1
|
Adell T, Cebrià F, Abril JF, Araújo SJ, Corominas M, Morey M, Serras F, González-Estévez C. Cell death in regeneration and cell turnover: Lessons from planarians and Drosophila. Semin Cell Dev Biol 2025; 169:103605. [PMID: 40139139 DOI: 10.1016/j.semcdb.2025.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Programmed cell death plays a crucial role during tissue turnover in all animal species, and it is also essential during regeneration, serving as a key signalling mechanism to promote tissue repair and regrowth. In freshwater planarians, remarkable regenerative abilities are supported by neoblasts, a population of adult stem cells, which enable high somatic cell turnover. Cell death in planarians occurs continuously during regeneration and adult homeostasis, underscoring its critical role in tissue remodeling and repair. However, the exact mechanisms regulating cell death in these organisms remain elusive. In contrast, Drosophila melanogaster serves as a powerful model for studying programmed cell death in development, metamorphosis, and adult tissue maintenance, leveraging advanced genetic tools and visualization techniques. In Drosophila, cell death sculpts tissues, eliminates larval structures during metamorphosis, and supports homeostasis in adulthood. Despite limited regenerative capacity compared to planarians, Drosophila provides unique insights into cell death's regulatory mechanisms. Comparative analysis of these two systems highlights both conserved and divergent roles of programmed cell death in tissue renewal and regeneration. This review synthesizes the latest knowledge of programmed cell death in planarians and Drosophila, aiming to illuminate shared principles and system-specific adaptations, with relevance to tissue repair across biological systems.
Collapse
Affiliation(s)
- Teresa Adell
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Josep F Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| |
Collapse
|
2
|
Guo W, Liu X, Pang L, Kong Z, Lin Z, Ren J, Dong Z, Chen G, Liu D. DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica. Cell Tissue Res 2025; 399:337-350. [PMID: 39762587 DOI: 10.1007/s00441-024-03939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2024] [Indexed: 03/01/2025]
Abstract
Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined. In this study, three sox gene homologs, DjsoxP-1, DjsoxP-5, and Djsox5, were identified in the planarian transcriptome, and their roles were investigated. The results showed that the amino acids deduced from the three sox genes all contained high-mobility group (HMG) domain sequences, which are highly conserved in sox family members. Whole-mount in situ hybridization (WISH) and real-time quantitative PCR (RT-qPCR) results indicated that the three sox genes were mainly expressed in parenchymal tissues and regenerative blastema. Additionally, X-ray irradiation assay and dFISH suggested that the three Djsox genes were expressed in neoblasts and other cell types. Head regression in intact planarian and smaller blastemas in both head or tail fragments of regenerating planarians were exhibited with DjsoxP-1 and Djsox5 RNA interference (RNAi) compared to the control animals, suggesting that DjsoxP-1 and Djsox5 have essential roles during cellular turnover and regeneration in planarians; conversely, there was no obvious phenotypic abnormalities or regeneration defect in DjsoxP-5 RNAi animals. Knockdown of DjsoxP-1 or Djsox5 decreased neoblast proliferation and promoted cell apoptosis. In conclusion, our findings demonstrate that DjsoxP-1 and Djsox5 are involved in cellular turnover and regeneration in planarians by modulating coordination between cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiyun Guo
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Xiao Liu
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Lina Pang
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Ziyi Lin
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Jing Ren
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| |
Collapse
|
3
|
Rossello M, Adell T, Pascual-Carreras E. Cell Death Regulation by Smed-foxO in the Planarian Schmidtea mediterranea. Methods Mol Biol 2025; 2871:179-191. [PMID: 39565589 DOI: 10.1007/978-1-0716-4217-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The planarian Schmidtea mediterranea shows nutrient-dependent whole-body plasticity. Starvation leads to body size reduction, while feeding triggers growth. The balance of cell proliferation and cell death controls cell number, driving organismal body size. Here, we uncovered the role of FoxO in controlling cell death through TUNEL and caspase-3 assays and bak qPCR detection in foxO RNAi planarians.
Collapse
Affiliation(s)
- Maria Rossello
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | | |
Collapse
|
4
|
Guerrero-Hernández C, Doddihal V, Mann FG, Sánchez Alvarado A. A powerful and versatile new fixation protocol for immunostaining and in situ hybridization that preserves delicate tissues. BMC Biol 2024; 22:252. [PMID: 39497153 PMCID: PMC11533299 DOI: 10.1186/s12915-024-02052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Understanding how genes function to heal wounds and restore lost tissue is essential for studying regeneration. Whole-mount in situ hybridization (WISH) is a powerful and widely used technique to visualize the expression patterns of genes in different biological systems. Yet, existing methods to permeabilize samples for WISH can damage or destroy fragile regenerating tissues, thereby preventing such experiments. RESULTS Here, we describe a new protocol for in situ hybridization (ISH) and immunostaining in the highly regenerative planarian Schmidtea mediterranea. This new Nitric Acid/Formic Acid (NAFA) protocol is compatible with both the assays and prevents degradation of the epidermis and regeneration blastema. The NAFA protocol achieves this without the use of proteinase K digestion which likely leads to better preservation of antigen epitopes. We show that the NAFA protocol successfully permits development of chromogenic and fluorescent signals in situ, while preserving the anatomy of the animal. Furthermore, the immunostaining of different proteins was compatible with the NAFA protocol following fluorescent in situ hybridization. Additionally, the tissue fixation protocol was easily adapted for regenerating killifish tail fin, which yielded better ISH signal with minimal background. CONCLUSIONS Thus, the NAFA protocol robustly preserves the delicate wounded tissues while also facilitating probe and antibody penetration into internal tissues. Furthermore, the fixation protocol is compatible for WISH on regenerating teleost fins suggesting that it will be a valuable technique for studying the processes of wounding response and regeneration in multiple species.
