1
|
Chung PH, Lin FH, Liu IH. Enhancing intrinsic TGF-β signaling via heparan sulfate glycosaminoglycan regulation to promote mesenchymal stem cell capabilities and chondrogenesis for cartilage repair. Int J Biol Macromol 2024; 282:137242. [PMID: 39505166 DOI: 10.1016/j.ijbiomac.2024.137242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis burdens patients due to the limited regenerative capacity of chondrocytes. Traditional cartilage repair often falls short, necessitating innovative approaches. Mesenchymal stem cells (MSCs) show promise for regeneration. Heparan sulfate glycosaminoglycans (HS-GAGs) regulate cellular functions, making them a target for cartilage repair. This study highlights how Heparinase III (HepIII) cleaves intact HS-GAGs in bone marrow-derived MSCs (BM-MSCs), enhancing their capabilities and specifically promoting chondrogenesis. HepIII-treated BM-MSCs cultured in a hanging drop device for three days, significantly increased cell number and aggregation into a cell sphere with early chondrogenesis. HepIII promoted BM-MSCs toward chondrogenesis, increasing type II collagen, intact HS-GAGs, and sulfated GAG content, while upregulating chondrogenic and heparan sulfate proteoglycan genes. Treatment with the TGF-β inhibitor (SB-431542) in HepIII-treated BM-MSCs demonstrated enhanced intrinsic transforming growth factor-β (TGF-β) signaling and fibronectin expression. This approach also boosted BM-MSC self-renewal, immunosuppressive potential, and modified acetylated histone signatures, offering a cost-effective strategy for cartilage repair by addressing inflammation, metabolic changes, and the high costs of traditional TGF-β methods. From the results, HepIII-treated BM-MSCs show potential for use in combination with other biopolymers as injectable gels to improve cartilage repair in osteoarthritis patients in the near future.
Collapse
Affiliation(s)
- Pei-Hsuan Chung
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 106, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli county 350, Taiwan.
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Kwok B, Chandrasekaran P, Wang C, He L, Mauck RL, Dyment NA, Koyama E, Han L. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus. Acta Biomater 2023; 168:235-251. [PMID: 37414114 PMCID: PMC10529006 DOI: 10.1016/j.actbio.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Understanding early patterning events in the extracellular matrix (ECM) formation can provide a blueprint for regenerative strategies to better recapitulate the function of native tissues. Currently, there is little knowledge on the initial, incipient ECM of articular cartilage and meniscus, two load-bearing counterparts of the knee joint. This study elucidated distinctive traits of their developing ECMs by studying the composition and biomechanics of these two tissues in mice from mid-gestation (embryonic day 15.5) to neo-natal (post-natal day 7) stages. We show that articular cartilage initiates with the formation of a pericellular matrix (PCM)-like primitive matrix, followed by the separation into distinct PCM and territorial/interterritorial (T/IT)-ECM domains, and then, further expansion of the T/IT-ECM through maturity. In this process, the primitive matrix undergoes a rapid, exponential stiffening, with a daily modulus increase rate of 35.7% [31.9 39.6]% (mean [95% CI]). Meanwhile, the matrix becomes more heterogeneous in the spatial distribution of properties, with concurrent exponential increases in the standard deviation of micromodulus and the slope correlating local micromodulus with the distance from cell surface. In comparison to articular cartilage, the primitive matrix of meniscus also exhibits exponential stiffening and an increase in heterogeneity, albeit with a much slower daily stiffening rate of 19.8% [14.9 24.9]% and a delayed separation of PCM and T/IT-ECM. These contrasts underscore distinct development paths of hyaline versus fibrocartilage. Collectively, these findings provide new insights into how knee joint tissues form to better guide cell- and biomaterial-based repair of articular cartilage, meniscus and potentially other load-bearing cartilaginous tissues. STATEMENT OF SIGNIFICANCE: Successful regeneration of articular cartilage and meniscus is challenged by incomplete knowledge of early events that drive the initial formation of the tissues' extracellular matrix in vivo. This study shows that articular cartilage initiates with a pericellular matrix (PCM)-like primitive matrix during embryonic development. This primitive matrix then separates into distinct PCM and territorial/interterritorial domains, undergoes an exponential daily stiffening of ≈36% and an increase in micromechanical heterogeneity. At this early stage, the meniscus primitive matrix shows differential molecular traits and exhibits a slower daily stiffening of ≈20%, underscoring distinct matrix development between these two tissues. Our findings thus establish a new blueprint to guide the design of regenerative strategies to recapitulate the key developmental steps in vivo.
