1
|
Boeglin M, Leyva-Díaz E, Hobert O. Expression and function of Caenorhabditis elegans UNCP-18, a paralog of the SM protein UNC-18. Genetics 2023; 225:iyad180. [PMID: 37793339 PMCID: PMC10697816 DOI: 10.1093/genetics/iyad180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Sec1/Munc18 (SM) proteins are important regulators of SNARE complex assembly during exocytosis throughout all major animal tissue types. However, expression of a founding member of the SM family, UNC-18, is mostly restricted to the nervous system of the nematode Caenorhabditis elegans, where it is important for synaptic transmission. Moreover, unc-18 null mutants do not display the lethality phenotype associated with (a) loss of all Drosophila and mouse orthologs of unc-18 and (b) with complete elimination of synaptic transmission in C. elegans. We investigated whether a previously uncharacterized unc-18 paralog, which we named uncp-18, may be able to explain the restricted expression and limited phenotypes of unc-18 null mutants. A reporter allele shows ubiquitous expression of uncp-18. Analysis of uncp-18 null mutants, unc-18 and uncp-18 double null mutants, as well as overexpression of uncp-18 in an unc-18 null mutant background, shows that these 2 genes can functionally compensate for one another and are redundantly required for embryonic viability. Our results indicate that the synaptic transmission defects of unc-18 null mutants cannot necessarily be interpreted as constituting a null phenotype for SM protein function at the synapse.
Collapse
Affiliation(s)
- Marion Boeglin
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, NewYork, NY 10027, USA
- Department of Development and Stem Cells, IGBMC, CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg 67081, France
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, NewYork, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, NewYork, NY 10027, USA
| |
Collapse
|
2
|
Fazeli G, Frondoni J, Kolli S, Wehman AM. Visualizing Phagocytic Cargo In Vivo from Engulfment to Resolution in Caenorhabditis elegans. Methods Mol Biol 2023; 2692:337-360. [PMID: 37365478 DOI: 10.1007/978-1-0716-3338-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The nematode Caenorhabditis elegans offers many experimental advantages to study conserved mechanisms of phagocytosis and phagocytic clearance. These include the stereotyped timing of phagocytic events in vivo for time-lapse imaging, the availability of transgenic reporters labeling molecules involved in different steps of phagocytosis, and the transparency of the animal for fluorescence imaging. Further, the ease of forward and reverse genetics in C. elegans has enabled many of the initial discoveries of proteins involved in phagocytic clearance. In this chapter, we focus on phagocytosis by the large undifferentiated blastomeres of C. elegans embryos, which engulf and eliminate diverse phagocytic cargo from the corpse of the second polar body to cytokinetic midbody remnants. We describe the use of fluorescent time-lapse imaging to observe the distinct steps of phagocytic clearance and methods to normalize this process to distinguish defects in mutant strains. These approaches have enabled us to reveal new insights from the initial signaling to induce phagocytosis up until the final resolution of phagocytic cargo in phagolysosomes.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julia Frondoni
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
3
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
4
|
Pushpa K, Dagar S, Kumar H, Pathak D, Mylavarapu SVS. The exocyst complex regulates C. elegans germline stem cell proliferation by controlling membrane Notch levels. Development 2021; 148:271155. [PMID: 34338279 DOI: 10.1242/dev.196345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.
