1
|
Park JS, Sung MJ, Na HJ. Drosophila model systems reveal intestinal stem cells as key players in aging. Ann N Y Acad Sci 2025; 1547:88-99. [PMID: 40276941 DOI: 10.1111/nyas.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The intestines play important roles in responding immediately and dynamically to food intake, environmental stress, and metabolic dysfunction, and they are involved in various human diseases and aging. A key part of their function is governed by intestinal stem cells (ISCs); therefore, understanding ISCs is vital. Dysregulation of ISC activity, which is influenced by various cell signaling pathways and environmental signals, can lead to inflammatory responses, tissue damage, and increased cancer susceptibility. Aging exacerbates these dynamics and affects ISC function and tissue elasticity. Additionally, proliferation and differentiation profoundly affect ISC behavior and gut health, highlighting the complex interplay between environmental factors and gut homeostasis. Drosophila models help us understand the complex regulatory networks in the gut, providing valuable insights into disease mechanisms and therapeutic strategies targeting human intestinal diseases.
Collapse
Affiliation(s)
- Joung-Sun Park
- Institute of Nanobio Convergence, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Mi Jeong Sung
- Aging Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hyun-Jin Na
- Aging Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
2
|
Plygawko AT, Stephan-Otto Attolini C, Pitsidianaki I, Cook DP, Darby AC, Campbell K. The Drosophila adult midgut progenitor cells arise from asymmetric divisions of neuroblast-like cells. Dev Cell 2025; 60:429-446.e6. [PMID: 39532106 DOI: 10.1016/j.devcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium, including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains unclear how they are generated in the early embryo. Here, we show that they arise from a population of endoderm cells, which exhibit multiple similarities with Drosophila neuroblasts. These cells, which we have termed endoblasts, are patterned by homothorax (Hth) and undergo asymmetric divisions using the same molecular machinery as neuroblasts. We also show that the conservation of this molecular machinery extends to the generation of the enteroendocrine lineages. Parallels have previously been drawn between the pupal ISCs and larval neuroblasts. Our results suggest that these commonalities exist from the earliest stages of specification of progenitor cells of the intestinal and nervous systems and may represent an ancestral pathway for multipotent progenitor cell specification.
Collapse
Affiliation(s)
- Andrew T Plygawko
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ioanna Pitsidianaki
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Monastirioti M, Koltsaki I, Pitsidianaki I, Skafida E, Batsiotos N, Delidakis C. Notch-Dependent Expression of the Drosophila Hey Gene Is Supported by a Pair of Enhancers with Overlapping Activities. Genes (Basel) 2024; 15:1071. [PMID: 39202431 PMCID: PMC11353301 DOI: 10.3390/genes15081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Drosophila Hey is a basic helix-loop-helix-orange (bHLH-O) protein with an important role in the establishment of distinct identities of postmitotic cells. We have previously identified Hey as a transcriptional target and effector of Notch signalling during the asymmetric division of neuronal progenitors, generating neurons of two types, and we have shown that Notch-dependent expression of Hey also marks a subpopulation of the newborn enteroendocrine (EE) cells in the midgut primordium of the embryo. Here, we investigate the transcriptional regulation of Hey in neuronal and intestinal tissues. We isolated two genomic regions upstream of the promoter (HeyUP) and in the second intron (HeyIN2) of the Hey gene, based on the presence of binding motifs for Su(H), the transcription factor that mediates Notch activity. We found that both regions can direct the overlapping expression patterns of reporter transgenes recapitulating endogenous Hey expression. Moreover, we showed that while HeyIN2 represents a Notch-dependent enhancer, HeyUP confers both Notch-dependent and independent transcriptional regulation. We induced mutations that removed the Su(H) binding motifs in either region and then studied the enhancer functionality in the respective Hey mutant lines. Our results provide direct evidence that although both enhancers support Notch-dependent regulation of the Hey gene, their role is redundant, as a Hey loss-of-function lethal phenotype is observed only after deletion of all their Su(H) binding motifs by CRISPR/Cas9.
