1
|
Liu X, Lam SM, Zheng Y, Mo L, Li M, Sun T, Long X, Peng S, Zhang X, Mei M, Shui G, Bao S. Palmitoyl-carnitine Regulates Lung Development by Promoting Pulmonary Mesenchyme Proliferation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0620. [PMID: 40104443 PMCID: PMC11914330 DOI: 10.34133/research.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Disruption of acylcarnitine homeostasis results in life-threatening outcomes in humans. Carnitine-acylcarnitine translocase deficiency (CACTD) is a scarce autosomal recessive genetic disease and may result in patients' death due to heart arrest or respiratory insufficiency. However, the reasons and mechanism of CACTD inducing respiratory insufficiency have never been elucidated. Herein, we employed lipidomic techniques to create comprehensive lipidomic maps of entire lungs throughout both prenatal and postnatal developmental stages in mice. We found that the acylcarnitines manifested notable variations and coordinated the expression levels of carnitine-acylcarnitine translocase (Cact) across these lung developmental stages. Cact-null mice were all dead with a symptom of respiratory distress and exhibited failed lung development. Loss of Cact resulted in an accumulation of palmitoyl-carnitine (C16-acylcarnitine) in the lungs and promoted the proliferation of mesenchymal progenitor cells. Mesenchymal cells with elevated C16-acylcarnitine levels displayed minimal changes in energy metabolism but, upon investigation, revealed an interaction with sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (Samhd1), leading to decreased protein abundance and enhanced cell proliferation. Thus, our findings present a mechanism addressing respiratory distress in CACTD, offering a valuable reference point for both the elucidation of pathogenesis and the exploration of treatment strategies for neonatal respiratory distress.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lesong Mo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Long
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Peng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Lahti L, Volakakis N, Gillberg L, Yaghmaeian Salmani B, Tiklová K, Kee N, Lundén-Miguel H, Werkman M, Piper M, Gronostajski R, Perlmann T. Sox9 and nuclear factor I transcription factors regulate the timing of neurogenesis and ependymal maturation in dopamine progenitors. Development 2025; 152:dev204421. [PMID: 39995267 DOI: 10.1242/dev.204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Correct timing of neurogenesis is crucial for generating the correct number and subtypes of glia and neurons in the embryo, and for preventing tumours and stem cell depletion in the adults. Here, we analyse how the midbrain dopamine (mDA) neuron progenitors transition into cell cycle arrest (G0) and begin to mature into ependymal cells. Comparison of mDA progenitors from different embryonic stages revealed upregulation of the genes encoding Sox9 and nuclear factor I transcription factors during development. Their conditional inactivation in the early embryonic midbrain led to delayed G0 entry and ependymal maturation in the entire midbrain ventricular zone, reduced gliogenesis and increased generation of neurons, including mDA neurons. In contrast, their inactivation in late embryogenesis did not result in mitotic re-entry, suggesting that these factors are necessary for G0 induction, but not for its maintenance. Our characterisation of adult ependymal cells by single-cell RNA sequencing and histology show that mDA-progenitor-derived cells retain several progenitor features but also secrete neuropeptides and contact neighbouring cells and blood vessels, indicating that these cells may form part of the circumventricular organ system.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Katarína Tiklová
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel Kee
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Maarten Werkman
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Michael Piper
- The School of Biomedical Sciences and The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Gronostajski
- Genetics, Genomics & Bioinformatics Program, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Malaymar Pinar D, Göös H, Tan Z, Kumpula EP, Chowdhury I, Wang Z, Zhang Q, Salokas K, Keskitalo S, Wei GH, Kumbasar A, Varjosalo M. Nuclear Factor I Family Members are Key Transcription Factors Regulating Gene Expression. Mol Cell Proteomics 2025; 24:100890. [PMID: 39617063 PMCID: PMC11775196 DOI: 10.1016/j.mcpro.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The Nuclear Factor I (NFI) family of transcription factors (TFs) plays key roles in cellular differentiation, proliferation, and homeostasis. As such, NFI family members engage in a large number of interactions with other proteins and chromatin. However, despite their well-established significance, the NFIs' interactomes, their dynamics, and their functions have not been comprehensively examined. Here, we employed complementary omics-level techniques, i.e. interactomics (affinity purification mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID)), and chromatin immunoprecipitation sequencing (ChIP-Seq), to obtain a comprehensive view of the NFI proteins and their interactions in different cell lines. Our analyses included all four NFI family members, and a less-studied short isoform of NFIB (NFIB4), which lacks the DNA binding domain. We observed that, despite exhibiting redundancy, each family member had unique high-confidence interactors and target genes, suggesting distinct roles within the transcriptional regulatory networks. The study revealed that NFIs interact with other TFs to co-regulate a broad range of regulatory networks and cellular processes. Notably, time-dependent proximity-labeling unveiled a highly dynamic nature of NFI protein-protein interaction networks and hinted at the temporal modulation of NFI interactions. Furthermore, gene ontology (GO) enrichment analysis of NFI interactome and targetome revealed the involvement of NFIs in transcriptional regulation, chromatin organization, cellular signaling pathways, and pathways related to cancer. Additionally, we observed that NFIB4 engages with proteins associated with mRNA regulation, which suggests that NFIs have roles beyond traditional DNA binding and transcriptional modulation. We propose that NFIs may function as potential pioneering TFs, given their role in regulating the DNA binding ability of other TFs and their interactions with key chromatin remodeling complexes, thereby influencing a wide range of cellular processes. These insights into NFI protein-protein interactions and their dynamic, context-dependent nature provide a deeper understanding of gene regulation mechanisms and hint at the role of NFIs as master regulators.
Collapse
Affiliation(s)
- Dicle Malaymar Pinar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Helka Göös
- iCell, Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Zenglai Tan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qin Zhang
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Qiu M, Zhang X, Liao L, Zhang N, Liu M. Regulatory Role of Nfix Gene in Sheep Skeletal Muscle Cell Development and Its Interaction Mechanism with MSTN. Int J Mol Sci 2024; 25:11988. [PMID: 39596059 PMCID: PMC11593348 DOI: 10.3390/ijms252211988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Skeletal muscle development is crucial for livestock production, and understanding the molecular mechanisms involved is essential for enhancing muscle growth in sheep. This study aimed to investigate the role of Nfix, a member of the nuclear factor I (NFI) family, in regulating muscle development in sheep, filling a significant gap in the current understanding of Nfix deficiency and its impact on skeletal muscle growth, as no similar studies have been reported in this species. Bioinformatic analysis, including temporal analysis of transcriptome data, identified Nfix as a potential target gene for muscle growth regulation. The effects of Nfix overexpression and knockout on the proliferation and differentiation of sheep skeletal muscle cells were investigated. Changes in the expression of associated marker genes were assessed to explore the regulatory link between Nfix and the myostatin (MSTN) gene. Additionally, target miRNAs for Nfix and MSTN were predicted using online databases such as miRWalk, resulting in the construction of an Nfix-miRNA-MSTN interactive regulatory network. The findings revealed that Nfix promotes the proliferation and differentiation of sheep skeletal muscle cells, with further analysis indicating that Nfix may regulate muscle cell development by modulating MSTN expression. This study provides preliminary insights into the function of Nfix in sheep skeletal muscle development and its regulatory interactions, addressing a critical knowledge gap regarding Nfix deficiency and its implications for muscle growth. These findings contribute to a better understanding of muscle biology in sheep and provide a theoretical foundation for future research into the regulatory mechanisms governing muscle development.
