluh
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
- Corresponding authors. ;
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Corresponding authors. ;
| |
Collapse
|
22
|
Liao J, Zhang Z, Jia X, Zou Z, Liang K, Wang Y. Transcriptional Regulation of Vih by Oct4 and Sox9 in Scylla paramamosain. Front Endocrinol (Lausanne) 2020; 11:650. [PMID: 33178132 PMCID: PMC7593643 DOI: 10.3389/fendo.2020.00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
Mud crab (Scylla paramamosain) is one of the most economically-important marine crabs in China. However, research on mechanisms of reproductive regulation is not sufficient. Vitellogenesis-inhibiting hormone (VIH) is a member of the crustacean hyperglycemia hormones (CHH) family, which plays an essential role in the regulation of gonadal development and maturation in crustaceans, and current studies on the regulation of Vih transcription in crabs are relatively rare. Our previous studies on the transcriptional regulation of mud crab Vih (SpVih) have proved that the binding site of Oct4/Sox9 transcription factor may be the key region for positively regulating the expression of SpVih. In this study, the electrophoretic mobility shift assay (EMSA) experiment confirmed that the nuclear protein extracted from the eyestalk could bind to the key region of SpVih promoter, and these specific bindings were dependent on the presence of Oct4/Sox9 binding sites. Two specific binding complex bands were detected in the supershift group of EMSA supershift experiments by Oct4 and Sox9 antibodies, further confirming the specific recognition of these two transcription factors on the key regulatory region of SpVih. In vitro, Oct4 and Sox9 gene overexpression vectors and SpVih core promoter fragment vector were constructed and co-transfected into HEK293T cells. As a result, SpVih activity increased with the concentration of transcription factors. In vivo, when Oct4 and Sox9 dsRNA were injected into the eyestalks of mud crab, respectively, the expression level of SpVih decreased significantly after interference with Oct4 or Sox9, and the expression level of SpVtg in the ovary and hepatopancreatic increased. Both in vitro and in vivo experiments showed that Oct4 and Sox9 had a positive regulatory effect on SpVih. The GST pull-down experiment was carried out by purified Oct4 and Sox9 proteins, and the results showed that there was an interaction between them. It was speculated that they regulated the expression of SpVih through the interaction.
Collapse
Affiliation(s)
- Jiaqian Liao
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Zhihua Zou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Keying Liang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
- *Correspondence: Yilei Wang
| |
Collapse
|
23
|
Inomata C, Yuikawa T, Nakayama-Sadakiyo Y, Kobayashi K, Ikeda M, Chiba M, Konishi C, Ishioka A, Tsuda S, Yamasu K. Involvement of an Oct4-related PouV gene, pou5f3/pou2, in neurogenesis in the early neural plate of zebrafish embryos. Dev Biol 2020; 457:30-42. [DOI: 10.1016/j.ydbio.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/03/2023]
|
24
|
Baumann V, Wiesbeck M, Breunig CT, Braun JM, Köferle A, Ninkovic J, Götz M, Stricker SH. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat Commun 2019; 10:2119. [PMID: 31073172 PMCID: PMC6509258 DOI: 10.1038/s41467-019-10146-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Master transcription factors have the ability to direct and reverse cellular identities, and consequently their genes must be subject to particular transcriptional control. However, it is unclear which molecular processes are responsible for impeding their activation and safeguarding cellular identities. Here we show that the targeting of dCas9-VP64 to the promoter of the master transcription factor Sox1 results in strong transcript and protein up-regulation in neural progenitor cells (NPCs). This gene activation restores lost neuronal differentiation potential, which substantiates the role of Sox1 as a master transcription factor. However, despite efficient transactivator binding, major proportions of progenitor cells are unresponsive to the transactivating stimulus. By combining the transactivation domain with epigenome editing we find that among a series of euchromatic processes, the removal of DNA methylation (by dCas9-Tet1) has the highest potential to increase the proportion of cells activating foreign master transcription factors and thus breaking down cell identity barriers.
Collapse
Affiliation(s)
- Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany
| | - Maximilian Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Julia M Braun
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Neurogenesis and Regeneration, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
- BioMedizinisches Centrum, Ludwig-Maximilian-Universität, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Magdalena Götz
- BioMedizinisches Centrum, Ludwig-Maximilian-Universität, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian-Universitaet, BioMedical Center, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
- BioMedizinisches Centrum, Ludwig-Maximilian-Universität, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Grosshaderner Strasse 9, Planegg-Martinsried, 82152, Germany.