Collapse
Affiliation(s)
| | - Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Frederick G Mann
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Howard Hughes Medical Institute, Kansas City, MO, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Howard Hughes Medical Institute, Kansas City, MO, USA.
| |
Collapse
|
5
|
Garschall K, Pascual-Carreras E, García-Pascual B, Filimonova D, Guse A, Johnston IG, Steinmetz PRH. The cellular basis of feeding-dependent body size plasticity in sea anemones. Development 2024; 151:dev202926. [PMID: 38980277 PMCID: PMC11267454 DOI: 10.1242/dev.202926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024]
Abstract
Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.
Collapse
Affiliation(s)
- Kathrin Garschall
- Michael Sars Centre, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | - Belén García-Pascual
- Department for Mathematics, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Daria Filimonova
- Michael Sars Centre, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | - Iain G. Johnston
- Department for Mathematics, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
6
|
Doddihal V, Mann FG, Ross EJ, McKinney MC, Guerrero-Hernández C, Brewster CE, McKinney SA, Sánchez Alvarado A. A PAK family kinase and the Hippo/Yorkie pathway modulate WNT signaling to functionally integrate body axes during regeneration. Proc Natl Acad Sci U S A 2024; 121:e2321919121. [PMID: 38713625 PMCID: PMC11098123 DOI: 10.1073/pnas.2321919121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/09/2024] Open
Abstract
Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/β-catenin signaling along the AP axis and, functions synergistically with the β-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.
Collapse
Affiliation(s)
- Viraj Doddihal
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Eric J. Ross
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | | | | | | | | |
Collapse
|
7
|
Sun Y, Huang Y, Hao Z, Zhang S, Tian Q. MRLC controls apoptotic cell death and functions to regulate epidermal development during planarian regeneration and homeostasis. Cell Prolif 2024; 57:e13524. [PMID: 37357415 PMCID: PMC10771114 DOI: 10.1111/cpr.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.
Collapse
Affiliation(s)
- Yujia Sun
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yongding Huang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhitai Hao
- Department of Biochemistry and Molecular PharmacologyNew York University, School of MedicineNew YorkUSA
| | - Shoutao Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
- Longhu Laboratory of Advanced ImmunologyZhengzhouHenanChina
| | - Qingnan Tian
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
8
|
Djptpn11 is indispensable for planarian regeneration by affecting early wound response genes expression and the Wnt pathway. Biochimie 2022; 201:184-195. [PMID: 35868605 DOI: 10.1016/j.biochi.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022]
Abstract
Planarian is an ideal model system of studying regeneration. Stem cell system and positional control genes (PCGs) are two important factors for perfect regeneration of planarians and they combine to promote their regeneration. Even so, how wounds regulate proliferation and neoblast fate is still important areas to address. Ptpn11 (Protein tyrosine phosphatase non-receptor type 11), one of PTP (Protein tyrosine phosphatase) family members, plays an important role in cellular processes including cell survival, proliferation, differentiation and apoptosis. Nevertheless, the role of ptpn11 in the planarian regeneration has not been fully studied. In this study, we identify the Djptpn11 gene to observe its function in planarian regeneration. The results reveal that the regeneration is severely inhibited and cause the disorder homeostasis in planarians. Furthermore, the stem cells proliferation and differentiation decreases while the apoptosis increases following Djptpn11 RNAi. At the same time, Djptpn11 affects the expression levels of early wound response genes (Djegr2, Dj1-jun, Djrunt1, Djwnt1 and Djnotum). Djwnt1 and Djnotum are two key Wnt signaling pathway genes and Djptpn11 affects the expression levels of Djwnt1 and Djnotum in the early and late stages of planarian regeneration. In general, Djptpn11 is indispensable for the homeostasis and regeneration of planarian by affecting the stem cells, early wound response genes and the Wnt pathway.
Collapse
|
9
|
Liang A, Wu F, Li C, Yu Y, Dong Z, Chen G, Yu F, Yuwen Y, Liu D. Aspirin inhibits stem cell proliferation during freshwater Dugesia japonica regeneration by STAT3/SOX2/OCT4 signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106158. [PMID: 35429915 DOI: 10.1016/j.aquatox.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
As a widely used drug in clinical practice, aspirin has a large number of residual drugs and metabolites discharged into the environment during the pharmaceutical process or after taking the drug. Aspirin content and its metabolite, salicylic acid, have been reported and detected in several river water samples and municipal wastewaters. However, little is known about the toxicity mechanisms of this drug in aquatic invertebrates. In this study, we examine the toxic effect and investigate the toxicity mechanism of aspirin in planarian, which own the excellent regeneration and sensitive toxicity detection ability. Planarian is treated with 0.7 mM aspirin for 6 h, 48 h, 3 d and 5 d, and the mRNA and protein expression levels of the stem cells markers, in parallel with the target genes of the signaling pathway are analyzed by RT-qPCR, whole-mount immunofluorescence, and Western blot. The results show that aspirin strongly inhibits stem cell proliferation and causes retarded blastemas growth in planarians. Furthermore, the mRNA and protein expression levels of stem cells markers and the target genes dramatically decrease after the aspirin treatment. Meanwhile, the expression level of apoptotic cells also shows a downward trend. Their significant and coincident downregulations after the aspirin treatment suggest that aspirin regulates planarian regeneration via STAT3/SOX2/OCT4 signaling pathway. Our work reveals the toxicological effect and the mechanism of aspirin to the planarian, and provides basic data for therapeutic applications of aspirin in regeneration and warns about the ecological damage of aspirin abuse.