Collapse
Affiliation(s)
- Meiyu Qiu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Xuemei Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Li Liao
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ning Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Mingjun Liu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| |
Collapse
|
5
|
Pattnaik B, Negi V, Chaudhuri R, Desiraju K, Faizan MI, Akhtar A, Ansari MS, Shakir M, Gheware A, Prakash YS, Guleria R, Ghosh B, Agrawal A, Ahmad T. MiR-326-mediated overexpression of NFIB offsets TGF-β induced epithelial to mesenchymal transition and reverses lung fibrosis. Cell Mol Life Sci 2023; 80:357. [PMID: 37950757 PMCID: PMC11072886 DOI: 10.1007/s00018-023-05005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 11/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively fatal and incurable disease characterized by the loss of alveolar structures, increased epithelial-mesenchymal transition (EMT), and aberrant tissue repair. In this study, we investigated the role of Nuclear Factor I-B (NFIB), a transcription factor critical for lung development and maturation, in IPF. Using both human lung tissue samples from patients with IPF, and a mouse model of lung fibrosis induced by bleomycin, we showed that there was a significant reduction of NFIB both in the lungs of patients and mice with IPF. Furthermore, our in vitro experiments using cultured human lung cells demonstrated that the loss of NFIB was associated with the induction of EMT by transforming growth factor beta (TGF-β). Knockdown of NFIB promoted EMT, while overexpression of NFIB suppressed EMT and attenuated the severity of bleomycin-induced lung fibrosis in mice. Mechanistically, we identified post-translational regulation of NFIB by miR-326, a miRNA with anti-fibrotic effects that is diminished in IPF. Specifically, we showed that miR-326 stabilized and increased the expression of NFIB through its 3'UTR target sites for Human antigen R (HuR). Moreover, treatment of mice with either NFIB plasmid or miR-326 reversed airway collagen deposition and fibrosis. In conclusion, our study emphasizes the critical role of NFIB in lung development and maturation, and its reduction in IPF leading to EMT and loss of alveolar structures. Our study highlights the potential of miR-326 as a therapeutic intervention for IPF. The schema shows the role of NFIB in maintaining the normal epithelial cell characteristics in the lungs and how its reduction leads to a shift towards mesenchymal cell-like features and pulmonary fibrosis. A In normal lungs, NFIB is expressed abundantly in the epithelial cells, which helps in maintaining their shape, cell polarity and adhesion molecules. However, when the lungs are exposed to factors that induce pulmonary fibrosis, such as bleomycin, or TGF-β, the epithelial cells undergo epithelial to mesenchymal transition (EMT), which leads to a decrease in NFIB. B The mesenchymal cells that arise from EMT appear as spindle-shaped with loss of cell junctions, increased cell migration, loss of polarity and expression of markers associated with mesenchymal cells/fibroblasts. C We designed a therapeutic approach that involves exogenous administration of NFIB in the form of overexpression plasmid or microRNA-326. This therapeutic approach decreases the mesenchymal cell phenotype and restores the epithelial cell phenotype, thus preventing the development or progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Vinny Negi
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Rituparna Chaudhuri
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Koundinya Desiraju
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Areej Akhtar
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Sufyan Ansari
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Shakir
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Atish Gheware
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Y S Prakash
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Randeep Guleria
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Trivedi School of Biosciences, Ashoka University, NH 44, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| | - Tanveer Ahmad
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Santos M, Hwang JW, Bedford MT. CARM1 arginine methyltransferase as a therapeutic target for cancer. J Biol Chem 2023; 299:105124. [PMID: 37536629 PMCID: PMC10474102 DOI: 10.1016/j.jbc.2023.105124] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that posttranslationally modifies proteins that regulate multiple levels of RNA production and processing. Its substrates include histones, transcription factors, coregulators of transcription, and splicing factors. CARM1 is overexpressed in many different cancer types, and often promotes transcription factor programs that are co-opted as drivers of the transformed cell state, a process known as transcription factor addiction. Targeting these oncogenic transcription factor pathways is difficult but could be addressed by removing the activity of the key coactivators on which they rely. CARM1 is ubiquitously expressed, and its KO is less detrimental in embryonic development than deletion of the arginine methyltransferases protein arginine methyltransferase 1 and protein arginine methyltransferase 5, suggesting that therapeutic targeting of CARM1 may be well tolerated. Here, we will summarize the normal in vivo functions of CARM1 that have been gleaned from mouse studies, expand on the transcriptional pathways that are regulated by CARM1, and finally highlight recent studies that have identified oncogenic properties of CARM1 in different biological settings. This review is meant to kindle an interest in the development of human drug therapies targeting CARM1, as there are currently no CARM1 inhibitors available for use in clinical trials.
Collapse
Affiliation(s)
- Margarida Santos
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Jee Won Hwang
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
8
|
Peng C, Wu DD, Ren JL, Peng ZL, Ma Z, Wu W, Lv Y, Wang Z, Deng C, Jiang K, Parkinson CL, Qi Y, Zhang ZY, Li JT. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023; 186:2959-2976.e22. [PMID: 37339633 DOI: 10.1016/j.cell.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.
Collapse
Affiliation(s)
- Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifei Ma
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; College of Life Science, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cao Deng
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 610000, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | | | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
| |
Collapse
|
9
|
Gao G, Hausmann S, Flores NM, Benitez AM, Shen J, Yang X, Person MD, Gayatri S, Cheng D, Lu Y, Liu B, Mazur PK, Bedford MT. The NFIB/CARM1 partnership is a driver in preclinical models of small cell lung cancer. Nat Commun 2023; 14:363. [PMID: 36690626 PMCID: PMC9870865 DOI: 10.1038/s41467-023-35864-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojie Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria D Person
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Evozyne Inc., Chicago, IL, 60614, USA
| | - Donghang Cheng
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Transcriptional Regulation of RIP2 Gene by NFIB Is Associated with Cellular Immune and Inflammatory Response to APEC Infection. Int J Mol Sci 2022; 23:ijms23073814. [PMID: 35409172 PMCID: PMC8998712 DOI: 10.3390/ijms23073814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic E. coli (APEC) can cause localized or systemic infection, resulting in large economic losses per year, and impact health of humans. Previous studies showed that RIP2 (receptor interacting serine/threonine kinase 2) and its signaling pathway played an important role in immune response against APEC infection. In this study, chicken HD11 cells were used as an in vitro model to investigate the function of chicken RIP2 and the transcription factor binding to the RIP2 core promoter region via gene overexpression, RNA interference, RT-qPCR, Western blotting, dual luciferase reporter assay, CHIP-PCR, CCK-8, and flow cytometry assay following APEC stimulation. Results showed that APEC stimulation promoted RIP2 expression and cells apoptosis, and inhibited cells viability. Knockdown of RIP2 significantly improved cell viability and suppressed the apoptosis of APEC-stimulated cells. Transcription factor NFIB (Nuclear factor I B) and GATA1 (globin transcription factor 1) binding site was identified in the core promoter region of RIP2 from −2300 bp to −1839 bp. However, only NFIB was confirmed to be bound to the core promoter of RIP2. Overexpression of NFIB exacerbated cell injuries with significant reduction in cell viability and increased cell apoptosis and inflammatory cytokines levels, whereas opposite results were observed in NFIB inhibition treatment group. Moreover, RIP2 was up-regulated by NFIB overexpression, and RIP2 silence mitigated the effect of NFIB overexpression in cell apoptosis, inflammation, and activation of NFκB signaling pathways. This study demonstrated that NFIB overexpression accelerated APEC-induced apoptosis and inflammation via up-regulation of RIP2 mediated downstream pathways in chicken HD11 cells.
