1
|
Bhadouria N, Holguin N. Osteoporosis treatments for intervertebral disc degeneration and back pain: a perspective. JBMR Plus 2024; 8:ziae048. [PMID: 38706880 PMCID: PMC11066806 DOI: 10.1093/jbmrpl/ziae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/07/2024] Open
Abstract
Low back pain derived from intervertebral disc (IVD) degeneration is a debilitating spinal condition that, despite its prevalence, does not have any intermediary guidelines for pharmacological treatment between palliative care and invasive surgery. The development of treatments for the IVD is complicated by the variety of resident cell types needed to maintain the regionally distinct structural properties of the IVD that permit the safe, complex motions of the spine. Osteoporosis of the spine increases the risk of vertebral bone fracture that can increase the incidence of back pain. Fortunately, there are a variety of pharmacological treatments for osteoporosis that target osteoblasts, osteoclasts and/or osteocytes to build bone and prevent vertebral fracture. Of particular note, clinical and preclinical studies suggest that commonly prescribed osteoporosis drugs like bisphosphonates, intermittent parathyroid hormone, anti-sclerostin antibody, selective estrogen receptor modulators and anti-receptor activator of nuclear factor-kappa B ligand inhibitor denosumab may also relieve back pain. Here, we cite clinical and preclinical studies and include unpublished data to support the argument that a subset of these therapeutics for osteoporosis may alleviate low back pain by also targeting the IVD.
Collapse
Affiliation(s)
- Neharika Bhadouria
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nilsson Holguin
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
2
|
Kroon T, Bhadouria N, Niziolek P, Edwards D, Choi R, Clinkenbeard EL, Robling A, Holguin N. Suppression of Sost/Sclerostin and Dickkopf-1 Augment Intervertebral Disc Structure in Mice. J Bone Miner Res 2022; 37:1156-1169. [PMID: 35278242 PMCID: PMC9320845 DOI: 10.1002/jbmr.4546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of low back pain, characterized by accelerated extracellular matrix breakdown and IVD height loss, but there is no approved pharmacological therapeutic. Deletion of Wnt ligand competitor Lrp5 induces IVD degeneration, suggesting that Wnt signaling is essential for IVD homeostasis. Therefore, the IVD may respond to neutralization of Wnt ligand competitors sost(gene)/sclerostin(protein) and/or dickkopf-1 (dkk1). Anti-sclerostin antibody (scl-Ab) is an FDA-approved bone therapeutic that activates Wnt signaling. We aimed to (i) determine if pharmacological neutralization of sclerostin, dkk1, or their combination would stimulate Wnt signaling and augment IVD structure and (ii) determine the prolonged adaptation of the IVD to global, persistent deletion of sost. Nine-week-old C57Bl/6J female mice (n = 6-7/group) were subcutaneously injected 2×/week for 5.5 weeks with scl-Ab (25 mg/kg), dkk1-Ab (25 mg/kg), 3:1 scl-Ab/dkk1-Ab (18.75:6.25 mg/kg), or vehicle (veh). Separately, IVD of sost KO and wild-type (WT) mice (n = 8/group) were harvested at 16 weeks of age. First, compared with vehicle, injection of scl-Ab, dkk1-Ab, and 3:1 scl-Ab/dkk1-Ab similarly increased lumbar IVD height and β-catenin gene expression. Despite these similarities, only injection of scl-Ab alone strengthened IVD mechanical properties and decreased heat shock protein gene expressions. Genetically and compared with WT, sost KO enlarged IVD height, increased proteoglycan staining, and imbibed IVD hydration. Notably, persistent deletion of sost was compensated by upregulation of dkk1, which consequently reduced the cell nuclear fraction for Wnt signaling co-transcription factor β-catenin in the IVD. Lastly, RNA-sequencing pathway analysis confirmed the compensatory suppression of Wnt signaling and revealed a reduction of cellular stress-related pathways. Together, suppression of sost/sclerostin or dkk1 each augmented IVD structure by stimulating Wnt signaling, but scl-Ab outperformed dkk1-Ab in strengthening the IVD. Ultimately, postmenopausal women prescribed scl-Ab injections to prevent vertebral fracture may also benefit from a restoration of IVD height and health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tori Kroon