Collapse
Affiliation(s)
- Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Lan He
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
4
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
5
|
Kroon T, Bhadouria N, Niziolek P, Edwards D, Choi R, Clinkenbeard EL, Robling A, Holguin N. Suppression of Sost/Sclerostin and Dickkopf-1 Augment Intervertebral Disc Structure in Mice. J Bone Miner Res 2022; 37:1156-1169. [PMID: 35278242 PMCID: PMC9320845 DOI: 10.1002/jbmr.4546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of low back pain, characterized by accelerated extracellular matrix breakdown and IVD height loss, but there is no approved pharmacological therapeutic. Deletion of Wnt ligand competitor Lrp5 induces IVD degeneration, suggesting that Wnt signaling is essential for IVD homeostasis. Therefore, the IVD may respond to neutralization of Wnt ligand competitors sost(gene)/sclerostin(protein) and/or dickkopf-1 (dkk1). Anti-sclerostin antibody (scl-Ab) is an FDA-approved bone therapeutic that activates Wnt signaling. We aimed to (i) determine if pharmacological neutralization of sclerostin, dkk1, or their combination would stimulate Wnt signaling and augment IVD structure and (ii) determine the prolonged adaptation of the IVD to global, persistent deletion of sost. Nine-week-old C57Bl/6J female mice (n = 6-7/group) were subcutaneously injected 2×/week for 5.5 weeks with scl-Ab (25 mg/kg), dkk1-Ab (25 mg/kg), 3:1 scl-Ab/dkk1-Ab (18.75:6.25 mg/kg), or vehicle (veh). Separately, IVD of sost KO and wild-type (WT) mice (n = 8/group) were harvested at 16 weeks of age. First, compared with vehicle, injection of scl-Ab, dkk1-Ab, and 3:1 scl-Ab/dkk1-Ab similarly increased lumbar IVD height and β-catenin gene expression. Despite these similarities, only injection of scl-Ab alone strengthened IVD mechanical properties and decreased heat shock protein gene expressions. Genetically and compared with WT, sost KO enlarged IVD height, increased proteoglycan staining, and imbibed IVD hydration. Notably, persistent deletion of sost was compensated by upregulation of dkk1, which consequently reduced the cell nuclear fraction for Wnt signaling co-transcription factor β-catenin in the IVD. Lastly, RNA-sequencing pathway analysis confirmed the compensatory suppression of Wnt signaling and revealed a reduction of cellular stress-related pathways. Together, suppression of sost/sclerostin or dkk1 each augmented IVD structure by stimulating Wnt signaling, but scl-Ab outperformed dkk1-Ab in strengthening the IVD. Ultimately, postmenopausal women prescribed scl-Ab injections to prevent vertebral fracture may also benefit from a restoration of IVD height and health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tori Kroon
- Department of Biomedical EngineeringIUPUIIndianapolisINUSA
| | - Neharika Bhadouria
- Department of Mechanical EngineeringPurdue UniversityWest LafayetteINUSA
| | | | - Daniel Edwards
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
| | - Roy Choi
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
| | | | - Alexander Robling
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
| | - Nilsson Holguin
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
- Department of Mechanical and Energy EngineeringIUPUIIndianapolisINUSA
| |
Collapse
|
6
|
Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol 2022; 10:841831. [PMID: 35359439 PMCID: PMC8963184 DOI: 10.3389/fcell.2022.841831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is the fibrocartilaginous joint located between each vertebral body that confers flexibility and weight bearing capabilities to the spine. The IVD plays an important role in absorbing shock and stress applied to the spine, which helps to protect not only the vertebral bones, but also the brain and the rest of the central nervous system. Degeneration of the IVD is correlated with back pain, which can be debilitating and severely affects quality of life. Indeed, back pain results in substantial socioeconomic losses and healthcare costs globally each year, with about 85% of the world population experiencing back pain at some point in their lifetimes. Currently, therapeutic strategies for treating IVD degeneration are limited, and as such, there is great interest in advancing treatments for back pain. Ideally, treatments for back pain would restore native structure and thereby function to the degenerated IVD. However, the complex developmental origin and tissue composition of the IVD along with the avascular nature of the mature disc makes regeneration of the IVD a uniquely challenging task. Investigators across the field of IVD research have been working to elucidate the mechanisms behind the formation of this multifaceted structure, which may identify new therapeutic targets and inform development of novel regenerative strategies. This review summarizes current knowledge base on IVD development, degeneration, and regenerative strategies taken from traditional genetic approaches and omics studies and discusses the future landscape of investigations in IVD research and advancement of clinical therapies.
Collapse
Affiliation(s)
- Tara T. Hickman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sudiksha Rathan-Kumar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Sun H. Peck,
| |
Collapse
|
7
|
Mashima R, Okuyama T, Ohira M. Physiology and Pathophysiology of Heparan Sulfate in Animal Models: Its Biosynthesis and Degradation. Int J Mol Sci 2022; 23:1963. [PMID: 35216081 PMCID: PMC8876164 DOI: 10.3390/ijms23041963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Heparan sulfate (HS) is a type of glycosaminoglycan that plays a key role in a variety of biological functions in neurology, skeletal development, immunology, and tumor metastasis. Biosynthesis of HS is initiated by a link of xylose to Ser residue of HS proteoglycans, followed by the formation of a linker tetrasaccharide. Then, an extension reaction of HS disaccharide occurs through polymerization of many repetitive units consisting of iduronic acid and N-acetylglucosamine. Subsequently, several modification reactions take place to complete the maturation of HS. The sulfation positions of N-, 2-O-, 6-O-, and 3-O- are all mediated by specific enzymes that may have multiple isozymes. C5-epimerization is facilitated by the epimerase enzyme that converts glucuronic acid to iduronic acid. Once these enzymatic reactions have been completed, the desulfation reaction further modifies HS. Apart from HS biosynthesis, the degradation of HS is largely mediated by the lysosome, an intracellular organelle with acidic pH. Mucopolysaccharidosis is a genetic disorder characterized by an accumulation of glycosaminoglycans in the body associated with neuronal, skeletal, and visceral disorders. Genetically modified animal models have significantly contributed to the understanding of the in vivo role of these enzymes. Their role and potential link to diseases are also discussed.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; (T.O.); (M.O.)
| | | | | |
Collapse
|
8
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
10
|
Wu ZL, Xie QQ, Liu TC, Yang X, Zhang GZ, Zhang HH. Role of the Wnt pathway in the formation, development, and degeneration of intervertebral discs. Pathol Res Pract 2021; 220:153366. [PMID: 33647863 DOI: 10.1016/j.prp.2021.153366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IVDD) is an age-related degenerative disease that is the main cause of low back pain. It seriously affects the quality of life of patients and places a heavy economic burden on families and society. The Wnt pathway plays an important role in the growth, development, and degeneration of intervertebral discs (IVDs). In the embryonic stage, the Wnt pathway participates in the growth and development of IVD by promoting the transformation of progenitor cells into notochord cells and the extension of the notochord. However, the activation of the Wnt pathway after birth promotes IVD cell senescence, apoptosis, and degradation of the extracellular matrix and induces the production of inflammatory factors, thereby accelerating the IVDD process. This article reviews the relationship between the Wnt pathway and IVD, emphasizing its influence on IVD growth, development, and degeneration. Targeting this pathway may become an effective strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Tai-Cong Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Xing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China.