Collapse
Affiliation(s)
- Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Diksha Pathak
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
5
|
Morelli E, Speranza EA, Pellegrino E, Beznoussenko GV, Carminati F, Garré M, Mironov AA, Onorati M, Vaccari T. Activity of the SNARE Protein SNAP29 at the Endoplasmic Reticulum and Golgi Apparatus. Front Cell Dev Biol 2021; 9:637565. [PMID: 33718375 PMCID: PMC7945952 DOI: 10.3389/fcell.2021.637565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
Snap29 is a conserved regulator of membrane fusion essential to complete autophagy and to support other cellular processes, including cell division. In humans, inactivating SNAP29 mutations causes CEDNIK syndrome, a rare multi-systemic disorder characterized by congenital neuro-cutaneous alterations. The fibroblasts of CEDNIK patients show alterations of the Golgi apparatus (GA). However, whether and how Snap29 acts at the GA is unclear. Here we investigate SNAP29 function at the GA and endoplasmic reticulum (ER). As part of the elongated structures in proximity to these membrane compartments, a pool of SNAP29 forms a complex with Syntaxin18, or with Syntaxin5, which we find is required to engage SEC22B-loaded vesicles. Consistent with this, in HeLa cells, in neuroepithelial stem cells, and in vivo, decreased SNAP29 activity alters GA architecture and reduces ER to GA trafficking. Our data reveal a new regulatory function of Snap29 in promoting secretory trafficking.
Collapse
Affiliation(s)
- Elena Morelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Elisa A Speranza
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Enrica Pellegrino
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Pisa, Italy
| | | | | | | | | | - Marco Onorati
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Pisa, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
7
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
8
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
9
|
Bidaud-Meynard A, Nicolle O, Heck M, Le Cunff Y, Michaux G. A V0-ATPase-dependent apical trafficking pathway maintains the polarity of the intestinal absorptive membrane. Development 2019; 146:dev174508. [PMID: 31110027 PMCID: PMC7376742 DOI: 10.1242/dev.174508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Intestine function relies on the strong polarity of intestinal epithelial cells and the array of microvilli forming a brush border at their luminal pole. Combining a genetic RNA interference (RNAi) screen with in vivo super-resolution imaging in the Caenorhabditiselegans intestine, we found that the V0 sector of the vacuolar ATPase (V0-ATPase) controls a late apical trafficking step, involving Ras-related protein 11 (RAB-11)+ endosomes and the N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) synaptosome-associated protein 29 (SNAP-29), and is necessary to maintain the polarized localization of both apical polarity modules and brush border proteins. We show that the V0-ATPase pathway also genetically interacts with glycosphingolipids and clathrin in enterocyte polarity maintenance. Finally, we demonstrate that silencing of the V0-ATPase fully recapitulates the severe structural, polarity and trafficking defects observed in enterocytes from individuals with microvillus inclusion disease (MVID) and use this new in vivo MVID model to follow the dynamics of microvillus inclusions. Thus, we describe a new function for V0-ATPase in apical trafficking and epithelial polarity maintenance and the promising use of the C. elegans intestine as an in vivo model to better understand the molecular mechanisms of rare genetic enteropathies.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Markus Heck
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Yann Le Cunff
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
10
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
11
|
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Ann Marie Wehman
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Morelli E, Mastrodonato V, Beznoussenko GV, Mironov AA, Tognon E, Vaccari T. An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J 2016; 35:2223-2237. [PMID: 27647876 PMCID: PMC5069552 DOI: 10.15252/embj.201693991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis‐segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.
Collapse
Affiliation(s)
- Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Emiliana Tognon
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Thomas Vaccari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
13
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Noble DC, Aoki ST, Ortiz MA, Kim KW, Verheyden JM, Kimble J. Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans. Genetics 2016; 202:221-34. [PMID: 26564160 PMCID: PMC4701086 DOI: 10.1534/genetics.115.182592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We predicted that FOG-1 and FOG-3, as terminal regulators of the sperm fate, might regulate a battery of gamete-specific differentiation genes. Here we test that prediction by exploring on a genomic scale the messenger RNAs (mRNAs) associated with FOG-1 and FOG-3. Immunoprecipitation of the proteins and their associated mRNAs from spermatogenic germlines identifies 81 FOG-1 and 722 FOG-3 putative targets. Importantly, almost all FOG-1 targets are also FOG-3 targets, and these common targets are strongly biased for oogenic mRNAs. The discovery of common target mRNAs suggested that FOG-1 and FOG-3 work together. Consistent with that idea, we find that FOG-1 and FOG-3 proteins co-immunoprecipitate from both intact nematodes and mammalian tissue culture cells and that they colocalize in germ cells. Taking our results together, we propose a model in which FOG-1 and FOG-3 work in a complex to repress oogenic transcripts and thereby promote the sperm fate.