Collapse
|
11
|
Duong TE, Wu Y, Sos BC, Dong W, Limaye S, Rivier LH, Myers G, Hagood JS, Zhang K. A single-cell regulatory map of postnatal lung alveologenesis in humans and mice. CELL GENOMICS 2022; 2:100108. [PMID: 35434692 PMCID: PMC9012447 DOI: 10.1016/j.xgen.2022.100108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/05/2021] [Accepted: 02/02/2022] [Indexed: 04/14/2023]
Abstract
Ex-utero regulation of the lungs' responses to breathing air and continued alveolar development shape adult respiratory health. Applying single-cell transposome hypersensitive site sequencing (scTHS-seq) to over 80,000 cells, we assembled the first regulatory atlas of postnatal human and mouse lung alveolar development. We defined regulatory modules and elucidated new mechanistic insights directing alveolar septation, including alveolar type 1 and myofibroblast cell signaling and differentiation, and a unique human matrix fibroblast population. Incorporating GWAS, we mapped lung function causal variants to myofibroblasts and identified a pathogenic regulatory unit linked to lineage marker FGF18, demonstrating the utility of chromatin accessibility data to uncover disease mechanism targets. Our regulatory map and analysis model provide valuable new resources to investigate age-dependent and species-specific control of critical developmental processes. Furthermore, these resources complement existing atlas efforts to advance our understanding of lung health and disease across the human lifespan.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Brandon Chin Sos
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Siddharth Limaye
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauraine H. Rivier
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Greg Myers
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James S. Hagood
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Uluca B, Lektemur Esen C, Saritas Erdogan S, Kumbasar A. NFI transcriptionally represses CDON and is required for SH-SY5Y cell survival. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194798. [PMID: 35151899 DOI: 10.1016/j.bbagrm.2022.194798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nuclear Factor One (NFI) family of transcription factors regulate proliferation and multiple aspects of differentiation, playing analogous roles in embryonic development and various types of cancer. While all NFI family members are expressed in the developing brain and are involved in progression of brain cancers, their role in neuroblastoma has not been studied. Here we show that NFIB is required for the survival and proliferation of SH-SY5Y neuroblastoma cells, assessed by viability and colony formation assays. Cdon, an Ig superfamily member, is a SHH dependence receptor that acts as a tumor suppressor in neuroblastoma. In the absence of NFI, Cdon is upregulated in the developing mouse brain, however the mechanisms by which its transcription is regulated remains unknown. We report CDON as a downstream target of NFIs in SH-SY5Y cells. There are three putative NFI binding sites within the one kb CDON promoter, two of which are occupied by NFIs in SH-SY5Y cells and human neural stem cells. In dual-luciferase assays, Nfib directly represses CDON proximal promoter activity. Moreover, silencing NFIB leads to upregulation of CDON in SH-SY5Y cells, however, decreased cell proliferation in NFIB silenced cells could not be rescued by concomitantly silencing CDON, suggesting other molecular players are involved. For instance, p21, an NFI target in glioblastoma and breast cancer cells, is also upregulated upon NFIB knock-down. We propose that NFIB is indispensable for SH-SY5Y cells which may involve regulation of apoptosis inducer proteins CDON and p21.
Collapse
Affiliation(s)
- Betül Uluca
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Molecular Biotechnology, Turkish-German University, Beykoz, Istanbul 34820, Turkey
| | - Cemre Lektemur Esen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Sinem Saritas Erdogan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
13
|
Huang H, Jin J, Wu L, Wu H, Pi H, Dong Y, Xiang R. A de novo Non-sense Nuclear Factor I B Mutation (p.Tyr290*) Is Responsible for Brain Malformation and Lung Lobulation Defects. Front Pediatr 2022; 10:865181. [PMID: 35433561 PMCID: PMC9005976 DOI: 10.3389/fped.2022.865181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nuclear factor I B (NFIB) plays an important role in regulating the transcription of multiple biological processes. Mutations in NFIB cause intellectual disability and macrocephaly. However, studies on abnormal brain and lung development caused by NFIB mutations are lacking. METHODS In the present study, we enrolled a fetus with brain malformation and lung lobulation defects from China. Whole-exome sequencing (WES) was performed to detect the candidate genes and Sanger sequencing was performed for mutational analysis. RESULTS After data filtering and bioinformatics prediction, a novel non-sense mutation of NFIB (NM_001190737:c.870C > A;p.Tyr290*) was identified in the fetus. This variant was predicted to produce a truncated NFIB protein because of a premature stop codon and was absent in 200 healthy controls. CONCLUSION To the best of our knowledge, this is the first case of brain malformation and lung lobulation defects caused by a NFIB variant in Asia. These findings contribute to genetic diagnosis and family counseling and expand our understanding of NFIB mutations as well as brain and lung maturation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jieyuan Jin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liping Wu
- Department of Medical Genetics and Prenatal Diagnosis, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huifen Wu
- Obstetric Inpatient Department, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huichun Pi
- Department of Medical Genetics and Prenatal Diagnosis, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yi Dong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
14
|
Chen D, Sun J, Zhu J, Ding X, Lan T, Wang X, Wu W, Ou Z, Zhu L, Ding P, Wang H, Luo L, Xiang R, Wang X, Qiu J, Wang S, Li H, Chai C, Liang L, An F, Zhang L, Han L, Zhu Y, Wang F, Yuan Y, Wu W, Sun C, Lu H, Wu J, Sun X, Zhang S, Sahu SK, Liu P, Xia J, Zhang L, Chen H, Fang D, Zeng Y, Wu Y, Cui Z, He Q, Jiang S, Ma X, Feng W, Xu Y, Li F, Liu Z, Chen L, Chen F, Jin X, Qiu W, Wang T, Li Y, Xing X, Yang H, Xu Y, Hua Y, Liu Y, Liu H, Xu X. Single cell atlas for 11 non-model mammals, reptiles and birds. Nat Commun 2021; 12:7083. [PMID: 34873160 PMCID: PMC8648889 DOI: 10.1038/s41467-021-27162-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.
Collapse
Affiliation(s)
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianming Lan
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | | | - Zhihua Ou
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Xiang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaying Qiu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haimeng Li
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Chai
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Langchao Liang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Le Zhang
- College of Wildlife Resources Northeast Forestry University, Harbin, 150040, China
| | - Lei Han
- College of Wildlife Resources Northeast Forestry University, Harbin, 150040, China
| | - Yixin Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | - Wendi Wu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jihong Wu
- Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xinghuai Sun
- Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | | | - Ping Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jun Xia
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Lijing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Yuying Zeng
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiquan Wu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1868, USA
| | - Zehua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | | | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge, CB21QW, UK
| | | | - Yan Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Fang Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tianjiao Wang
- Institute of Special Animal and Plant Sciences (ISAPS) of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Li
- Institute of Special Animal and Plant Sciences (ISAPS) of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiumei Xing
- Institute of Special Animal and Plant Sciences (ISAPS) of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yanchun Xu
- College of Wildlife Resources Northeast Forestry University, Harbin, 150040, China
- College of Wildlife and Protected Areas, Northeast Forestry University, No. 26, Hexing Road, Xiangfang District, Harbin, 150040, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, 518083, Shenzhen, China.
| |
Collapse
|
15
|
Pan D, Qian B, Zhao D, Yao B. Nfib promotes chondrocyte proliferation and inhibits differentiation by mildly regulating Sox9 and its downstream genes. Mol Biol Rep 2021; 48:7487-7497. [PMID: 34651294 DOI: 10.1007/s11033-021-06767-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chondrocyte proliferation and differentiation play pivotal roles in regulating cartilage formation, endochondral bone formation, and repair. Cartilage damage and underdevelopment may cause severe joint diseases. Various transcription factors regulate cartilage development. Nuclear factor 1 B (Nfib) is a transcription factor that plays a regulatory role in various organs. However, the effect and mechanism of Nfib on the proliferation and differentiation of chondrocytes in cartilage are still largely unknown. METHODS AND RESULTS In the present study, we investigated the gene expression patterns in primary chondrocytes with Nfib overexpression or silencing by RNA sequencing (RNA-seq) technology. The results showed that Nfib overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. However, with Nfib silencing, the genes involved in promoting chondrocyte differentiation were significantly up-regulated, whereas those involved in promoting chondrocyte proliferation were significantly down-regulated. Furthermore, quantitative real-time PCR (qRT-PCR), western blot, alcian blue staining and immunofluorescence staining assays further confirmed that Nfib potentially promotes chondrocyte proliferation and extracellular synthesis but inhibits differentiation. CONCLUSIONS The molecular mechanism of Nfib in promoting chondrocyte proliferation and inhibiting differentiation was probably achieved by stimulating Sox9 and its downstream genes. Thus, this study adds new insights regarding the underlying molecular mechanism of transcriptional regulation in cartilage.