| |
Collapse
|
11
|
Kawashima K, Ogawa H, Komura S, Ishihara T, Yamaguchi Y, Akiyama H, Matsumoto K. Heparan sulfate deficiency leads to hypertrophic chondrocytes by increasing bone morphogenetic protein signaling. Osteoarthritis Cartilage 2020; 28:1459-1470. [PMID: 32818603 PMCID: PMC7606622 DOI: 10.1016/j.joca.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exostosin-1 (EXT1) and EXT2 are the major genetic etiologies of multiple hereditary exostoses and are essential for heparan sulfate (HS) biosynthesis. Previous studies investigating HS in several mouse models of multiple hereditary exostoses have reported that aberrant bone morphogenetic protein (BMP) signaling promotes osteochondroma formation in Ext1-deficient mice. This study examined the mechanism underlying the effects of HS deficiency on BMP/Smad signaling in articular cartilage in a cartilage-specific Ext-/- mouse model. METHOD We generated mice with a conditional Ext1 knockout in cartilage tissue (Ext1-cKO mice) using Prg4-Cre transgenic mice. Structural cartilage alterations were histologically evaluated and phospho-Smad1/5/9 (pSmad1/5/9) expression in mouse chondrocytes was analyzed. The effect of pharmacological intervention of BMP signaling using a specific inhibitor was assessed in the articular cartilage of Ext1-cKO mice. RESULTS Hypertrophic chondrocytes were significantly more abundant (P = 0.021) and cartilage thickness was greater in Ext1-cKO mice at 3 months postnatal than in control littermates (P = 0.036 for femur; and P < 0.001 for tibia). However, osteoarthritis did not spontaneously occur before the 1-year follow-up. matrix metalloproteinase (MMP)-13 and adamalysin-like metalloproteinases with thrombospondin motifs(ADAMTS)-5 were upregulated in hypertrophic chondrocytes of transgenic mice. Immunostaining and western blotting revealed that pSmad1/5/9-positive chondrocytes were more abundant in the articular cartilage of Ext1-cKO mice than in control littermates. Furthermore, the BMP inhibitor significantly decreased the number of hypertrophic chondrocytes in Ext1-cKO mice (P = 0.007). CONCLUSIONS HS deficiency in articular chondrocytes causes chondrocyte hypertrophy, wherein upregulated BMP/Smad signaling partially contributes to this phenotype. HS might play an important role in maintaining the cartilaginous matrix by regulating BMP signaling.
Collapse
Affiliation(s)
- K. Kawashima
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - H. Ogawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - S. Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - T. Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, 1-1 Yanagido, Gifu, Japan
| | - Y. Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H. Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - K. Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan,Address correspondence and reprint requests to: K. Matsumoto, Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan. Tel.: 81-58-230-6333; Fax: 81-58-230-6334. (K. Matsumoto)
| |
Collapse
|
12
|
Silva MJ, Holguin N. Aging aggravates intervertebral disc degeneration by regulating transcription factors toward chondrogenesis. FASEB J 2019; 34:1970-1982. [PMID: 31909538 DOI: 10.1096/fj.201902109r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Osterix is a critical transcription factor of mesenchymal stem cell fate, where its loss or loss of Wnt signaling diverts differentiation to a chondrocytic lineage. Intervertebral disc (IVD) degeneration activates the differentiation of prehypertrophic chondrocyte-like cells and inactivates Wnt signaling, but its interactive role with osterix is unclear. First, compared to young-adult (5 mo), mechanical compression of old (18 mo) IVD induced greater IVD degeneration. Aging (5 vs 12 mo) and/or compression reduced the transcription of osterix and notochordal marker T by 40-75%. Compression elevated the transcription of hypertrophic chondrocyte marker MMP13 and pre-osterix transcription factor RUNX2, but less so in 12 mo IVD. Next, using an Ai9/td reporter and immunohistochemical staining, annulus fibrosus and nucleus pulposus cells of young-adult IVD expressed osterix, but aging and compression reduced its expression. Lastly, in vivo LRP5-deficiency in osterix-expressing cells inactivated Wnt signaling in the nucleus pulposus by 95%, degenerated the IVD to levels similar to aging and compression, reduced the biomechanical properties by 45-70%, and reduced the transcription of osterix, notochordal markers and chondrocytic markers by 60-80%. Overall, these data indicate that age-related inactivation of Wnt signaling in osterix-expressing cells may limit regeneration by depleting the progenitors and attenuating the expansion of chondrocyte-like cells.