| |
Collapse
|
25
|
Ando H, Sato T, Ito T, Yamamoto J, Sakamoto S, Nitta N, Asatsuma-Okumura T, Shimizu N, Mizushima R, Aoki I, Imai T, Yamaguchi Y, Berk AJ, Handa H. Cereblon Control of Zebrafish Brain Size by Regulation of Neural Stem Cell Proliferation. iScience 2019; 15:95-108. [PMID: 31055217 PMCID: PMC6501120 DOI: 10.1016/j.isci.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 01/13/2023] Open
Abstract
Thalidomide is a teratogen that causes multiple malformations in the developing baby through its interaction with cereblon (CRBN), a substrate receptor subunit of the CRL4 E3 ubiquitin ligase complex. CRBN was originally reported as a gene associated with autosomal recessive non-syndromic mild mental retardation. However, the function of CRBN during brain development remains largely unknown. Here we demonstrate that CRBN promotes brain development by facilitating the proliferation of neural stem cells (NSCs). Knockdown of CRBN in zebrafish embryos impaired brain development and led to small brains, as did treatment with thalidomide. By contrast, overexpression of CRBN resulted in enlarged brains, leading to the expansion of NSC regions and increased cell proliferation in the early brain field and an expanded expression of brain region-specific genes and neural and glial marker genes. These results demonstrate that CRBN functions in the determination of brain size by regulating the proliferation of NSCs during development. CRBN is a determinant of head and brain size during zebrafish development Thalidomide causes a reduction in head and brain size by binding to CRBN CRBN prevents apoptosis and promotes NSC proliferation during brain development crbn overexpression results in a concomitant increase in neurons and glial cells
Collapse
Affiliation(s)
- Hideki Ando
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tomomi Sato
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takumi Ito
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; PRESTO, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 Japan
| | - Junichi Yamamoto
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Nobuhiro Nitta
- National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Tomoko Asatsuma-Okumura
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Nobuyuki Shimizu
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ryota Mizushima
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences (NIRS), Chiba 263-8555, Japan
| | - Takeshi Imai
- National Center for Geriatrics and Gerontology (NCGG), Aichi 474-8511, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Arnold J Berk
- Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
26
|
Afrang N, Tavakoli R, Tasharrofi N, Alian A, Naderi Sohi A, Kabiri M, Fathi-Roudsari M, Soufizomorrod M, Rajaei F, Soleimani M, Kouhkan F. A critical role for miR-184 in the fate determination of oligodendrocytes. Stem Cell Res Ther 2019; 10:112. [PMID: 30922384 PMCID: PMC6440085 DOI: 10.1186/s13287-019-1208-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New insights on cellular and molecular aspects of both oligodendrocyte (OL) differentiation and myelin synthesis pathways are potential avenues for developing a cell-based therapy for demyelinating disorders comprising multiple sclerosis. MicroRNAs (miRNA) have broad implications in all aspects of cell biology including OL differentiation. MiR-184 has been identified as one of the most highly enriched miRNAs in oligodendrocyte progenitor cells (OPCs). However, the exact molecular mechanism of miR-184 in OL differentiation is yet to be elucidated. METHODS AND RESULTS Based on immunochemistry assays, qRT-PCR, and western blotting findings, we hypothesized that overexpression of miR-184 in either neural progenitor cells (NPCs) or embryonic mouse cortex stimulated the differentiation of OL lineage efficiently through regulating crucial developmental genes. Luciferase assays demonstrated that miR-184 directly represses positive regulators of neural and astrocyte differentiation, i.e., SOX1 and BCL2L1, respectively, including the negative regulator of myelination, LINGO1. Moreover, blocking the function of miR-184 reduced the number of committed cells to an OL lineage. CONCLUSIONS Our data highlighted that miR-184 could promote OL differentiation even in the absence of exogenous growth factors and propose a novel strategy to improve the efficacy of OL differentiation, with potential applications in cell therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Negin Afrang
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, Tehran, Iran
- School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Rezvan Tavakoli
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, Tehran, Iran
| | - Nooshin Tasharrofi
- Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Alian
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, Tehran, Iran
- Department of Chemistry, Rice University, Houston, TX 77054 USA
| | | | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mina Soufizomorrod
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farzad Rajaei
- School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Soleimani
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, Tehran, Iran
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, Tehran, Iran
| |
Collapse
|
27
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
28
|
Bioinformatics Analysis Makes Revelation to Potential Properties on Regulation and Functions of Human Sox2. Pathol Oncol Res 2019; 26:693-706. [PMID: 30712195 DOI: 10.1007/s12253-019-00581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Sex determining region Y-box 2 (Sox2) is a transcription factor that is essential for maintaining self-renewal or pluripotency of undifferentiated embryonic stem cells. The expression and distribution of Sox2 in tumor tissues have been extensively recorded, which are related to the progression and metastasis of tumor. However, a complete mechanistic understanding of Sox2 regulation and function remains to be studied. Herein, we show new potential properties of Sox2 regulation and functions from bioinformatics analysis. We use numerous algorithms to characterize the Sox2 gene promoter elements and the Sox2 protein structure, physio-chemical, localization properties and its evolutionary relationships. The expression of Sox2 is regulated by a diverse set of transcription factors and associated with the levels of methylation of CpG Islands in promoters. The structural properties of Sox2 indicate that Sox2 expresses as a stem cell marker in a variety of stem cells. Sox2 together with other transcription factors or proteins regulate the expression of downstream target genes, which makes a great difference to the biological function of stem cells. Not only stem cells, Sox2 also play an important role in tumor cells. In conclusion, this information from bioinformatics analysis will help to understand Sox2 regulation and functions better in future attempts.
