1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Zodanu GKE, Hwang JH, Mudery J, Sisniega C, Kang X, Wang LK, Barsegian A, Biniwale RM, Si MS, Halnon NJ, UCLA Congenital Heart Defects-BioCore Faculty, Grody WW, Satou GM, Van Arsdell GS, Nelson SF, Touma M. Whole-Exome Sequencing Identifies Novel GATA5/6 Variants in Right-Sided Congenital Heart Defects. Int J Mol Sci 2025; 26:2115. [PMID: 40076735 PMCID: PMC11901071 DOI: 10.3390/ijms26052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
One out of every hundred live births present with congenital heart abnormalities caused by the aberrant development of the embryonic cardiovascular system. The conserved zinc finger transcription factor proteins, which include GATA binding protein 5 (GATA5) and GATA binding protein (GATA6) play important roles in embryonic development and their inactivation may result in congenital heart defects (CHDs). In this study, we performed genotypic-phenotypic analyses in two families affected by right-sided CHD diagnosed by echocardiography imaging. Proband A presented with pulmonary valve stenosis, and proband B presented with complex CHD involving the right heart structures. For variant detection, we employed whole-genome single-nucleotide polymorphism (SNP) microarray and family-based whole-exome sequencing (WES) studies. Proband A is a full-term infant who was admitted to the neonatal intensive care unit (NICU) at five days of life for pulmonary valve stenosis (PVS). Genomic studies revealed a normal SNP microarray; however, quad WES analysis identified a novel heterozygous [Chr20:g.61041597C>G (p.Arg237Pro)] variant in the GATA5 gene. Further analysis confirmed that the novel variant was inherited from the mother but was absent in the father and the maternal uncle with a history of heart murmur. Proband B was born prematurely at 35 weeks gestation with a prenatally diagnosed complex CHD. A postnatal evaluation revealed right-sided heart defects including pulmonary atresia with intact ventricular septum (PA/IVS), right ventricular hypoplasia, tricuspid valve hypoplasia, hypoplastic main and bilateral branch pulmonary arteries, and possible coronary sinusoids. Cardiac catheterization yielded anatomy and hemodynamics unfavorable to repair. Hence, heart transplantation was indicated. Upon genomic testing, a normal SNP microarray was observed, while trio WES analysis identified a novel heterozygous [Chr18:c.1757C>T (p.Pro586Leu)] variant in the GATA6 gene. This variant was inherited from the father, who carries a clinical diagnosis of tetralogy of Fallot. These findings provide new insights into novel GATA5/6 variants, elaborate on the genotypic and phenotypic association, and highlight the critical role of GATA5 and GATA6 transcription factors in a wide spectrum of right-sided CHDs.
Collapse
Affiliation(s)
- Gloria K. E. Zodanu
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - John H. Hwang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Jordan Mudery
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Carlos Sisniega
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Lee-Kai Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander Barsegian
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Reshma M. Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Nancy J. Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | | | - Wayne W. Grody
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Stanly F. Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bacha R, Pedersen S, Ismail R, Alwisi N, Al-Mansoori L. GATA3: Orchestrating cellular fate through differentiation and proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119893. [PMID: 39725219 DOI: 10.1016/j.bbamcr.2024.119893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Cell proliferation and differentiation are two fundamental biological processes that occur in biological systems, tightly regulated by various factors such as transcription factors (TFs). Zinc finger proteins are TFs responsible for maintaining the biological balance via coordinating development and functionality within the living cells. GATA binding protein 3 (GATA3), one of the zinc finger proteins, plays an essential role in driving differentiation and proliferation-related processes, thereby contributing to the regulation of the dynamism and productivity of living cells. By elucidating the complex interactions governed by GATA3, this underscores its significance in maintaining cellular homeostasis. Thus, the current review delves into the molecular pathways influenced by GATA3, highlighting its involvement in multiple developmental processes of various tissues and body sites, particularly in the hematopoietic system (T-cell differentiation), neural tissue differentiation, adipose tissue, as well as epithelial cell maturation.
Collapse
Affiliation(s)
- Rim Bacha
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar; College of Health Science, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar; Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Rana Ismail
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nouran Alwisi
- College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
4
|
Fang H, Tian H, Liu J, Peng T, Wang D. Ginsenoside Rg1 attenuates Aβ 1-42-induced microglial cell apoptosis and inflammation in Alzheimer's disease via the GATA4/PDE4A/PI3K/AKT axis. Neuroscience 2025; 565:377-385. [PMID: 39653247 DOI: 10.1016/j.neuroscience.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Ginsenoside Rg1 (Rg1) has been shown to treat a variety of human diseases, including Alzheimer's disease (AD). However, its mechanism in AD needs further investigation. Microglial cells (BV2) were treated with Aβ1-42 to induce AD cell models. Cell viability and apoptosis were tested by cell counting kit 8 assay and flow cytometry. The protein levels of GATA-binding protein 4 (GATA4), phosphodiesterase 4A (PDE4A), autophagy-related markers, M1/M2 polarization-related markers and PI3K/AKT-related markers were detected by western blot. Inflammation factors were detected by ELISA. Jaspar and dual-luciferase reporter assay were used to evaluate the interaction between GATA4 and PDE4A. Our results showed that Rg1 promoted viability and autophagy, while suppressed apoptosis and inflammation in Aβ1-42-induced BV2 cells. Rg1 reduced GATA4 protein expression, and GATA4 upregulation reversed the regulation of Rg1 on Aβ1-42-induced BV2 cell injury. GATA4 interacted with PDE4A, and GATA4 facilitated Aβ1-42-induced BV2 cell injury by increasing PDE4A expression. Besides, GATA4 knockdown reduced PDE4A protein expression and inactivated PI3K/AKT axis, while these effects were abolished by PDE4A overexpression. In conclusion, our data suggested that Ginsenoside Rg1 inhibited microglial cell apoptosis and inflammation to attenuate AD progression by regulating the GATA4/PDE4A/PI3K/AKT axis.
Collapse
Affiliation(s)
- Houying Fang
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Hao Tian
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Jianlin Liu
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Tao Peng
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China
| | - Dan Wang
- Department of Neurology, Hubei NO.3 People(')s Hospital of Jianghan University, Wuhan, Hubei, 430000, China.
| |
Collapse
|
5
|
Dai FF, Chen J, Ma Z, Yang MH, Sun T, Ma J, Zhou MJ, Wei ZR, Zou Y, Zhang S, Zang MX. The polycomb protein complex interacts with GATA-6/PPARα to inhibit α-MHC expression. Dev Growth Differ 2025; 67:23-32. [PMID: 39723530 DOI: 10.1111/dgd.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6. By overexpression and knockout of EZH2/BMI1, it was demonstrated that the polycomb protein complex inhibits cardiac differentiation induced by GATA-6 and PPARα. Together, our results demonstrate that the polycomb protein complex interacts with GATA-6/PPARα to inhibit cardiac differentiation, a finding that could facilitate the development of new therapies for congenital heart disease.
Collapse
Affiliation(s)
- Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Juan Ma
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Salzillo C, Marzullo A. Hereditary Aortopathies as Cause of Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Medicine. Diseases 2024; 12:264. [PMID: 39589938 PMCID: PMC11592702 DOI: 10.3390/diseases12110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary aortopathies are a group of rare genetic diseases affecting the aorta and its major branches, and they represent a cause of sudden cardiac death. These pathologies are classified into syndromic hereditary aortopathies and non-syndromic hereditary aortopathies. The epidemiology of hereditary aortopathies varies according to the specific genetic condition involved; however, these disorders are believed to account for a significant proportion of sudden cardiac death in young individuals with a family history of inherited cardiovascular conditions. The causes of hereditary aortopathies are primarily genetic, with pathogenic variants in various genes encoding structural proteins of the vascular wall, leading to dissection, aneurysms, rupture, and ultimately sudden cardiac death. When the cause of death remains unknown after an autopsy, it is referred to as sudden unexplained death, and post-mortem genetic testing, known as a molecular autopsy, is crucial to confirm hereditary aortopathies and assess the genetic risk in the patient's relatives. This helps to facilitate diagnostic and therapeutic pathways and/or implement monitoring strategies to prevent sudden cardiac death. In this state-of-the-art review, we focus on syndromic and non-syndromic hereditary aortopathies causing sudden cardiac death in the young and explore preventive strategies for affected family members.