Collapse
Affiliation(s)
- Matthew J Silva
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Nilsson Holguin
- Department of Mechanical and Energy Engineering, Indiana Center for Musculoskeletal Health, IUPUI, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, IUPUI, Indianapolis, IN, USA
| |
Collapse
|
13
|
In-Vivo Nucleus Pulposus-Specific Regulation of Adult Murine Intervertebral Disc Degeneration via Wnt/Beta-Catenin Signaling. Sci Rep 2018; 8:11191. [PMID: 30046041 PMCID: PMC6060169 DOI: 10.1038/s41598-018-29352-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
B-Catenin, transcription factor of Wnt signaling, is promoted in patients with intervertebral disc (IVD) degeneration, but Wnt signaling decreases with aging. We hypothesize that IVD degeneration is associated with decreased Wnt signaling despite more b-Catenin. Chronic compression of tail IVDs of young-adult and aged Wnt-reporter (TOPGAL) animals initiated an age-related cascade of degenerative-like changes, which included reduced Wnt ligand expression and Wnt signaling in nucleus pulposus cells, despite elevation of b-Catenin protein and gene expression. To determine the effect of upregulated and downregulated Wnt signaling in adult discs, b-Catenin in the nucleus pulposus was stabilized (Shh-CreErT2/b-Cateninfl(Ex3)/fl(Ex3), cACT) or knocked out (Shh-CreErT2/b-Cateninfl/fl, cKO). cACT discs had promoted expression of Wnt-targets and -ligands, brachyury, extracellular matrix production and 34% greater compressive stiffness than WT (b-Cateninfl(Ex3)/fl(Ex3)) discs, but 50% less tensile stiffness. By contrast, knockout reversed the cACT phenotype: less protein expression of b-catenin in the nucleus pulposus, less expression of brachyury, heightened expression of extracellular matrix breakdown and 46% less compressive stiffness than wild-type (b-Cateninfl/fl,WT) discs. These data suggest that intervertebral disc degeneration is associated with loss of Wnt signaling and that the concomitant increase in b-catenin is a regenerative response, potentially offering a therapeutic approach to degeneration.
Collapse
|
14
|
Abstract
There is a consensus that there is no overt anterior joint capsule in the knee. However, other anterior structures act in lieu of a joint capsule: the quadriceps tendon and patellar retinacular fibres. In the absence of a capsule, the synovium forms the suprapatellar pouch. Other synovial structures, the plicae, are more controversial. They are often described as embryonic remnants with no function, despite surrounding the patella. We aimed to identify plical anatomy and histology on cadaveric dissection and to examine their embryology using the human virtual embryo website. Plicae were identified by two independent observers. Plical histology was examined using a panel of stains: H&E, Ab H&E, EVG and MSB trichrome. Embryonic knees were examined from Carnegie stages 20-23. Each knee had a suprapatellar plica and mediopatellar plica (MPP). The lateropatellar plica (LPP) appeared as a band in 5/10 cadavers, and as a ridge in the remainder. The overall impression, consistent across all specimens, was that the plicae formed a continuous band of synovial tissue around the proximal three-quarters of the patella. The infrapatellar fat pad (IFP) surrounded the remainder. Histologically, the plicae and IFP consisted of three layers (in order): a synovial layer, an undulated collagenous layer, and an adipose or areoloadipose layer. The subsynovial collagenisation is normally associated with the synovio-capsular boundary. Embryologically, plicae were not seen in either knee at any level for any given Carnegie stage. We suggest that plicae, along with the dynamic IFP, provide internal support to the patella mirroring the external support of retinacular fibres. Thus, the plicae complete the tissue complex acting in lieu of an anterior joint capsule. Evidence of plical functionality lends credence to the theory that the plicae are anatomical structures not functionless embryonic remnants.
Collapse
Affiliation(s)
| | - Michelle Spear
- Centre for Learning Anatomical SciencesUniversity of BristolBristolUK
| |
Collapse
|
15
|
Thomas JT, Eric Dollins D, Andrykovich KR, Chu T, Stultz BG, Hursh DA, Moos M. SMOC can act as both an antagonist and an expander of BMP signaling. eLife 2017; 6:e17935. [PMID: 28323621 PMCID: PMC5360445 DOI: 10.7554/elife.17935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/14/2017] [Indexed: 01/19/2023] Open
Abstract
The matricellular protein SMOC (Secreted Modular Calcium binding protein) is conserved phylogenetically from vertebrates to arthropods. We showed previously that SMOC inhibits bone morphogenetic protein (BMP) signaling downstream of its receptor via activation of mitogen-activated protein kinase (MAPK) signaling. In contrast, the most prominent effect of the Drosophila orthologue, pentagone (pent), is expanding the range of BMP signaling during wing patterning. Using SMOC deletion constructs we found that SMOC-∆EC, lacking the extracellular calcium binding (EC) domain, inhibited BMP2 signaling, whereas SMOC-EC (EC domain only) enhanced BMP2 signaling. The SMOC-EC domain bound HSPGs with a similar affinity to BMP2 and could expand the range of BMP signaling in an in vitro assay by competition for HSPG-binding. Together with data from studies in vivo we propose a model to explain how these two activities contribute to the function of Pent in Drosophila wing development and SMOC in mammalian joint formation.
Collapse
Affiliation(s)
- J Terrig Thomas
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - D Eric Dollins
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Kristin R Andrykovich
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Tehyen Chu
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Brian G Stultz
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Deborah A Hursh
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| | - Malcolm Moos
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, U.S. Food and Drug Administration, Silver Spring, United States
| |
Collapse
|
16
|
Salva JE, Merrill AE. Signaling networks in joint development. Dev Dyn 2016; 246:262-274. [PMID: 27859991 DOI: 10.1002/dvdy.24472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
18
|
Bedore J, Quesnel K, Quinonez D, Séguin CA, Leask A. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus. J Cell Commun Signal 2016; 10:137-42. [PMID: 27173473 DOI: 10.1007/s12079-016-0329-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease.
Collapse
Affiliation(s)
- Jake Bedore
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Katherine Quesnel
- Department of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Department of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
19
|
Abstract
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.