Collapse
|
29
|
Liang S, Liu D, Li X, Wei M, Yu X, Li Q, Ma H, Zhang Z, Qin Z. SOX2 participates in spermatogenesis of Zhikong scallop Chlamys farreri. Sci Rep 2019; 9:76. [PMID: 30635613 PMCID: PMC6329761 DOI: 10.1038/s41598-018-35983-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/13/2018] [Indexed: 01/25/2023] Open
Abstract
As an important transcription factor, SOX2 involves in embryogenesis, maintenance of stem cells and proliferation of primordial germ cell (PGC). However, little was known about its function in mature gonads. Herein, we investigated the SOX2 gene profiles in testis of scallop, Chlamys farreri. The level of C. farreri SOX2 (Cf-SOX2) mRNA increased gradually along with gonadal development and reached the peak at mature stage, and was located in all germ cells, including spermatogonia, spermatocytes, spermatids and spermatozoa. Knockdown of Cf-SOX2 using RNAi leaded to a mass of germ cells lost, and only a few spermatogonia retained in the nearly empty testicular acini after 21 days. TUNEL assay showed that apoptosis occurred in spermatocytes. Furthermore, transcriptome profiles of the testes were compared between Cf-SOX2 knockdown and normal scallops, 131,340 unigenes were obtained and 2,067 differential expression genes (DEGs) were identified. GO and KEGG analysis showed that most DEGs were related to cell apoptosis (casp2, casp3, casp8), cell proliferation (samd9, crebzf, iqsec1) and spermatogenesis (htt, tusc3, zmynd10, nipbl, mfge8), and enriched in p53, TNF and apoptosis pathways. Our study revealed Cf-SOX2 is essential in spermatogenesis and testis development of C. farreri and provided important clues for better understanding of SOX2 regulatory mechanisms in bivalve testis.
Collapse
Affiliation(s)
- Shaoshuai Liang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,The Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaohan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huixin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
30
|
Identification and expression of transcription factor sox2 in large yellow croaker Larimichthys crocea. Theriogenology 2018; 120:123-137. [PMID: 30118947 DOI: 10.1016/j.theriogenology.2018.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022]
Abstract
As an important transcription and pluripotency factor, Sox2 plays its functions essentially in the regulation of self-renewal and pluripotency of embryonic and neural stem cells, as well as embryogenesis, organogenesis, neurogenesis and regeneration. The data is lacking on Sox2 in large yellow croaker (Larimichthys crocea) (Lc-Sox2) which is a limitation on the generation of induced pluripotent stem cells (iPSCs). In this study, Lc-sox2 was cloned by RACE (rapid amplification of cDNA ends) and analyzed by Bioinformatics. The quantitative real-time PCR (qRT-PCR) and whole mount in situ hybridization (WISH) were used to detect the expression of Lc-sox2. The full-length cDNA sequence of Lc-sox2 is 2135 bp and encodes a 322-aa (amino acids). Lc-Sox2 possesses a highly conserved HMG-box as DNA-binding domain, maintains highly conserved with vertebrates, particularly with teleosts. In tissues, Lc-sox2 was expressed with gender difference in brain and eye (female > male), in embryos, Lc-sox2 was expressed with a zygotic type that the high level expression began to appear in the gastrula stage. The spatio-temporal expression patterns of Lc-sox2 suggested the potential involvement in embryogenesis, neurogenesis, gametogenesis and adult physiological processes of large yellow croaker. Our results contributed to better understanding of Sox2 from large yellow croaker.
Collapse
|
31
|
Archer TC, Ehrenberger T, Mundt F, Gold MP, Krug K, Mah CK, Mahoney EL, Daniel CJ, LeNail A, Ramamoorthy D, Mertins P, Mani DR, Zhang H, Gillette MA, Clauser K, Noble M, Tang LC, Pierre-François J, Silterra J, Jensen J, Tamayo P, Korshunov A, Pfister SM, Kool M, Northcott PA, Sears RC, Lipton JO, Carr SA, Mesirov JP, Pomeroy SL, Fraenkel E. Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2018; 34:396-410.e8. [PMID: 30205044 PMCID: PMC6372116 DOI: 10.1016/j.ccell.2018.08.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/28/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA expression vary extensively at the post-transcriptional and post-translational levels. We identified distinct pathways associated with two subsets of SHH tumors, and found post-translational modifications of MYC that are associated with poor outcomes in group 3 tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tobias Ehrenberger
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Filip Mundt
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Karsten Krug
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clarence K Mah
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Elizabeth L Mahoney
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Alexander LeNail
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Divya Ramamoorthy
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Philipp Mertins
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D R Mani
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailei Zhang
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael A Gillette
- Harvard Medical School, Boston, MA, USA; Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Karl Clauser
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Noble
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lauren C Tang
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessica Pierre-François
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacob Silterra
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Jensen
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Pablo Tamayo
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Andrey Korshunov
- CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, Heidelberg University, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven A Carr
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA.