- Department of Biomedical EngineeringIUPUIIndianapolisINUSA
| | - Neharika Bhadouria
- Department of Mechanical EngineeringPurdue UniversityWest LafayetteINUSA
| | | | - Daniel Edwards
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
| | - Roy Choi
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
| | | | - Alexander Robling
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
| | - Nilsson Holguin
- Indiana Center of Musculoskeletal HealthIndianapolisINUSA
- Department for Anatomy and Cell BiologyIUPUIIndianapolisINUSA
- Department of Mechanical and Energy EngineeringIUPUIIndianapolisINUSA
| |
Collapse
|
3
|
Shrestha AMS, I Lilagan CA, B Guiao JE, R Romana-Eguia MR, Ablan Lagman MC. Comparative transcriptome profiling of heat stress response of the mangrove crab Scylla serrata across sites of varying climate profiles. BMC Genomics 2021; 22:580. [PMID: 34325654 PMCID: PMC8323281 DOI: 10.1186/s12864-021-07891-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background The fishery and aquaculture of the widely distributed mangrove crab Scylla serrata is a steadily growing, high-value, global industry. Climate change poses a risk to this industry as temperature elevations are expected to threaten the mangrove crab habitat and the supply of mangrove crab juveniles from the wild. It is therefore important to understand the genomic and molecular basis of how mangrove crab populations from sites with different climate profiles respond to heat stress. Towards this, we performed RNA-seq on the gill tissue of S. serrata individuals sampled from 3 sites (Cagayan, Bicol, and Bataan) in the Philippines, under normal and heat-stressed conditions. To compare the transcriptome expression profiles, we designed a 2-factor generalized linear model containing interaction terms, which allowed us to simultaneously analyze within-site response to heat-stress and across-site differences in the response. Results We present the first ever transcriptome assembly of S. serrata obtained from a data set containing 66 Gbases of cleaned RNA-seq reads. With lowly-expressed and short contigs excluded, the assembly contains roughly 17,000 genes with an N50 length of 2,366 bp. Our assembly contains many almost full-length transcripts – 5229 shrimp and 3049 fruit fly proteins have alignments that cover >80% of their sequence lengths to a contig. Differential expression analysis found population-specific differences in heat-stress response. Within-site analysis of heat-stress response showed 177, 755, and 221 differentially expressed (DE) genes in the Cagayan, Bataan, and Bicol group, respectively. Across-site analysis showed that between Cagayan and Bataan, there were 389 genes associated with 48 signaling and stress-response pathways, for which there was an effect of site in the response to heat; and between Cagayan and Bicol, there were 101 such genes affecting 8 pathways. Conclusion In light of previous work on climate profiling and on population genetics of marine species in the Philippines, our findings suggest that the variation in thermal response among populations might be derived from acclimatory plasticity due to pre-exposure to extreme temperature variations or from population structure shaped by connectivity which leads to adaptive genetic differences among populations. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-021-07891-w).
Collapse
Affiliation(s)
- Anish M S Shrestha
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing, and Networking (AdRIC), De La Salle University, Manila, Philippines. .,Software Technology Department, College of Computer Studies, De La Salle University, Manila, Philippines.