Collapse
|
20
|
Tiku ML, Sabaawy HE. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention. Ther Adv Musculoskelet Dis 2015; 7:76-87. [PMID: 26029269 DOI: 10.1177/1759720x15576866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates chondrocyte activation, expression of proteases and growth factor release from the matrix. This regenerative process results in the local activation of inflammatory response genes in cartilage without migration of inflammatory cells or angiogenesis. The end results are catabolic and anabolic responses, and it is the balance between these two outcomes that controls remodelling of the matrix and regeneration. A tantalizing clinical clue for cartilage regrowth in OA joints has been observed in surgically created joint distraction. We hypothesize that cartilage growth in these distracted joints may have a biological connection with the size of organs and regeneration. Therefore we propose a novel, practical and nonsurgical intervention to validate the role of distraction in cartilage regeneration in OA. The approach permits normal wake-up activity while during sleep; the index knee is subjected to distraction with a pull traction device. Comparison of follow-up magnetic resonance imaging (MRI) at 3 and 6 months of therapy to those taken before therapy will provide much-needed objective evidence for the use of this mode of therapy for OA. We suggest that the paradigm presented here merits investigation for treatment of OA in knee joints.
Collapse
Affiliation(s)
- Moti L Tiku
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ 08903-2681, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Blaney Davidson EN, van de Loo FAJ, van den Berg WB, van der Kraan PM. How to build an inducible cartilage-specific transgenic mouse. Arthritis Res Ther 2015; 16:210. [PMID: 25166474 PMCID: PMC4060449 DOI: 10.1186/ar4573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/28/2014] [Indexed: 12/28/2022] Open
Abstract
Transgenic mice are used to study the roles of specific proteins in an intact living system. Use of transgenic mice to study processes in cartilage, however, poses some challenges. First of all, many factors involved in cartilage homeostasis and disease are also crucial factors in embryogenesis. Therefore, meddling with these factors often leads to death before birth, and mice who do survive cannot be considered normal. The build-up of cartilage in these mice is altered, making it nearly impossible to truly interpret the role of a protein in adult cartilage function.An elegant way to overcome these limitations is to make transgenic mice time- and tissue-specific, there by omitting side-effects in tissues other than cartilage and during embryology. This review discusses the potential building blocks for making an inducible cartilage-specific transgenic mouse. We review which promoters can be used to gain chondrocyte-specificity - all chondrocytes or a specific subset thereof - as well as different systems that can be used to enable inducibility of a transgene.
Collapse
|
22
|
Longobardi L, Li T, Tagliafierro L, Temple JD, Willcockson HH, Ye P, Esposito A, Xu F, Spagnoli A. Synovial joints: from development to homeostasis. Curr Osteoporos Rep 2015; 13:41-51. [PMID: 25431159 PMCID: PMC4306636 DOI: 10.1007/s11914-014-0247-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as the interzone and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cell niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium, and groove of Ranvier. Inherited joint malformations as well as joint-degenerating conditions are often associated with other skeletal defects and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and develop drugs to reactivate this developing mechanism.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, 109 Mason Farm Road, Chapel Hill, NC, 27599-7039, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cuellar A, Reddi AH. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-β in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans. Tissue Eng Part A 2014; 21:1973-81. [PMID: 25398329 DOI: 10.1089/ten.tea.2014.0381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Superficial zone protein (SZP), also known as lubricin and proteoglycan 4 (PRG4), plays an important role in the boundary lubrication of articular cartilage and is regulated by transforming growth factor (TGF)-β. Here, we evaluate the role of cell surface glycosaminoglycans (GAGs) during TGF-β1 stimulation of SZP/lubricin/PRG4 in superficial zone articular chondrocytes. We utilized primary monolayer superficial zone articular chondrocyte cultures and treated them with various concentrations of TGF-β1, in the presence or absence of heparan sulfate (HS), heparin, and chondroitin sulfate (CS). The cell surface GAGs were removed by pretreatment with either heparinase I or chondroitinase-ABC before TGF-β1 stimulation. Accumulation of SZP/lubricin/PRG4 in the culture medium in response to stimulation with TGF-β1 and various exogenous GAGs was demonstrated by immunoblotting and quantitated by enzyme-linked immunosorbent assay. We show that TGF-β1 and exogenous HS enhanced SZP accumulation of superficial zone chondrocytes in the presence of surface GAGs. At the dose of 1 ng/mL of TGF-β1, the presence of exogenous heparin inhibited SZP accumulation whereas the presence of exogenous CS stimulated SZP accumulation in the culture medium. Enzymatic depletion of GAGs on the surface of superficial zone chondrocytes enhanced the ability of TGF-β1 to stimulate SZP accumulation in the presence of both exogenous heparin and CS. Collectively, these results suggest that GAGs at the surface of superficial zone articular chondrocytes influence the response to TGF-β1 and exogenous GAGs to stimulate SZP accumulation. Cell surface GAGs modulate superficial zone chondrocytes' response to TGF-β1 and exogenous HS.
Collapse
Affiliation(s)
- Araceli Cuellar
- Department of Orthopedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Sacramento, California
| | - A Hari Reddi
- Department of Orthopedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
24
|
Decker RS, Koyama E, Enomoto-Iwamoto M, Maye P, Rowe D, Zhu S, Schultz PG, Pacifici M. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol 2014; 395:255-67. [PMID: 25238962 PMCID: PMC4253021 DOI: 10.1016/j.ydbio.2014.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule - we named Kartogenin (KGN) - that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFβ superfamily members, particularly TFGβ1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFβ1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFβ1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFβ and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFβ signaling, working in addition to and/or in concert with the filamin A/CBFβ/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies.