Collapse
Affiliation(s)
- Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Benxin Qian
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
16
|
The Balance between Differentiation and Terminal Differentiation Maintains Oral Epithelial Homeostasis. Cancers (Basel) 2021; 13:cancers13205123. [PMID: 34680271 PMCID: PMC8534139 DOI: 10.3390/cancers13205123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Oral cancer affecting the oral cavity represents the most common cancer of the head and neck region. Oral cancer develops in a multistep process in which normal cells gradually accumulate genetic and epigenetic modifications to evolve into a malignant disease. Mortality for oral cancer patients is high and morbidity has a significant long-term impact on the health and wellbeing of affected individuals, typically resulting in facial disfigurement and a loss of the ability to speak, chew, taste, and swallow. The limited scope to which current treatments are able to control oral cancer underlines the need for novel therapeutic strategies. This review highlights the molecular differences between oral cell proliferation, differentiation and terminal differentiation, defines terminal differentiation as an important tumour suppressive mechanism and establishes a rationale for clinical investigation of differentiation-paired therapies that may improve outcomes in oral cancer. Abstract The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.
Collapse
|
17
|
Gokey JJ, Snowball J, Sridharan A, Sudha P, Kitzmiller JA, Xu Y, Whitsett JA. YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. iScience 2021; 24:102967. [PMID: 34466790 PMCID: PMC8383002 DOI: 10.1016/j.isci.2021.102967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/26/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.
Collapse
Affiliation(s)
- Jason J. Gokey
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Snowball
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Parvathi Sudha
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph A. Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey A. Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
18
|
Yu J, Song Y, Yang A, Zhang X, Li L. Serum nuclear factor IB as a novel and noninvasive indicator in the diagnosis of secondary hyperparathyroidism. J Clin Lab Anal 2021; 35:e23787. [PMID: 33991027 PMCID: PMC8183937 DOI: 10.1002/jcla.23787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) referred to chronic progressive renal parenchymal damage caused by various causes, with metabolite retention and imbalance of water, electrolyte, and acid-base balance as the main clinical manifestations. Secondary hyperparathyroidism (sHPT) was a common complication in maintenance hemodialysis patients with CRF. Nuclear factor IB (NFIB) was a newly found tumor suppressor gene in various cancers. The present study aimed to illustrate the role of NFIB in sHPT clinical diagnosis and treatment response. METHODS A retrospective, case-control study, including 189 patients with sHPT and 106 CRF patients without sHPT, compared with 95 controls. Serum NFIB and 1,25(OH)2 D3 levels were measured by RT-qPCR and ELISAs, respectively. ROC analysis was conducted to verify the diagnostic value of NFIB in sHPT. Spearman's correlation analysis was conducted to verify the association between NFIB and bone mineral density (BMD) scores. After 6 months of treatment, the variance of NFIB and 1,25(OH)2 D3 in different groups was recorded. RESULTS The expression of NFIB was significantly lower in serum samples from sHPT and non-sHPT CRF patients, compared to controls. Clinicopathological information verified sHPT was associated with NFIB, parathyroid hormone (PTH), serum calcium, serum phosphorus, time of dialysis, and serum 1,25(OH)2 D3 levels. Spearman's correlation analysis illustrated the positive correlation between NFIB levels and BMD scores. At receiver operator characteristic (ROC) curve analysis, the cutoff of 1.6508 for NFIB was able to identify patients with sHPT from healthy controls; meanwhile, NFIB could also discriminate sHPT among CRF patients as well (cutoff = 1.4741). Furthermore, we found that during 6 months of treatment, NFIB levels were gradually increased, while PTH and serum P levels were decreased. CONCLUSIONS Serum NFIB was a highly accurate tool to identify sHPT from healthy controls and CRF patients. Due to its simplicity, specificity, and sensitivity, this candidate can be proposed as a first-line examination in the diagnostic workup in sHPT.
Collapse
Affiliation(s)
- Jian'gen Yu
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Yu Song
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Aihua Yang
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Xiaoyun Zhang
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Lin Li
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| |
Collapse
|
19
|
Yoo S, Kim J, Lyu P, Hoang TV, Ma A, Trinh V, Dai W, Jiang L, Leavey P, Duncan L, Won JK, Park SH, Qian J, Brown SP, Blackshaw S. Control of neurogenic competence in mammalian hypothalamic tanycytes. SCIENCE ADVANCES 2021; 7:eabg3777. [PMID: 34049878 PMCID: PMC8163082 DOI: 10.1126/sciadv.abg3777] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 05/07/2023]
Abstract
Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. In this study, we show that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) robustly stimulates tanycyte proliferation and tanycyte-derived neurogenesis. Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analysis reveals that NFI (nuclear factor I) factors repress Sonic hedgehog (Shh) and Wnt signaling in tanycytes and modulation of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, fire action potentials, receive synaptic inputs, and selectively respond to changes in internal states. These findings identify molecular mechanisms that control tanycyte-derived neurogenesis, which can potentially be targeted to selectively remodel the hypothalamic neural circuitry that controls homeostatic physiological processes.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pathology, Seoul National University Hospital, 71 Daehak-ro, Jongno-gu 03082, Republic of Korea
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pin Lyu
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alex Ma
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vickie Trinh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Weina Dai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Leighton Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, 71 Daehak-ro, Jongno-gu 03082, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, 71 Daehak-ro, Jongno-gu 03082, Republic of Korea
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Notch Transduction in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21165691. [PMID: 32784481 PMCID: PMC7461113 DOI: 10.3390/ijms21165691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily-conserved Notch signaling pathway plays critical roles in cell communication, function and homeostasis equilibrium. The pathway serves as a cell-to-cell juxtaposed molecular transducer and is crucial in a number of cell processes including cell fate specification, asymmetric cell division and lateral inhibition. Notch also plays critical roles in organismal development, homeostasis, and regeneration, including somitogenesis, left-right asymmetry, neurogenesis, tissue repair, self-renewal and stemness, and its dysregulation has causative roles in a number of congenital and acquired pathologies, including cancer. In the lung, Notch activity is necessary for cell fate specification and expansion, and its aberrant activity is markedly linked to various defects in club cell formation, alveologenesis, and non-small cell lung cancer (NSCLC) development. In this review, we focus on the role this intercellular signaling device plays during lung development and on its functional relevance in proximo-distal cell fate specification, branching morphogenesis, and alveolar cell determination and maturation, then revise its involvement in NSCLC formation, progression and treatment refractoriness, particularly in the context of various mutational statuses associated with NSCLC, and, lastly, conclude by providing a succinct outlook of the therapeutic perspectives of Notch targeting in NSCLC therapy, including an overview on prospective synthetic lethality approaches.