| | - Crissa Ann I Lilagan
- Software Technology Department, College of Computer Studies, De La Salle University, Manila, Philippines.,Practical Genomics Laboratory, Center for Natural Science and Environment Research, De La Salle University, Manila, Philippines.,Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Joyce Emlyn B Guiao
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing, and Networking (AdRIC), De La Salle University, Manila, Philippines.,Mathematics and Statistics Department, College of Science, De La Salle University, Manila, Philippines
| | - Maria Rowena R Romana-Eguia
- Aquaculture Department, Southeast Asian Fisheries Development Center, Binangoan, 1940 Rizal, Philippines.,Biology Department, College of Science, De La Salle University, Manila, Philippines
| | - Ma Carmen Ablan Lagman
- Practical Genomics Laboratory, Center for Natural Science and Environment Research, De La Salle University, Manila, Philippines.,Biology Department, College of Science, De La Salle University, Manila, Philippines
| |
Collapse
|
4
|
Abstract
Stem cells (SCs) are discovered long back but the idea that SCs possess therapeutic potential came up just a few decades back. In a past decade stem cell therapy is highly emerged and displayed tremendous potential for the treatment of a wide range of diseases and disorders such as blindness and vision impairment, type I diabetes, infertility, HIV, etc. SCs are very susceptible to destruction after transplantation into the host because of the inability to sustain elevated stress conditions inside the damaged tissue/organ. Heat shock proteins (HSPs) are molecular chaperones/stress proteins expressed in response to stress (elevated temperature, harmful chemicals, ischemia, viruses, etc) inside a living cell. HSPs protect the cell from damage by assisting in the proper folding of cellular proteins. This review briefly summarises different types of HSPs, their classification, cellular functions as well as the role of HSPs in regulating SC self-renewal and survival in the transplanted host. Applications of HSP modulated SCs in regenerative medicine and for the treatment of ischemic heart disease, myocardial infarction (MI), osteoarthritis, ischemic stroke, spinocerebellar ataxia type 3 (SCA3), leukemia, hepatic ischemia-reperfusion injury, Graft-versus-host disease (GVHD) and Parkinson's disease (PD) are discussed. In order to provide potential insights in understanding molecular mechanisms related to SCs in vertebrates, correlations between HSPs and SCs in cnidarians and planarians are also reviewed. There is a need to advance research in order to validate the use of HSPs for SC therapy and establish effective treatment strategies.
Collapse
|
5
|
Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus. Sci Rep 2020; 10:12806. [PMID: 32732955 PMCID: PMC7393174 DOI: 10.1038/s41598-020-69489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
Analyzing gene function in a broad range of research organisms is crucial for understanding the biological functions of genes and their evolution. Recent studies have shown that short hairpin RNAs (shRNAs) can induce gene-specific knockdowns in two cnidarian species. We have developed a detailed, straightforward, and scalable method to deliver shRNAs into fertilized eggs of the hydrozoan cnidarian Hydractinia symbiolongicarpus via electroporation, yielding effective gene-targeted knockdowns that can last throughout embryogenesis. Our electroporation protocol allows for the transfection of shRNAs into hundreds of fertilized H. symbiolongicarpus eggs simultaneously with minimal embryo death and no long-term harmful consequences on the developing animals. We show RT-qPCR and detailed phenotypic evidence of our method successfully inducing effective knockdowns of an exogenous gene (eGFP) and an endogenous gene (Nanos2), as well as knockdown confirmation by RT-qPCR of two other endogenous genes. We also provide visual confirmation of successful shRNA transfection inside embryos through electroporation. Our detailed protocol for electroporation of shRNAs in H. symbiolongicarpus embryos constitutes an important experimental resource for the hydrozoan community while also serving as a successful model for the development of similar methods for interrogating gene function in other marine invertebrates.