Collapse
Affiliation(s)
- Cecilia Salzillo
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pathology, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Andrea Marzullo
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pathology, University of Bari “Aldo Moro”, 70121 Bari, Italy
| |
Collapse
|
7
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Intricate MIB1-NOTCH-GATA6 Interactions in Cardiac Valvular and Septal Development. J Cardiovasc Dev Dis 2024; 11:223. [PMID: 39057643 PMCID: PMC11277162 DOI: 10.3390/jcdd11070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-wide association studies and experimental mouse models implicate the MIB1 and GATA6 genes in congenital heart disease (CHD). Their close physical proximity and conserved synteny suggest that these two genes might be involved in analogous cardiac developmental processes. Heterozygous Gata6 loss-of-function mutations alone or humanized Mib1 mutations in a NOTCH1-sensitized genetic background cause bicuspid aortic valve (BAV) and a membranous ventricular septal defect (VSD), consistent with MIB1 and NOTCH1 functioning in the same pathway. To determine if MIB1-NOTCH and GATA6 interact in valvular and septal development, we generated compound heterozygote mice carrying different Mib1 missense (Mib1K735R and Mib1V943F) or nonsense (Mib1R530X) mutations with the Gata6STOP/+ heterozygous null mutation. Combining Mib1R530X/+ or Mib1K735R/+ with Gata6STOP/+ does not affect Gata6STOP/+ single mutant phenotypes. In contrast, combining Mib1V943F/+ with Gata6STOP/+ decreases the incidence of BAV and VSD by 50%, suggesting a suppressive effect of Mib1V943F/+ on Gata6STOP/+. Transcriptomic and functional analyses revealed that while the EMT pathway term is depleted in the Gata6STOP/+ mutant, introducing the Mib1V943F variant robustly enriches this term, consistent with the Mib1V943F/+ phenotypic suppression of Gata6STOP/+. Interestingly, combined Notch1 and Gata6 insufficiency led to a nearly fully penetrant VSD but did not affect the BAV phenotype, underscoring the complex functional relationship between MIB1, NOTCH, and GATA6 in valvular and septal development.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
8
|
Kelly RG. Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:645-659. [PMID: 38884739 DOI: 10.1007/978-3-031-44087-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot and double-outlet right ventricle are outflow tract (OFT) alignment defects situated on a continuous disease spectrum. A myriad of upstream causes can impact on ventriculoarterial alignment that can be summarized as defects in either i) OFT elongation during looping morphogenesis or ii) OFT remodeling during cardiac septation. Embryological processes underlying these two developmental steps include deployment of second heart field cardiac progenitor cells, establishment and transmission of embryonic left/right information driving OFT rotation and OFT cushion and valve morphogenesis. The formation and remodeling of pulmonary trunk infundibular myocardium is a critical component of both steps. Defects in myocardial, endocardial, or neural crest cell lineages can result in alignment defects, reflecting the complex intercellular signaling events that coordinate arterial pole development. Importantly, however, OFT alignment is mechanistically distinct from neural crest-driven OFT septation, although neural crest cells impact indirectly on alignment through their role in modulating signaling during SHF development. As yet poorly understood nongenetic causes of alignment defects that impact the above processes include hemodynamic changes, maternal exposure to environmental teratogens, and stochastic events. The heterogeneity of causes converging on alignment defects characterizes the OFT as a hotspot of congenital heart defects.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
9
|
Geng Z, Li W, Yang P, Zhang S, Wu S, Xiong J, Sun K, Zhu D, Chen S, Zhang B. Whole exome sequencing reveals genetic landscape associated with left ventricular outflow tract obstruction in Chinese Han population. Front Genet 2023; 14:1267368. [PMID: 38164514 PMCID: PMC10757952 DOI: 10.3389/fgene.2023.1267368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Left ventricular outflow tract obstruction (LVOTO), a major form of outflow tract malformation, accounts for a substantial portion of congenital heart defects (CHDs). Unlike its prevalence, the genetic architecture of LVOTO remains largely unknown. To unveil the genetic mutations and risk genes potentially associated with LVOTO, we enrolled a cohort of 106 LVOTO patients and 100 healthy controls and performed a whole-exome sequencing (WES). 71,430 rare deleterious mutations were found in LVOTO patients. By using gene-based burden testing, we further found 32 candidate genes enriched in LVOTO patient including known pathological genes such as GATA5 and GATA6. Most variants of 32 risk genes occur simultaneously rather exclusively suggesting polygenic inherence of LVOTO and 14 genes out of 32 risk genes interact with previously discovered CHD genes. Single cell RNA-seq further revealed dynamic expressions of GATA5, GATA6, FOXD3 and MYO6 in endocardium and neural crest lineage indicating the mutations of these genes lead to LVOTO possibly through different lineages. These findings uncover the genetic architecture of LVOTO which advances the current understanding of LVOTO genetics.
Collapse
Affiliation(s)
- Zilong Geng
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Yang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Wu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Hu P, Wang B, Jin D, Gu Y, He H, Meng X, Zhu W, Chiang DY, Li W, MacRae CA, Zu Y. Modeling of large-scale hoxbb cluster deletions in zebrafish uncovers a role for segmentation pathways in atrioventricular boundary specification. Cell Mol Life Sci 2023; 80:317. [PMID: 37801106 PMCID: PMC11072906 DOI: 10.1007/s00018-023-04933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/19/2023] [Indexed: 10/07/2023]
Abstract
Hox genes orchestrate the segmental specification of the muscular circulatory system in invertebrates but it has not proven straightforward to decipher segmental parallels in the vertebrate heart. Recently, patients with HOXB gene cluster deletion were found to exhibit abnormalities including atrioventricular canal defects. Using CRISPR, we established a mutant with the orthologous hoxbb cluster deletion in zebrafish. The mutant exhibited heart failure and atrioventricular regurgitation at 5 days. Analyzing the four genes in the hoxbb cluster, isolated deletion of hoxb1b-/- recapitulated the cardiac abnormalities, supporting hoxb1b as the causal gene. Both in situ and in vitro data indicated that hoxb1b regulates gata5 to inhibit hand2 expression and ultimately is required to pattern the vertebrate atrioventricular boundary. Together, these data reveal a role for segmental specification in vertebrate cardiac development and highlight the utility of CRISPR techniques for efficiently exploring the function of large structural genomic lesions.
Collapse
Affiliation(s)
- Peinan Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bingqi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongxu Jin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yedan Gu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongyang He
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangli Meng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wandi Zhu
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David Y Chiang
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Calum A MacRae
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Jaouadi H, Gérard H, Théron A, Collod-Béroud G, Collart F, Avierinos JF, Zaffran S. Identification of non-synonymous variations in ROBO1 and GATA5 genes in a family with bicuspid aortic valve disease. J Hum Genet 2022; 67:515-518. [PMID: 35534675 DOI: 10.1038/s10038-022-01036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect with a high index of heritability. Patients with BAV have different clinical courses and disease progression. Herein, we report three siblings with BAV and clinical differences. Their clinical presentations include moderate to severe aortic regurgitation, aortic stenosis, and ascending aortic aneurysm. Genetic investigation was carried out using Whole-Exome Sequencing for the three patients. We identified two non-synonymous variants in ROBO1 and GATA5 genes. The ROBO1: p.(Ser327Pro) variant is shared by the three BAV-affected siblings. The GATA5: p.(Gln3Arg) variant is shared only by the two brothers who presented BAV and ascending aortic aneurysm. Their sister, affected by BAV without aneurysm, does not harbor the GATA5: p.(Gln3Arg) variant. Both variants were absent in the patients' fourth brother who is clinically healthy with tricuspid aortic valve. To our knowledge, this is the first association of ROBO1 and GATA5 variants in familial BAV with a potential genotype-phenotype correlation. Our findings are suggestive of the implication of ROBO1 gene in BAV and the GATA5: p.(Gln3Arg) variant in ascending aortic aneurysm. Our family-based study further confirms the intrafamilial incomplete penetrance of BAV and the complex pattern of inheritance of the disease.
Collapse
Affiliation(s)
- Hager Jaouadi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France
| | - Hilla Gérard
- AP-HM, Hôpital de la Timone, Département de Cardiologie, Marseille, France
| | - Alexis Théron
- Hôpital de la Timone, Département de Chirurgie Cardiaque, Marseille, France
| | | | - Frédéric Collart
- Hôpital de la Timone, Département de Chirurgie Cardiaque, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France.
- AP-HM, Hôpital de la Timone, Département de Cardiologie, Marseille, France.