Collapse
|
21
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
22
|
Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE, Gronostajski RM, Fertig EJ, Goff LA, Blackshaw S. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 2019; 102:1111-1126.e5. [PMID: 31128945 PMCID: PMC6768831 DOI: 10.1016/j.neuron.2019.04.010] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Precise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single-cell RNA sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each major retinal cell type. We identify the NFI transcription factors (Nfia, Nfib, and Nfix) as selectively expressed in late retinal progenitor cells and show that they control bipolar interneuron and Müller glia cell fate specification and promote proliferative quiescence.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fion Shiau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle H Cannon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca E James-Esposito
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Kerschner JL, Ghosh S, Paranjapye A, Cosme WR, Audrézet MP, Nakakuki M, Ishiguro H, Férec C, Rommens J, Harris A. Screening for Regulatory Variants in 460 kb Encompassing the CFTR Locus in Cystic Fibrosis Patients. J Mol Diagn 2018; 21:70-80. [PMID: 30296588 DOI: 10.1016/j.jmoldx.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
It is estimated that up to 5% of cystic fibrosis transmembrane conductance regulator (CFTR) pathogenic alleles are unidentified. Some of these errors may lie in noncoding regions of the locus and affect gene expression. To identify regulatory element variants in the CFTR locus, SureSelect targeted enrichment of 460 kb encompassing the gene was optimized to deep sequence genomic DNA from 80 CF patients with an unequivocal clinical diagnosis but only one or no CFTR-coding region pathogenic variants. Bioinformatics tools were used to identify sequence variants and predict their impact, which were then assayed in transient reporter gene luciferase assays. The effect of five variants in the CFTR promoter and four in an intestinal enhancer of the gene were assayed in relevant cell lines. The initial analysis of sequence data revealed previously known CF-causing variants, validating the robustness of the SureSelect design, and showed that 85 of 160 CF alleles were undefined. Of a total 1737 variants revealed across the extended 460-kb CFTR locus, 51 map to known CFTR cis-regulatory elements, and many of these are predicted to alter transcription factor occupancy. Four promoter variants and all those in the intestinal enhancer significantly repress reporter gene activity. These data suggest that CFTR regulatory elements may harbor novel CF disease-causing variants that warrant further investigation, both for genetic screening protocols and functional assays.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sujana Ghosh
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Wilmel R Cosme
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | | | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Johanna Rommens
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio; Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
25
|
Kumar VHS, Chaker El Khoury J, Gronostajski R, Wang H, Nielsen L, Ryan RM. Nfib hemizygous mice are protected from hyperoxic lung injury and death. Physiol Rep 2018; 5:5/16/e13398. [PMID: 28830981 PMCID: PMC5582271 DOI: 10.14814/phy2.13398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
Nuclear Factor I (Nfi) genes encode transcription factors essential for the development of organ systems including the lung. Nfib null mice die at birth with immature lungs. Nfib hemizygous mice have reduced lung maturation with decreased survival. We therefore hypothesized that these mice would be more sensitive to lung injury and would have lower survival to hyperoxia. Adult Nfib hemizygous mice and their wild-type (Wt) littermates were exposed to 100% O2 for 89, 80, 72 and 66 h for survival studies with lung outcome measurements at 66 h. Nfib hemizygous and Wt controls were also studied in RA at 66 h. Cell counts and cytokines were measured in bronchoalveolar lavage (BAL); lung sections examined by histopathology; lung angiogenic and oxidative stress gene expression assessed by real-time PCR Unexpectedly, Nfib hemizygous mice (0/14-0%) had significantly lower mortality compared to Wt mice (10/22-45%) at 80 h of hyperoxia (P < 0.003). LD50 was 80 h in the Wt group versus 89 h in the hemizygous group. There were no differences in BAL cell counts between the groups. Among the cytokines studied, MIP-2 was significantly lower in hemizygous mice exposed to hyperoxia. New vessel formation, edema, congestion, and alveolar hemorrhage were noted on histopathology at 72 and 80 h in wild-type mice. Nfib hemizygous lungs had significant downregulation of genes involved in redox signaling and inflammatory pathways. Adult Nfib hemizygous mice are relatively resistant to hyperoxia compared to wild-type littermates. Mechanisms contributing to this resistance are not clear; however, transcription factors such as Nfib may regulate cell survival and play a role in modulating postnatal lung development.
Collapse
Affiliation(s)
| | | | - Richard Gronostajski
- Departments of Biochemistry and Developmental Genomics & Genetics, Genomics & Bioinformatics Program, University at Buffalo, Buffalo, New York
| | - Huamei Wang
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Lori Nielsen
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Rita M Ryan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
26
|
Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L, Gronostajski RM, Richards LJ, Piper M. Combined allelic dosage of Nfia and Nfib regulates cortical development. Brain Neurosci Adv 2017; 1:2398212817739433. [PMID: 32166136 PMCID: PMC7058261 DOI: 10.1177/2398212817739433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of Nfia and Nfib would culminate in more severe defects in the cerebral cortex than loss of a single member. Methods: We combined immunofluorescence, co-immunoprecipitation, gene expression analysis and immunohistochemistry on knockout mouse models to investigate whether nuclear factor I A and nuclear factor I B function similarly and whether increasing allelic loss of Nfia and Nfib caused a more severe phenotype. Results: We determined that the biological functions of nuclear factor I A and nuclear factor I B overlap during early cortical development. These proteins are co-expressed and can form heterodimers in vivo. Differentially regulated genes that are shared between Nfia and Nfib knockout mice are highly enriched for nuclear factor I binding sites in their promoters and are associated with neurodevelopment. We found that compound heterozygous deletion of both genes resulted in a cortical phenotype similar to that of single homozygous Nfia or Nfib knockout embryos. This was characterised by retention of the interhemispheric fissure, dysgenesis of the corpus callosum and a malformed dentate gyrus. Double homozygous knockout of Nfia and Nfib resulted in a more severe phenotype, with increased ventricular enlargement and decreased numbers of differentiated glia and neurons. Conclusion: In the developing cerebral cortex, nuclear factor I A and nuclear factor I B share similar biological functions and function additively, as the combined allelic loss of these genes directly correlates with the severity of the developmental brain phenotype.
Collapse
Affiliation(s)
- Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason M Osinski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan Wc Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunan Ye
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R O'Connor
- School of Chemical and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey TJ, Essebier A, Vidovic D, Gladwyn-Ng I, Burne TH, Heng JI, Richards LJ, Gronostajski RM, Piper M. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development 2017; 143:4620-4630. [PMID: 27965439 DOI: 10.1242/dev.140681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/28/2016] [Indexed: 01/21/2023]
Abstract
During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Ilan Gobius
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Hannah McDonald
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Jason Osinki
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Ivan Gladwyn-Ng
- The Harry Perkins Institute of Medical Research, Crawley, Western Australia 6009, Australia.,The Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Thomas H Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - Julian I Heng
- The Harry Perkins Institute of Medical Research, Crawley, Western Australia 6009, Australia.,The Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Linda J Richards
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
28
|
Wu Y, Zhang J, Hou S, Cheng Z, Yuan M. Non-small cell lung cancer: miR-30d suppresses tumor invasion and migration by directly targeting NFIB. Biotechnol Lett 2017; 39:1827-1834. [DOI: 10.1007/s10529-017-2428-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
|
29
|
|
30
|
Becker-Santos DD, Lonergan KM, Gronostajski RM, Lam WL. Nuclear Factor I/B: A Master Regulator of Cell Differentiation with Paradoxical Roles in Cancer. EBioMedicine 2017; 22:2-9. [PMID: 28596133 PMCID: PMC5552107 DOI: 10.1016/j.ebiom.2017.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that nuclear factor I/B (NFIB), a transcription factor required for proper development and regulation of cellular differentiation in several tissues, also plays critical roles in cancer. Despite being a metastatic driver in small cell lung cancer and melanoma, it has become apparent that NFIB also exhibits tumour suppressive functions in many malignancies. The contradictory contributions of NFIB to both the inhibition and promotion of tumour development and progression, corroborates its diverse and context-dependent roles in many tissues and cell types. Considering the frequent involvement of NFIB in cancer, a better understanding of its multifaceted nature may ultimately benefit the development of novel strategies for the management of a broad spectrum of malignancies. Here we discuss recent findings which bring to light NFIB as a crucial and paradoxical player in cancer. NFIB, a versatile regulator of cell differentiation, is emerging as a crucial driver of cancer metastasis. Paradoxically, NFIB also exhibits tumour suppressive functions in several cancer types. A deeper understanding of the multifaceted and context-dependent nature of NFIB has the potential to improve the clinical management of a variety of cancers.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| | - Kim M Lonergan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Endale M, Ahlfeld S, Bao E, Chen X, Green J, Bess Z, Weirauch MT, Xu Y, Perl AK. Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development. Dev Biol 2017; 425:161-175. [PMID: 28408205 DOI: 10.1016/j.ydbio.2017.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα+ fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα+ fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα+ fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα+ fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29+ myofibroblasts and CD34+ lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization.