Collapse
Affiliation(s)
- Ang Liang
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China; School of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Chaojie Li
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yiyang Yu
- University of California, San Diego, La Jolla, CA, United States
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Fei Yu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yanqing Yuwen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| |
Collapse
|
10
|
Wang Q, Xie L, Wang Y, Jin B, Ren J, Dong Z, Chen G, Liu D. Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by regulating cell proliferation and apoptosis. Gene 2022; 820:146215. [PMID: 35122923 DOI: 10.1016/j.gene.2022.146215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian. The four genes, Djhsp70a, Djhsp70b, Djhsp70c, and Djhsp70d of the HSP70s, are selected from the transcriptome database, because of their high expression levels in planarians. We then study the biological roles of each gene by conducting various experimental techniques, including RNAi, RT-PCR, WISH, Whole-mount immunostaining and TUNEL. The results show: (1) External stressors, such as temperature, tissue damage and ionic liquid upregulate the expression of Djhsp70s significantly. (2) The gene expression of Djhsp70s in planarians exhibits dynamic patterns. According to the result of WISH, the Djhsp70s are mainly expressed in parenchymal tissues on both sides of the body as well as blastema. It is consistent with the data of qRT-PCR. (3) After RNA interference of Djhsp70s, the worms experience cephalic regression and lysis, body curling, stagnant regeneration and death. (4) Knockdown of Djhsp70s affect the cell proliferation and apoptosis. These results suggest that Djhsp70s are not only conserved in cytoprotection, but involved in homeostasis maintenance and regeneration process by regulating coordination of cell proliferation and apoptosis in planarians.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lijuan Xie
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Jing Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
11
|
Abel C, Powers K, Gurung G, Pellettieri J. Defined diets for freshwater planarians. Dev Dyn 2022; 251:390-402. [PMID: 34258816 PMCID: PMC8758798 DOI: 10.1002/dvdy.400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Planarian flatworms are popular invertebrate models for basic research on stem cell biology and regeneration. These animals are commonly maintained on a diet of homogenized calf liver or boiled egg yolk in the laboratory, introducing a source of uncontrolled experimental variability. RESULTS Here, we report the development of defined diets, prepared entirely from standardized, commercially sourced ingredients, for the freshwater species Schmidtea mediterranea, Dugesia japonica, and Girardia dorotocephala. These food sources provide an opportunity to test the effects of specific nutritional variables on biological phenomena of interest. Defined diet consumption was not sufficient for growth and only partially induced the increase in stem cell division that normally accompanies feeding, suggesting these responses are not solely determined by caloric intake. Our defined diet formulations enable delivery of double-stranded RNA for gene knockdown in a manner that provides unique advantages in some experimental contexts. We also present a new approach for preserving tissue integrity during hydrogen peroxide bleaching of liver-fed animals. CONCLUSIONS These tools will empower research on the connections between diet, metabolism, and stem cell biology in the experimentally tractable planarian system.
Collapse
Affiliation(s)
- Chris Abel
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Gargi Gurung
- Department of Biology, Keene State College, Keene, NH, USA
| | | |
Collapse
|
12
|
Edgar A, Mitchell DG, Martindale MQ. Whole-Body Regeneration in the Lobate Ctenophore Mnemiopsis leidyi. Genes (Basel) 2021; 12:genes12060867. [PMID: 34198839 PMCID: PMC8228598 DOI: 10.3390/genes12060867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023] Open
Abstract
Ctenophores (a.k.a. comb jellies) are one of the earliest branching extant metazoan phyla. Adult regenerative ability varies greatly within the group, with platyctenes undergoing both sexual and asexual reproduction by fission while others in the genus Beroe having completely lost the ability to replace missing body parts. We focus on the unique regenerative aspects of the lobate ctenophore, Mnemiopsis leidyi, which has become a popular model for its rapid wound healing and tissue replacement, optical clarity, and sequenced genome. M. leidyi’s highly mosaic, stereotyped development has been leveraged to reveal the polar coordinate system that directs whole-body regeneration as well as lineage restriction of replacement cells in various regenerating organs. Several cell signaling pathways known to function in regeneration in other animals are absent from the ctenophore’s genome. Further research will either reveal ancient principles of the regenerative process common to all animals or reveal novel solutions to the stability of cell fates and whole-body regeneration.
Collapse
|
13
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
14
|
Molinaro AM, Lindsay‐Mosher N, Pearson BJ. Identification of TOR-responsive slow-cycling neoblasts in planarians. EMBO Rep 2021; 22:e50292. [PMID: 33511776 PMCID: PMC7926258 DOI: 10.15252/embr.202050292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Epimorphic regeneration commonly relies on the activation of reserved stem cells to drive new cell production. The planarian Schmidtea mediterranea is among the best regenerators in nature, thanks to its large population of adult stem cells, called neoblasts. While neoblasts have long been known to drive regeneration, whether a subset of neoblasts is reserved for this purpose is unknown. Here, we revisit the idea of reserved neoblasts by approaching neoblast heterogeneity from a regulatory perspective. By implementing a new fluorescence-activated cell sorting strategy in planarians, we identify a population of neoblasts defined by low transcriptional activity. These RNAlow neoblasts are relatively slow-cycling at homeostasis and undergo a morphological regeneration response characterized by cell growth at 48 h post-amputation. At this time, RNAlow neoblasts proliferate in a TOR-dependent manner. Additionally, knockdown of the tumour suppressor Lrig-1, which is enriched in RNAlow neoblasts, results in RNAlow neoblast growth and hyperproliferation at homeostasis, and ultimately delays regeneration. We propose that slow-cycling RNAlow neoblasts represent a regeneration-reserved neoblast population.