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, U1251, Marseille, France.
| |
Collapse
|
12
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
13
|
Bi Y, Yang Z, Jin M, Zhai K, Wang J, Mao Y, Liu Y, Ding M, Wang H, Wang F, Cai H, Ji G. ERp44 is required for endocardial cushion development by regulating VEGFA secretion in myocardium. Cell Prolif 2022; 55:e13179. [PMID: 35088919 PMCID: PMC8891561 DOI: 10.1111/cpr.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Endocardial cushions are precursors of the valve septum complex that separates the four heart chambers. Several genes have been implicated in the development of endocardial cushions. Specifically, ERp44 has been found to play a role in the early secretory pathway, but its function in heart development has not been well studied. MATERIALS AND METHODS In this study, we established conditional and tissue-specific knockout mouse models. The morphology, survival rate, the development of heart and endocardial cushion were under evaluation. The relationship between ERp44 and VEGFA was investigated by transcriptome, qPCR, WB, immunofluorescence and immunohistochemistry. RESULTS ERp44 knockout (KO) mice were smaller in size, and most mice died during early postnatal life. KO hearts exhibited the typical phenotypes of congenital heart diseases, such as abnormal heart shapes and severe septal and valvular defects. Similar phenotypes were found in cTNT-Cre+/- ; ERp44fl / fl mice, which indicated that myocardial ERp44 principally controls endocardial cushion formation. Further studies demonstrated that the deletion of ERp44 significantly decreased the proliferation of cushion cells and impaired the endocardial-mesenchymal transition (EndMT), which was followed by endocardial cushion dysplasia. Finally, we found that ERp44 was directly bound to VEGFA and controlled its release, further regulating EndMT. CONCLUSION We demonstrated that ERp44 plays a specific role in heart development. ERp44 contributes to the development of the endocardial cushion by affecting VEGFA-mediated EndMT.
Collapse
Affiliation(s)
- Youkun Bi
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhiguang Yang
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meng Jin
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kui Zhai
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Wang
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Mao
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingqin Ding
- National Institute of Biological SciencesBeijingChina
| | - Huiwen Wang
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological SciencesBeijingChina
| | - Hong Cai
- Department of DermatologyAir Force Medical CenterPLABeijingChina
| | - Guangju Ji
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
McCracken IR, Dobie R, Bennett M, Passi R, Beqqali A, Henderson NC, Mountford JC, Riley PR, Ponting CP, Smart N, Brittan M, Baker AH. Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression. Cardiovasc Res 2022; 118:2960-2972. [PMID: 35212715 PMCID: PMC9648824 DOI: 10.1093/cvr/cvac023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
AIMS Coronary vasculature formation is a critical event during cardiac development, essential for heart function throughout perinatal and adult life. However, current understanding of coronary vascular development has largely been derived from transgenic mouse models. The aim of this study was to characterize the transcriptome of the human foetal cardiac endothelium using single-cell RNA sequencing (scRNA-seq) to provide critical new insights into the cellular heterogeneity and transcriptional dynamics that underpin endothelial specification within the vasculature of the developing heart. METHODS AND RESULTS We acquired scRNA-seq data of over 10 000 foetal cardiac endothelial cells (ECs), revealing divergent EC subtypes including endocardial, capillary, venous, arterial, and lymphatic populations. Gene regulatory network analyses predicted roles for SMAD1 and MECOM in determining the identity of capillary and arterial populations, respectively. Trajectory inference analysis suggested an endocardial contribution to the coronary vasculature and subsequent arterialization of capillary endothelium accompanied by increasing MECOM expression. Comparative analysis of equivalent data from murine cardiac development demonstrated that transcriptional signatures defining endothelial subpopulations are largely conserved between human and mouse. Comprehensive characterization of the transcriptional response to MECOM knockdown in human embryonic stem cell-derived EC (hESC-EC) demonstrated an increase in the expression of non-arterial markers, including those enriched in venous EC. CONCLUSIONS scRNA-seq of the human foetal cardiac endothelium identified distinct EC populations. A predicted endocardial contribution to the developing coronary vasculature was identified, as well as subsequent arterial specification of capillary EC. Loss of MECOM in hESC-EC increased expression of non-arterial markers, suggesting a role in maintaining arterial EC identity.
Collapse
Affiliation(s)
- Ian R McCracken
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK,Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rainha Passi
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Paul R Riley
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Nicola Smart
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
15
|
Qiu T, Li H, Lu T, Shu L, Chen C, Wang C. GATA4 regulates osteogenic differentiation by targeting miR-144-3p. Exp Ther Med 2021; 23:83. [PMID: 34934452 DOI: 10.3892/etm.2021.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs or miRs) play an important role in regulating osteogenic differentiation, but their specific regulatory mechanism requires further investigation. In the present study, it was revealed that during osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs), the expression level of miR-144-3p was decreased with increased osteogenic induction duration and was negatively associated with osteogenic marker gene expression. Overexpression of miR-144-3p inhibited osteogenic differentiation, while inhibition of miR-144-3p expression promoted osteogenic differentiation. In addition, dual-luciferase activity analysis and adenovirus infection experiments revealed that GATA binding protein 4 targeted miR-144-3p for regulation and that overexpression of GATA4 promoted the expression of miR-144-3p. These data indicated that miR-144-3p plays a role in inhibiting BMSC osteogenic differentiation and that GATA4 inhibits osteogenic differentiation by targeting miR-144-3p expression.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haotian Li
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tao Lu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liping Shu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chao Chen
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunqing Wang
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
16
|
Wang E, Fan X, Nie Y, Zheng Z, Hu S. Single-Nucleotide Polymorphisms in Exonic and Promoter Regions of Transcription Factors of Second Heart Field Associated with Sporadic Congenital Cardiac Anomalies. Balkan J Med Genet 2021; 24:39-47. [PMID: 36249516 PMCID: PMC9524169 DOI: 10.2478/bjmg-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple second heart field (SHF) transcription factors are involved in cardiac development. In this article we evaluate the relationship between SHF transcription factor polymorphisms and congenital heart disease (CHD). Ten polymorphisms were used for genotyping, and three of these were used for the luciferase assay. The risk of CHD was increased 4.31 times and 1.54 times in the C allele of GATA5: rs6061243 G>C and G allele of TBX20: rs336283 A>G, respectively. The minor alleles of SMYD1: rs1542088 T>G, MEF2C: rs80043958 A>G and GATA5: rs6587239 T>C increased the risk of the simple types of CHD. The minor alleles of GATA5: rs41305803 G>A and MEF2C: rs304154 A>G increased the risk of tetralogy of Fallot (TOF). The minor alleles of TBX20: rs336284 A>G and SMYD1: rs88387557 T>G only increased the risk of a single ventricle (SV). Luciferase assays revealed that the minor alleles of rs304154 and rs336284 decreased the transcriptional levels of MEF2C and TBX20, respectively (p<0.01). When combined with HLTF, the G promoter showed a higher expression level than the A promoter in rs80043958 (p<0.01). Our findings suggest that minor alleles of SNPs in the exonic and promoter regions of transcription factors in the SHF can increase the risks of sporadic CHD.
Collapse
Affiliation(s)
- E Wang
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - X Fan
- Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing, 100029, China
| | - Y Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Z Zheng
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - S Hu
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
17
|
Poelmann RE, Gittenberger-de Groot AC, Goerdajal C, Grewal N, De Bakker MAG, Richardson MK. Ventricular Septation and Outflow Tract Development in Crocodilians Result in Two Aortas with Bicuspid Semilunar Valves. J Cardiovasc Dev Dis 2021; 8:jcdd8100132. [PMID: 34677201 PMCID: PMC8537894 DOI: 10.3390/jcdd8100132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The outflow tract of crocodilians resembles that of birds and mammals as ventricular septation is complete. The arterial anatomy, however, presents with a pulmonary trunk originating from the right ventricular cavum, and two aortas originating from either the right or left ventricular cavity. Mixing of blood in crocodilians cannot occur at the ventricular level as in other reptiles but instead takes place at the aortic root level by a shunt, the foramen of Panizza, the opening of which is guarded by two facing semilunar leaflets of both bicuspid aortic valves. Methods: Developmental stages of Alligator mississipiensis, Crocodilus niloticus and Caiman latirostris were studied histologically. Results and Conclusions: The outflow tract septation complex can be divided into two components. The aorto-pulmonary septum divides the pulmonary trunk from both aortas, whereas the interaortic septum divides the systemic from the visceral aorta. Neural crest cells are most likely involved in the formation of both components. Remodeling of the endocardial cushions and both septa results in the formation of bicuspid valves in all three arterial trunks. The foramen of Panizza originates intracardially as a channel in the septal endocardial cushion.