Collapse
|
6
|
Cheng H, Cao X, Min X, Zhang X, Kong Q, Mao Q, Li R, Xue B, Fang L, Liu L, Ding Z. Heat-Shock protein A12A is a novel PCNA-binding protein and promotes hepatocellular carcinoma growth. FEBS J 2020; 287:5464-5477. [PMID: 32128976 DOI: 10.1111/febs.15276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. Proliferating cell nuclear antigen (PCNA) plays a pivotal role in cancer development and progression. However, the long-term dismal prognosis of HCC mandates more investigation to identify novel regulators in HCC pathogenesis. Heat-shock protein A12A (HSPA12A) encodes a novel member of the HSP70 family. Here, we report that HCC cells showed increased HSPA12A expression, and overexpression of HSPA12A promoted HCC growth and angiogenesis in mice. Gain- and loss-of-functional studies demonstrated that the proliferation of HCC HepG2 cells, as well as β-catenin expression and nuclear translocation, was promoted by HSPA12A overexpression, but in turn suppressed by HSPA12A knockdown. HSPA12A did not impact PCNA expression; however, mass spectrometry and co-immunoprecipitation immunoblotting analysis revealed that HSPA12A directly binds to PCNA and promotes its trimerization, which is an essential functional conformation of PCNA for carcinogenesis. Importantly, PCNA inhibition by PCNA-I1 reversed the HSPA12A-mediated HepG2 cell differentiation. These findings indicate that HSPA12A is a novel regulator of HCC cell proliferation and tumor growth through binding to PCNA for its trimerization. HSPA12A inhibition might represent a viable strategy for the management of HCC in humans.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Rongrong Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, China
| | - Lei Fang
- Medical School, Nanjing University, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
7
|
Sanders SM, Ma Z, Hughes JM, Riscoe BM, Gibson GA, Watson AM, Flici H, Frank U, Schnitzler CE, Baxevanis AD, Nicotra ML. CRISPR/Cas9-mediated gene knockin in the hydroid Hydractinia symbiolongicarpus. BMC Genomics 2018; 19:649. [PMID: 30176818 PMCID: PMC6122657 DOI: 10.1186/s12864-018-5032-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/22/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hydractinia symbiolongicarpus, a colonial cnidarian, is a tractable model system for many cnidarian-specific and general biological questions. Until recently, tests of gene function in Hydractinia have relied on laborious forward genetic approaches, randomly integrated transgenes, or transient knockdown of mRNAs. RESULTS Here, we report the use of CRISPR/Cas9 genome editing to generate targeted genomic insertions in H. symbiolonigcarpus. We used CRISPR/Cas9 to promote homologous recombination of two fluorescent reporters, eGFP and tdTomato, into the Eukaryotic elongation factor 1 alpha (Eef1a) locus. We demonstrate that the transgenes are expressed ubiquitously and are stable over two generations of breeding. We further demonstrate that CRISPR/Cas9 genome editing can be used to mark endogenous proteins with FLAG or StrepII-FLAG affinity tags to enable in vivo and ex vivo protein studies. CONCLUSIONS This is the first account of CRISPR/Cas9 mediated knockins in Hydractinia and the first example of the germline transmission of a CRISPR/Cas9 inserted transgene in a cnidarian. The ability to precisely insert exogenous DNA into the Hydractinia genome will enable sophisticated genetic studies and further development of functional genomics tools in this understudied cnidarian model.
Collapse
Affiliation(s)
- Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Zhiwei Ma
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Julia M. Hughes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Brooke M. Riscoe
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Gregory A. Gibson
- Center for Biological Imaging and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Alan M. Watson
- Center for Biological Imaging and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Hakima Flici
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, and Department of Biology, University of Florida, St. Augustine, FL USA
| | - Andreas D. Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Matthew L. Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
8
|
Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget 2018; 7:60310-60331. [PMID: 27531891 PMCID: PMC5312386 DOI: 10.18632/oncotarget.11203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Bridget Haley
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
9
|
Radugina E, Grigoryan E. Heat shock response and shape regulation during newt tail regeneration. J Therm Biol 2017; 71:171-179. [PMID: 29301687 DOI: 10.1016/j.jtherbio.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/19/2017] [Indexed: 01/10/2023]
Abstract
Regenerating newt tail has recently been found to react to hypergravity in a stable and reproducible way - by curving downwards. Such morphogenetic effect of non-specific physical factor applied to a complex structure of an adult animal is a rare phenomenon with unknown molecular basis. For the first steps of unraveling this basis we've chosen heat shock proteins (HSPs) as promising candidates. Morphometrical analysis of tail regeneration was performed in aquarium (control), on substrate (relative hypergravity) and in aquarium under weekly application of heat shock. HSPs were inhibited pharmacologically during regeneration in aquarium and on substrate. Hsp70, 90 gene expression and protein localization were analyzed in the studied conditions. Weekly application of heat shock to newts regenerating tails in otherwise normal conditions led to development of curved tails (both upwards and downwards), suggesting that similar mechanisms are at play in both hypergravity-altered and heat shock-altered morphogenesis. Heat shock protein inhibitor KNK437 didn't affect tail shape during normal regeneration, but prevented the formation of tail curve in appropriate conditions. It was shown that HSP70 and HSP90 proteins are present in muscle and connective tissue of intact tails as well as regenerates, but only appear in epidermis in hypergravity-altered regenerates and heated tails. Based on our data, we hypothesize, that different external factors (e.g. hypergravity and heat shock) are received, analyzed and transmitted further to affect morphogenesis by similar mechanisms that utilize a set of HSP in epidermal cells.