Collapse
Affiliation(s)
- Rebekah S Decker
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Peter Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center School of, Dental Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - David Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center School of, Dental Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Shoutian Zhu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Peter G Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Abstract
Limb synovial joints are intricate structures composed of articular cartilage, synovial membranes, ligaments and an articular capsule. Together, these tissues give each joint its unique shape, organization and biomechanical function. Articular cartilage itself is rather complex and organized in distinct zones, including the superficial zone that produces lubricants and contains stem/progenitor cells. For many years there has been great interest in deciphering the mechanisms by which the joints form and come to acquire such unique structural features and diversity. Decades ago, classic embryologists discovered that the first overt sign of joint formation at each prescribed limb site was the appearance of a dense and compact population of mesenchymal cells collectively called the interzone. Work carried out since then by several groups has provided evidence that the interzone cells actively participate in joint tissue formation over developmental time. This minireview provides a succinct but comprehensive description of the many important recent advances in this field of research. These include studies using various conditional reporter mice to genetically trace and track the origin, fate and possible function of joint progenitor cells; studies on the involvement and roles in signaling pathways and transcription factors in joint cell determination and functioning; and studies using advanced methods of gene expression analyses to uncover novel genetic determinants of joint formation and diversity. The overall advances are impressive, and the findings are not only of obvious interest and importance but also have major implications in the conception of future translational medicine tools to repair and regenerate defective, overused or aging joints.
Collapse
|
26
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
27
|
Tanaka M, Yamazaki Y, Kanno Y, Igarashi K, Aisaki KI, Kanno J, Nakamura T. Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. J Clin Invest 2014; 124:3061-74. [PMID: 24911143 DOI: 10.1172/jci72399] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ewing's sarcoma is a highly malignant bone tumor found in children and adolescents, and the origin of this malignancy is not well understood. Here, we introduced a Ewing's sarcoma-associated genetic fusion of the genes encoding the RNA-binding protein EWS and the transcription factor ETS (EWS-ETS) into a fraction of cells enriched for osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ) of long bones collected from late gestational murine embryos. EWS-ETS fusions efficiently induced Ewing's sarcoma-like small round cell sarcoma formation by these cells. Analysis of the eSZ revealed a fraction of a precursor cells that express growth/differentiation factor 5 (Gdf5), the transcription factor Erg, and parathyroid hormone-like hormone (Pthlh), and selection of the Pthlh-positive fraction alone further enhanced EWS-ETS-dependent tumor induction. Genes downstream of the EWS-ETS fusion protein were quite transcriptionally active in eSZ cells, especially in regions in which the chromatin structure of the ETS-responsive locus was open. Inhibition of β-catenin, poly (ADP-ribose) polymerase 1 (PARP1), or enhancer of zeste homolog 2 (EZH2) suppressed cell growth in a murine model of Ewing's sarcoma, suggesting the utility of the current system as a preclinical model. These results indicate that eSZ cells are highly enriched in precursors to Ewing's sarcoma and provide clues to the histogenesis of Ewing's sarcoma in bone.
Collapse
|
28
|
Lorda-Diez CI, García-Porrero JA, Hurlé JM, Montero JA. Decorin gene expression in the differentiation of the skeletal connective tissues of the developing limb. Gene Expr Patterns 2014; 15:52-60. [DOI: 10.1016/j.gep.2014.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
|
29
|
Jochmann K, Bachvarova V, Vortkamp A. Reprint of: Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol 2014; 35:239-47. [PMID: 24726293 DOI: 10.1016/j.matbio.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/17/2013] [Accepted: 11/17/2013] [Indexed: 12/19/2022]
Abstract
Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes Ext1 and Ext2 induce the Multiple Osteochondroma syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.
Collapse
Affiliation(s)
- Katja Jochmann
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| | - Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
30
|
Jochmann K, Bachvarova V, Vortkamp A. Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol 2013; 34:55-63. [PMID: 24370655 DOI: 10.1016/j.matbio.2013.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/17/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022]
Abstract
Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes Ext1 and Ext2 induce the Multiple Osteochondroma syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.
Collapse
Affiliation(s)
- Katja Jochmann
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | - Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
31
|
Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, Pacifici M, Enomoto-Iwamoto M. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone 2013; 57:220-31. [PMID: 23958822 PMCID: PMC4107462 DOI: 10.1016/j.bone.2013.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022]
Abstract
Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss, osteoarthritis and HME.
Collapse
Affiliation(s)
- Federica Sgariglia
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Maria Elena Candela
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Julianne Huegel
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Olena Jacenko
- Department of Animal Biology, School of Veterinary Medicine, University of Philadelphia, Philadelphia, PA 19104
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA 19104
| | - Yu Yamaguchi
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA 19104
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
32
|
Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses. Dev Dyn 2013; 242:1021-32. [PMID: 23821404 DOI: 10.1002/dvdy.24010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/14/2022] Open
Abstract
Heparan sulfate (HS) is an essential component of cell surface and matrix-associated proteoglycans. Due to their sulfation patterns, the HS chains interact with numerous signaling proteins and regulate their distribution and activity on target cells. Many of these proteins, including bone morphogenetic protein family members, are expressed in the growth plate of developing skeletal elements, and several skeletal phenotypes are caused by mutations in those proteins as well as in HS-synthesizing and modifying enzymes. The disease we discuss here is hereditary multiple exostoses (HME), a disorder caused by mutations in HS synthesizing enzymes EXT1 and EXT2, leading to HS deficiency. The exostoses are benign cartilaginous-bony outgrowths, form next to growth plates, can cause growth retardation and deformities, chronic pain and impaired motion, and progress to malignancy in 2-5% of patients. We describe recent advancements on HME pathogenesis and exostosis formation deriving from studies that have determined distribution, activities and roles of signaling proteins in wild-type and HS-deficient cells and tissues. Aberrant distribution of signaling factors combined with aberrant responsiveness of target cells to those same factors appear to be a major culprit in exostosis formation. Insights from these studies suggest plausible and cogent ideas about how HME could be treated in the future.