Collapse
Affiliation(s)
- Alyssa M Molinaro
- Program in Developmental and Stem Cell BiologyHospital for Sick ChildrenTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Present address:
Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Nicole Lindsay‐Mosher
- Program in Developmental and Stem Cell BiologyHospital for Sick ChildrenTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Bret J Pearson
- Program in Developmental and Stem Cell BiologyHospital for Sick ChildrenTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Ontario Institute for Cancer ResearchTorontoONCanada
| |
Collapse
|
15
|
Pryszlak M, Wiggans M, Chen X, Jaramillo JE, Burns SE, Richards LM, Pugh TJ, Kaplan DR, Huang X, Dirks PB, Pearson BJ. The DEAD-box helicase DDX56 is a conserved stemness regulator in normal and cancer stem cells. Cell Rep 2021; 34:108903. [PMID: 33789112 DOI: 10.1016/j.celrep.2021.108903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Michael Pryszlak
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xin Chen
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Julia E Jaramillo
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Sarah E Burns
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Laura M Richards
- Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - David R Kaplan
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Peter B Dirks
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
16
|
Wang Z, Cao K, Wang D, Hua B, Zhang H, Xie X. Cadmium sulfate induces apoptosis in planarians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39308-39316. [PMID: 32648224 DOI: 10.1007/s11356-020-09991-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
With rapid socio-economic development, heavy metal pollution in water has become common and affects both environment and human health. Cadmium (Cd) has been recognized as one of the heavy metals which cause acute or chronic toxic effects if ingested. Although its toxicity is undisputed, the underlying molecular mechanisms in vivo are not fully understood. Planarians, a model organism famous for their regenerative prowess, have long been utilized to study the effects of chemical exposure. In this study, we observed apoptosis with TUNEL assay in planarians induced by cadmium sulfate (CdSO4) in a dose-dependent manner. The apoptosis-related genes were detected with quantitative RT-PCR. Significant changes in c-Myc, P53, and BcL-2 were indicated, which may play a partial role in the regulation of the process of apoptosis in the planarians. H&E staining showed that Cd had obvious biological toxicity in the planarians. Here, new insights on metal toxicity mechanisms are provided, contributing to understand how CdSO4 induces the pathological and physiological processes of apoptosis in the living bodies. Meanwhile, planarians are proved to be a freshwater pollution indicator and toxicological research model.
Collapse
Affiliation(s)
- Zhiyang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Keqing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Dan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Bingjie Hua
- GeWu Medical Research Institute (GMRI), Xi'an, China
| | - Haiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China.
| |
Collapse
|
17
|
Wiggans M, Pearson BJ. One stem cell program to rule them all? FEBS J 2020; 288:3394-3406. [PMID: 33063917 DOI: 10.1111/febs.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Many species of animals have stem cells that they maintain throughout their lives, which suggests that stem cells are an ancestral feature of all animals. From this, we take the viewpoint that cells with the biological properties of 'stemness'-self-renewal and multipotency-may share ancestral genetic circuitry. However, in practice is it very difficult to identify and compare stemness gene signatures across diverse animals and large evolutionary distances? First, it is critical to experimentally demonstrate self-renewal and potency. Second, genomic methods must be used to determine specific gene expression in stem cell types compared with non-stem cell types to determine stem cell gene enrichment. Third, gene homology must be mapped between diverse animals across large evolutionary distances. Finally, conserved genes that fulfill these criteria must be tested for role in stem cell function. It is our viewpoint that by comparing stem cell-specific gene signatures across evolution, ancestral programs of stemness can be uncovered, and ultimately, the dysregulation of stemness programs drives the state of cancer stem cells.
Collapse
Affiliation(s)
- Mallory Wiggans
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
18
|
Khani M, Hosseini J, Habibi M, Mirfakhraie R, Sadeghzadeh Z, Pouresmaeili F. Investigating the relationship between ccfDNA concentration, its integrity, and some individual factors in an Iranian population. Hum Antibodies 2020; 28:319-326. [PMID: 32804121 DOI: 10.3233/hab-200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Circulating cell-free DNA (ccfDNA) increases in some pathologic conditions like cancer. We aimed to investigate the correlation between some individual factors and the ccfDNA level in peripheral blood of Iranian in relation to prostate cancer. MATERIAL AND METHOD 30 patients with prostate cancer (PCa), 40 with benign prostate hyperplasia (BPH), and 30 controls were studied. Personal information, ccfDNA concentration, and the integrity index were assessed for the correlation between the disease and different factors. The results were statistically analyzed using SPSS software. RESULTS In PCa group, no association was found between total ccfDNA, BMI, BPH background, non-cancerous diseases, medications, PCa length, and job (p-value > 0.05). But, total ccfDNA had statistical associations with weight, family history of cancer, and location (p-value < 0.05). No association was between the integrity of ccfDNA, weight, the background of BPH, and family history of cancer. But, the integrity of ccfDNA was significantly associated with BMI and PCa length (p-value < 0.05).In BPH group, no association between total ccfDNA or the integrity of ccfDNA and the assessed factors was obtained (p-value > 0.05). In the normal group, neither statistical association was found between total ccfDNA, weight, BMI, and job, nor between the integrity of ccfDNA, weight, BMI, non-cancerous disease, drug, job, and location (p-value > 0.05). But, a statistical association was found between the integrity of ccfDNA and family history of cancer in the recent group (Based on 95% CI and P-value less than 0.05). CONCLUSION ccfDNA and its integrity as possible prostate cancer biomarkers under the influence of individuals' physiological status are prone to the pathologic changes toward the disease. Further simultaneous study of the target groups could clarify this matter.