Collapse
Affiliation(s)
- Robert E. Poelmann
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC Leiden, The Netherlands;
- Correspondence: ; Tel.: +31-652695875
| | | | - Charissa Goerdajal
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
| | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC Leiden, The Netherlands;
| | - Merijn A. G. De Bakker
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
| | - Michael K. Richardson
- Sylvius Laboratory, Department of Animal Sciences and Health, Institute of Biology, University of Leiden, Sylvi-usweg 72, 2333BE Leiden, The Netherlands; (C.G.); (M.A.G.D.B.); (M.K.R.)
| |
Collapse
|
18
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
19
|
Abstract
Bicuspid aortic valve (BAV) is the most common valvular congenital heart disease, with a prevalence of 0.5 to 2% in the general population. Patients with BAV are at risk for developing cardiovascular complications, some of which are life-threatening. BAV has a wide spectrum of clinical presentations, ranging from silent malformation to severe and even fatal cardiac events. Despite the significant burden on both the patients and the health systems, data are limited regarding pathophysiology, risk factors, and genetics. Family studies indicate that BAV is highly heritable, with autosomal dominant inheritance, incomplete penetrance, variable expressivity, and male predominance. Owing to its complex genetic model, including high genetic heterogenicity, only a few genes were identified in association with BAV, while the majority of BAV genetics remains obscure. Here, we review the different forms of BAV and the current data regarding its genetics. Given the clear heritably of BAV with the potential high impact on clinical outcome, the clinical value and cost effectiveness of cascade screening are discussed.
Collapse
|
20
|
Yang L, Yang Y, Liu X, Chen Y, Chen Y, Lin Y, Sun Y, Shen B. CHDGKB: a knowledgebase for systematic understanding of genetic variations associated with non-syndromic congenital heart disease. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5865522. [PMID: 32608479 PMCID: PMC7327432 DOI: 10.1093/database/baaa048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Congenital heart disease (CHD) is one of the most common birth defects, with complex genetic and environmental etiologies. The reports of genetic variation associated with CHD have increased dramatically in recent years due to the revolutionary development of molecular technology. However, CHD is a heterogeneous disease, and its genetic origins remain inconclusive in most patients. Here we present a database of genetic variations for non-syndromic CHD (NS-CHD). By manually literature extraction and analyses, 5345 NS-CHD-associated genetic variations were collected, curated and stored in the public online database. The objective of our database is to provide the most comprehensive updates on NS-CHD genetic research and to aid systematic analyses of pathogenesis of NS-CHD in molecular level and the correlation between NS-CHD genotypes and phenotypes. Database URL: http://www.sysbio.org.cn/CHDGKB/.
Collapse
Affiliation(s)
- Lan Yang
- Center for Systems Biology, Soochow University, Suzhou 215006, China.,Center of Prenatal Diagnosis, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou 215006, China.,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongquan Chen
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Yalan Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yan Sun
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Junco-Vicente A, del Río-García Á, Martín M, Rodríguez I. Update in Biomolecular and Genetic Bases of Bicuspid Aortopathy. Int J Mol Sci 2021; 22:ijms22115694. [PMID: 34071740 PMCID: PMC8198265 DOI: 10.3390/ijms22115694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) associated with aortopathy is the most common congenital heart disease in the general population. Far from being a simple harmless valve malformation, it can be a complex and heterogeneous disease and a source of chronic and acute pathology (early valvular disease, aneurysm, dissection). In the previous years, intense research has been carried out to find out and understand its mechanisms, but the pathophysiology of the disease is still not fully understood and many questions remain open. Recent studies have discovered several genetic mutations involved in the development of valvular and aortic malformations, but still cannot explain more than 5–10% of cases. Other studies have also focused on molecular alterations and cellular processes (TGF-β pathway, microRNAs, degradation of the extracellular matrix, metalloproteinases, etc.), being a field in constant search and development, looking for a therapeutic target to prevent the development of the disease. Increased knowledge about this multifaceted disorder, derived from both basic and clinical research, may influence the diagnosis, follow-up, prognosis, and therapies of affected patients in the near future. This review focuses on the latest and outstanding developments on the molecular and genetic investigations of the bicuspid aortopathy.
Collapse
Affiliation(s)
- Alejandro Junco-Vicente
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
| | - Álvaro del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - María Martín
- Cardiology Department, Heart Area, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- REDinREN from Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain
- Correspondence: (M.M.); (I.R.)
| |
Collapse
|
22
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
23
|
Verma U, Khaire K, Desai I, Sharma S, Balakrishnan S. Early embryonic exposure to chlorpyrifos-cypermethrin combination induces pattern deficits in the heart of domestic hen. ENVIRONMENTAL TOXICOLOGY 2021; 36:707-721. [PMID: 33270332 DOI: 10.1002/tox.23074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Exposure to chlorpyrifos-cypermethrin combination during early development resulted in defective looping and ventricular noncompaction of heart in domestic chicken. The study was extended to elucidate the molecular basis of this novel observation. The primary culture of chicken embryonic heart cells showed a concentration-dependent loss of viability when challenged with this combination of technical-grade insecticides. Comet assay, DNA ladder assay, and analyses of appropriate markers at transcript and protein levels, revealed that chlorpyrifos-cypermethrin combination induced cell death by activating apoptosis. Parallelly, the tissues derived from control and experimental group hearts were checked for apoptotic markers, and the result was much similar to that of the in-vitro study. Further analysis showed that chlorpyrifos-cypermethrin combination deranged the expression pattern of the transcriptional regulators of cardiogenesis, namely TBX20, GATA5, HAND2, and MYOCD. This, together with heightened apoptosis, could well be the reason behind the observed structural anomalies in the heart of chlorpyrifos-cypermethrin poisoned embryos.
Collapse
Affiliation(s)
- Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Isha Desai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Shashikant Sharma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
24
|
Sharma A, Wasson LK, Willcox JAL, Morton SU, Gorham JM, DeLaughter DM, Neyazi M, Schmid M, Agarwal R, Jang MY, Toepfer CN, Ward T, Kim Y, Pereira AC, DePalma SR, Tai A, Kim S, Conner D, Bernstein D, Gelb BD, Chung WK, Goldmuntz E, Porter G, Tristani-Firouzi M, Srivastava D, Seidman JG, Seidman CE, Pediatric Cardiac Genomics Consortium. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. eLife 2020; 9:e53278. [PMID: 33054971 PMCID: PMC7593088 DOI: 10.7554/elife.53278] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Damaging GATA6 variants cause cardiac outflow tract defects, sometimes with pancreatic and diaphragmic malformations. To define molecular mechanisms for these diverse developmental defects, we studied transcriptional and epigenetic responses to GATA6 loss of function (LoF) and missense variants during cardiomyocyte differentiation of isogenic human induced pluripotent stem cells. We show that GATA6 is a pioneer factor in cardiac development, regulating SMYD1 that activates HAND2, and KDR that with HAND2 orchestrates outflow tract formation. LoF variants perturbed cardiac genes and also endoderm lineage genes that direct PDX1 expression and pancreatic development. Remarkably, an exon 4 GATA6 missense variant, highly associated with extra-cardiac malformations, caused ectopic pioneer activities, profoundly diminishing GATA4, FOXA1/2, and PDX1 expression and increasing normal retinoic acid signaling that promotes diaphragm development. These aberrant epigenetic and transcriptional signatures illuminate the molecular mechanisms for cardiovascular malformations, pancreas and diaphragm dysgenesis that arise in patients with distinct GATA6 variants.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Jon AL Willcox
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sarah U Morton
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Division of Newborn Medicine, Boston Children's HospitalBostonUnited States
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Meraj Neyazi
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Hannover Medical SchoolHannoverGermany
| | - Manuel Schmid
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Deutsches Herzzentrum München, Technische Universität MünchenMunichGermany
| | - Radhika Agarwal
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Min Young Jang
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Tarsha Ward
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Yuri Kim
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Alexandre C Pereira
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, Medical School of University of Sao PauloSao PauloBrazil
| | - Steven R DePalma
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Angela Tai
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Seongwon Kim
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - David Conner
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Wendy K Chung
- Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - George Porter
- Department of Pediatrics, University of Rochester Medical CenterRochesterUnited States
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of MedicineSalt Lake CityUnited States
| | | | | | - Christine E Seidman
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Cardiovascular Division, Department of Medicine, Brigham and Women's HospitalBostonUnited States
| | | |
Collapse
|
25
|
BVES downregulation in non-syndromic tetralogy of fallot is associated with ventricular outflow tract stenosis. Sci Rep 2020; 10:14167. [PMID: 32843646 PMCID: PMC7447802 DOI: 10.1038/s41598-020-70806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.