Collapse
Affiliation(s)
- Daniel C Noble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Scott T Aoki
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco A Ortiz
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kyung Won Kim
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie M Verheyden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Schiller SA, Seebode C, Wieser GL, Goebbels S, Möbius W, Horowitz M, Sarig O, Sprecher E, Emmert S. Establishment of Two Mouse Models for CEDNIK Syndrome Reveals the Pivotal Role of SNAP29 in Epidermal Differentiation. J Invest Dermatol 2015; 136:672-679. [PMID: 26747696 DOI: 10.1016/j.jid.2015.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/26/2022]
Abstract
Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) gene cause the cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome. In this study, we created total (Snap29(-/-)) as well as keratinocyte-specific (Snap29(fl/fl)/K14-Cre) Snap29 knockout mice. Both mutant mice exhibited a congenital distinct ichthyotic phenotype resulting in neonatal lethality. Mutant mice revealed acanthosis and hyperkeratosis as well as abnormal keratinocyte differentiation and increased proliferation. In addition, the epidermal barrier was severely impaired. These results indicate an essential role of SNAP29 in epidermal differentiation and barrier formation. Markedly decreased deposition of lamellar body contents in mutant mice epidermis and the observation of malformed lamellar bodies indicate severe impairments in lamellar body function due to the Snap29 knockout. We also found increased microtubule associated protein-1 light chain 3, isoform B-II levels, unchanged p62/SQSTM1 protein amounts, and strong induction of the endoplasmic reticulum stress marker C/EBP homologous protein in mutant mice. This emphasizes a role of SNAP29 in autophagy and endoplasmic reticulum stress. Our murine models serve as powerful tools for investigating keratinocyte differentiation processes and provide insights into the essential contribution of SNAP29 to epidermal differentiation.
Collapse
Affiliation(s)
- Stina A Schiller
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Christina Seebode
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany; Clinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Georg L Wieser
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Steffen Emmert
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany; Clinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
16
|
Zhu Q, Yamakuchi M, Lowenstein CJ. SNAP23 Regulates Endothelial Exocytosis of von Willebrand Factor. PLoS One 2015; 10:e0118737. [PMID: 26266817 PMCID: PMC4534191 DOI: 10.1371/journal.pone.0118737] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Endothelial exocytosis regulates vascular thrombosis and inflammation. The trafficking and release of endothelial vesicles is mediated by SNARE (Soluble NSF Attachment protein REceptors) molecules, but the exact identity of endothelial SNAREs has been unclear. Three SNARE molecules form a ternary complex, including isoforms of the syntaxin (STX), vesicle-associated membrane protein (VAMP), and synaptosomal-associated protein (SNAP) families. We now identify SNAP23 as the predominant endothelial SNAP isoform that mediates endothelial exocytosis of von Willebrand Factor (VWF). SNAP23 was localized to the plasma membrane. Knockdown of SNAP23 decreased endothelial exocytosis, suggesting it is important for endothelial exocytosis. SNAP23 interacted with the endothelial exocytic machinery, and formed complexes with other known endothelial SNARE molecules. Taken together, these data suggest that SNAP23 is a key component of the endothelial SNARE machinery that mediates endothelial exocytosis.
Collapse
Affiliation(s)
- Qiuyu Zhu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Munekazu Yamakuchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Charles J. Lowenstein
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Guo B, Liang Q, Li L, Hu Z, Wu F, Zhang P, Ma Y, Zhao B, Kovács AL, Zhang Z, Feng D, Chen S, Zhang H. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat Cell Biol 2014; 16:1215-26. [PMID: 25419848 DOI: 10.1038/ncb3066] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
The mechanism by which nutrient status regulates the fusion of autophagosomes with endosomes/lysosomes is poorly understood. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates O-GlcNAcylation of the SNARE protein SNAP-29 and regulates autophagy in a nutrient-dependent manner. In mammalian cells, OGT knockdown, or mutating the O-GlcNAc sites in SNAP-29, promotes the formation of a SNAP-29-containing SNARE complex, increases fusion between autophagosomes and endosomes/lysosomes, and promotes autophagic flux. In Caenorhabditis elegans, depletion of ogt-1 has a similar effect on autophagy; moreover, expression of an O-GlcNAc-defective SNAP-29 mutant facilitates autophagic degradation of protein aggregates. O-GlcNAcylated SNAP-29 levels are reduced during starvation in mammalian cells and in C. elegans. Our study reveals a mechanism by which O-GlcNAc-modification integrates nutrient status with autophagosome maturation.