Collapse
Affiliation(s)
- Elena Radugina
- Koltzov Institute of Developmental Biology RAS (IDB RAS), 26 Vavilova street, Moscow 119334, Russia.
| | - Eleonora Grigoryan
- Koltzov Institute of Developmental Biology RAS (IDB RAS), 26 Vavilova street, Moscow 119334, Russia.
| |
Collapse
|
10
|
Smith H, Epstein H, Torda G. The molecular basis of differential morphology and bleaching thresholds in two morphs of the coral Pocillopora acuta. Sci Rep 2017; 7:10066. [PMID: 28855618 PMCID: PMC5577224 DOI: 10.1038/s41598-017-10560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022] Open
Abstract
Processes of cnidarian evolution, including hybridization and phenotypic plasticity, have complicated the clear diagnosis of species boundaries within the phylum. Pocillopora acuta, a species of scleractinian coral that was recently split from the widespread Pocillopora damicornis species complex, occurs in at least two distinct morphs on the Great Barrier Reef. Contrasting morphology combined with evidence of differential bleaching thresholds among sympatrically distributed colonies suggest that the taxonomy of this recently described species is not fully resolved and may represent its own species complex. To examine the basis of sympatric differentiation between the two morphs, we combined analyses of micro- and macro-skeletal morphology with genome wide sequencing of the coral host, as well as ITS2 genotyping of the associated Symbiodinium communities. We found consistent differences between morphs on both the macro- and micro-skeletal scale. In addition, we identified 18 candidate functional genes that relate to skeletal formation and morphology that may explain how the two morphs regulate growth to achieve their distinct growth forms. With inconclusive results in endosymbiotic algal community diversity between the two morphs, we propose that colony morphology may be linked to bleaching susceptibility. We conclude that cryptic speciation may be in the early stages within the species P. acuta.
Collapse
Affiliation(s)
- Hillary Smith
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. .,Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia. .,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia. .,AIMS@JCU, James Cook University, Townsville, Queensland 4811, Australia.
| | - Hannah Epstein
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.,AIMS@JCU, James Cook University, Townsville, Queensland 4811, Australia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
11
|
The origins of rimmed vacuoles and granulovacuolar degeneration bodies are associated with the Wnt signaling pathway. Neurosci Lett 2017; 638:55-59. [DOI: 10.1016/j.neulet.2016.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023]
|
12
|
Zhe Y, Li Y, Liu D, Su DM, Liu JG, Li HY. Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biol 2016; 37:13951-13959. [DOI: 10.1007/s13277-016-5189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023] Open
|
13
|
Leclère L, Copley RR, Momose T, Houliston E. Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 2016; 39:157-167. [DOI: 10.1016/j.gde.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
14
|
Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Sci Rep 2016; 6:27622. [PMID: 27279016 PMCID: PMC4899801 DOI: 10.1038/srep27622] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/23/2016] [Indexed: 12/04/2022] Open
Abstract
HSPA1A, which encodes cognate heat shock protein 70, plays important roles in various cellular metabolic pathways. To investigate its effects on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), its expression level was compared between undifferentiated and differentiated BMSCs. Rat HSPA1A overexpression in BMSCs increased osteoblast-specific gene expression, alkaline phosphatase activity, and mineral deposition in vitro. Moreover, it upregulated β-catenin and downregulated DKK1 and SOST. The enhanced osteogenesis due to HSPA1A overexpression was partly rescued by a Wnt/β-catenin inhibitor. Additionally, using a rat tibial fracture model, a sheet of HSPA1A-overexpressing BMSCs improved bone fracture healing, as determined by imaging and histological analysis. Taken together, these findings suggest that HSPA1A overexpression enhances osteogenic differentiation of BMSCs, partly through Wnt/β-catenin.