Collapse
|
26
|
Liu L, Fei F, Zhang R, Wu F, Yang Q, Wang F, Sun S, Zhao H, Li Q, Wang L, Wang Y, Gui Y, Wang X. Combinatorial genetic replenishments in myocardial and outflow tract tissues restore heart function in tnnt2 mutant zebrafish. Biol Open 2019; 8:bio.046474. [PMID: 31796423 PMCID: PMC6918781 DOI: 10.1242/bio.046474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cardiac muscle troponin T (Tnnt2) mediates muscle contraction in response to calcium ion dynamics, and Tnnt2 mutations are associated with multiple types of cardiomyopathy. Here, we employed a zebrafish model to investigate the genetic replenishment strategies of using conditional and inducible promoters to rescue the deficiencies in the heart. tnnt2a mutations were induced in zebrafish via the CRISPR/Cas9 technique, and the mutants displayed heart arrest and dilated cardiomyopathy-like phenotypes. We first utilized the classic myocardial promoter of the myl7 and TetOn inducible system to restore tnnt2a expression in myocardial tissue in tnnt2a mutant zebrafish. However, this attempt failed to recover normal heart function and circulation, although heart pumping was partially restored. Further analyses via both RNA-seq and immunofluorescence indicated that Tnnt2a, which was also expressed in a novel group of myl7-negative smooth muscle cells on the outflow tract (OFT), was indispensably responsible for the normal mechanical dynamics of OFT. Lastly, tnnt2 expression induced by OFT cells in addition to the myocardial cells successfully rescued heart function and circulation in tnnt2a mutant zebrafish. Together, our results reveal the significance of OFT expression of Tnnt2 for cardiac function and demonstrate zebrafish larva as a powerful and convenient in vivo platform for studying cardiomyopathy and the relevant therapeutic strategies.
Collapse
Affiliation(s)
- Lian Liu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Fei Fei
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Ranran Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, China
| | - Fang Wu
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Qian Yang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Feng Wang
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Hui Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lei Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yonghao Gui
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| |
Collapse
|
27
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
28
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
29
|
Gharibeh L, Komati H, Bossé Y, Boodhwani M, Heydarpour M, Fortier M, Hassanzadeh R, Ngu J, Mathieu P, Body S, Nemer M. GATA6 Regulates Aortic Valve Remodeling, and Its Haploinsufficiency Leads to Right-Left Type Bicuspid Aortic Valve. Circulation 2019; 138:1025-1038. [PMID: 29567669 DOI: 10.1161/circulationaha.117.029506] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Bicuspid aortic valve (BAV), the most common congenital heart defect affecting 1% to 2% of the population, is a major risk factor for premature aortic valve disease and accounts for the majority of valve replacement. The genetic basis and mechanisms of BAV etiology and pathogenesis remain largely undefined. METHODS Cardiac structure and function was assessed in mice lacking a Gata6 allele. Human GATA6 gene variants were analyzed in 452 BAV cases from the BAV consortium and 1849 controls from the Framingham GWAS (Genome Wide Association Study). GATA6 expression was determined in mice and human tissues using quantitative real-time polymerase chain reaction and immunohistochemistry. Mechanistic studies were carried out in cultured cells. RESULTS Gata6 heterozygous mice have highly penetrant right-left (RL)-type BAV, the most frequent type in humans. GATA6 transcript levels are lower in human BAV compared with normal tricuspid valves. Mechanistically, Gata6 haploinsufficiency disrupts valve remodeling and extracellular matrix composition through dysregulation of important signaling molecules, including matrix metalloproteinase 9. Cell-specific inactivation of Gata6 reveals an essential role for GATA6 in secondary heart field myocytes because loss of 1 Gata6 allele from Isl- 1-positive cells-but not from endothelial or neural crest cells-recapitulates the phenotype of Gata6 heterozygous mice. CONCLUSIONS The data identify a new cellular and molecular mechanism underlying BAV. The availability of an animal model for the most frequent human BAV opens the way for the elucidation of BAV pathogenesis and the development of much needed therapies.
Collapse
Affiliation(s)
- Lara Gharibeh
- Department of Biochemistry, Microbiology, and Immunology, Molecular Genetics and Cardiac Regeneration Laboratory, University of Ottawa, Ontario, Canada (L.G., H.K., R.H., M.T., M.N.)
| | - Hiba Komati
- Department of Biochemistry, Microbiology, and Immunology, Molecular Genetics and Cardiac Regeneration Laboratory, University of Ottawa, Ontario, Canada (L.G., H.K., R.H., M.T., M.N.)
| | - Yohan Bossé
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Canada (Y.B., P.M.)
| | - Munir Boodhwani
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ontario, Canada (M.B., J.N.)
| | - Mahyar Heydarpour
- Department of Biochemistry, Microbiology, and Immunology, Molecular Genetics and Cardiac Regeneration Laboratory, University of Ottawa, Ontario, Canada (L.G., H.K., R.H., M.T., M.N.)
| | | | - Romina Hassanzadeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., S.B.)
| | - Janet Ngu
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ontario, Canada (M.B., J.N.)
| | - Patrick Mathieu
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Canada (Y.B., P.M.)
| | - Simon Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., S.B.)
| | - Mona Nemer
- Department of Biochemistry, Microbiology, and Immunology, Molecular Genetics and Cardiac Regeneration Laboratory, University of Ottawa, Ontario, Canada (L.G., H.K., R.H., M.T., M.N.)
| | | |
Collapse
|
30
|
Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life 2019; 72:53-67. [PMID: 31520462 DOI: 10.1002/iub.2163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Cardiac development is governed by a complex network of transcription factors (TFs) that regulate cell fates in a spatiotemporal manner. Among these, the GATA family of zinc finger TFs plays prominent roles in regulating the development of the myocardium, endocardium, and outflow tract. This family comprises six members three of which, GATA4, 5, and 6, are predominantly expressed in cardiac cells where they activate specific downstream gene targets via interactions with one another and with other TFs and signaling molecules. Their critical function in heart formation is evidenced by the phenotypes of animal models lacking these factors and by the broad spectrum of human congenital heart diseases associated with mutations in their genes. Similarly, in the postnatal heart, these proteins play significant and nonredundant roles in cardiac function, regulating adaptive stress responses including cardiomyocyte hypertrophy and survival, as well as endothelial homeostasis and angiogenesis. As such, decreased expression of either GATA4, 5, or 6 results in impaired cardiovascular homeostasis and increased risk of premature and serious cardiovascular events such as hypertension, arrhythmia, aortopathy, and heart failure. Although a great deal of progress has been made in understanding GATA-dependent regulatory processes in the heart, the molecular mechanisms underlying the specificity of GATA factors and their upstream regulation remain incompletely understood. The knowledge and tools developed since their discovery 25 years ago should accelerate progress toward further elucidation of their mechanisms of action in health and disease. This in turn will greatly improve diagnosis and care for the millions of individuals affected by congenital and acquired cardiac disease worldwide.