Collapse
Affiliation(s)
- Maryam Khani
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Habibi
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadeghzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ziman B, Karabinis P, Barghouth P, Oviedo NJ. Sirtuin-1 regulates organismal growth by altering feeding behavior and intestinal morphology in planarians. J Cell Sci 2020; 133:jcs239467. [PMID: 32265271 PMCID: PMC7272345 DOI: 10.1242/jcs.239467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Nutrient availability upon feeding leads to an increase in body size in the planarian Schmidtea mediterranea However, it remains unclear how food consumption integrates with cell division at the organismal level. Here, we show that the NAD-dependent protein deacetylases sirtuins are evolutionarily conserved in planarians, and specifically demonstrate that the homolog of human sirtuin-1 (SIRT1) (encoded by Smed-Sirt-1), regulates organismal growth by impairing both feeding behavior and intestinal morphology. Disruption of Smed-Sirt-1 with RNAi or pharmacological inhibition of Sirtuin-1 leads to reduced animal growth. Conversely, enhancement of Sirtuin-1 activity with resveratrol accelerates growth. Differences in growth rates were associated with changes in the amount of time taken to locate food and overall food consumption. Furthermore, Smed-Sirt-1(RNAi) animals displayed reduced cell death and increased stem cell proliferation accompanied by impaired expression of intestinal lineage progenitors and reduced branching of the gut. Taken together, our findings indicate that Sirtuin-1 is a crucial metabolic hub capable of controlling animal behavior, tissue renewal and morphogenesis of the adult intestine.
Collapse
Affiliation(s)
- Benjamin Ziman
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Peter Karabinis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul Barghouth
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
20
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
21
|
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, Font-Martín D, Eckelt K, de Sousa N, García-Fernández J, Saló E, Adell T. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development 2020; 147:dev.184044. [PMID: 32122990 DOI: 10.1242/dev.184044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Kay Eckelt
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Jordi García-Fernández
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| |
Collapse
|
22
|
Iglesias M, Felix DA, Gutiérrez-Gutiérrez Ó, De Miguel-Bonet MDM, Sahu S, Fernández-Varas B, Perona R, Aboobaker AA, Flores I, González-Estévez C. Downregulation of mTOR Signaling Increases Stem Cell Population Telomere Length during Starvation of Immortal Planarians. Stem Cell Reports 2019; 13:405-418. [PMID: 31353226 PMCID: PMC6700675 DOI: 10.1016/j.stemcr.2019.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Reduction of caloric intake delays and prevents age-associated diseases and extends the life span in many organisms. It may be that these benefits are due to positive effects of caloric restriction on stem cell function. We use the planarian model Schmidtea mediterranea, an immortal animal that adapts to long periods of starvation by shrinking in size, to investigate the effects of starvation on telomere length. We show that the longest telomeres are a general signature of planarian adult stem cells. We also observe that starvation leads to an enrichment of stem cells with the longest telomeres and that this enrichment is dependent on mTOR signaling. We propose that one important effect of starvation for the rejuvenation of the adult stem cell pool is through increasing the median telomere length in somatic stem cells. Such a mechanism has broad implications for how dietary effects on aging are mediated at the whole-organism level.
Collapse
Affiliation(s)
- Marta Iglesias
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Daniel A Felix
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | | | - Maria Del Mar De Miguel-Bonet
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sounak Sahu
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Beatriz Fernández-Varas
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, Arturo Duperier 4, 28029 Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, IDiPaz, Arturo Duperier 4, 28029 Madrid, Spain; Ciber Network on Rare Diseases (CIBERER), C/ Alvaro de Bazan, 10, 46010 Valencia, Spain
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Cristina González-Estévez
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
23
|
Sekii K, Yorimoto S, Okamoto H, Nagao N, Maezawa T, Matsui Y, Yamaguchi K, Furukawa R, Shigenobu S, Kobayashi K. Transcriptomic analysis reveals differences in the regulation of amino acid metabolism in asexual and sexual planarians. Sci Rep 2019; 9:6132. [PMID: 30992461 PMCID: PMC6467871 DOI: 10.1038/s41598-019-42025-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Many flatworms can alternate between asexual and sexual reproduction. This is a powerful reproductive strategy enabling them to benefit from the features of the two reproductive modes, namely, rapid multiplication and genetic shuffling. The two reproductive modes are enabled by the presence of pluripotent adult stem cells (neoblasts), by generating any type of tissue in the asexual mode, and producing and maintaining germ cells in the sexual mode. In the current study, RNA sequencing (RNA-seq) was used to compare the transcriptomes of two phenotypes of the planarian Dugesia ryukyuensis: an asexual OH strain and an experimentally sexualized OH strain. Pathway enrichment analysis revealed striking differences in amino acid metabolism in the two worm types. Further, the analysis identified serotonin as a new bioactive substance that induced the planarian ovary de novo in a postembryonic manner. These findings suggest that different metabolic states and physiological conditions evoked by sex-inducing substances likely modulate stem cell behavior, depending on their different function in the asexual and sexual reproductive modes. The combination of RNA-seq and a feeding assay in D. ryukyuensis is a powerful tool for studying the alternation of reproductive modes, disentangling the relationship between gene expression and chemical signaling molecules.