Collapse
Affiliation(s)
- Mehari Endale
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Shawn Ahlfeld
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Erik Bao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | - Jenna Green
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Zach Bess
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Matthew T Weirauch
- Center of Autoimmune Genomics and Ethology, USA; Divisions of Biomedical Informatics and Developmental Biology, USA
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Anne Karina Perl
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
32
|
de Oliveira PWB, Pezato R, Agudelo JSH, Perez-Novo CA, Berghe WV, Câmara NO, de Almeida DC, Gregorio LC. Nasal Polyp-Derived Mesenchymal Stromal Cells Exhibit Lack of Immune-Associated Molecules and High Levels of Stem/Progenitor Cells Markers. Front Immunol 2017; 8:39. [PMID: 28194153 PMCID: PMC5276864 DOI: 10.3389/fimmu.2017.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are considered adult progenitor stem cells and have been studied in a multitude of tissues. In this context, the microenvironment of nasal polyp tissue has several inflammatory cells, but their stroma compartment remains little elucidated. Hence, we isolated MSCs from nasal polyps Polyp-MSCs (PO-MSCs) and compared their molecular features and gene expression pattern with bone marrow-derived MSCs (BM-MSCs). Initially, both PO-MSCs and BM-MSCs were isolated, cultivated, and submitted to morphologic, differentiation, phenotypic, immunosuppressive, and gene expression assays. Compared to BM-MSCs, PO-MSCs showed normal morphology and similar osteogenic/adipogenic differentiation potential, but their immunophenotyping showed lack of immune-associated molecules (e.g., CD117, HLA-DR, PDL-1, and PDL-2), which was linked with less immunoregulatory abilities such as (i) inhibition of lymphocytes proliferation and (ii) regulatory T cell expansion. Furthermore, we detected in the PO-MSCs a distinct gene expression profile in comparison with BM-MSCs. PO-MSC expressed higher levels of progenitor stem cells specific markers (e.g., CD133 and ABCB1), while BM-MSCs showed elevated expression of cytokines and growth factors (e.g., FGF10, KDR, and GDF6). The gene ontology analysis showed that the differentially modulated genes in PO-MSC were related with matrix remodeling process and hexose and glucose transport. For BM-MSCs, the highly expressed genes were associated with behavior, angiogenesis, blood vessel morphogenesis, cell–cell signaling, and regulation of response to external stimulus. Thus, these results suggest that PO-MSCs, while sharing similar aspects with BM-MSCs, express a different profile of molecules, which presumably can be implicated in the development of nasal polyp tissue.
Collapse
Affiliation(s)
- Pedro Wey Barbosa de Oliveira
- ENT Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, Federal University of São Paulo , São Paulo , Brazil
| | - Rogério Pezato
- ENT Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, Federal University of São Paulo , São Paulo , Brazil
| | - Juan Sebastian Henao Agudelo
- ENT Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, Federal University of São Paulo , São Paulo , Brazil
| | - Claudina Angela Perez-Novo
- Department Biomedical Sciences, University of Antwerp, PPES Lab Proteinchemistry, Proteomics Epigenetic Signaling , Wilrijk , Belgium
| | - Wim Vanden Berghe
- Department Biomedical Sciences, University of Antwerp, PPES Lab Proteinchemistry, Proteomics Epigenetic Signaling , Wilrijk , Belgium
| | - Niels Olsen Câmara
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danilo Candido de Almeida
- Department Biomedical Sciences, University of Antwerp, PPES Lab Proteinchemistry, Proteomics Epigenetic Signaling , Wilrijk , Belgium
| | - Luís Carlos Gregorio
- ENT Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, Federal University of São Paulo , São Paulo , Brazil
| |
Collapse
|
33
|
NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF. EBioMedicine 2017; 16:63-75. [PMID: 28119061 PMCID: PMC5474438 DOI: 10.1016/j.ebiom.2017.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
Abstract
While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis. NFIB mediates a slow cycling, highly invasive/migratory melanoma cell phenotype downstream of BRN2. NFIB increases EZH2 expression downstream of BRN2, which further decreases MITF levels. NFIB expression is defined by an invasive gene signature and colocalises with BRN2 in primary and metastatic human melanoma tumours.
Melanoma is a heterogeneous cancer, made up of many cellular populations that differ in their ability to induce tumour growth or invasion throughout the body (metastasis). These populations have been found to switch back and forth to drive invasion and progression. This process appears to be controlled by an inverse axis between two genes, MITF and BRN2. BRN2 drives metastatic spread, but the process by which it acts is not well characterized and cannot be targeted clinically. This study has uncovered a role for the gene NFIB in driving invasion downstream of BRN2. Importantly, it appears to drive this process through EZH2, which can be targeted therapeutically to reduce metastasis.
Collapse
|
34
|
Zhang J, Liu Z, Zhang T, Lin Z, Li Z, Zhang A, Sun X, Gao J. Loss of Lysyl Oxidase-like 3 Attenuates Embryonic Lung Development in Mice. Sci Rep 2016; 6:33856. [PMID: 27645581 PMCID: PMC5029289 DOI: 10.1038/srep33856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Lysyl oxidase-like 3 (LOXL3), a human disease gene candidate, is a member of the lysyl oxidase (LOX) family and is indispensable for mouse palatogenesis and vertebral column development. Our previous study showed that the loss of LOXL3 resulted in a severe cleft palate and spinal deformity. In this study, we investigated a possible role for LOXL3 in mouse embryonic lung development. LOXL3-deficient mice displayed reduced lung volumes and weights, diminished saccular spaces, and deformed and smaller thoracic cavities. Excess elastic fibres were detected in LOXL3-deficient lungs, which might be related to the increased LOXL4 expression. Increased transforming growth factor β1 (TGFβ1) expression might be involved in the up-regulation of LOXL4 in LOXL3-deficient lungs. We concluded that the loss of LOXL3 attenuates mouse embryonic lung development.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Ziyi Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Tingting Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Zhuchun Lin
- Jinan First People's Hospital, Jinan 250011, China
| | - Zhenzu Li
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| |
Collapse
|
35
|
Becker-Santos DD, Thu KL, English JC, Pikor LA, Martinez VD, Zhang M, Vucic EA, Luk MT, Carraro A, Korbelik J, Piga D, Lhomme NM, Tsay MJ, Yee J, MacAulay CE, Lam S, Lockwood WW, Robinson WP, Jurisica I, Lam WL. Developmental transcription factor NFIB is a putative target of oncofetal miRNAs and is associated with tumour aggressiveness in lung adenocarcinoma. J Pathol 2016; 240:161-72. [PMID: 27357447 DOI: 10.1002/path.4765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | - Kelsie L Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - John C English
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Larissa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - May Zhang
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Margaret Ty Luk
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Anita Carraro
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jagoda Korbelik
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Daniela Piga
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Nicolas M Lhomme
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Mike J Tsay
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - John Yee
- Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Calum E MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Semenova EA, Kwon MC, Monkhorst K, Song JY, Bhaskaran R, Krijgsman O, Kuilman T, Peters D, Buikhuisen WA, Smit EF, Pritchard C, Cozijnsen M, van der Vliet J, Zevenhoven J, Lambooij JP, Proost N, van Montfort E, Velds A, Huijbers IJ, Berns A. Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients. Cell Rep 2016; 16:631-43. [PMID: 27373156 PMCID: PMC4956617 DOI: 10.1016/j.celrep.2016.06.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/01/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1)-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting. NFIB drives tumor initiation and progression in mouse models of SCLC NFIB enhances metastasis and changes the metastatic profile NFIB promotes dedifferentiation and invasion in SCLC NFIB marks stage III/IV high-grade neuroendocrine carcinomas in patients
Collapse
Affiliation(s)
- Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Min-Chul Kwon
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Kim Monkhorst
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Rajith Bhaskaran
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Dennis Peters
- Core Facility for Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Wieneke A Buikhuisen
- Division of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Egbert F Smit
- Division of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging research Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Miranda Cozijnsen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jan van der Vliet
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - John Zevenhoven
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jan-Paul Lambooij
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Natalie Proost
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Erwin van Montfort
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Arno Velds
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Skolkovo Institute of Science and Technology, Moscow 143026, Russia.
| |
Collapse
|
37
|
Grabowska MM, Kelly SM, Reese AL, Cates JM, Case TC, Zhang J, DeGraff DJ, Strand DW, Miller NL, Clark PE, Hayward SW, Gronostajski RM, Anderson PD, Matusik RJ. Nfib Regulates Transcriptional Networks That Control the Development of Prostatic Hyperplasia. Endocrinology 2016; 157:1094-109. [PMID: 26677878 PMCID: PMC4769366 DOI: 10.1210/en.2015-1312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A functional complex consisting of androgen receptor (AR) and forkhead box A1 (FOXA1) proteins supports prostatic development, differentiation, and disease. In addition, the interaction of FOXA1 with cofactors such as nuclear factor I (NFI) family members modulates AR target gene expression. However, the global role of specific NFI family members has yet to be described in the prostate. In these studies, chromatin immunoprecipitation followed by DNA sequencing in androgen-dependent LNCaP prostate cancer cells demonstrated that 64.3% of NFIB binding sites are associated with AR and FOXA1 binding sites. Interrogation of published data revealed that genes associated with NFIB binding sites are predominantly induced after dihydrotestosterone treatment of LNCaP cells, whereas NFIB knockdown studies demonstrated that loss of NFIB drives increased AR expression and superinduction of a subset of AR target genes. Notably, genes bound by NFIB only are associated with cell division and cell cycle. To define the role of NFIB in vivo, mouse Nfib knockout prostatic tissue was rescued via renal capsule engraftment. Loss of Nfib expression resulted in prostatic hyperplasia, which did not resolve in response to castration, and an expansion of an intermediate cell population in a small subset of grafts. In human benign prostatic hyperplasia, luminal NFIB loss correlated with more severe disease. Finally, some areas of intermediate cell expansion were also associated with NFIB loss. Taken together, these results show a fundamental role for NFIB as a coregulator of AR action in the prostate and in controlling prostatic hyperplasia.