Collapse
Affiliation(s)
- Jamieson Whitcomb
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Shi Y, Li Y, Wang Y, Zhuang J, Wang H, Hu M, Mo X, Yue S, Chen Y, Fan X, Chen J, Cai W, Zhu X, Wan Y, Zhong Y, Ye X, Li F, Zhou Z, Dai G, Luo R, Ocorr K, Jiang Z, Li X, Zhu P, Wu X, Yuan W. The Functional Polymorphism R129W in the BVES Gene Is Associated with Sporadic Tetralogy of Fallot in the Han Chinese Population. Genet Test Mol Biomarkers 2019; 23:601-609. [PMID: 31386585 DOI: 10.1089/gtmb.2019.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Tetralogy of Fallot (TOF) accounts for ∼10% of congenital heart disease cases. The blood vessel epicardial substance (BVES) gene has been reported to play a role in the function of adult hearts. However, whether allelic variants in BVES contribute to the risk of TOF and its possible mechanism remains unknown. Methods: The open reading frame of the BVES gene was sequenced using samples from 146 TOF patients and 100 unrelated healthy controls. qRT-PCR and western blot assays were used to confirm the expression of mutated BVES variants in the TOF samples. The online software Polyphen2 and SIFT were used to predict the deleterious effects of the observed allelic variants. The effects of these allelic variants on the transcriptional activities of genes were examined using dual-fluorescence reporter assays. Results: We genotyped four single nucleotide polymorphisms (SNPs) in the BVES gene from each of the 146 TOF patients. Among them, the minor allelic frequencies of c.385C>T (p.R129W) were 0.035% in TOF, but ∼0.025% in 100 controls and the Chinese Millionome Database. This allelic variant was predicted to be a potentially harmful alteration by the Polyphen2 and SIFT softwares. qRT-PCR and western blot analyses indicated that the expression of BVES in the six right ventricular outflow tract samples with the c.385C>T allelic variant was significantly downregulated. A dual-fluorescence reporter system showed that the c.385C>T allelic variant significantly decreased the transcriptional activity of the BVES gene and also decreased transcription from the GATA4 and NKX2.5 promoters. Conclusions: c.385C>T (p.R129W) is a functional SNP of the BVES gene that reduces the transcriptional activity of BVES in vitro and in vivo in TOF tissues. This subsequently affects the transcriptional activities of GATA4 and NKX2.5 related to TOF. These findings suggest that c.385C>T may be associated with the risk of TOF in the Han Chinese population.
Collapse
Affiliation(s)
- Yan Shi
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Li
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuequn Wang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng Wang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Hu
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoyang Mo
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shusheng Yue
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiongwei Fan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wanwan Cai
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaolan Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongqi Wan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Zhong
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangli Ye
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang Li
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guo Dai
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rong Luo
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Zhigang Jiang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Li
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiushan Wu
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuzhou Yuan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
32
|
LaHaye S, Majumdar U, Yasuhara J, Koenig SN, Matos-Nieves A, Kumar R, Garg V. Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated GATA4 mutation. Dis Model Mech 2019; 12:dmm.036764. [PMID: 31138536 PMCID: PMC6602309 DOI: 10.1242/dmm.036764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
Congenital heart defects affect ∼2% of live births and often involve malformations of the semilunar (aortic and pulmonic) valves. We previously reported a highly penetrant GATA4 p.Gly296Ser mutation in familial, congenital atrial septal defects and pulmonic valve stenosis and showed that mice harboring the orthologous G295S disease-causing mutation display not only atrial septal defects, but also semilunar valve stenosis. Here, we aimed to characterize the role of Gata4 in semilunar valve development and stenosis using the Gata4G295Ski/wt mouse model. GATA4 is highly expressed in developing valve endothelial and interstitial cells. Echocardiographic examination of Gata4G295Ski/wt mice at 2 months and 1 year of age identified functional semilunar valve stenosis predominantly affecting the aortic valve with distal leaflet thickening and severe extracellular matrix (ECM) disorganization. Examination of the aortic valve at earlier postnatal timepoints demonstrated similar ECM abnormalities consistent with congenital disease. Analysis at embryonic timepoints showed a reduction in aortic valve cushion volume at embryonic day (E)13.5, predominantly affecting the non-coronary cusp (NCC). Although total cusp volume recovered by E15.5, the NCC cusp remained statistically smaller. As endothelial to mesenchymal transition (EMT)-derived cells contribute significantly to the NCC, we performed proximal outflow tract cushion explant assays and found EMT deficits in Gata4G295Ski/wt embryos along with deficits in cell proliferation. RNA-seq analysis of E15.5 outflow tracts of mutant embryos suggested a disease state and identified changes in genes involved in ECM and cell migration as well as dysregulation of Wnt signaling. By utilizing a mouse model harboring a human disease-causing mutation, we demonstrate a novel role for GATA4 in congenital semilunar valve stenosis. This article has an associated First Person interview with the joint first authors of the paper. Summary: Cellular and molecular characterization of a mutant mouse, harboring a human disease-causing GATA4 variant, identifies cellular deficits in endothelial-to-mesenchymal transition and proliferation that cause abnormal valve remodeling and resultant stenosis.
Collapse
Affiliation(s)
- Stephanie LaHaye
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sara N Koenig
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Adrianna Matos-Nieves
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rahul Kumar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH 43205, USA .,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Liu Y, Zhu H, Liu Y, Qu J, Han M, Jin C, Zhang Q, Liu J. Molecular characterization and expression profiles provide new insights into GATA5 functions in tongue sole (Cynoglossus semilaevis). Gene 2019; 708:21-29. [PMID: 31082502 DOI: 10.1016/j.gene.2019.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
GATA5 is a member of the GATA transcription factor family, which serves essential roles in varieties of cellular functions and biological processes. In this study, we have accomplished the molecular cloning, bioinformatic analysis and preliminary function study of C. semilaevis GATA5. The full-length cDNA nucleotide sequence is 1955 bp, with a coding sequence of 1167 bp, which encodes a polypeptide of 388 amino acids. Homology, phylogenetic, gene structure and synteny analysis showed that C. semilaevis GATA5 was highly conserved among vertebrates. Tissue distribution pattern exhibited that C. semilaevis GATA5 was significantly expressed in heart, intestine, liver, kidney and gonad, with a sexual dimorphic feature observed in testis and ovary. Embryonic development expression profiles showed that C. semilaevis GATA5 transcripts increased at the blastula stage, and peaked at the heat-beating period. Strong signals were detected at spermatids of male testis and stage III oocytes of female ovary by ISH. The expression of C. semilaevis GATA5 was regulated by 17α-MT and E2 after hormone stimulation to the ovary. Together, all the results pointed out that GATA5 might play a vital role during gonadal maturation and the reproductive cycle of C. semilaevis. This study lays the foundation for further researches on the sex control breeding in tongue sole.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
34
|
Chen J, Wang S, Pang S, Cui Y, Yan B, Hawley RG. Functional genetic variants of the GATA4 gene promoter in acute myocardial infarction. Mol Med Rep 2019; 19:2861-2868. [PMID: 30720078 DOI: 10.3892/mmr.2019.9914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/25/2019] [Indexed: 11/05/2022] Open
Abstract
Coronary artery disease (CAD), including acute myocardial infarction (AMI), is a common complex disease; however, the genetic causes remain largely unknown. Recent epidemiological investigations indicated that the incidence of CAD in patients with congenital heart diseases is markedly higher than that observed in healthy controls. It was therefore hypothesized that the dysregulated expression of cardiac developmental genes may be involved in CAD development. GATA binding protein 4 (GATA4) serves essential roles in heart development and coronary vessel formation. In the present study, the GATA4 gene promoter was analyzed in patients with AMI (n=395) and in ethnically‑matched healthy controls (n=397). A total of 14 DNA variants were identified, including two single‑nucleotide polymorphisms. Three novel heterozygous DNA variants (g.31806C>T, g.31900G>C and g.32241C>T) were reported in three patients with AMI. These DNA variants significantly increased the activity of the GATA4 gene promoter. The electrophoretic mobility shift assay revealed that the DNA variant g.32241C>T influenced the binding ability of transcription factors. Taken together, the DNA variants may alter GATA4 gene promoter activity and affect GATA4 levels, thus contributing to AMI development.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
35
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
36
|
Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MJTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 2018; 11:dmm.034637. [PMID: 30242109 PMCID: PMC6215433 DOI: 10.1242/dmm.034637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3-/- mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3-/- embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3-/- mice.