Collapse
Affiliation(s)
- Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
| | - Ioanna Koltsaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ioanna Pitsidianaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Department of Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Emilia Skafida
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Saint Lucia, Rome and School of Medicine and Surgery, University of Milano-Bicocca (UniMiB), 20900 Monza, Italy
| | - Nikolaos Batsiotos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Evotec SE, 22419 Hamburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
4
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
5
|
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z. Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 2024; 59:125-140.e12. [PMID: 38096823 DOI: 10.1016/j.devcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruining Yao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueying Wei
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
6
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
7
|
Madhavan SM, Konieczkowski M, Bruggeman LA, DeWalt M, Nguyen JK, O'Toole JF, Sedor JR. Essential role of Wtip in mouse development and maintenance of the glomerular filtration barrier. Am J Physiol Renal Physiol 2022; 323:F272-F287. [PMID: 35862649 PMCID: PMC9394782 DOI: 10.1152/ajprenal.00051.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Wilms' tumor interacting protein (Wtip) has been implicated in cell junction assembly and cell differentiation and interacts with proteins in the podocyte slit diaphragm, where it regulates podocyte phenotype. To define Wtip expression and function in the kidney, we created a Wtip-deleted mouse model using β-galactosidase-neomycin (β-geo) gene trap technology. Wtip gene trap mice were embryonic lethal, suggesting additional developmental roles outside kidney function. Using β-geo heterozygous and normal mice, Wtip expression was identified in the developing kidneys, heart, and eyes. In the kidney, expression was restricted to podocytes, which appeared initially at the capillary loop stage coinciding with terminal podocyte differentiation. Heterozygous mice had an expected lifespan and showed no evidence of proteinuria or glomerular pathology. However, heterozygous mice were more susceptible to glomerular injury than wild-type littermates and developed more significant and prolonged proteinuria in response to lipopolysaccharide or adriamycin. In normal human kidneys, WTIP expression patterns were consistent with observations in mice and were lost in glomeruli concurrent with loss of synaptopodin expression in disease. Mechanistically, we identified the Rho guanine nucleotide exchange factor 12 (ARHGEF12) as a binding partner for WTIP. ARHGEF12 was expressed in human podocytes and formed high-affinity interactions through their LIM- and PDZ-binding domains. Our findings suggest that Wtip is essential for early murine embryonic development and maintaining normal glomerular filtration barrier function, potentially regulating slit diaphragm and foot process function through Rho effector proteins.NEW & NOTEWORTHY This study characterized dynamic expression patterns of Wilms' tumor interacting protein (Wtip) and demonstrates the novel role of Wtip in murine development and maintenance of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Sethu M Madhavan
- Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Leslie A Bruggeman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - Megan DeWalt
- Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jane K Nguyen
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - John F O'Toole
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - John R Sedor
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Nephrology, Cleveland Clinic, Cleveland, Ohio
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
8
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
10
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
11
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Jang S, Chen J, Choi J, Lim SY, Song H, Choi H, Kwon HW, Choi MS, Kwon JY. Spatiotemporal organization of enteroendocrine peptide expression in Drosophila. J Neurogenet 2021; 35:387-398. [PMID: 34670462 DOI: 10.1080/01677063.2021.1989425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The digestion of food and absorption of nutrients occurs in the gut. The nutritional value of food and its nutrients is detected by enteroendocrine cells, and peptide hormones produced by the enteroendocrine cells are thought to be involved in metabolic homeostasis, but the specific mechanisms are still elusive. The enteroendocrine cells are scattered over the entire gastrointestinal tract and can be classified according to the hormones they produce. We followed the changes in combinatorial expression of regulatory peptides in the enteroendocrine cells during metamorphosis from the larva to the adult fruit fly, and re-confirmed the diverse composition of enteroendocrine cell populations. Drosophila enteroendocrine cells appear to differentially regulate peptide expression spatially and temporally depending on midgut region and developmental stage. In the late pupa, Notch activity is known to determine which peptides are expressed in mature enteroendocrine cells of the posterior midgut, and we found that the loss of Notch activity in the anterior midgut results in classes of enteroendocrine cells distinct from the posterior midgut. These results suggest that enteroendocrine cells that populate the fly midgut can differentiate into distinct subtypes that express different combinations of peptides, which likely leads to functional variety depending on specific needs.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Ji Chen
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.,Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jaekyun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Yeon Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyejin Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Gondal MN, Butt RN, Shah OS, Sultan MU, Mustafa G, Nasir Z, Hussain R, Khawar H, Qazi R, Tariq M, Faisal A, Chaudhary SU. A Personalized Therapeutics Approach Using an In Silico Drosophila Patient Model Reveals Optimal Chemo- and Targeted Therapy Combinations for Colorectal Cancer. Front Oncol 2021; 11:692592. [PMID: 34336681 PMCID: PMC8323493 DOI: 10.3389/fonc.2021.692592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
In silico models of biomolecular regulation in cancer, annotated with patient-specific gene expression data, can aid in the development of novel personalized cancer therapeutic strategies. Drosophila melanogaster is a well-established animal model that is increasingly being employed to evaluate such preclinical personalized cancer therapies. Here, we report five Boolean network models of biomolecular regulation in cells lining the Drosophila midgut epithelium and annotate them with colorectal cancer patient-specific mutation data to develop an in silico Drosophila Patient Model (DPM). We employed cell-type-specific RNA-seq gene expression data from the FlyGut-seq database to annotate and then validate these networks. Next, we developed three literature-based colorectal cancer case studies to evaluate cell fate outcomes from the model. Results obtained from analyses of the proposed DPM help: (i) elucidate cell fate evolution in colorectal tumorigenesis, (ii) validate cytotoxicity of nine FDA-approved CRC drugs, and (iii) devise optimal personalized treatment combinations. The personalized network models helped identify synergistic combinations of paclitaxel-regorafenib, paclitaxel-bortezomib, docetaxel-bortezomib, and paclitaxel-imatinib for treating different colorectal cancer patients. Follow-on therapeutic screening of six colorectal cancer patients from cBioPortal using this drug combination demonstrated a 100% increase in apoptosis and a 100% decrease in proliferation. In conclusion, this work outlines a novel roadmap for decoding colorectal tumorigenesis along with the development of personalized combinatorial therapeutics for preclinical translational studies.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rida Nasir Butt
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Osama Shiraz Shah
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Umer Sultan
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ghulam Mustafa
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zainab Nasir
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Risham Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Huma Khawar
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Muhammad Tariq
- Epigenetics Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Cancer Therapeutics Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
14
|
Ferguson M, Foley E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease. FEBS J 2021; 289:3666-3691. [PMID: 33977656 DOI: 10.1111/febs.15910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The intestine is constantly exposed to a dynamic community of microbes. Intestinal epithelial cells respond to microbes through evolutionarily conserved recognition pathways, such as the immune deficiency (IMD) pathway of Drosophila, the Toll-like receptor (TLR) response of flies and vertebrates, and the vertebrate nucleotide-binding oligomerization domain (NOD) pathway. Microbial recognition pathways are tightly controlled to respond effectively to pathogens, tolerate the microbiome, and limit intestinal disease. In this review, we focus on contributions of different model organisms to our understanding of how epithelial microbe recognition impacts intestinal proliferation and differentiation in homeostasis and disease. In particular, we compare how microbes and subsequent recognition by the intestine influences barrier integrity, intestinal repair and tumorigenesis in Drosophila, zebrafish, mice, and organoids. In addition, we discuss the importance of microbial recognition in homeostatic intestinal growth and discuss how immune pathways directly impact stem cell and crypt dynamics.