Collapse
|
15
|
Sanders SM, Cartwright P. Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans. Genome Biol Evol 2015; 7:2417-31. [PMID: 26251524 PMCID: PMC4558869 DOI: 10.1093/gbe/evv153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/25/2022] Open
Abstract
Hydrozoans are known for their complex life cycles, which can alternate between an asexually reproducing polyp stage and a sexually reproducing medusa stage. Most hydrozoan species, however, lack a free-living medusa stage and instead display a developmentally truncated form, called a medusoid or sporosac, which generally remains attached to the polyp. Although evolutionary transitions in medusa truncation and loss have been investigated phylogenetically, little is known about the genes involved in the development and loss of this life cycle stage. Here, we present a new workflow for evaluating differential expression (DE) between two species using short read Illumina RNA-seq data. Through interspecific DE analyses between two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, we identified genes potentially involved in the developmental, functional, and morphological differences between the fully developed medusa of P. carnea and reduced sporosac of H. symbiolongicarpus. A total of 10,909 putative orthologs of H. symbiolongicarpus and P. carnea were identified from de novo assemblies of short read Illumina data. DE analysis revealed 938 of these are differentially expressed between P. carnea developing and adult medusa, when compared with H. symbiolongicarpus sporosacs, the majority of which have not been previously characterized in cnidarians. In addition, several genes with no corresponding ortholog in H. symbiolongicarpus were expressed in developing medusa of P. carnea. Results presented here show interspecific DE analyses of RNA-seq data to be a sensitive and reliable method for identifying genes and gene pathways potentially involved in morphological and life cycle differences between species.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas
| |
Collapse
|
16
|
Bradshaw B, Thompson K, Frank U. Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata. eLife 2015; 4:e05506. [PMID: 25884246 PMCID: PMC4421858 DOI: 10.7554/elife.05506] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/16/2015] [Indexed: 12/12/2022] Open
Abstract
Cnidarians possess remarkable powers of regeneration, but the cellular and molecular mechanisms underlying this capability are unclear. Studying the hydrozoan Hydractinia echinata we show that a burst of stem cell proliferation occurs following decapitation, forming a blastema at the oral pole within 24 hr. This process is necessary for head regeneration. Knocking down Piwi1, Vasa, Pl10 or Ncol1 expressed by blastema cells inhibited regeneration but not blastema formation. EdU pulse-chase experiments and in vivo tracking of individual transgenic Piwi1+ stem cells showed that the cellular source for blastema formation is migration of stem cells from a remote area. Surprisingly, no blastema developed at the aboral pole after stolon removal. Instead, polyps transformed into stolons and then budded polyps. Hence, distinct mechanisms act to regenerate different body parts in Hydractinia. This model, where stem cell behavior can be monitored in vivo at single cell resolution, offers new insights for regenerative biology. DOI:http://dx.doi.org/10.7554/eLife.05506.001 Although all animals are capable of regenerating damaged tissue to some extent, a few—including jellyfish, coral, and their relatives—are able to regenerate entire lost body parts. Closely related species may have very different regeneration capabilities. This has led some researchers to propose that higher animals, such as mammals, still possess the ancient genes that allow entire body parts to regenerate, but that somehow the genes have been disabled during their evolution. Studying animals that can regenerate large parts of their bodies may therefore help scientists understand what prevents others, including humans, from doing so. An animal that is particularly useful for studies into regeneration is called Hydractinia echinata. These tiny marine animals make their homes on the shells of hermit crabs. They are small, transparent and stay fixed to one spot, making it easy for scientists to grow them in the laboratory and closely observe what is going on when they regenerate. Bradshaw et al. genetically engineered Hydractinia individuals to produce a fluorescent protein in their stem cells; these cells have the ability to become one of several kinds of mature cell, and often help to repair and grow tissues. This allowed the stem cells to be tracked using a microscope. When the head of Hydractinia was cut off, stem cells in the animals' mid body section migrated to the end where