Collapse
Affiliation(s)
- Joshua C Peterson
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mary Chughtai
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Lambertus J Wisse
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Qingping Feng
- Dept. Physiology and Pharmacology, Schulich Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Marie-José T H Goumans
- Dept. Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J Conny VanMunsteren
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique R M Jongbloed
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Dept. Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marco C DeRuiter
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
37
|
Sticchi E, De Cario R, Magi A, Giglio S, Provenzano A, Nistri S, Pepe G, Giusti B. Bicuspid Aortic Valve: Role of Multiple Gene Variants in Influencing the Clinical Phenotype. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8386123. [PMID: 30255099 PMCID: PMC6145047 DOI: 10.1155/2018/8386123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Background. Bicuspid aortic valve (BAV) is a common congenital heart defect with increased prevalence of aortic dilatation and dissection. BAV has an autosomal dominant pattern of inheritance with reduced penetrance and variable expressivity. BAV has been described as an isolated trait or associated with other clinical manifestations in syndromic conditions. Identification of a syndromic condition in a BAV patient is clinically relevant in order to personalize indication to aortic surgery. We aimed to point out how genetic diagnosis by next-generation sequencing (NGS) can improve management of a patient with complex BAV clinical picture. Methods and Results. We describe a 45-year-old Caucasian male with BAV, thoracic aortic root and ascending aorta dilatation, and connective features evocative but inconclusive for clinical diagnosis of Marfan syndrome (MFS). Targeted (91 genes) NGS was used. Proband genetic variants were investigated in first-degree relatives. Proband carried 5 rare variants in 4 genes: FBN1(p.Asn542Ser and p.Lys2460Arg), NOTCH1(p.Val1739Met), LTBP1(p.Arg1330Gln), and TGFBR3(p.Arg423Trp). The two FBN1 variants were inherited in cis by the mother, showing systemic features evocative of MFS, but with a milder phenotype than that observed in the proband. Careful clinical observation along with the presence of the FBN1 variants allowed diagnosis of MFS in the proband and in his mother. NOTCH1 variant was found in mother and brother, not exhibiting BAV, thus not definitely supporting/excluding association with BAV. Interestingly, the proband, his brother and father, all showing root dilatation, and his sister, with upper range aortic root dimension, were carriers of a TGFBR3 variant. LTBP1 might also modulate the vascular phenotype. Conclusions. Our results underline the usefulness of NGS together with family evaluation in diagnosis of patients with monogenic traits and overlapping clinical manifestations due to contribution of the same genes and/or presence of comorbidities determined by different genes.
Collapse
Affiliation(s)
- Elena Sticchi
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of Florence, Italy
- Marfan Syndrome and Related Disorders Regional Referral Center, Careggi Hospital, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the Development of De Novo Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Rosina De Cario
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of Florence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of Florence, Italy
| | - Sabrina Giglio
- Department of Biomedical Experimental and Clinical Sciences 'Mario Serio', University of Florence, Italy
- Medical Genetic Unit, Meyer Children's University Hospital, Florence, Italy
| | - Aldesia Provenzano
- Department of Biomedical Experimental and Clinical Sciences 'Mario Serio', University of Florence, Italy
| | - Stefano Nistri
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of Florence, Italy
- Cardiology Service, CMSR Veneto Medica, Altavilla Vicentina, Italy
| | - Guglielmina Pepe
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of Florence, Italy
- Marfan Syndrome and Related Disorders Regional Referral Center, Careggi Hospital, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the Development of De Novo Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Section of Critical Medical Care and Medical Specialities, University of Florence, Italy
- Marfan Syndrome and Related Disorders Regional Referral Center, Careggi Hospital, Florence, Italy
- Excellence Centre for Research, Transfer and High Education for the Development of De Novo Therapies (DENOTHE), University of Florence, Florence, Italy
| |
Collapse
|
38
|
HIRA directly targets the enhancers of selected cardiac transcription factors during in vitro differentiation of mouse embryonic stem cells. Mol Biol Rep 2018; 45:1001-1011. [PMID: 30030774 PMCID: PMC6156767 DOI: 10.1007/s11033-018-4247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
Abstract
HIRA is a histone chaperone known to modulate gene expression through the deposition of H3.3. Conditional knockout of Hira in embryonic mouse hearts leads to cardiac septal defects. Loss of function mutation in HIRA, together with other chromatin modifiers, was found in patients with congenital heart diseases. However, the effects of HIRA on gene expression at earlier stages of cardiogenic mesoderm differentiation have not yet been studied. Differentiation of mouse embryonic stem cells (mESCs) towards cardiomyocytes mimics some of these early events and is an accepted model of these early stages. We performed RNA-Seq and H3.3-HA ChIP-seq on both WT and Hira-null mESCs and early cardiomyocyte progenitors of both genotypes. Analysis of RNA-seq data showed differential down regulation of cardiovascular development-related genes in Hira-null cardiomyocytes compared to WT cardiomyocytes. We found HIRA-dependent H3.3 deposition at these genes. In particular, we observed that HIRA influenced directly the expression of the transcription factors Gata6, Meis1 and Tbx2, essential for cardiac septation, through H3.3 deposition. We therefore identified new direct targets of HIRA during cardiac differentiation.
Collapse
|
39
|
Kammoun M, Souche E, Brady P, Ding J, Cosemans N, Gratacos E, Devriendt K, Eixarch E, Deprest J, Vermeesch JR. Genetic profile of isolated congenital diaphragmatic hernia revealed by targeted next-generation sequencing. Prenat Diagn 2018; 38:654-663. [PMID: 29966037 DOI: 10.1002/pd.5327] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is characterized by a defective closure of the diaphragm occurring as an isolated defect in 60% of cases. Lung size, liver herniation, and pulmonary circulation are major prognostic indices. Isolated CDH genetics is heterogeneous and poorly understood. Whether genetic lesions are also outcome determinants has never been explored. OBJECTIVES To identify isolated CDH genetic causes, to fine map the mutational burden, and to search for a correlation between the genotype and the disease severity and outcome. METHODS Targeted massively parallel sequencing of 143 human and mouse CDH causative and candidate genes in a cohort of 120 fetuses with isolated CDH and detailed outcome measures. RESULTS Pathogenic and likely pathogenic variants were identified in 10% of the cohort. These variants affect both known CDH causative genes, namely, ZFPM2, GATA4, and NR2F2, and new genes, namely, TBX1, TBX5, GATA5, and PBX1. In addition, mutation burden analysis identified LBR, CTBP2, NSD1, MMP14, MYOD1, and EYA1 as candidate genes with enrichment in rare but predicted deleterious variants. No obvious correlation between the genotype and the phenotype or short-term outcome has been found. CONCLUSION Targeted resequencing identifies a genetic cause in 10% of isolated CDH and identifies new candidate genes.
Collapse
Affiliation(s)
- Molka Kammoun
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Erika Souche
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul Brady
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jia Ding
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nele Cosemans
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Gratacos
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Koen Devriendt
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Jan Deprest
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
40
|
Xu YJ, Di RM, Qiao Q, Li XM, Huang RT, Xue S, Liu XY, Wang J, Yang YQ. GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene 2018; 663:115-120. [PMID: 29653232 DOI: 10.1016/j.gene.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
Congenital bicuspid aortic valve (BAV), the most common form of birth defect in humans, is associated with substantial morbidity and mortality. Increasing evidence demonstrates that genetic risk factors play a key role in the pathogenesis of BAV. However, BAV is a genetically heterogeneous disease and the genetic determinants underpinning BAV in an overwhelming majority of patients remain unknown. In the present study, the coding exons and flanking introns of the GATA6 gene, which encodes a zinc-finger transcription factor essential for the normal development of the aortic valves, were sequenced in 152 unrelated patients with congenital BAV. The available relatives of a proband harboring an identified GATA6 mutation and 200 unrelated, ethnically matched healthy individuals used as controls were also genotyped for GATA6. The functional characteristics of the mutation were analyzed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous GATA6 mutation, p.E386X, was identified in a family with BAV transmitted in an autosomal dominant mode. The nonsense mutation was absent in 400 control chromosomes. Biological assays revealed that the mutant GATA6 protein had no transcriptional activity compared with its wild-type counterpart. Furthermore, the mutation disrupted the synergistic transcriptional activation between GATA6 and GATA4, another transcription factor causally linked to BAV. In conclusion, this study firstly associates GATA6 loss-of-function mutation with enhanced susceptibility to familial BAV, which provides novel insight into the molecular mechanism of BAV, implying potential implications for genetic counseling and personalized management of BAV patients.