Collapse
Affiliation(s)
- Meghan Ferguson
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Harsh S, Heryanto C, Eleftherianos I. Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biol Open 2019; 8:bio.039040. [PMID: 31278163 PMCID: PMC6679391 DOI: 10.1242/bio.039040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipid droplets (LDs) are lipid-carrying multifunctional organelles, which might also interact with pathogens and influence the host immune response. However, the exact nature of these interactions remains currently unexplored. Here we show that systemic infection of Drosophila adult flies with non-pathogenic Escherichia coli, the extracellular bacterial pathogen Photorhabdus luminescens or the facultative intracellular pathogen Photorhabdus asymbiotica results in intestinal steatosis marked by lipid accumulation in the midgut. Accumulation of LDs in the midgut also correlates with increased whole-body lipid levels characterized by increased expression of genes regulating lipogenesis. The lipid-enriched midgut further displays reduced expression of the enteroendocrine-secreted hormone, Tachykinin. The observed lipid accumulation requires the Gram-negative cell wall pattern recognition molecule, PGRP-LC, but not PGRP-LE, for the humoral immune response. Altogether, our findings indicate that Drosophila LDs are inducible organelles, which can serve as markers for inflammation and, depending on the nature of the challenge, they can dictate the outcome of the infection. Summary: Lipid droplets are inducible organelles, act as inflammatory markers and, depending on the nature of challenge, can dictate the outcome of the infection.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Christa Heryanto
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
16
|
Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 2019; 377:397-414. [DOI: 10.1007/s00441-019-03031-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
|
17
|
Tumor-Derived Ligands Trigger Tumor Growth and Host Wasting via Differential MEK Activation. Dev Cell 2019; 48:277-286.e6. [PMID: 30639055 DOI: 10.1016/j.devcel.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
Interactions between tumors and host tissues play essential roles in tumor-induced systemic wasting and cancer cachexia, including muscle wasting and lipid loss. However, the pathogenic molecular mechanisms of wasting are still poorly understood. Using a fly model of tumor-induced organ wasting, we observed aberrant MEK activation in both tumors and host tissues of flies bearing gut-yki3SA tumors. We found that host MEK activation results in muscle wasting and lipid loss, while tumor MEK activation is required for tumor growth. Strikingly, host MEK suppression alone is sufficient to abolish the wasting phenotypes without affecting tumor growth. We further uncovered that yki3SA tumors produce the vein (vn) ligand to trigger autonomous Egfr/MEK-induced tumor growth and produce the PDGF- and VEGF-related factor 1 (Pvf1) ligand to non-autonomously activate host Pvr/MEK signaling and wasting. Altogether, our results demonstrate the essential roles and molecular mechanisms of differential MEK activation in tumor-induced host wasting.
Collapse
|
18
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Mitochondrial dynamics regulates Drosophila intestinal stem cell differentiation. Cell Death Discov 2018; 4:17. [PMID: 30062062 PMCID: PMC6056485 DOI: 10.1038/s41420-018-0083-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 01/12/2023] Open
Abstract
Differentiation of stem/progenitor cells is associated with a substantial increase in mitochondrial mass and complexity. Mitochondrial dynamics, including the processes of fusion and fission, plays an important role for somatic cell reprogramming and pluripotency maintenance in induced pluripotent cells (iPSCs). However, the role of mitochondrial dynamics during stem/progenitor cell differentiation in vivo remains elusive. Here we found differentiation of Drosophila intestinal stem cell is accompanied with continuous mitochondrial fusion. Mitochondrial fusion defective(opa1RNAi) ISCs contain less mitochondrial membrane potential, reduced ATP, and increased ROS level. Surprisingly, suppressing fusion also resulted in the failure of progenitor cells to differentiate. Cells did not switch on the expression of differentiation markers, and instead continued to show characteristics of progenitor cells. Meanwhile, proliferation or apoptosis was unaffected. The differentiation defect could be rescued by concomitant inhibition of Drp1, a mitochondrial fission molecule. Moreover, ROS scavenger also partially rescues opa1RNAi-associated differentiation defects via down-regulating JNK activity. We propose that mitochondrial fusion plays a pivotal role in controlling the developmental switch of stem cell fate.