the head used to be and multiplied. These stem cells then created a bud (known as a blastema) that developed into a new, fully functional head within two days, allowing the animals to capture prey. Reducing the activity of certain stem cell genes prevented the new head from growing, but the bud still formed. Next, Bradshaw et al. removed a structure from the opposite end of the animal, called the stolon, which normally helps Hydractinia attach to hermit crabs shells. Stolons regenerated in a completely different way to heads. No bud formed. Instead, the remainder of the animal's body, which included the head and the body column, gradually transformed into a stolon rather than regenerating this structure, and only then grew a new body column and head. Therefore, different tissues in the same animal can regenerate in different ways. Understanding the ‘tricks’ used by animals like Hydractinia to regenerate may help translate these abilities to regenerative medicine. DOI:http://dx.doi.org/10.7554/eLife.05506.002
Collapse
Affiliation(s)
- Brian Bradshaw
- School of Natural Sciences and Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
| | - Uri Frank
- School of Natural Sciences and Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
17
|
Hemond EM, Kaluziak ST, Vollmer SV. The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 2014; 15:1133. [PMID: 25519925 PMCID: PMC4320547 DOI: 10.1186/1471-2164-15-1133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Results Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct “staghorn” versus “elkhorn” morphologies of these two sister species. Conclusions The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1133) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Duffy DJ, Krstic A, Schwarzl T, Higgins DG, Kolch W. GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol Cancer Ther 2013; 13:454-67. [PMID: 24282277 DOI: 10.1158/1535-7163.mct-13-0560-t] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is an embryonal tumor accounting for approximately 15% of childhood cancer deaths. There exists a clinical need to identify novel therapeutic targets, particularly for treatment-resistant forms of neuroblastoma. Therefore, we investigated the role of the neuronal master regulator GSK3 in controlling neuroblastoma cell fate. We identified novel GSK3-mediated regulation of MYC (c-MYC and MYCN) mRNA levels, which may have implications for numerous MYC-driven cancers. In addition, we showed that certain GSK3 inhibitors induced large-scale cell death in neuroblastoma cells, primarily through activating apoptosis. mRNA-seq of GSK3 inhibitor-treated cells was performed and subsequent pathway analysis revealed that multiple signaling pathways contributed to the loss of neuroblastoma cell viability. The contribution of two of the signaling pathways highlighted by the mRNA-seq analysis was functionally validated. Inhibition of the p53 tumor suppressor partly rescued the cell death phenotype, whereas activation of canonical Wnt signaling contributed to the loss of viability, in a p53-independent manner. Two GSK3 inhibitors (BIO-acetoxime and LiCl) and one small-molecule Wnt agonist (Wnt Agonist 1) demonstrated therapeutic potential for neuroblastoma treatment. These inhibitors reduced the viability of numerous neuroblastoma cell lines, even those derived from high-risk MYCN-amplified metastatic tumors, for which effective therapeutics are currently lacking. Furthermore, although LiCl was lethal to neuroblastoma cells, it did not reduce the viability of differentiated neurons. Taken together our data suggest that these small molecules may hold potential as effective therapeutic agents for the treatment of neuroblastoma and other MYC-driven cancers.
Collapse
Affiliation(s)
- David J Duffy
- Corresponding Author: David J. Duffy, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
19
|
Kanska J, Frank U. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci 2013; 126:3192-203. [PMID: 23659997 DOI: 10.1242/jcs.127233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.
Collapse
Affiliation(s)
- Justyna Kanska
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | | |
Collapse
|
20
|
Duffy DJ. Instructive reconstruction: a new role for apoptosis in pattern formation. Instructive apoptotic patterning establishes de novo tissue generation via the apoptosis linked production of morphogenic signals. Bioessays 2012; 34:561-4. [PMID: 22488101 DOI: 10.1002/bies.201200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptosis is not only involved in patterning by removal of tissue (destructive apoptotic patterning), but it can also function in signalling the site of de novo tissue generation via morphogenic signals (instructive apoptotic patterning).
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|