Collapse
Affiliation(s)
- Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, PR China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, PR China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai 200065, PR China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, PR China
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China; Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China; Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China.
| |
Collapse
|
41
|
Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. Dev Biol 2017; 434:108-120. [PMID: 29229250 PMCID: PMC5814753 DOI: 10.1016/j.ydbio.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation. Gata 4, 5 and 6 have redundant and non-redundant functions in heart development. RNA-seq analysis of Gata4, 5 and 6 knockdown experiments was carried out. Genes specifically regulated by Gata4, 5 and 6 were identified. The SoxF genes sox7 and sox18 were identified as specifically regulated by Gata4. Epistasis demonstrates a regulatory axis from Gata4 to Sox7/18 to cardiomyogenesis.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, King's College Campus, University of Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK.
| |
Collapse
|
42
|
Yassine NM, Shahram JT, Body SC. Pathogenic Mechanisms of Bicuspid Aortic Valve Aortopathy. Front Physiol 2017; 8:687. [PMID: 28993736 PMCID: PMC5622294 DOI: 10.3389/fphys.2017.00687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital valvular defect and is associated with ascending aortic dilation (AAD) in a quarter of patients. AAD has been ascribed both to the hemodynamic consequences of normally functioning and abnormal BAV morphology, and to the effect of rare and common genetic variation upon function of the ascending aortic media. AAD manifests in two overall and sometimes overlapping phenotypes: that of aortic root aneurysm, similar to the AAD of Marfan syndrome; and that of tubular AAD, similar to the AAD seen with tricuspid aortic valves (TAVs). These aortic phenotypes appear to be independent of BAV phenotype, have different embryologic origins and have unique etiologic factors, notably, regarding the role of hemodynamic changes inherent to the BAV phenotype. Further, in contrast to Marfan syndrome, the AAD seen with BAV is infrequently present as a strongly inherited syndromic phenotype; rather, it appears to be a less-penetrant, milder phenotype. Both reduced levels of normally functioning transcriptional proteins and structurally abnormal proteins have been observed in aneurysmal aortic media. We provide evidence that aortic root AAD has a stronger genetic etiology, sometimes related to identified common non-coding fibrillin-1 (FBN1) variants and other aortic wall protein variants in patients with BAV. In patients with BAV having tubular AAD, we propose a stronger hemodynamic influence, but with pathology still based on a functional deficit of the aortic media, of genetic or epigenetic etiology. Although it is an attractive hypothesis to ascribe common mechanisms to BAV and AAD, thus far the genetic etiologies of AAD have not been associated to the genetic etiologies of BAV, notably, not including BAV variants in NOTCH1 and GATA4.
Collapse
Affiliation(s)
- Noor M Yassine
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Jasmine T Shahram
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| |
Collapse
|
43
|
Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Front Physiol 2017; 8:400. [PMID: 28659821 PMCID: PMC5469151 DOI: 10.3389/fphys.2017.00400] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ajay A Kumar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ilse Luyckx
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Elyssa Cannaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Gerarda van de Beek
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Björn Wieschendorf
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Maaike Alaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Nikhita Bolar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Geert Vandeweyer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Rustam Zhurayev
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Dmytro Zerbino
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Seema Mital
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Luc Mertens
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska InstituteStockholm, Sweden
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Lut Van Laer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Emmanuel Messas
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Guillaume Goudot
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Michaela Nemcikova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine-Charles University and Motol University HospitalPrague, Czechia
| | - Alice Krebsova
- Institute of Clinical and Experimental MedicinePrague, Czechia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Simone Salemink
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Toon Duijnhouwer
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Xavier Jeunemaitre
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Juliette Albuisson
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States.,Howard Hughes Medical InstituteBaltimore, MD, United States
| | - Aline Verstraeten
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Bart L Loeys
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | | |
Collapse
|
44
|
Abstract
Twenty years ago, chromosomal abnormalities were the only identifiable genetic causes of a small fraction of congenital heart defects (CHD). Today, a de novo or inherited genetic abnormality can be identified as pathogenic in one-third of cases. We refer to them here as monogenic causes, insofar as the genetic abnormality has a readily detectable, large effect. What explains the other two-thirds? This review considers a complex genetic basis. That is, a combination of genetic mutations or variants that individually may have little or no detectable effect contribute to the pathogenesis of a heart defect. Genes in the embryo that act directly in cardiac developmental pathways have received the most attention, but genes in the mother that establish the gestational milieu via pathways related to metabolism and aging also have an effect. A growing body of evidence highlights the pathogenic significance of genetic interactions in the embryo and maternal effects that have a genetic basis. The investigation of CHD as guided by a complex genetic model could help estimate risk more precisely and logically lead to a means of prevention.
Collapse
Affiliation(s)
- Ehiole Akhirome
- Department of Pediatrics, Washington University School of Medicine
| | - Nephi A Walton
- Department of Pediatrics, Washington University School of Medicine
| | - Julie M Nogee
- Department of Pediatrics, Washington University School of Medicine
| | - Patrick Y Jay
- Department of Pediatrics, Washington University School of Medicine
| |
Collapse
|
45
|
Hempel M, Casar Tena T, Diehl T, Burczyk MS, Strom TM, Kubisch C, Philipp M, Lessel D. Compound heterozygous GATA5 mutations in a girl with hydrops fetalis, congenital heart defects and genital anomalies. Hum Genet 2017; 136:339-346. [DOI: 10.1007/s00439-017-1762-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 01/21/2023]
|
46
|
Bolar N, Verstraeten A, Van Laer L, Loeys B. Molecular Insights into Bicuspid Aortic Valve Development and the associated aortopathy. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Tarradas A, Pinsach-Abuin ML, Mackintosh C, Llorà-Batlle O, Pérez-Serra A, Batlle M, Pérez-Villa F, Zimmer T, Garcia-Bassets I, Brugada R, Beltran-Alvarez P, Pagans S. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. J Mol Cell Cardiol 2016; 102:74-82. [PMID: 27894866 DOI: 10.1016/j.yjmcc.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/12/2023]
Abstract
Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease.
Collapse
Affiliation(s)
- Anna Tarradas
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Mel Lina Pinsach-Abuin
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Carlos Mackintosh
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Oriol Llorà-Batlle
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Alexandra Pérez-Serra
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Montserrat Batlle
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Félix Pérez-Villa
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Thomas Zimmer
- Institute for Physiology II, University Hospital, 07743 Jena, Germany
| | - Ivan Garcia-Bassets
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Ramon Brugada
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; Hospital Universitari Dr. Josep Trueta, 17001 Girona, Spain
| | - Pedro Beltran-Alvarez
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Biological, Biomedical, and Environmental Sciences, University of Hull, HU6 7RX, Hull, UK.
| | - Sara Pagans
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain.
| |
Collapse
|
48
|
McKean DM, Homsy J, Wakimoto H, Patel N, Gorham J, DePalma SR, Ware JS, Zaidi S, Ma W, Patel N, Lifton RP, Chung WK, Kim R, Shen Y, Brueckner M, Goldmuntz E, Sharp AJ, Seidman CE, Gelb BD, Seidman JG. Loss of RNA expression and allele-specific expression associated with congenital heart disease. Nat Commun 2016; 7:12824. [PMID: 27670201 PMCID: PMC5052634 DOI: 10.1038/ncomms12824] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression-this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression.
Collapse
Affiliation(s)
- David M McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Neil Patel
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven R DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02115, USA
| | - James S Ware
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,National Institute for Health Research Cardiovascular Biomedical Research Unit at Royal Brompton and Harefield National Health Service Foundation Trust and Imperial College London, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK
| | - Samir Zaidi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Wenji Ma
- Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Nihir Patel
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Howard Hughes Medical Institute, Yale University, Connecticut 06510, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard Kim
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA.,Department of Biomedical Informatics, Columbia University Medical Center, New York, New York 10032, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew J Sharp
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02115, USA
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Liu P, Sun Y, Qiu G, Jiang H, Qiu G. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase. Mol Med Rep 2016; 14:2904-14. [PMID: 27572266 PMCID: PMC5042752 DOI: 10.3892/mmr.2016.5660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle arrest.
Collapse
Affiliation(s)
- Peiyan Liu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yueling Sun
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guangbin Qiu
- Department of Laboratory Medicine, 202 Hospital of People's Liberation Army, Shenyang, Heping 110003, P.R. China
| | - Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital, China Medical University, Shenyang, Heping 110001, P.R. China
| | - Guangrong Qiu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
50
|
Boogerd CJ, Aneas I, Sakabe N, Dirschinger RJ, Cheng QJ, Zhou B, Chen J, Nobrega MA, Evans SM. Probing chromatin landscape reveals roles of endocardial TBX20 in septation. J Clin Invest 2016; 126:3023-35. [PMID: 27348591 DOI: 10.1172/jci85350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation. Using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we identified accessible chromatin within endocardial lineages and intersected these data with TBX20 ChIP-seq and chromatin loop maps to determine that TBX20 binds a conserved long-range enhancer to regulate versican (Vcan) expression. We also observed reduced Vcan expression in Tbx20-deficient mice, supporting a direct role for TBX20 in Vcan regulation. Further, we show that the Vcan enhancer drove reporter gene expression in endocardial lineages in a TBX20-binding site-dependent manner. This work illuminates gene networks that interact with TBX20 to orchestrate cardiac septation and provides insight into the chromatin landscape of endocardial lineages during septation.
Collapse
|