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ernest Fraenkel
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
32
|
Buitrago-Delgado E, Schock EN, Nordin K, LaBonne C. A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells. Dev Biol 2018; 444:50-61. [PMID: 30144418 DOI: 10.1016/j.ydbio.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 01/30/2023]
Abstract
The neural crest is a stem cell population unique to vertebrate embryos that gives rise to derivatives from multiple embryonic germ layers. The molecular underpinnings of potency that govern neural crest potential are highly conserved with that of pluripotent blastula stem cells, suggesting that neural crest cells may have evolved through retention of aspects of the pluripotency gene regulatory network (GRN). A striking difference in the regulatory factors utilized in pluripotent blastula cells and neural crest cells is the deployment of different sub-families of Sox transcription factors; SoxB1 factors play central roles in the pluripotency of naïve blastula and ES cells, whereas neural crest cells require SoxE function. Here we explore the shared and distinct activities of these factors to shed light on the role that this molecular hand-off of Sox factor activity plays in the genesis of neural crest and the lineages derived from it. Our findings provide evidence that SoxB1 and SoxE factors have both overlapping and distinct activities in regulating pluripotency and lineage restriction in the embryo. We hypothesize that SoxE factors may transiently replace SoxB1 factors to control pluripotency in neural crest cells, and then poise these cells to contribute to glial, chondrogenic and melanocyte lineages at stages when SoxB1 factors promote neuronal progenitor formation.
Collapse
Affiliation(s)
- Elsy Buitrago-Delgado
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States
| | - Elizabeth N Schock
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States
| | - Kara Nordin
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States
| | - Carole LaBonne
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
33
|
Braccioli L, Vervoort SJ, Adolfs Y, Heijnen CJ, Basak O, Pasterkamp RJ, Nijboer CH, Coffer PJ. FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports 2018; 9:1530-1545. [PMID: 29141232 PMCID: PMC5688236 DOI: 10.1016/j.stemcr.2017.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in FOXP1 have been linked to neurodevelopmental disorders including intellectual disability and autism; however, the underlying molecular mechanisms remain ill-defined. Here, we demonstrate with RNA and chromatin immunoprecipitation sequencing that FOXP1 directly regulates genes controlling neurogenesis. We show that FOXP1 is expressed in embryonic neural stem cells (NSCs), and modulation of FOXP1 expression affects both neuron and astrocyte differentiation. Using a murine model of cortical development, FOXP1-knockdown in utero was found to reduce NSC differentiation and migration during corticogenesis. Furthermore, transplantation of FOXP1-knockdown NSCs in neonatal mice after hypoxia-ischemia challenge demonstrated that FOXP1 is also required for neuronal differentiation and functionality in vivo. FOXP1 was found to repress the expression of Notch pathway genes including the Notch-ligand Jagged1, resulting in inhibition of Notch signaling. Finally, blockade of Jagged1 in FOXP1-knockdown NSCs rescued neuronal differentiation in vitro. Together, these data support a role for FOXP1 in regulating embryonic NSC differentiation by modulating Notch signaling. FOXP1 promotes astrocyte and neuronal differentiation of NSCs in vitro FOXP1 promotes neuronal differentiation of NSCs in vivo FOXP1 transcriptionally regulates pro-neural genes and represses Notch pathway genes FOXP1 promotes neuronal differentiation by limiting Jagged1 expression
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht 3508 AB, the Netherlands; Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Stephin J Vervoort
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht 3508 AB, the Netherlands.
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
34
|
Middleton RC, Rogers RG, De Couto G, Tseliou E, Luther K, Holewinski R, Soetkamp D, Van Eyk JE, Antes TJ, Marbán E. Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes. J Extracell Vesicles 2018; 7:1456888. [PMID: 29696078 PMCID: PMC5912190 DOI: 10.1080/20013078.2018.1456888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 03/17/2018] [Indexed: 01/18/2023] Open
Abstract
Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100–150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey De Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eleni Tseliou
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristin Luther
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ronald Holewinski
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Travis J Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
35
|
Guo Y, Yin J, Tang M, Yu X. Downregulation of SOX3 leads to the inhibition of the proliferation, migration and invasion of osteosarcoma cells. Int J Oncol 2018; 52:1277-1284. [PMID: 29484385 DOI: 10.3892/ijo.2018.4278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/24/2018] [Indexed: 11/05/2022] Open
Abstract
Sex determining region Y-box protein 3 (SOX3) is involved in embryonic development and tumorigenesis. However, the expression and precise role of SOX3 in osteosarcoma remain unclear. In this study, we reported that SOX3 expression was upregulated in osteosarcoma tissues compared with non-cancerous bone cyst tissues. To elucidate the cellular and molecular function of SOX3, we examined the consequences of SOX3 knockdown in osteosarcoma cells. We found that the downregulation of SOX3 inhibited the proliferation, migration and invasion of osteosarcoma cells. SOX3 downregulation also increased the cell population in the G1 phase and induced cell apoptosis. SOX3 knockdown-mediated cell cycle arrest and cell apoptosis were associated with decreased levels of Cdc25A, cyclin D1, proliferating cell nuclear antigen (PCNA) and Bcl-2, as well as an increased Bax expression. We also found that the downregulation of SOX3 decreased the expression of Snail, Twist and matrix metalloproteinase-9 (MMP-9), and increased E-cadherin expression, resulting in the inhibition of cell migration and invasion. Taken together, our data indicate that SOX3 may serve as an oncogene in osteosarcoma, and SOX3 downregulation may prove to be a novel approach for the inhibition of osteosarcoma progression.