Collapse
|
20
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
21
|
Chen J, Xu N, Wang C, Huang P, Huang H, Jin Z, Yu Z, Cai T, Jiao R, Xi R. Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells. Nat Cell Biol 2018; 20:152-161. [PMID: 29335529 DOI: 10.1038/s41556-017-0020-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/01/2017] [Indexed: 01/26/2023]
Abstract
The process through which multiple types of cell-lineage-restricted progenitor cells are specified from multipotent stem cells is unclear. Here we show that, in intestinal stem cell lineages in adult Drosophila, in which the Delta-Notch-signalling-guided progenitor cell differentiation into enterocytes is the default mode, the specification of enteroendocrine cells (EEs) is initiated by transient Scute activation in a process driven by transcriptional self-stimulation combined with a negative feedback regulation between Scute and Notch targets. Scute activation induces asymmetric intestinal stem cell divisions that generate EE progenitor cells. The mitosis-inducing and fate-inducing activities of Scute guide each EE progenitor cell to divide exactly once prior to its terminal differentiation, yielding a pair of EEs. The transient expression of a fate inducer therefore specifies both type and numbers of committed progenitor cells originating from stem cells, which could represent a general mechanism used for diversifying committed progenitor cells from multipotent stem cells.
Collapse
Affiliation(s)
- Jun Chen
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Na Xu
- National Institute of Biological Sciences, Beijing, China
| | - Chenhui Wang
- National Institute of Biological Sciences, Beijing, China
| | - Pin Huang
- National Institute of Biological Sciences, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Zhen Jin
- National Institute of Biological Sciences, Beijing, China
| | - Zhongsheng Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Renjie Jiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Rongwen Xi
- Graduate School of Peking Union Medical College, Beijing, China. .,National Institute of Biological Sciences, Beijing, China. .,Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
22
|
Koehler CL, Perkins GA, Ellisman MH, Jones DL. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging. J Cell Biol 2017; 216:2315-2327. [PMID: 28663346 PMCID: PMC5551703 DOI: 10.1083/jcb.201610036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/14/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles.
Collapse
Affiliation(s)
- Christopher L Koehler
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - D Leanne Jones
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
23
|
Constitutive Immune Activity Promotes Tumorigenesis in Drosophila Intestinal Progenitor Cells. Cell Rep 2017; 20:1784-1793. [DOI: 10.1016/j.celrep.2017.07.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 02/02/2023] Open
|
24
|
Hartenstein V, Takashima S, Hartenstein P, Asanad S, Asanad K. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Dev Biol 2017; 431:36-47. [PMID: 28751238 DOI: 10.1016/j.ydbio.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
Entero-endocrine cells involved in the regulation of digestive function form a large and diverse cell population within the intestinal epithelium of all animals. Together with absorptive enterocytes and secretory gland cells, entero-endocrine cells are generated by the embryonic endoderm and, in the mature animal, from a pool of endoderm derived, self-renewing stem cells. Entero-endocrine cells share many structural/functional and developmental properties with sensory neurons, which hints at the possibility of an ancient evolutionary relationship between these two cell types. We will survey in this article recent findings that emphasize the similarities between entero-endocrine cells and sensory neurons in vertebrates and insects, for which a substantial volume of data pertaining to the entero-endocrine system has been compiled. We will then report new findings that shed light on the specification and morphogenesis of entero-endocrine cells in Drosophila. In this system, presumptive intestinal stem cells (pISCs), generated during early metamorphosis, undergo several rounds of mitosis that produce the endocrine cells and stem cells (ISCs) with which the fly is born. Clonal analysis demonstrated that individual pISCs can give rise to endocrine cells expressing different types of peptides. Immature endocrine cells start out as unpolarized cells located basally of the gut epithelium; they each extend an apical process into the epithelium which establishes a junctional complex and apical membrane specializations contacting the lumen of the gut. Finally, we show that the Drosophila homolog of ngn3, a bHLH gene that defines the entero-endocrine lineage in mammals, is expressed and required for the differentiation of this cell type in the fly gut.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA.
| | - Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Parvana Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Samuel Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Kian Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
25
|
Drosophila dyskerin is required for somatic stem cell homeostasis. Sci Rep 2017; 7:347. [PMID: 28337032 PMCID: PMC5428438 DOI: 10.1038/s41598-017-00446-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Drosophila represents an excellent model to dissect the roles played by the evolutionary conserved family of eukaryotic dyskerins. These multifunctional proteins are involved in the formation of H/ACA snoRNP and telomerase complexes, both involved in essential cellular tasks. Since fly telomere integrity is guaranteed by a different mechanism, we used this organism to investigate the specific role played by dyskerin in somatic stem cell maintenance. To this aim, we focussed on Drosophila midgut, a hierarchically organized and well characterized model for stemness analysis. Surprisingly, the ubiquitous loss of the protein uniquely affects the formation of the larval stem cell niches, without altering other midgut cell types. The number of adult midgut precursor stem cells is dramatically reduced, and this effect is not caused by premature differentiation and is cell-autonomous. Moreover, a few dispersed precursors found in the depleted midguts can maintain stem identity and the ability to divide asymmetrically, nor show cell-growth defects or undergo apoptosis. Instead, their loss is mainly specifically dependent on defective amplification. These studies establish a strict link between dyskerin and somatic stem cell maintenance in a telomerase-lacking organism, indicating that loss of stemness can be regarded as a conserved, telomerase-independent effect of dyskerin dysfunction.
Collapse
|
26
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
27
|
Aghajanian P, Takashima S, Paul M, Younossi-Hartenstein A, Hartenstein V. Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation. Dev Biol 2016; 420:43-59. [PMID: 27765651 DOI: 10.1016/j.ydbio.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/10/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
Abstract
The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent elongation of the hindgut and midgut, as well as the establishment of a population of intestinal stem cells active in the adult midgut and hindgut, requires the presence of the visceral muscle layer, based on the finding that ablation of this layer causes a severe disruption of both processes.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Manash Paul
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research. G3-GENES GENOMES GENETICS 2016; 6:3017-3026. [PMID: 27527793 PMCID: PMC5068927 DOI: 10.1534/g3.116.031229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals.