Collapse
Affiliation(s)
- Magdalena M Grabowska
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Stephen M Kelly
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Amy L Reese
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Justin M Cates
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Tom C Case
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Jianghong Zhang
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - David J DeGraff
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Douglas W Strand
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Nicole L Miller
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Peter E Clark
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Simon W Hayward
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Richard M Gronostajski
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Philip D Anderson
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| | - Robert J Matusik
- Department of Urologic Surgery (M.M.G., T.C.C., J.Z., N.L.M., P.E.C., S.W.H., R.J.M.), Department of Pathology, Microbiology, and Immunology (J.M.C.), and Vanderbilt-Ingram Cancer Center (P.E.C., R.J.M.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Biological Sciences (S.M.K., A.L.R., P.D.A.), Salisbury University, Salisbury, Maryland 21801; Department of Pathology (D.J.G.), Penn State University College of Medicine, Hershey, Pennsylvania 17033; Department of Urology (D.W.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Cancer Biology (S.W.H.), NorthShore HealthSystem Research Institute, Evanston, Illinois 60201; Department of Biochemistry, Genetics, Genomics and Bioinformatics Program (R.M.G.), University at Buffalo, Buffalo, New York 14203; and Department of Cell and Developmental Biology (R.J.M.), Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
38
|
Zhou B, Osinski JM, Mateo JL, Martynoga B, Sim FJ, Campbell CE, Guillemot F, Piper M, Gronostajski RM. Loss of NFIX Transcription Factor Biases Postnatal Neural Stem/Progenitor Cells Toward Oligodendrogenesis. Stem Cells Dev 2015; 24:2114-26. [DOI: 10.1089/scd.2015.0136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bo Zhou
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jason M. Osinski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Juan L. Mateo
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ben Martynoga
- Division of Molecular Neurobiology, MRC, London, United Kingdom
| | - Fraser J. Sim
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York
| | - Christine E. Campbell
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| | | | - Michael Piper
- School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
39
|
Zhang X, Zhou Y, Pan C, Lei C, Dang R, Chen H, Lan X. Novel alternative splice variants of NFIX and their diverse mRNA expression patterns in dairy goat. Gene 2015; 569:250-8. [DOI: 10.1016/j.gene.2015.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/18/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
40
|
Vidovic D, Harris L, Harvey TJ, Evelyn Heng YH, Smith AG, Osinski J, Hughes J, Thomas P, Gronostajski RM, Bailey TL, Piper M. Expansion of the lateral ventricles and ependymal deficits underlie the hydrocephalus evident in mice lacking the transcription factor NFIX. Brain Res 2015; 1616:71-87. [DOI: 10.1016/j.brainres.2015.04.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
|
41
|
Wang Y, Huang C, Chintagari NR, Xi D, Weng T, Liu L. miR-124 regulates fetal pulmonary epithelial cell maturation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L400-13. [PMID: 26071557 DOI: 10.1152/ajplung.00356.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are a family of small noncoding RNAs that regulate the expression of their target proteins at the posttranscriptional level. Their functions cover almost every aspect of cell physiology. However, the roles of microRNAs in fetal lung development are not completely understood. The objective of this study is to investigate the regulation and molecular mechanisms of alveolar epithelial cell maturation during fetal lung development by miR-124. We discovered that miR-124 was downregulated during rat fetal lung development and predominantly expressed in the epithelial cells at late stage of the lung development. Overexpression of miR-124 with an adenovirus vector led to the inhibition of epithelial maturation in rat fetal lung organ cultures and fetal alveolar epithelial type II cells, as demonstrated by a decrease in the type II cell marker expression and an increase in glycogen content. We further demonstrated by luciferase reporter assays that miR-124 inhibited the NF-κB, cAMP/PKA, and MAPK/ERK pathways. In addition, nuclear factor I/B (NFIB), a critical protein in fetal lung maturation, was validated as a direct target of miR-124. Furthermore, miR-124 expression was induced by the Wnt/β-catenin signaling pathway through a direct interaction of LEF1 and the miR-124 promoter region. We concluded that miR-124 downregulation is critical to fetal lung epithelial maturation and miR-124 inhibits this maturation process at least partially through the inhibition of NFIB.
Collapse
Affiliation(s)
- Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Chaoqun Huang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Dong Xi
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Tingting Weng
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma; and Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
42
|
Zhou L, Wang Y, Ou C, Lin Z, Wang J, Liu H, Zhou M, Ding Z. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma. Int J Biochem Cell Biol 2015; 65:182-91. [PMID: 26072217 DOI: 10.1016/j.biocel.2015.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/19/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Chengshan Ou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Zhixiang Lin
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Jianyu Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Hongxia Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
43
|
Mellas RE, Kim H, Osinski J, Sadibasic S, Gronostajski RM, Cho M, Baker OJ. NFIB regulates embryonic development of submandibular glands. J Dent Res 2014; 94:312-9. [PMID: 25403566 DOI: 10.1177/0022034514559129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NFIB (nuclear factor I B) is a NFI transcription factor family member, which is essential for the development of a variety of organ systems. Salivary gland development occurs through several stages, including prebud, bud, pseudoglandular, canalicular, and terminal. Although many studies have been done to understand mouse submandibular gland (SMG) branching morphogenesis, little is known about SMG cell differentiation during the terminal stages. The goal of this study was to determine the role of NFIB during SMG development. We analyzed SMGs from wild-type and Nfib-deficient mice (Nfib (-/-)). At embryonic (E) day 18.5, SMGs from wild-type mice showed duct branching morphogenesis and differentiation of tubule ductal cells into tubule secretory cells. In contrast, SMGs from Nfib (-/-) mice at E18.5 failed to differentiate into tubule secretory cells while branching morphogenesis was unaffected. SMGs from wild-type mice at E16.5 displayed well-organized cuboidal inner terminal tubule cells. However, SMGs from Nfib (-/-) at E16.5 displayed disorganized inner terminal tubule cells. SMGs from wild-type mice at E18.5 became fully differentiated, as indicated by a high degree of apicobasal polarization (i.e., presence of apical ZO-1 and basolateral E-cadherin) and columnar shape. Furthermore, SMGs from wild-type mice at E18.5 expressed the protein SMGC, a marker for tubule secretory cells. However, SMGs from Nfib (-/-) mice at E18.5 showed apicobasal polarity, but they were disorganized and lost the ability to secrete SMGC. These findings indicate that the transcription factor NFIB is not required for branching morphogenesis but plays a key role in tubule cell differentiation during mouse SMG development.