Collapse
Affiliation(s)
- Bin Guo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhe Hu
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Fan Wu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peipei Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfen Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Bin Zhao
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Du Feng
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
19
|
Xu H, Mohtashami M, Stewart B, Boulianne G, Trimble WS. Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic. PLoS One 2014; 9:e91471. [PMID: 24626111 PMCID: PMC3953403 DOI: 10.1371/journal.pone.0091471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/12/2014] [Indexed: 12/26/2022] Open
Abstract
Each membrane fusion event along the secretory and endocytic pathways requires a specific set of SNAREs to assemble into a 4-helical coiled-coil, the so-called trans-SNARE complex. Although most SNAREs contribute one helix to the trans-SNARE complex, members of the SNAP-25 family contribute two helixes. We report the characterization of the Drosophila homologue of SNAP-29 (dSNAP-29), which is expressed throughout development. Unlike the other SNAP-25 like proteins in fruit fly (i.e., dSNAP-25 and dSNAP-24), which form SDS-resistant SNARE complexes with their cognate SNAREs, dSNAP-29 does not participate in any SDS-resistant complexes, despite its interaction with dsyntaxin1 and dsyntaxin16 in vitro. Immunofluorescence studies indicated that dSNAP-29 is distributed in various tissues, locating in small intracellular puncta and on the plasma membrane, where it associates with EH domain-containing proteins implicated in the endocytic pathway. Overexpression and RNAi studies suggested that dSNAP-29 mediates an essential process in Drosophila development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| | - Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gabrielle Boulianne
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William S. Trimble
- Cell Biology Program, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
par-1, atypical pkc, and PP2A/B55 sur-6 are implicated in the regulation of exocyst-mediated membrane trafficking in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2014; 4:173-83. [PMID: 24192838 PMCID: PMC3887533 DOI: 10.1534/g3.113.006718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst. We identified seven kinase and seven phosphatase genes that display enhanced phenotypes when combined with hypomorphic alleles of exoc-7 (exo70), exoc-8 (exo84), or an exoc-7;exoc-8 double mutant. We show that in line with its reported role in exocytotic membrane trafficking, a defective exoc-8 caused accumulation of exocytotic soluble NSF attachment protein receptor (SNARE) proteins in both intestinal and neuronal cells in C. elegans. Down-regulation of the phosphatase protein phosphatase 2A (PP2A) phosphatase regulatory subunit sur-6/B55 gene resulted in accumulation of exocytic SNARE proteins SNB-1 and SNAP-29 in wild-type and in exoc-8 mutant animals. In contrast, RNAi of the kinase par-1 caused reduced intracellular green fluorescent protein signal for the same proteins. Double RNAi experiments for par-1, pkc-3, and sur-6/B55 in C. elegans suggest a possible cooperation and involvement in postembryo lethality, developmental timing, as well as SNARE protein trafficking. Functional analysis of the homologous kinases and phosphatases in Drosophila median neurosecretory cells showed that atypical protein kinase C kinase and phosphatase PP2A regulate exocyst-dependent, insulin-like peptide secretion. Collectively, these results characterize kinases and phosphatases implicated in the regulation of exocyst function, and suggest the possibility for interplay between the par-1 and pkc-3 kinases and the PP2A phosphatase regulatory subunit sur-6 in this process.