Collapse
|
29
|
Jiang H, Tian A, Jiang J. Intestinal stem cell response to injury: lessons from Drosophila. Cell Mol Life Sci 2016; 73:3337-49. [PMID: 27137186 PMCID: PMC4998060 DOI: 10.1007/s00018-016-2235-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Abstract
Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury.
Collapse
Affiliation(s)
- Huaqi Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Aiguo Tian
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
30
|
Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells. Dev Biol 2016; 416:347-60. [PMID: 27321560 DOI: 10.1016/j.ydbio.2016.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023]
Abstract
Proliferating intestinal stem cells (ISCs) generate all cell types of the Drosophila midgut, including enterocytes, endocrine cells, and gland cells (e.g., copper cells), throughout the lifetime of the animal. Among the signaling mechanisms controlling the balance between ISC self-renewal and the production of different cell types, Notch (N) plays a pivotal role. In this paper we investigated the emergence of ISCs during metamorphosis and the role of N in this process. Precursors of the Drosophila adult intestinal stem cells (pISCs) can be first detected within the pupal midgut during the first hours after onset of metamorphosis as motile mesenchymal cells. pISCs perform 2-3 rounds of parasynchronous divisions. The first mitosis yields only an increase in pISC number. During the following rounds of mitosis, dividing pISCs give rise to more pISCs, as well as the endocrine cells that populate the midgut of the eclosing fly. Enterocytes do not appear among the pISC progeny until around the time of eclosion. The "proendocrine" gene prospero (pros), expressed from mid-pupal stages onward in pISCs, is responsible to advance the endocrine fate in these cells; following removal of pros, pISCs continue to proliferate, but endocrine cells do not form. Conversely, the onset of N activity that occurs around the stage when pros comes on restricts pros expression among pISCs. Loss of N abrogates proliferation and switches on an endocrine fate among all pISCs. Our results suggest that a switch depending on the activity of N and pros acts at the level of the pISC to decide between continued proliferation and endocrine differentiation.
Collapse
|
31
|
Guo Z, Ohlstein B. Stem cell regulation. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency. Science 2016; 350:350/6263/aab0988. [PMID: 26586765 DOI: 10.1126/science.aab0988] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Drosophila intestinal stem cells (ISCs) generate enterocytes (ECs) and enteroendocrine (ee) cells. Previous work suggests that different levels of the Notch ligand Delta (Dl) in ISCs unidirectionally activate Notch in daughters to control multipotency. However, the mechanisms driving different outcomes remain unknown. We found that during ee cell formation, the ee cell marker Prospero localizes to the basal side of dividing ISCs. After asymmetric division, the ee daughter cell acts as a source of Dl that induces low Notch activity in the ISC to maintain identity. Alternatively, ISCs expressing Dl induce high Notch activity in daughter cells to promote EC formation. Our data reveal a conserved role for Notch in Drosophila and mammalian ISC maintenance and suggest that bidirectional Notch signaling may regulate multipotency in other systems.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Baechler BL, McKnight C, Pruchnicki PC, Biro NA, Reed BH. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila. Biol Open 2015; 5:1-10. [PMID: 26658272 PMCID: PMC4728307 DOI: 10.1242/bio.015636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways.
Collapse
Affiliation(s)
- Brittany L Baechler
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Cameron McKnight
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Porsha C Pruchnicki
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nicole A Biro
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
33
|
Signal integration by Ca(2+) regulates intestinal stem-cell activity. Nature 2015; 528:212-7. [PMID: 26633624 PMCID: PMC4669953 DOI: 10.1038/nature16170] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 10/30/2015] [Indexed: 01/05/2023]
Abstract
Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue.
Collapse
|
34
|
Beehler-Evans R, Micchelli CA. Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 2015; 142:654-64. [PMID: 25670792 DOI: 10.1242/dev.114959] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages.
Collapse
Affiliation(s)
- Ryan Beehler-Evans
- Washington University School of Medicine, Department of Developmental Biology, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Craig A Micchelli
- Washington University School of Medicine, Department of Developmental Biology, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
35
|
Amcheslavsky A, Song W, Li Q, Nie Y, Bragatto I, Ferrandon D, Perrimon N, Ip YT. Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep 2014; 9:32-39. [PMID: 25263551 PMCID: PMC4198943 DOI: 10.1016/j.celrep.2014.08.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 03/25/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022] Open
Abstract
Intestinal stem cells in the adult Drosophila midgut are regulated by growth factors produced from the surrounding niche cells including enterocytes and visceral muscle. The role of the other major cell type, the secretory enteroendocrine cells, in regulating intestinal stem cells remains unclear. We show here that newly eclosed scute loss-of-function mutant flies are completely devoid of enteroendocrine cells. These enteroendocrine cell-less flies have normal ingestion and fecundity but shorter lifespan. Moreover, in these newly eclosed mutant flies, the diet-stimulated midgut growth that depends on the insulin-like peptide 3 expression in the surrounding muscle is defective. The depletion of Tachykinin-producing enteroendocrine cells or knockdown of Tachykinin leads to a similar although less severe phenotype. These results establish that enteroendocrine cells serve as an important link between diet and visceral muscle expression of an insulin-like growth factor to stimulate intestinal stem cell proliferation and tissue growth.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Song
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics,Harvard Medical School, Boston, MA 02115, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ivan Bragatto
- Unité Propre de Recherche 9022 du Centre National de la Recherche Scientifique, University of Strasbourg Institute for Advanced Study, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Dominique Ferrandon
- Unité Propre de Recherche 9022 du Centre National de la Recherche Scientifique, University of Strasbourg Institute for Advanced Study, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Norbert Perrimon
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics,Harvard Medical School, Boston, MA 02115, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
36
|
Petkau K, Parsons BD, Duggal A, Foley E. A deregulated intestinal cell cycle program disrupts tissue homeostasis without affecting longevity in Drosophila. J Biol Chem 2014; 289:28719-29. [PMID: 25170078 DOI: 10.1074/jbc.m114.578708] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. Although it is widely assumed that proliferation induces dysplasia and shortens the life span of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function.