Collapse
Affiliation(s)
- Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Shunta Yorimoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hikaru Okamoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Nanna Nagao
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takanobu Maezawa
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, 624-1 Numa, Tsuyama, Okayama, 708-8509, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai, 980-8575, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan
| | - Ryohei Furukawa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 2-1-1 Nishitokuda, Yanaba-cho, Shiwa-gun, Iwate, 028-3694, Japan. .,Department of Biology, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan.
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan. .,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki, 444-8585, Japan.
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
24
|
Felix DA, Gutiérrez-Gutiérrez Ó, Espada L, Thems A, González-Estévez C. It is not all about regeneration: Planarians striking power to stand starvation. Semin Cell Dev Biol 2018; 87:169-181. [PMID: 29705301 DOI: 10.1016/j.semcdb.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/11/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
All living forms, prokaryotes as eukaryotes, have some means of adaptation to food scarcity, which extends the survival chances under extreme environmental conditions. Nowadays we know that dietary interventions, including fasting, extends lifespan of many organisms and can also protect against age-related diseases including in humans. Therefore, the capacity of adapting to periods of food scarcity may have evolved billions of years ago not only to allow immediate organismal survival but also to be able to extend organismal lifespan or at least to lead to a healthier remaining lifespan. Planarians have been the center of attention since more than two centuries because of their astonishing power of full body regeneration that relies on a large amount of adult stem cells or neoblasts. However, they also present an often-overlooked characteristic. They are able to stand long time starvation. Planarians have adapted to periods of fasting by shrinking or degrowing. Here we will review the published data about starvation in planarians and conclude with the possibility of starvation being one of the processes that rejuvenate the planarian, thus explaining the historical notion of non-ageing planarians.
Collapse
Affiliation(s)
- Daniel A Felix
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Óscar Gutiérrez-Gutiérrez
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Anne Thems
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Cristina González-Estévez
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany.
| |
Collapse
|
25
|
Ricci L, Srivastava M. Wound-induced cell proliferation during animal regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e321. [PMID: 29719123 DOI: 10.1002/wdev.321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Many animal species are capable of replacing missing tissues that are lost upon injury or amputation through the process of regeneration. Although the extent of regeneration is variable across animals, that is, some animals can regenerate any missing cell type whereas some can only regenerate certain organs or tissues, regulated cell proliferation underlies the formation of new tissues in most systems. Notably, many species display an increase in proliferation within hours or days upon wounding. While different cell types proliferate in response to wounding in various animal taxa, comparative molecular data are beginning to point to shared wound-induced mechanisms that regulate cell division during regeneration. Here, we synthesize current insights about early molecular pathways of regeneration from diverse model and emerging systems by considering these species in their evolutionary contexts. Despite the great diversity of mechanisms underlying injury-induced cell proliferation across animals, and sometimes even in the same species, similar pathways for proliferation have been implicated in distantly related species (e.g., small diffusible molecules, signaling from apoptotic cells, growth factor signaling, mTOR and Hippo signaling, and Wnt and Bmp pathways). Studies that explicitly interrogate molecular and cellular regenerative mechanisms in understudied animal phyla will reveal the extent to which early pathways in the process of regeneration are conserved or independently evolved. This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
26
|
Dattani A, Sridhar D, Aziz Aboobaker A. Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol 2018; 87:79-94. [PMID: 29694837 DOI: 10.1016/j.semcdb.2018.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
Abstract
Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| | - Divya Sridhar
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| |
Collapse
|
27
|
Dong Z, Chu G, Sima Y, Chen G. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis. Biochem Biophys Res Commun 2018; 498:723-728. [PMID: 29555472 DOI: 10.1016/j.bbrc.2018.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90 family members (HSP90s), as molecular chaperones, have conserved roles in the physiological processes of eukaryotes regulating cytoprotection, increasing host resistance and so on. However, whether HSP90s affect regeneration in animals is unclear. Planarians are emerging models for studying regeneration in vivo. Here, the roles of three hsp90 genes from planarian Dugesia japonica are investigated by WISH and RNAi. The results show that: (1) Djhsp90s expressions are induced by heat and cold shock, tissue damage and ionic liquid; (2) Djhsp90s mRNA are mainly distributed each side of the body in intact worms as well as blastemas in regenerative worms; (3) the worms show head regression, lysis, the body curling and the regeneration arrest or even failure after Djhsp90s RNAi; (4) Djhsp90s are involved in autophagy and locomotion of the body. The research results suggest that Djhsp90s are not only conserved in cytoprotection, but also involved in homeostasis maintenance and regeneration process by regulating different pathways in planarians.