Collapse
|
21
|
Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 2014; 10:2251-68. [PMID: 25551675 PMCID: PMC4502674 DOI: 10.4161/15548627.2014.981913] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.
Collapse
Key Words
- Atg, autophagy-related
- CEDNIK, cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma
- CFP, cyan fluorescent protein
- E(spl)mβ-HLH, enhancer of split mβ, helix-loop-helix
- EM, electron microscopy
- ESCRT, endosomal sorting complex required for transport
- FE, follicular epithelium
- GFP, green fluorescent protein
- MENE, mutant eye no eclosion
- MVB, multivesicular body
- N, Notch
- NECD, N extracellular domain
- NPF, asparagine-proline-phenylalanine
- Notch
- SNARE
- SNARE, soluble NSF attachment protein receptor
- Snap29
- Snap29, synaptosomal-associated protein 29 kDa
- Socs36E, suppressor of cytokine signaling at 36E
- Syb, Synaptobrevin
- Syx, syntaxin
- V-ATPase, vacuolar H+-ATPase
- Vamp, vesicle-associated membrane protein
- Vps25, vacuolar protein sorting 25
- WT, wild type
- autophagy
- dome
- dome, domeless
- histone H3, His3
- hop-Stat92E, hopscotch-signal transducer and activator of transcription protein at 92E
- os, outstretched
- ref(2)P, refractory to sigma P
- trafficking
- usnp
Collapse
Affiliation(s)
- Elena Morelli
- IFOM - The FIRC Institute of Molecular Oncology; Milan, Italy
| | | | | | | | - Tor Erik Rusten
- Centre for Cancer Biomedicine; Oslo University Hospital; Oslo, Norway
| | - David Bilder
- Department of Molecular and Cell Biology; University of California; Berkeley, CA USA
| | - Harald Stenmark
- Centre for Cancer Biomedicine; Oslo University Hospital; Oslo, Norway
| | | | - Thomas Vaccari
- IFOM - The FIRC Institute of Molecular Oncology; Milan, Italy
| |
Collapse
|
22
|
Morgan JR, Comstra HS, Cohen M, Faundez V. Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 2013; 5:a016915. [PMID: 24086045 DOI: 10.1101/cshperspect.a016915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The release and uptake of neurotransmitters by synaptic vesicles is a tightly controlled process that occurs in response to diverse stimuli at morphologically disparate synapses. To meet these architectural and functional synaptic demands, it follows that there should be diversity in the mechanisms that control their secretion and retrieval and possibly in the composition of synaptic vesicles within the same terminal. Here we pay particular attention to areas where such diversity is generated, such as the variance in exocytosis/endocytosis coupling, SNAREs defining functionally diverse synaptic vesicle populations and the adaptor-dependent sorting machineries capable of generating vesicle diversity. We argue that there are various synaptic vesicle recycling pathways at any given synapse and discuss several lines of evidence that support the role of the endosome in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
23
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
24
|
Abstract
A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans.
Collapse
|
25
|
Wesolowski J, Caldwell V, Paumet F. A novel function for SNAP29 (synaptosomal-associated protein of 29 kDa) in mast cell phagocytosis. PLoS One 2012. [PMID: 23185475 PMCID: PMC3503860 DOI: 10.1371/journal.pone.0049886] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mast cells play a critical role in the innate immune response to bacterial infection. They internalize and kill a variety of bacteria and process antigen for presentation to T cells via MHC molecules. Although mast cell phagocytosis appears to play a significant role during bacterial infection, little is known about the proteins involved in its regulation. In this study, we demonstrate that the SNARE protein SNAP29 is involved in mast cell phagocytosis. SNAP29 is localized in the endocytic pathway and is transiently recruited to Escherichia coli (E. coli)-containing phagosomes. Interestingly, overexpression of SNAP29 significantly increases the internalization and killing of E. coli, while it does not affect mast cell exocytosis of inflammatory mediators. To our knowledge, these data are the first to demonstrate a novel function of SNAP29 in mast cell phagocytosis and have implications in protection against bacterial infection.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Vernon Caldwell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|