Collapse
Affiliation(s)
- Yanjie Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jimin Yin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Mingjie Tang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xingang Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
36
|
Gou Y, Vemaraju S, Sweet EM, Kwon HJ, Riley BB. sox2 and sox3 Play unique roles in development of hair cells and neurons in the zebrafish inner ear. Dev Biol 2018; 435:73-83. [PMID: 29355523 DOI: 10.1016/j.ydbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
Formation of neural and sensory progenitors in the inner ear requires Sox2 in mammals, and in other species is thought to rely on both Sox2 and Sox3. How Sox2 and/or Sox3 promote different fates is poorly understood. Our mutant analysis in zebrafish showed that sox2 is uniquely required for sensory development while sox3 is uniquely required for neurogenesis. Moderate misexpression of sox2 during placodal stages led to development of otic vesicles with expanded sensory and reduced neurogenic domains. However, high-level misexpression of sox2 or sox3 expanded both sensory and neurogenic domains to fill the medial and lateral halves of the otic vesicle, respectively. Disruption of medial factor pax2a eliminated the ability of sox2/3 misexpression to expand sensory but not neurogenic domains. Additionally, mild misexpression of fgf8 during placodal development was sufficient to specifically expand the zone of prosensory competence. Later, cross-repression between atoh1a and neurog1 helps maintain the sensory-neural boundary, but unlike mouse this does not require Notch activity. Together, these data show that sox2 and sox3 exhibit intrinsic differences in promoting sensory vs. neural competence, but at high levels these factors can mimic each other to enhance both states. Regional cofactors like pax2a and fgf8 also modify sox2/3 functions.
Collapse
Affiliation(s)
- Yunzi Gou
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Shruti Vemaraju
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Elly M Sweet
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Hye-Joo Kwon
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Bruce B Riley
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
37
|
Ahmad A, Strohbuecker S, Tufarelli C, Sottile V. Expression of a SOX1 overlapping transcript in neural differentiation and cancer models. Cell Mol Life Sci 2017; 74:4245-4258. [PMID: 28674729 PMCID: PMC5641280 DOI: 10.1007/s00018-017-2580-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/04/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
Abstract
SOX1 is a member of the SOXB1 subgroup of transcription factors involved in early embryogenesis, CNS development and maintenance of neural stem cells. The structure and regulation of the human SOX1 locus has been less studied than that of SOX2, another member of the SOXB1 subgroup for which an overlapping transcript has been reported. Here we report that the SOX1 locus harbours a SOX1 overlapping transcript (SOX1-OT), and describe expression, splicing variants and detection of SOX1-OT in different stem and cancer cells. RT-PCR and RACE experiments were performed to detect and characterise the structure of SOX1-OT in neuroprogenitor cultures and across different cancer cell lines. SOX1-OT was found to present a complex structure including several unannotated exons, different transcript variants and at least two potential transcription start sites. SOX1-OT was found to be highly expressed in differentiated neural stem cells across different time points of differentiation, and its expression correlated with SOX1 gene expression. Concomitant expression of SOX1 and SOX1-OT was further observed in several cancer cell models. While the function of this transcript is unknown, the regulatory role reported for other lncRNAs strongly suggests a possible role for SOX1-OT in regulating SOX1 expression, as previously observed for SOX2. The elucidation of the genetic and regulatory context governing SOX1 expression will contribute to clarifying its role in stem cell differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Azaz Ahmad
- Wolfson STEM Centre, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephanie Strohbuecker
- Wolfson STEM Centre, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cristina Tufarelli
- Division of Graduate Entry Medicine & Health, School of Medicine, University of Nottingham, Derby, UK.