Collapse
Affiliation(s)
- Julianne Huegel
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Cell biology of osteochondromas: bone morphogenic protein signalling and heparan sulphates. INTERNATIONAL ORTHOPAEDICS 2013; 37:1591-6. [PMID: 23771188 DOI: 10.1007/s00264-013-1906-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Frequent benign outgrowths from bone known as osteochondromas, exhibiting typical endochondral ossification, are reported from single to multiple lesions. Characterised by a high incidence of osteochondromas and skeletal deformities, multiple hereditary exostoses (MHE) is the most common inherited musculoskeletal condition. While factors for severity remain unknown, mutations in exostosin 1 and exostosin 2 genes, encoding glycosyltransferases involved in the biosynthesis of ubiquitously expressed heparan sulphate (HS) chains, are associated with MHE. HS-binding bone morphogenetic proteins (BMPs) are multifunctional proteins involved in the morphogenesis of bone and cartilage. HS and HS proteoglycans are involved in BMP-mediated morphogenesis by regulating their gradient formation and activity. Mutations in exostosin genes disturb HS biosynthesis, subsequently affecting its functional role in the regulation of signalling pathways. As BMPs are the primordial morphogens for bone development, we propose the hypothesis that BMP signalling may be critical in osteochondromas. For this reason, the outcomes of exostosin mutations on HS biosynthesis and interactions within osteochondromas and MHE are reviewed. Since BMPs are HS binding proteins, the interactions of HS with the BMP signalling pathway are discussed. The impact of mouse models in the quest to better understand the cell biology of osteochondromas is discussed. Several challenges and questions still remain and further investigations are needed to explore new approaches for better understanding of the pathogenesis of osteochondromas.
Collapse
|
34
|
Huegel J, Mundy C, Sgariglia F, Nygren P, Billings PC, Yamaguchi Y, Koyama E, Pacifici M. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses. Dev Biol 2013; 377:100-12. [PMID: 23458899 PMCID: PMC3733121 DOI: 10.1016/j.ydbio.2013.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/07/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
During limb skeletogenesis the cartilaginous long bone anlagen and their growth plates become delimited by perichondrium with which they interact functionally. Yet, little is known about how, despite being so intimately associated with cartilage, perichondrium acquires and maintains its distinct phenotype and exerts its border function. Because perichondrium becomes deranged and interrupted by cartilaginous outgrowths in Hereditary Multiple Exostoses (HME), a pediatric disorder caused by EXT mutations and consequent heparan sulfate (HS) deficiency, we asked whether EXT genes and HS normally have roles in establishing its phenotype and function. Indeed, conditional Ext1 ablation in perichondrium and lateral chondrocytes flanking the epiphyseal region of mouse embryo long bone anlagen - a region encompassing the groove of Ranvier - caused ectopic cartilage formation. A similar response was observed when HS function was disrupted in long bone anlagen explants by genetic, pharmacological or enzymatic means, a response preceded by ectopic BMP signaling within perichondrium. These treatments also triggered excess chondrogenesis and cartilage nodule formation and overexpression of chondrogenic and matrix genes in limb bud mesenchymal cells in micromass culture. Interestingly, the treatments disrupted the peripheral definition and border of the cartilage nodules in such a way that many nodules overgrew and fused with each other into large amorphous cartilaginous masses. Interference with HS function reduced the physical association and interactions of BMP2 with HS and increased the cell responsiveness to endogenous and exogenous BMP proteins. In sum, Ext genes and HS are needed to establish and maintain perichondrium's phenotype and border function, restrain pro-chondrogenic signaling proteins including BMPs, and restrict chondrogenesis. Alterations in these mechanisms may contribute to exostosis formation in HME, particularly at the expense of regions rich in progenitor cells including the groove of Ranvier.
Collapse
Affiliation(s)
- Julianne Huegel
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Henriksson HB, Brisby H. Development and Regeneration Potential of the Mammalian Intervertebral Disc. Cells Tissues Organs 2013; 197:1-13. [DOI: 10.1159/000341153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 12/18/2022] Open
|
36
|
de Mooij T, Wuyts W, Ham J. Phenotypic Differences in Multiple Osteochondromas in Monozygotic Twins: A Case Report. JBJS Case Connect 2012; 2:e60. [PMID: 29252356 DOI: 10.2106/jbjs.cc.k.00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Tristan de Mooij
- Department of Orthopaedic Surgery, Onze Lieve Vrouwe Gasthuis, P.O. Box 30.001, 1090 HM Amsterdam.
| | - Wim Wuyts
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
| | - John Ham
- Department of Orthopaedic Surgery, Onze Lieve Vrouwe Gasthuis, P.O. Box 30.001, 1090 HM Amsterdam.
| |
Collapse
|
37
|
Pazin DE, Gamer LW, Cox KA, Rosen V. Molecular profiling of synovial joints: use of microarray analysis to identify factors that direct the development of the knee and elbow. Dev Dyn 2012; 241:1816-26. [PMID: 22972626 DOI: 10.1002/dvdy.23861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Synovial joints develop from the interzone, a dense layer of mesenchymal progenitor cells that marks the site of the future joint. During the morphogenic events that follow, joints attain their distinct shape and organization. The molecular mechanisms controlling the initial specification of synovial joints has been studied, but the question of how individual joints attain the specific structure required for their unique functions remains largely unresolved. Here, we use microarray analysis to compare knee and elbow formation to identify factors involved in the development of specific joints. RESULTS The knee is enriched for the hindlimb patterning genes Hoxc9, Hoxc10, and Tbx4 and for Tgfbi, Rspo2, and Sfrp2, factors involved in transforming growth factor-beta/bone morphogenetic protein (TGFβ/BMP) and Wnt signaling. Consistent with these findings, we show that TGFβ signaling directs knee morphogenesis, and is necessary for meniscus development. The tissue surrounding the elbow is highly enriched for genes involved in muscle specification and differentiation, and in splotch-delayed muscleless mutants, elbow, but not knee morphogenesis is disrupted. CONCLUSIONS Our results suggest there are fundamental differences in how individual joints develop after interzone formation. Our microarray analyses provides a new resource for further investigation of the pathways involved in the morphogenesis of specific synovial joints.