Collapse
Affiliation(s)
- R E Mellas
- School of Dentistry University of Utah, Salt Lake City, UT, USA
| | - H Kim
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - J Osinski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S Sadibasic
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - R M Gronostajski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - M Cho
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - O J Baker
- School of Dentistry University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
44
|
Vucic EA, Thu KL, Pikor LA, Enfield KSS, Yee J, English JC, MacAulay CE, Lam S, Jurisica I, Lam WL. Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology. BMC Cancer 2014; 14:778. [PMID: 25342220 PMCID: PMC4216369 DOI: 10.1186/1471-2407-14-778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. Methods We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. Results We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. Conclusions We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harris L, Genovesi LA, Gronostajski RM, Wainwright BJ, Piper M. Nuclear factor one transcription factors: Divergent functions in developmental versus adult stem cell populations. Dev Dyn 2014; 244:227-38. [PMID: 25156673 DOI: 10.1002/dvdy.24182] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor one (NFI) transcription factors are a group of site-specific DNA-binding proteins that are emerging as critical regulators of stem cell biology. During development NFIs promote the production of differentiated progeny at the expense of stem cell fate, with Nfi null mice exhibiting defects such as severely delayed brain and lung maturation, skeletomuscular defects and renal abnormalities, phenotypes that are often consistent with patients with congenital Nfi mutations. Intriguingly, recent research suggests that in adult tissues NFI factors play a qualitatively different role than during development, with NFIs serving to promote the survival and maintenance of slow-cycling adult stem cell populations rather than their differentiation. Here we review the role of NFI factors in development, largely focusing on their role as promoters of stem cell differentiation, and attempt to reconcile this with the emerging role of NFIs in adult stem cell niches.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
46
|
Zhou M, Zhou L, Zheng L, Guo L, Wang Y, Liu H, Ou C, Ding Z. miR-365 promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB). PLoS One 2014; 9:e100620. [PMID: 24949940 PMCID: PMC4065106 DOI: 10.1371/journal.pone.0100620] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/29/2014] [Indexed: 11/30/2022] Open
Abstract
Aberrant expression of microRNAs plays vital roles in tumor development and progression. As transcription factors (TFs) are the critical components of signaling cascades, specific targeting effects of microRNAs to specific TFs may determine the role of microRNAs in different cancers. In this study, we identified Nuclear Factor I/B (NFIB) as one of the targets of miR-365 which was previously verified as an onco-miR in cutaneous squamous cell carcinoma (CSCC). Down-regulation of NFIB was a general feature in both CSCC cell lines and tumors from patients which show drastically up-regulated miR-365 expression levels. The siRNA-based knockdown of NFIB mimic the carcinogenic transformation of normal cells by ectopically expression of miR-365 which indicates depletion of NFIB is necessary for miR-365 to exert its pro-carcinogenic function. NFIB may represent a functional barrier targeted by miR-365 to the development of CSCC. Further studies also discovered a conserved feedback regulatory circuitry formed by NFIB and miR-365 in CSCC development which may be potentially utilized as therapeutic target to improve the clinical CSCC treatment.
Collapse
Affiliation(s)
- Meijuan Zhou
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Liang Zhou
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Li Zheng
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Ling Guo
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Yinghui Wang
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Hongxia Liu
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Chengshan Ou
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
| | - Zhenhua Ding
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangdong, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
47
|
McGinley AL, Li Y, Deliu Z, Wang QT. Additional sex combs-likefamily genes are required for normal cardiovascular development. Genesis 2014; 52:671-86. [DOI: 10.1002/dvg.22793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Andrea L. McGinley
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| | - Yanyang Li
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| | - Zane Deliu
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| | - Q. Tian Wang
- Department of Biological Sciences; University of Illinois at Chicago; Chicago Illinois
| |
Collapse
|
48
|
Robinson GW, Kang K, Yoo KH, Tang Y, Zhu BM, Yamaji D, Colditz V, Jang SJ, Gronostajski RM, Hennighausen L. Coregulation of genetic programs by the transcription factors NFIB and STAT5. Mol Endocrinol 2014; 28:758-67. [PMID: 24678731 DOI: 10.1210/me.2012-1387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mammary-specific genetic programs are activated during pregnancy by the common transcription factor signal transducer and activator of transcription (STAT) 5. More than one third of these genes carry nuclear factor I/B (NFIB) binding motifs that coincide with STAT5 in vivo binding, suggesting functional synergy between these two transcription factors. The role of NFIB in this governance was investigated in mice from which Nfib had been inactivated in mammary stem cells or in differentiating alveolar epithelium. Although NFIB was not required for alveolar expansion, the combined absence of NFIB and STAT5 prevented the formation of functional alveoli. NFIB controlled the expression of mammary-specific and STAT5-regulated genes and chromatin immunoprecipitation-sequencing established STAT5 and NFIB binding at composite regulatory elements containing histone H3 lysine dimethylation enhancer marks and progesterone receptor binding. By integrating previously published chromatin immunoprecipitation-sequencing data sets, the presence of NFIB-STAT5 modules in other cell types was investigated. Notably, genomic sites bound by NFIB in hair follicle stem cells were also occupied by STAT5 in mammary epithelium and coincided with enhancer marks. Many of these genes were under NFIB control in both hair follicle stem cells and mammary alveolar epithelium. We propose that NFIB-STAT5 modules, possibly in conjunction with other transcription factors, control cell-specific genetic programs.
Collapse
Affiliation(s)
- Gertraud W Robinson
- Laboratory of Genetics and Physiology (G.W.R., K.K., K.H.Y., Y.T., D.Y., V.C., S.J.J., L.H.), National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Microbiology (K.K.), Dankook University, Cheonan 330-714, Republic of Korea; Chengdu University of Traditional Chinese Medicine (Y.T.), Chengdu 610072, Republic of China; Key Laboratory of Acupuncture and Medicine (B.-M.Z.), Nanjing University of Traditional Chinese Medicine, Nanjing 210046, Republic of China; and New York State Center of Excellence in Bioinformatics and Life Sciences (R.M.G.), Department of Biochemistry, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lajoie M, Hsu YC, Gronostajski RM, Bailey TL. An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation. BMC Genomics 2014; 15:231. [PMID: 24661679 PMCID: PMC4023408 DOI: 10.1186/1471-2164-15-231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/11/2014] [Indexed: 01/22/2023] Open
Abstract
Background Lung maturation is a late fetal developmental event in both mice and humans. Because of this, lung immaturity is a serious problem in premature infants. Disruption of genes for either the glucocorticoid receptor (Nr3c1) or the NFIB transcription factors results in perinatal lethality due to lung immaturity. In both knockouts, the phenotype includes excess cell proliferation, failure of saccularization and reduced expression of markers of epithelial differentiation. This similarity suggests that the two genes may co-regulate a specific set of genes essential for lung maturation. Results We analyzed the roles of these two transcription factors in regulating transcription using ChIP-seq data for NFIB, and RNA expression data and motif analysis for both. Our new ChIP-seq data for NFIB in lung at E16.5 shows that NFIB binds to a NFI motif. This motif is over-represented in the promoters of genes that are under-expressed in Nfib-KO mice at E18.5, suggesting an activator role for NFIB. Using available microarray data from Nr3c1-KO mice, we further identified 52 genes that are under-expressed in both Nfib and Nr3c1 knockouts, an overlap which is 13.1 times larger than what would be expected by chance. Finally, we looked for enrichment of 738 recently published transcription factor motifs in the promoters of these putative target genes and found that the NFIB and glucocorticoid receptor motifs were among the most enriched, suggesting that a subset of these genes may be directly activated by Nfib and Nr3c1. Conclusions Our data provide the first evidence for Nfib and Nr3c1 co-regulating genes related to lung maturation. They also establish that the in vivo DNA-binding specificity of NFIB is the same as previously seen in vitro, and highly similar to that of the other NFI-family members NFIA, NFIC and NFIX.
Collapse
Affiliation(s)
| | | | | | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia 4072, Australia.
| |
Collapse
|
50
|
Pais RS, Moreno-Barriuso N, Hernández-Porras I, López IP, De Las Rivas J, Pichel JG. Transcriptome analysis in prenatal IGF1-deficient mice identifies molecular pathways and target genes involved in distal lung differentiation. PLoS One 2013; 8:e83028. [PMID: 24391734 PMCID: PMC3877002 DOI: 10.1371/journal.pone.0083028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/30/2013] [Indexed: 01/31/2023] Open
Abstract
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development.
Collapse
Affiliation(s)
- Rosete Sofía Pais
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
| | - Nuria Moreno-Barriuso
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - Isabel Hernández-Porras
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - Icíar Paula López
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
| | - Javier De Las Rivas
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - José García Pichel
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
- * E-mail:
| |
Collapse
|