Collapse
Affiliation(s)
- Kristina Petkau
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Brendon D Parsons
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Aashna Duggal
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Edan Foley
- From the Department of Medical Microbiology and Immunology, Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
37
|
Montagne C, Gonzalez-Gaitan M. Sara endosomes and the asymmetric division of intestinal stem cells. Development 2014; 141:2014-23. [PMID: 24803650 DOI: 10.1242/dev.104240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue homeostasis is maintained by adult stem cells, which self-renew and give rise to differentiating cells. The generation of daughter cells with different fates is mediated by signalling molecules coming from an external niche or being asymmetrically dispatched between the two daughters upon stem cell mitosis. In the adult Drosophila midgut, the intestinal stem cell (ISC) divides to generate a new ISC and an enteroblast (EB) differentiating daughter. Notch signalling activity restricted to the EB regulates intestinal cell fate decision. Here, we show that ISCs divide asymmetrically, and Sara endosomes in ISCs are specifically dispatched to the presumptive EB. During ISC mitosis, Notch and Delta traffic through Sara endosomes, thereby contributing to Notch signalling bias, as revealed in Sara mutants: Sara itself contributes to the control of the ISC asymmetric division. Our data uncover an intrinsic endosomal mechanism during ISC mitosis, which participates in the maintenance of the adult intestinal lineage.
Collapse
Affiliation(s)
- Chrystelle Montagne
- Department of Biochemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
38
|
Driver I, Ohlstein B. Specification of regional intestinal stem cell identity during Drosophila metamorphosis. Development 2014; 141:1848-56. [PMID: 24700821 PMCID: PMC3994771 DOI: 10.1242/dev.104018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/03/2014] [Indexed: 01/17/2023]
Abstract
In the adult Drosophila midgut the bone morphogenetic protein (BMP) signaling pathway is required to specify and maintain the acid-secreting region of the midgut known as the copper cell region (CCR). BMP signaling is also involved in the modulation of intestinal stem cell (ISC) proliferation in response to injury. How ISCs are able to respond to the same signaling pathway in a regionally different manner is currently unknown. Here, we show that dual use of the BMP signaling pathway in the midgut is possible because BMP signals are only capable of transforming ISC and enterocyte identity during a defined window of metamorphosis. ISC heterogeneity is established prior to adulthood and then maintained in cooperation with regional signals from surrounding tissue. Our data provide a conceptual framework for how other tissues maintained by regional stem cells might be patterned and establishes the pupal and adult midgut as a novel genetic platform for identifying genes necessary for regional stem cell specification and maintenance.
Collapse
Affiliation(s)
- Ian Driver
- Integrated Program in Cellular, Molecular and Biomedical Studies, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
39
|
Abstract
The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.
Collapse
Affiliation(s)
- Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|
40
|
Okumura T, Takeda K, Taniguchi K, Adachi-Yamada T. βν integrin inhibits chronic and high level activation of JNK to repress senescence phenotypes in Drosophila adult midgut. PLoS One 2014; 9:e89387. [PMID: 24586740 PMCID: PMC3930726 DOI: 10.1371/journal.pone.0089387] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/20/2014] [Indexed: 01/24/2023] Open
Abstract
Proper control of adult stem cells including their proliferation and differentiation is crucial in maintaining homeostasis of well-organized tissues/organs throughout an organism's life. The Drosophila adult midgut has intestinal stem cells (ISCs), which have been exploited as a simple model system to investigate mechanisms controlling adult tissue homeostasis. Here, we found that a viable mutant of βν integrin (βint-ν), encoding one of two Drosophila integrin β subunits, showed a short midgut and abnormal multilayered epithelia accompanied by an increase in ISC proliferation and misdifferentiation defects. The increase in ISC proliferation and misdifferentiation was due to frequent ISC duplication expanding a pool of ISCs, which was caused by depression of the Notch signalling, and up-regulation of unpaired (upd), a gene encoding an extracellular ligand in the JAK/STAT signalling pathway. In addition, we observed that abnormally high accumulation of filamentous actin (F-actin) was caused in the βint-ν mutant enterocytes. Furthermore, the defects were rescued by suppressing c-Jun N-terminal kinase (JNK) signalling, which was up-regulated in a manner correlated with the defect levels in the above-mentioned βint-ν mutant phenotype. These symptoms observed in young βint-ν mutant midgut were very similar to those in the aged midgut in wild type. Our results suggested that βint-ν has a novel function for the Drosophila adult midgut homeostasis under normal conditions and provided a new insight into possible age-related diseases caused by latent abnormality of an integrin function.