Collapse
Affiliation(s)
- Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Gengbo Chu
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yingxu Sima
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
28
|
Rossi L, Salvetti A. Planarian stem cell niche, the challenge for understanding tissue regeneration. Semin Cell Dev Biol 2018. [PMID: 29534938 DOI: 10.1016/j.semcdb.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cell fate depends on surrounding microenvironment, the so called niche. For this reason, understanding stem cell niche is one of the most challenging target in cell biology field and need to be unraveled with in vivo studies. Planarians offer this unique opportunity, as their stem cells, the neoblasts, are abundant, highly characterized and genetically modifiable by RNA interference in alive animals. However, despite impressive advances have been done in the understanding planarian stem cells and regeneration, only a few information is available in defining signals from differentiated tissues, which affect neoblast stemness and fate. Here, we review on molecular factors that have been found activated in differentiated tissues and directly or indirectly affect neoblast behavior, and we suggest future directions for unravelling this challenge in understanding planarian stem cells.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy
| | - Alessandra Salvetti
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy.
| |
Collapse
|
29
|
Johnson K, Bateman J, DiTommaso T, Wong AY, Whited JL. Systemic cell cycle activation is induced following complex tissue injury in axolotl. Dev Biol 2018; 433:461-472. [PMID: 29111100 PMCID: PMC5750138 DOI: 10.1016/j.ydbio.2017.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022]
Abstract
Activation of progenitor cells is crucial to promote tissue repair following injury in adult animals. In the context of successful limb regeneration following amputation, progenitor cells residing within the stump must re-enter the cell cycle to promote regrowth of the missing limb. We demonstrate that in axolotls, amputation is sufficient to induce cell-cycle activation in both the amputated limb and the intact, uninjured contralateral limb. Activated cells were found throughout all major tissue populations of the intact contralateral limb, with internal cellular populations (bone and soft tissue) the most affected. Further, activated cells were additionally found within the heart, liver, and spinal cord, suggesting that amputation induces a common global activation signal throughout the body. Among two other injury models, limb crush and skin excisional wound, only limb crush injuries were capable of inducing cellular responses in contralateral uninjured limbs but did not achieve activation levels seen following limb loss. We found this systemic activation response to injury is independent of formation of a wound epidermis over the amputation plane, suggesting that injury-induced signals alone can promote cellular activation. In mammals, mTOR signaling has been shown to promote activation of quiescent cells following injury, and we confirmed a subset of activated contralateral cells is positive for mTOR signaling within axolotl limbs. These findings suggest that conservation of an early systemic response to injury exists between mammals and axolotls, and propose that a distinguishing feature in species capable of full regeneration is converting this initial activation into sustained and productive growth at the site of regeneration.
Collapse
Affiliation(s)
- Kimberly Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Joel Bateman
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Tia DiTommaso
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Alan Y Wong
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA
| | - Jessica L Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham&Women's Hospital, 60 Fenwood Rd., Boston, MA 02115, USA.
| |
Collapse
|
30
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
31
|
Deochand ME, Birkholz TR, Beane WS. Temporal regulation of planarian eye regeneration. ACTA ACUST UNITED AC 2016; 3:209-221. [PMID: 27800171 PMCID: PMC5084360 DOI: 10.1002/reg2.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration timelines. We followed the timing of regeneration for one organ, the eye, after multiple injury types that involved tissue loss (single‐ and double‐eye ablation, and decapitation) in Schmidtea mediterranea. Our data reveal that the timing of regeneration remained constant despite changing injury parameters. Optic tissue regrowth, nerve re‐innervation, and functional recovery were similar between injury types (even when the animal was simultaneously regrowing its brain). Changes in metabolic rate (i.e., starving vs. fed regenerates) also had no effect on regeneration timelines. In addition, our data suggest there may exist a role for optic nerve degeneration following eye ablation. Our results suggest that the temporal regulation of planarian eye regeneration is tightly controlled and resistant to variations in injury type.
Collapse
Affiliation(s)
- Michelle E Deochand
- Department of Biological Sciences Western Michigan University Kalamazoo MI, USA
| | - Taylor R Birkholz
- Department of Biological Sciences Western Michigan University Kalamazoo MI, USA
| | - Wendy S Beane
- Department of Biological Sciences Western Michigan University Kalamazoo MI, USA
| |
Collapse
|
32
|
Wang C, Han XS, Li FF, Huang S, Qin YW, Zhao XX, Jing Q. Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian. Cell Discov 2016; 2:16029. [PMID: 27551436 PMCID: PMC4969599 DOI: 10.1038/celldisc.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023] Open
Abstract
Pigmentation processes occur from invertebrates to mammals. Owing to the complexity of the pigmentary system, in vivo animal models for pigmentation study are limited. Planarians are capable of regenerating any missing part including the dark-brown pigments, providing a promising model for pigmentation study. However, the molecular mechanism of planarian body pigmentation is poorly understood. We found in an RNA interference screen that a forkhead containing transcription factor, Albino, was required for pigmentation without affecting survival or other regeneration processes. In addition, the body color recovered after termination of Albino double stranded RNA feeding owing to the robust stem cell system. Further expression analysis revealed a spatial and temporal correlation between Albino and pigmentation process. Gene expression arrays revealed that the expression of three tetrapyrrole biosynthesis enzymes, ALAD, ALAS and PBGD, was impaired upon Albino RNA interference. RNA interference of PBGD led to a similar albinism phenotype caused by Albino RNA interference. Moreover, PBGD was specifically expressed in pigment cells and can serve as a pigment cell molecular marker. Our results revealed that Albino controls planarian body color pigmentation dominantly via regulating tetrapyrrole biogenesis. These results identified Albino as the key regulator of the tetrapyrrole-based planarian body pigmentation, suggesting a role of Albino during stem cell-pigment cell fate decision and provided new insights into porphyria pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xiao-Shuai Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Fang-Fang Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital , Shanghai, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
33
|