| | - Virginie Sottile
- Wolfson STEM Centre, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
38
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
39
|
Cyclin-Dependent Kinase-Dependent Phosphorylation of Sox2 at Serine 39 Regulates Neurogenesis. Mol Cell Biol 2017; 37:MCB.00201-17. [PMID: 28584195 DOI: 10.1128/mcb.00201-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
Sox2 is known to be important for neuron formation, but the precise mechanism through which it activates a neurogenic program and how this differs from its well-established function in self-renewal of stem cells remain elusive. In this study, we identified a highly conserved cyclin-dependent kinase (Cdk) phosphorylation site on serine 39 (S39) in Sox2. In neural stem cells (NSCs), phosphorylation of S39 enhances the ability of Sox2 to negatively regulate neuronal differentiation, while loss of phosphorylation is necessary for chromatin retention of a truncated form of Sox2 generated during neurogenesis. We further demonstrated that nonphosphorylated cleaved Sox2 specifically induces the expression of proneural genes and promotes neurogenic commitment in vivo Our present study sheds light on how the level of Cdk kinase activity directly regulates Sox2 to tip the balance between self-renewal and differentiation in NSCs.
Collapse
|
40
|
IGF-1 mediated Neurogenesis Involves a Novel RIT1/Akt/Sox2 Cascade. Sci Rep 2017; 7:3283. [PMID: 28607354 PMCID: PMC5468318 DOI: 10.1038/s41598-017-03641-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is known to have diverse effects on brain structure and function, including the promotion of stem cell proliferation and neurogenesis in the adult dentate gyrus. However, the intracellular pathways downstream of the IGF-1 receptor that contribute to these diverse physiological actions remain relatively uncharacterized. Here, we demonstrate that the Ras-related GTPase, RIT1, plays a critical role in IGF-1-dependent neurogenesis. Studies in hippocampal neuronal precursor cells (HNPCs) demonstrate that IGF-1 stimulates a RIT1-dependent increase in Sox2 levels, resulting in pro-neural gene expression and increased cellular proliferation. In this novel cascade, RIT1 stimulates Akt-dependent phosphorylation of Sox2 at T118, leading to its stabilization and transcriptional activation. When compared to wild-type HNPCs, RIT1−/− HNPCs show deficient IGF-1-dependent Akt signaling and neuronal differentiation, and accordingly, Sox2-dependent hippocampal neurogenesis is significantly blunted following IGF-1 infusion in knockout (RIT1−/−) mice. Consistent with a role for RIT1 function in the modulation of activity-dependent plasticity, exercise-mediated potentiation of hippocampal neurogenesis is also diminished in RIT1−/− mice. Taken together, these data identify the previously uncharacterized IGF1-RIT1-Akt-Sox2 signaling pathway as a key component of neurogenic niche sensing, contributing to the regulation of neural stem cell homeostasis.
Collapse
|
41
|
Exner CR, Kim AY, Mardjuki SM, Harland RM. sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis. Dev Biol 2017; 425:33-43. [DOI: 10.1016/j.ydbio.2017.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/12/2017] [Accepted: 03/16/2017] [Indexed: 12/01/2022]
|
42
|
Wang Z, Yang L, Song J, Kang L, Zhou S. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:31-40. [PMID: 28137505 DOI: 10.1016/j.ibmb.2017.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Taiman (Tai) has been recently identified as the dimerizing partner of juvenile hormone (JH) receptor, Methoprene-tolerant (Met). However, the role of Tai isoforms in transducing vitellogenic signal of JH has not been determined. In this study, we show that the migratory locust Locusta migratoria has two Tai isoforms, which differ in an INDEL-1 domain with the PRD-repeat motif rich in histidine and proline at the C-terminus. Tai-A with the INDEL-1 is expressed at levels about 50-fold higher than Tai-B without the INDEL-1 in the fat body of vitellogenic adult females. Knockdown of Tai-A but not Tai-B results in a substantial reduction of vitellogenin expression in the fat body accompanied by the arrest of ovarian development and oocyte maturation, similar to that caused by depletion of both Tai isoforms. Either Tai-A or Tai-B combined with Met can induce target gene transcription in response to JH, but Tai-A appears to mediate a significantly higher transactivation. Our data suggest that the INDEL-1 domain plays a critical role in Tai function during reproduction as Tai-A appears be more active than Tai-B in transducing the vitellogenic JH signal in L. migratoria.