Collapse
Affiliation(s)
- Takashi Okumura
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Koji Takeda
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kiichiro Taniguchi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Adachi-Yamada
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
- Institute for Biomolecular Science, Gakushuin University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Takashima S, Paul M, Aghajanian P, Younossi-Hartenstein A, Hartenstein V. Migration of Drosophila intestinal stem cells across organ boundaries. Development 2013; 140:1903-11. [PMID: 23571215 DOI: 10.1242/dev.082933] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Notch signaling has been shown over the past few decades to play fundamental roles in a plethora of developmental processes in an evolutionarily conserved fashion. Notch-mediated cell-to-cell signaling is involved in many aspects of embryonic development and control of tissue homeostasis in a variety of adult tissues, and regulates stem cell maintenance, cell differentiation and cellular homeostasis. The focus of this Review is the role of Notch signaling in stem cells, comparing insights from flies, fish and mice to highlight similarities, as well as differences, between species, tissues and stem cell compartments.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Science, SwissInstitute for Experimental Cancer Research (ISREC), Station 19, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
43
|
Pacak K, Jochmanova I, Prodanov T, Yang C, Merino MJ, Fojo T, Prchal JT, Tischler AS, Lechan RM, Zhuang Z. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol 2013; 31:1690-8. [PMID: 23509317 DOI: 10.1200/jco.2012.47.1912] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The occurrence of ≥ two distinct types of tumors, one of them paraganglioma (PGL), is unusual in an individual patient, except in hereditary cancer syndromes. PATIENTS AND METHODS Four unrelated patients were investigated, with thorough clinical evaluation. Plasma and tissue catecholamines and metanephrines were measured by high-performance liquid chromatography. Anatomic and functional imaging were performed for tumor visualization. Germline and tumor tissue DNA were analyzed for hypoxia-inducible factor 2 alpha (HIF2A) mutations. The prolyl hydroxylation and stability of the mutant HIF2α protein, transcriptional activity of mutant HIF2A, and expression of hypoxia-related genes were also investigated. Immunohistochemical staining for HIF1/2α was performed on formalin-fixed, paraffin-embedded tumor tissue. RESULTS Patients were found to have polycythemia, multiple PGLs, and duodenal somatostatinomas by imaging or biochemistry with somatic gain-of-function HIF2A mutations. Each patient carried an identical unique mutation in both types of tumors but not in germline DNA. The HIF2A mutations in these patients were clustered adjacent to an oxygen-sensing proline residue, affecting HIF2α interaction with the prolyl hydroxylase domain 2-containing protein, decreasing the hydroxylation of HIF2α, and reducing HIF2α affinity for the von Hippel-Lindau protein and its degradation. An increase in the half-life of HIF2α was associated with upregulation of the hypoxia-related genes EPO, VEGFA, GLUT1, and END1 in tumors. CONCLUSION Our findings indicate the existence of a new syndrome with multiple PGLs and somatostatinomas associated with polycythemia. This new syndrome results from somatic gain-of-function HIF2A mutations, which cause an upregulation of hypoxia-related genes, including EPO and genes important in cancer biology.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892-1109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Takashima S, Gold D, Hartenstein V. Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol 2013; 223:85-102. [PMID: 23179635 PMCID: PMC3873164 DOI: 10.1007/s00427-012-0422-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/12/2012] [Indexed: 12/19/2022]
Abstract
The intestine consists of epithelial cells that secrete digestive enzymes and mucus (gland cells), absorb food particles (enterocytes), and produce hormones (endocrine cells). Intestinal cells are rapidly turned over and need to be replaced. In cnidarians, mitosis of differentiated intestinal cells accounts for much of the replacement; in addition, migratory, multipotent stem cells (interstitial cells) contribute to the production of intestinal cells. In other phyla, intestinal cell replacement is solely the function of stem cells entering the gut from the outside (such as in case of the neoblasts of platyhelminths) or intestinal stem cells located within the midgut epithelium (as in both vertebrates or arthropods). We will attempt in the following to review important aspects of midgut stem cells in different animal groups: where are they located, what types of lineages do they produce, and how do they develop. We will start out with a comparative survey of midgut cell types found across the animal kingdom; then briefly look at the specification of these cells during embryonic development; and finally focus on the stem cells that regenerate midgut cells during adult life. In a number of model systems, including mouse, zebrafish and Drosophila, the molecular pathways controlling intestinal stem cells proliferation and the specification of intestinal cell types are under intensive investigation. We will highlight findings of the recent literature, focusing on aspects that are shared between the different models and that point at evolutionary ancient mechanisms of intestinal cell formation.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
45
|
Zeng X, Chauhan C, Hou SX. Stem cells in the Drosophila digestive system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:63-78. [PMID: 23696352 DOI: 10.1007/978-94-007-6621-1_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
Collapse
Affiliation(s)
- Xiankun Zeng
- The Mouse Cancer Genetics Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | |
Collapse
|
46
|
Zeng X, Hou SX. Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis. Development 2012; 139:3917-25. [PMID: 23048182 DOI: 10.1242/dev.083030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Like the mammalian intestine, the Drosophila adult midgut is constantly replenished by multipotent intestinal stem cells (ISCs). Although it is well known that adult ISCs arise from adult midgut progenitors (AMPs), relatively little is known about the mechanisms that regulate AMP specification. Here, we demonstrate that Broad (Br)-mediated hormone signaling regulates AMP specification. Br is highly expressed in AMPs temporally during the larva-pupa transition stage, and br loss of function blocks AMP differentiation. Furthermore, Br is required for AMPs to develop into functional ISCs. Conversely, br overexpression drives AMPs toward premature differentiation. In addition, we found that Br and Notch (N) signaling function in parallel pathways to regulate AMP differentiation. Our results reveal a molecular mechanism whereby Br-mediated hormone signaling directly regulates stem cells to generate adult cells during metamorphosis.