Collapse
Affiliation(s)
- Dorothy E Pazin
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
38
|
Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem Cell Biol 2012; 138:461-75. [DOI: 10.1007/s00418-012-0968-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
39
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e318256e7f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Shapiro IM, Vresilovic EJ, Risbud MV. Is the spinal motion segment a diarthrodial polyaxial joint: what a nice nucleus like you doing in a joint like this? Bone 2012; 50:771-6. [PMID: 22197996 PMCID: PMC3278538 DOI: 10.1016/j.bone.2011.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/28/2011] [Accepted: 12/06/2011] [Indexed: 01/15/2023]
Abstract
This review challenges an earlier view that the intervertebral joint could not be classified as a diarthrodial joint and should remain as an amphiarthrosis. However, a careful analysis of the relevant literature and in light of more recent studies, it is clear that while some differences exist between the spinal articulation and the generic synovial joint, there are clear structural, functional and developmental similarities between the joints that in sum outweigh the differences. Further, since the intervertebral motion segment displays movement in three dimensions and the whole spine itself provides integrated rotatory movements, it is proposed that it should be classified not as an amphiarthrose, "a slightly moveable joint" but as a complex polyaxial joint. Hopefully, reclassification will encourage further analysis of the structure and function of the two types of overlapping joints and provide common new insights into diseases that afflict the many joints of the human skeleton.
Collapse
Affiliation(s)
- Irving M. Shapiro
- Department of Orthopaedic Surgery, Division of Orthopaedic Research, Jefferson Medical College, Philadelphia, PA 19107
| | - Edward J Vresilovic
- Department of Orthopaedic Surgery, Milton S. Hershey Medical Center, Penn State University, Hershey, PA 17033
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Division of Orthopaedic Research, Jefferson Medical College, Philadelphia, PA 19107
| |
Collapse
|
41
|
McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:3-21. [PMID: 22258721 PMCID: PMC3351113 DOI: 10.1017/s1431927611012682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glomerular basement membrane and its associated cells are critical elements in the renal ultrafiltration process. Traditionally the anionic charge associated with several carbohydrate moieties in the glomerular basement membrane are thought to form a charge selective barrier that restricts the transmembrane flux of anionic proteins across the glomerular basement membrane into the urinary space. The charge selective function, along with the size selective component of the basement membrane, serves to limit the efflux of plasma proteins from the capillary lumen. Heparan sulfate glycosaminoglycans are anionically charged carbohydrate structures attached to proteoglycan core proteins and have a role in establishing the charge selective function of the glomerular basement membrane. Although there are a large number of studies in the literature that support this concept, the results of several recent studies using molecular genetic approaches to minimize the anionic charge of the glomerular basement membrane would suggest that the role of heparan sulfate glycosaminoglycans in the glomerular capillary wall are still not yet entirely resolved, suggesting that this research area still requires new and novel exploration.
Collapse
Affiliation(s)
- Kevin J McCarthy
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
42
|
Wiweger MI, Zhao Z, van Merkesteyn RJP, Roehl HH, Hogendoorn PCW. HSPG-deficient zebrafish uncovers dental aspect of multiple osteochondromas. PLoS One 2012; 7:e29734. [PMID: 22253766 PMCID: PMC3256178 DOI: 10.1371/journal.pone.0029734] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/03/2011] [Indexed: 11/25/2022] Open
Abstract
Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2−/− fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2−/− fish. Histological analysis reveals that ext2−/− fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2−/− fish have a single tooth at the end of the 5th pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2−/− teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2+/− adults. The tooth morphology in ext2−/− was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems.
Collapse
Affiliation(s)
| | - Zhe Zhao
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Henry H. Roehl
- Department of Biomedical Sciences, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
43
|
Macica C, Liang G, Nasiri A, Broadus AE. Genetic evidence of the regulatory role of parathyroid hormone-related protein in articular chondrocyte maintenance in an experimental mouse model. ARTHRITIS AND RHEUMATISM 2011; 63:3333-43. [PMID: 21702022 PMCID: PMC3197958 DOI: 10.1002/art.30515] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Parathyroid hormone-related protein (PTHrP) regulates the rate of differentiation of growth chondrocytes and is also expressed in articular chondrocytes. This study tested the hypothesis that PTHrP might have a regulatory role in articular chondrocyte maintenance. METHODS Control sequences of growth differentiation factor 5 were used to delete PTHrP from articular chondrocytes in the mid-region of mouse articular cartilage. Mice with conditional deletion of PTHrP (knockout [KO]) and littermate control mice were evaluated for degenerative changes using both a time-course design and destabilization of the medial meniscus (DMM) technique. A total histologic score of degenerative changes was determined for the femoral and tibial articular surfaces (total maximum score of 60). RESULTS The time-course study revealed degenerative changes in only a minority of the KO mice. In the DMM model, male KO mice were highly susceptible to DMM-induced degenerative changes (mean ± SEM total histologic score 45 ± 2.7 in KO mice versus 23 ± 1.4 in controls; P < 0.0001 by Mann-Whitney U test), with virtually no overlap between groups. PTHrP normally functions in a feedback loop with Indian hedgehog (IHH), in which a reduction in one signaling partner induces a compensatory increase in the other. A number of phenotypic and functional markers were documented in KO mice to suggest that the IHH-PTHrP axis is capable of compensating in response to a partial Cre-driven PTHrP deletion, a finding that underscores the need to subject the mouse articular cartilage to a destabilizing challenge in order to elicit frankly degenerative findings. CONCLUSION PTHrP may regulate articular chondrocyte maintenance in mice.
Collapse
Affiliation(s)
- Carolyn Macica
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|