Collapse
Affiliation(s)
- Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Yang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiasheng Song
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
43
|
Preda O, Nogales FF. Diagnostic Immunopathology of Germ Cell Tumors. PATHOLOGY AND BIOLOGY OF HUMAN GERM CELL TUMORS 2017:131-179. [DOI: 10.1007/978-3-662-53775-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Mir S, Cai W, Andres DA. RIT1 GTPase Regulates Sox2 Transcriptional Activity and Hippocampal Neurogenesis. J Biol Chem 2016; 292:2054-2064. [PMID: 28007959 DOI: 10.1074/jbc.m116.749770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis, the process of generating mature neurons from neuronal progenitor cells, makes critical contributions to neural circuitry and brain function in both healthy and disease states. Neurogenesis is a highly regulated process in which diverse environmental and physiological stimuli are relayed to resident neural stem cell populations to control the transcription of genes involved in self-renewal and differentiation. Understanding the molecular mechanisms governing neurogenesis is necessary for the development of translational strategies to harness this process for neuronal repair. Here we report that the Ras-related GTPase RIT1 serves to control the sequential proliferation and differentiation of adult hippocampal neural progenitor cells, with in vivo expression of active RIT1 driving robust adult neurogenesis. Gene expression profiling analysis demonstrates increased expression of a specific set of transcription factors known to govern adult neurogenesis in response to active RIT1 expression in the hippocampus, including sex-determining region Y-related HMG box 2 (Sox2), a well established regulator of stem cell self-renewal and neurogenesis. In adult hippocampal neuronal precursor cells, RIT1 controls an Akt-dependent signaling cascade, resulting in the stabilization and transcriptional activation of phosphorylated Sox2. This study supports a role for RIT1 in relaying niche-derived signals to neural/stem progenitor cells to control transcription of genes involved in self-renewal and differentiation.
Collapse
Affiliation(s)
- Sajad Mir
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509 and
| | - Weikang Cai
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509 and.,the Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Douglas A Andres
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509 and
| |
Collapse
|
45
|
Rad A, Esmaeili Dizghandi S, Abbaszadegan MR, Taghechian N, Najafi M, Forghanifard MM. SOX1 is correlated to stemness state regulator SALL4 through progression and invasiveness of esophageal squamous cell carcinoma. Gene 2016; 594:171-175. [DOI: 10.1016/j.gene.2016.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
|
46
|
Fu L, Shi YB. The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 2016; 63:58-67. [PMID: 27567710 DOI: 10.1016/j.semcdb.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022]
Abstract
The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, United States.
| |
Collapse
|
47
|
Mamrut S, Avidan N, Staun-Ram E, Ginzburg E, Truffault F, Berrih-Aknin S, Miller A. Integrative analysis of methylome and transcriptome in human blood identifies extensive sex- and immune cell-specific differentially methylated regions. Epigenetics 2016; 10:943-57. [PMID: 26291385 DOI: 10.1080/15592294.2015.1084462] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between DNA methylation and gene expression is complex and elusive. To further elucidate these relations, we performed an integrative analysis of the methylome and transcriptome of 4 circulating immune cell subsets (B cells, monocytes, CD4(+), and CD8(+) T cells) from healthy females. Additionally, in light of the known sex bias in the prevalence of several immune-mediated diseases, the female datasets were compared with similar public available male data sets. Immune cell-specific differentially methylated regions (DMRs) were found to be highly similar between sexes, with an average correlation coefficient of 0.82; however, numerous sex-specific DMRs, shared by the cell subsets, were identified, mainly on autosomal chromosomes. This provides a list of highly interesting candidate genes to be studied in disorders with sexual dimorphism, such as autoimmune diseases. Immune cell-specific DMRs were mainly located in the gene body and intergenic region, distant from CpG islands but overlapping with enhancer elements, indicating that distal regulatory elements are important in immune cell specificity. In contrast, sex-specific DMRs were overrepresented in CpG islands, suggesting that the epigenetic regulatory mechanisms of sex and immune cell specificity may differ. Both positive and, more frequently, negative correlations between subset-specific expression and methylation were observed, and cell-specific DMRs of both interactions were associated with similar biological pathways, while sex-specific DMRs were linked to networks of early development or estrogen receptor and immune-related molecules. Our findings of immune cell- and sex-specific methylome and transcriptome profiles provide novel insight on their complex regulatory interactions and may particularly contribute to research of immune-mediated diseases.
Collapse
Affiliation(s)
- Shimrat Mamrut
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Nili Avidan
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Elsebeth Staun-Ram
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Elizabeta Ginzburg
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel
| | - Frederique Truffault
- b INSERM - U974/CNRS UMR7215//UPMC UM76/AIM; Institute of Myology Pitie-Salpetriere ; Paris , France
| | - Sonia Berrih-Aknin
- b INSERM - U974/CNRS UMR7215//UPMC UM76/AIM; Institute of Myology Pitie-Salpetriere ; Paris , France
| | - Ariel Miller
- a Rappaport Faculty of Medicine; Technion-Israel Institute of Technology ; Haifa , Israel.,c Division of Neuroimmunology; Lady Davis Carmel Medical Center ; Haifa , Israel
| |
Collapse
|
48
|
Xiao X, Li N, Zhang D, Yang B, Guo H, Li Y. Generation of Induced Pluripotent Stem Cells with Substitutes for Yamanaka's Four Transcription Factors. Cell Reprogram 2016; 18:281-297. [PMID: 27696909 DOI: 10.1089/cell.2016.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) share many characteristics with embryonic stem cells, but lack ethical controversy. They provide vast opportunities for disease modeling, pathogenesis understanding, therapeutic drug development, toxicology, organ synthesis, and treatment of degenerative disease. However, this procedure also has many potential challenges, including a slow generation time, low efficiency, partially reprogrammed colonies, as well as somatic coding mutations in the genome. Pioneered by Shinya Yamanaka's team in 2006, iPSCs were first generated by introducing four transcription factors: Oct 4, Sox 2, Klf 4, and c-Myc (OSKM). Of those factors, Klf 4 and c-Myc are oncogenes, which are potentially a tumor risk. Therefore, to avoid problems such as tumorigenesis and low throughput, one of the key strategies has been to use other methods, including members of the same subgroup of transcription factors, activators or inhibitors of signaling pathways, microRNAs, epigenetic modifiers, or even differentiation-associated factors, to functionally replace the reprogramming transcription factors. In this study, we will mainly focus on the advances in the generation of iPSCs with substitutes for OSKM. The identification and combination of novel proteins or chemicals, particularly small molecules, to induce pluripotency will provide useful tools to discover the molecular mechanisms governing reprogramming and ultimately lead to the development of new iPSC-based therapeutics for future clinical applications.