Collapse
Affiliation(s)
- Xiankun Zeng
- The Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA.
| | | |
Collapse
|
47
|
Vanuytsel T, Senger S, Fasano A, Shea-Donohue T. Major signaling pathways in intestinal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2410-26. [PMID: 22922290 DOI: 10.1016/j.bbagen.2012.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The discovery of markers to identify the intestinal stem cell population and the generation of powerful transgenic mouse models to study stem cell physiology have led to seminal discoveries in stem cell biology. SCOPE OF REVIEW In this review we give an overview of the current knowledge in the field of intestinal stem cells (ISCs) highlighting the most recent progress on markers defining the ISC population and pathways governing intestinal stem cell maintenance and differentiation. Furthermore we review their interaction with other stem cell related pathways. Finally we give an overview of alteration of these pathways in human inflammatory gastrointestinal diseases. MAJOR CONCLUSIONS We highlight the complex network of interactions occurring among different pathways and put in perspective the many layers of regulation that occur in maintaining the intestinal homeostasis. GENERAL SIGNIFICANCE Understanding the involvement of ISCs in inflammatory diseases can potentially lead to new therapeutic approaches to treat inflammatory GI pathologies such as IBD and celiac disease and could reveal the molecular mechanisms leading to the pathogenesis of dysplasia and cancer in inflammatory chronic conditions. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
48
|
Bond D, Foley E. Autocrine platelet-derived growth factor-vascular endothelial growth factor receptor-related (Pvr) pathway activity controls intestinal stem cell proliferation in the adult Drosophila midgut. J Biol Chem 2012; 287:27359-70. [PMID: 22722927 DOI: 10.1074/jbc.m112.378018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A dynamic pool of undifferentiated somatic stem cells proliferate and differentiate to replace dead or dying mature cell types and maintain the integrity and function of adult tissues. Intestinal stem cells (ISCs) in the Drosophila posterior midgut are a well established model to study the complex genetic circuitry that governs stem cell homeostasis. Exposure of the intestinal epithelium to environmental toxins results in the expression of cytokines and growth factors that drive the rapid proliferation and differentiation of ISCs. In the absence of stress signals, ISC homeostasis is maintained through intrinsic pathways. In this study, we uncovered the PDGF- and VEGF-receptor related (Pvr) pathway as an essential regulator of ISC homeostasis under unstressed conditions in the posterior midgut. We found that Pvr is coexpressed with its ligand Pvf2 in ISCs and that hyperactivation of the Pvr pathway distorts the ISC developmental program and drives intestinal dysplasia. In contrast, we show that mutant ISCs in the Pvf/Pvr pathway are defective in homeostatic proliferation and differentiation, resulting in a failure to generate mature cell types. Additionally, we determined that extrinsic stress signals generated by enteropathogenic infection are epistatic to the hypoplasia generated in Pvf/Pvr mutants, making the Pvr pathway unique among all previously studied intrinsic pathways. Our findings illuminate an evolutionarily conserved signal transduction pathway with essential roles in metazoan embryonic development and direct involvement in numerous disease states.
Collapse
Affiliation(s)
- David Bond
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
49
|
Takashima S, Hartenstein V. Genetic control of intestinal stem cell specification and development: a comparative view. Stem Cell Rev Rep 2012; 8:597-608. [PMID: 22529012 PMCID: PMC3950647 DOI: 10.1007/s12015-012-9351-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells of the adult vertebrate intestine (ISCs) are responsible for the continuous replacement of intestinal cells, but also serve as site of origin of intestinal neoplasms. The interaction between multiple signaling pathways, including Wnt/Wg, Shh/Hh, BMP, and Notch, orchestrate mitosis, motility, and differentiation of ISCs. Many fundamental questions of how these pathways carry out their function remain unanswered. One approach to gain more insight is to look at the development of stem cells, to analyze the "programming" process which these cells undergo as they emerge from the large populations of embryonic progenitors. This review intends to summarize pertinent data on vertebrate intestinal stem cell biology, to then take a closer look at recent studies of intestinal stem cell development in Drosophila. Here, stem cell pools and their niche environment consist of relatively small numbers of cells, and questions concerning the pattern of cell division, niche-stem cell contacts, or differentiation can be addressed at the single cell level. Likewise, it is possible to analyze the emergence of stem cells during development more easily than in vertebrate systems: where in the embryo do stem cells arise, what structures in their environment do they interact with, and what signaling pathways are active sequentially as a result of these interactions. Given the high degree of conservation among genetic mechanisms controlling stem cell behavior in all animals, findings in Drosophila will provide answers that inform research in the vertebrate stem cell field.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
50
|
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud Å, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ, Samuelson LC. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2011; 139:488-97. [PMID: 22190634 DOI: 10.1242/dev.070763] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis.
Collapse
Affiliation(s)
- Kelli L VanDussen
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|