Arnold CP, Merryman MS, Harris-Arnold A, McKinney SA, Seidel CW, Loethen S, Proctor KN, Guo L, Sánchez Alvarado A. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. eLife 2016; 5. [PMID: 27441386 PMCID: PMC4993586 DOI: 10.7554/elife.16793] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration. DOI:http://dx.doi.org/10.7554/eLife.16793.001 Regeneration, the ability to replace missing or damaged tissue, has fascinated biologists for years and has inspired a new direction for the medical field. Figuring out how some animals easily accomplish this while others do not may help us to develop new therapies that enhance regeneration in humans. Previous work has indicated that the immune system, which is normally used to defend the body against bacteria, plays an important but complicated role in regeneration. By studying the relationships between bacteria, the immune system and regeneration in simple systems, it may be possible to see how their interactions either support or prevent the replacement of lost tissues. Flatworms called planaria can regenerate all of their tissues. Arnold et al. have now investigated what bacteria exist in planaria, how the planarian immune system responds to these bacteria, and how this response affects regeneration. The results reveal that the two main types of bacteria that are present in planaria are also found in humans. In fact, conditions that encourage the growth and spread of one of these types of bacteria (called Proteobacteria, many of which can make humans ill) damaged the worms and prevented them from regenerating. Arnold et al. then looked to see if the worms had genes that were similar to human genes that control the key immune process of inflammation, and found evidence of several such genes. Reducing the activity levels of these genes enabled worms that had been infected with Proteobacteria to regenerate again. However, these genes only seem to be responsible for regeneration when the planaria are infected with bacteria. Thus, planaria could be used as a simple model to discover how changes in resident bacteria can be detected by the immune system and affect the ability to regenerate tissues. Future studies could use planaria to identify even more genes that control regeneration during infection. Also, since the main types of bacteria in planaria are similar to those in humans, planaria may help us to learn how animals can properly balance the levels of these bacteria in order to remain healthy. DOI:http://dx.doi.org/10.7554/eLife.16793.002
Collapse
Affiliation(s)
| | - M Shane Merryman
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Longhua Guo
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
34
|
Hill EM, Petersen CP. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development 2015; 142:4217-29. [PMID: 26525673 DOI: 10.1242/dev.123612] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
35
|
Tu KC, Cheng LC, T K Vu H, Lange JJ, McKinney SA, Seidel CW, Sánchez Alvarado A. Egr-5 is a post-mitotic regulator of planarian epidermal differentiation. eLife 2015; 4:e10501. [PMID: 26457503 PMCID: PMC4716842 DOI: 10.7554/elife.10501] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023] Open
Abstract
Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo.
Collapse
Affiliation(s)
- Kimberly C Tu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Li-Chun Cheng
- Stowers Institute for Medical Research, Kansas City, United States
| | - Hanh T K Vu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, United States.,Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
36
|
Adler CE, Sánchez Alvarado A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol 2015; 25:687-696. [PMID: 26437587 DOI: 10.1016/j.tcb.2015.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Many of our organs can maintain and repair themselves during homeostasis and injury, as a result of the action of tissue-specific, multipotent stem cells. However, recent evidence from mammalian systems suggests that injury stimulates dramatic plasticity, or transient changes in cell potential, in both stem cells and more differentiated cells. Planarian flatworms possess abundant stem cells, making them an exceptional model for understanding the cellular behavior underlying homeostasis and regeneration. Recent discoveries of cell lineages and regeneration-specific events provide an initial framework for unraveling the complex cellular contributions to regeneration. In this review, we discuss the concept of cellular plasticity in the context of planarian regeneration, and consider the possibility that pluripotency may be a transient, probabilistic state exhibited by stem cells.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Current address: Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
37
|
Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:392476. [PMID: 26180588 PMCID: PMC4477255 DOI: 10.1155/2015/392476] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.
Collapse
|
38
|
Identification and expression analysis of a Spsb gene in planarian Dugesia japonica. Gene 2015; 564:168-75. [DOI: 10.1016/j.gene.2015.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 11/22/2022]
|
39
|
Adler CE, Seidel CW, McKinney SA, Sánchez Alvarado A. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. eLife 2014; 3:e02238. [PMID: 24737865 PMCID: PMC3985184 DOI: 10.7554/elife.02238] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 01/08/2023] Open
Abstract
Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, United States
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
40
|
Lin AYT, Pearson BJ. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning. Development 2014; 141:1197-208. [PMID: 24523458 DOI: 10.1242/dev.101915] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.
Collapse
Affiliation(s)
- Alexander Y T Lin
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
41
|
Zeng A, Li YQ, Wang C, Han XS, Li G, Wang JY, Li DS, Qin YW, Shi Y, Brewer G, Jing Q. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. ACTA ACUST UNITED AC 2013; 201:409-25. [PMID: 23629965 PMCID: PMC3639387 DOI: 10.1083/jcb.201207172] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.
Collapse
Affiliation(s)
- An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:301-26. [PMID: 23799578 PMCID: PMC3694279 DOI: 10.1002/wdev.82] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being 'immortal under the edge of the knife', and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal's relatively recent entrance into the molecular-genetic age.
Collapse
Affiliation(s)
- Sarah A Elliott
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
43
|
Abstract
Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
44
|
Isolani ME, Abril JF, Saló E, Deri P, Bianucci AM, Batistoni R. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration. PLoS One 2013; 8:e55649. [PMID: 23405188 PMCID: PMC3566077 DOI: 10.1371/journal.pone.0055649] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Collapse
Affiliation(s)
- Maria Emilia Isolani
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Pisa, Italy
| | - Josep F. Abril
- Departament de Genètica, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Emili Saló
- Departament de Genètica, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paolo Deri
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | |
Collapse
|
45
|
The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians. Dev Biol 2012; 373:442-52. [PMID: 23123964 DOI: 10.1016/j.ydbio.2012.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/16/2012] [Accepted: 10/22/2012] [Indexed: 02/01/2023]
Abstract
Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival.
Collapse
|