Collapse
Affiliation(s)
- Xiong Xiao
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China .,2 Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Nan Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Dapeng Zhang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Bo Yang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Hongmei Guo
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Yuemin Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| |
Collapse
|
49
|
Cheng M, Jin X, Mu L, Wang F, Li W, Zhong X, Liu X, Shen W, Liu Y, Zhou Y. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. J Neurosci Res 2016; 94:814-24. [PMID: 27317429 DOI: 10.1002/jnr.23776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022]
Abstract
In utero electroporation (IUE) is commonly used to study cortical development of cerebrum by downregulating or overexpressing genes of interest in neural progenitor cells (NPCs) of small mammals. However, exogenous plasmids are lost or diluted over time. Furthermore, gene knockdown based on short-hairpin RNAs may exert nonspecific effects that lead to aberrant neuronal migration. Genomic engineering by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has great research and therapeutic potentials. Here we integrate the CRISPR/Cas9 components into the piggyBac (PB) transposon system (the CRISPR/Cas9-PB toolkit) for cortical IUEs. The mouse Sry-related HMG box-2 (Sox2) gene was selected as the target for its application. Most transduced cortical NPCs were depleted of SOX2 protein as early as 3 days post-IUE, whereas expressions of SOX1 and PAX6 remained intact. Furthermore, both the WT Cas9 and the D10A nickase mutant Cas9n showed comparable knockout efficiency. Transduced cortical cells were purified with fluorescence-activated cell sorting, and effective gene editing at the Sox2 loci was confirmed. Thus, application of the CRISPR/Cas9-PB toolkit in IUE is a promising strategy to study gene functions in cortical NPCs and their progeny. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Man Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xubin Jin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Mu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fangyu Wang
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Li
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoling Zhong
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Liu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenchen Shen
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Préau L, Le Blay K, Saint Paul E, Morvan-Dubois G, Demeneix BA. Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs. Mol Cell Endocrinol 2016; 420:138-51. [PMID: 26628040 DOI: 10.1016/j.mce.2015.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/21/2015] [Accepted: 11/22/2015] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs in neural stem cell (NSC) niches where slow cycling stem cells give rise to faster cycling progenitors. In the adult mouse NSC niche thyroid hormone, T3, and its receptor TRα act as a neurogenic switch promoting progenitor cell cycle completion and neuronal differentiation. Little is known about whether and how T3 controls proliferation of differentially cycling cells during xenopus neurogenesis. To address this question, we first used Sox3 as a marker of stem cell and progenitor populations and then applied pulse-chase EdU/IdU incorporation experiments to identify Sox3-expressing slow cycling (NSC) and fast cycling progenitor cells. We focused on the lateral ventricle of Xenopus laevis and two distinct stages of development: late embryonic development (pre-metamorphic) and juvenile frogs (post-metamorphic). These stages were selected for their relatively stable thyroid hormone availability, either side of the major dynamic phase represented by metamorphosis. TRα expression was found in both pre and post-metamorphic neurogenic regions. However, exogenous T3 treatment only increased proliferation of the fast cycling Sox3+ cell population in post-metamorphic juveniles, having no detectable effect on proliferation in pre-metamorphic tadpoles. We hypothesised that the resistance of proliferative cells to exogenous T3 in pre-metamorphic tadpoles could be related to T3 inactivation by the inactivating Deiodinase 3 enzyme. Expression of dio3 was widespread in the tadpole neurogenic niche, but not in the juvenile neurogenic niche. Use of a T3-reporter transgenic line showed that in juveniles, T3 had a direct transcriptional effect on rapid cycling progenitors. Thus, the fast cycling progenitor cells in the neurogenic niche of tadpoles and juvenile frogs respond differentially to T3 as a function of developmental stage.
Collapse
Affiliation(s)
- L Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - K Le Blay
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - E Saint Paul
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - G Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - B A Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France.
| |
Collapse
|