1
|
Suzuki H, Li S, Tokutomi T, Takeuchi C, Takahashi M, Yamada M, Okuno H, Miya F, Takenouchi T, Numabe H, Kosaki K, Ohshima T. De novo non-synonymous DPYSL2 (CRMP2) variants in two patients with intellectual disabilities and documentation of functional relevance through zebrafish rescue and cellular transfection experiments. Hum Mol Genet 2022; 31:4173-4182. [PMID: 35861646 DOI: 10.1093/hmg/ddac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/21/2023] Open
Abstract
Collapsin response mediator protein 2 (Crmp2) is an evolutionarily well-conserved tubulin-binding cytosolic protein that plays critical roles in the formation of neural circuitry in model organisms including zebrafish and rodents. No clinical evidence that CRMP2 variants are responsible for monogenic neurogenic disorders in humans presently exists. Here, we describe two patients with de novo non-synonymous variants (S14R and R565C) of CRMP2 and intellectual disability associated with hypoplasia of the corpus callosum. We further performed various functional assays of CRMP2 variants using zebrafish and zebrafish Crmp2 (abbreviated as z-CRMP2 hereafter) and an antisense morpholino oligonucleotide [AMO]-based experimental system in which crmp2-morphant zebrafish exhibit the ectopic positioning of caudal primary (CaP) motor neurons. Whereas the co-injection of wild-type z-CRMP2 mRNA suppressed the ectopic positioning of CaP motor neurons in Crmp2-morphant zebrafish, the co-injection of R566C or S15R, z-CRMP2, which corresponds to R565C and S14R of human CRMP2, failed to rescue the ectopic positioning. Transfection experiments of zebrafish or rat Crmp2 using plasmid vectors in HeLa cells, with or without a proteasome inhibitor, demonstrated that the expression levels of mutant Crmp2 protein encoded by R565C and S14R CRMP2 variants were decreased, presumably because of increased degradation by proteasomes. When we compared CRMP2-tubulin interactions using co-immunoprecipitation and cellular localization studies, the R565C and S14R mutations weakened the interactions. These results collectively suggest that the CRMP2 variants detected in the present study consistently led to the loss-of-function of CRMP2 protein and support the notion that pathogenic variants in CRMP2 can cause intellectual disabilities in humans.
Collapse
Affiliation(s)
- Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Simo Li
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Tomoharu Tokutomi
- Department of Clinical Genetics, Iwate Medical University, Iwate, Japan
| | - Chisen Takeuchi
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Miyuki Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hironao Numabe
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| |
Collapse
|
2
|
Santos-Durán GN, Barreiro-Iglesias A. Roles of dual specificity tyrosine-phosphorylation-regulated kinase 2 in nervous system development and disease. Front Neurosci 2022; 16:994256. [PMID: 36161154 PMCID: PMC9492948 DOI: 10.3389/fnins.2022.994256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) are a group of conserved eukaryotic kinases phosphorylating tyrosine, serine, and threonine residues. The human DYRK family comprises 5 members (DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4). The different DYRKs have been implicated in neurological diseases, cancer, and virus infection. Specifically, DYRK2 has been mainly implicated in cancer progression. However, its role in healthy and pathological nervous system function has been overlooked. In this context, we review current available data on DYRK2 in the nervous system, where the available studies indicate that it has key roles in neuronal development and function. DYRK2 regulates neuronal morphogenesis (e.g., axon growth and branching) by phosphorylating cytoskeletal elements (e.g., doublecortin). Comparative data reveals that it is involved in the development of olfactory and visual systems, the spinal cord and possibly the cortex. DYRK2 also participates in processes such as olfaction, vision and, learning. However, DYRK2 could be involved in other brain functions since available expression data shows that it is expressed across the whole brain. High DYRK2 protein levels have been detected in basal ganglia and cerebellum. In adult nervous system, DYRK2 mRNA expression is highest in the cortex, hippocampus, and retina. Regarding nervous system disease, DYRK2 has been implicated in neuroblastoma, glioma, epilepsy, neuroinflammation, Alzheimer's disease, Parkinson's disease, spinal cord injury and virus infection. DYRK2 upregulation usually has a negative impact in cancer-related conditions and a positive impact in non-malignant conditions. Its role in axon growth makes DYRK2 as a promising target for spinal cord or brain injury and regeneration.
Collapse
Affiliation(s)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Guo Y, Oliveros CF, Ohshima T. CRMP2 and CRMP4 are required for the formation of commissural tracts in the developing zebrafish forebrain. Dev Neurobiol 2022; 82:533-544. [PMID: 35929227 DOI: 10.1002/dneu.22897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
Abstract
Axonal connections between the two sides of the brain are essential for processing sensorimotor functions, especially in animals with bilateral symmetry. The anterior commissure and post-optic commissure are two crucial axonal projections that develop early in the zebrafish central nervous system. In this study, we characterized the function of collapsin response mediator protein 2 (CRMP2) and CRMP4 in patterning the development of the anterior and post-optic commissures by analyzing morpholino-knockdown zebrafish morphants and CRISPR/Cas9-edited gene-knockout mutants. We observed a loss of commissural structures or a significant reduction in axon bundles connecting the two hemispheres, but the defects could be largely recovered by co-injecting CRMP2 or CRMP4 mRNA. Loss of both CRMP2 and CRMP4 function resulted in a synergistic increase in the number of commissural defects. To elucidate the mechanism by which CRMP2 and CRMP4 provide guidance cues for the development of the anterior and post-optic commissures, we included neuropilin 1a (Nrp1a) morphants and double morphants (CRMP2/Nrp1a and CRMP4/Nrp1a) for analysis. Our experimental results indicated that CRMP2 and CRMP4 might mediate their activities through the common semaphorin 3/Nrp1a signaling pathway. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Carolina Fiallos Oliveros
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
4
|
Zeng S, Li M, Cheng X, Lu S, Feng Z, Jiang Z, Sun Z, Xu X, Mao H, Hu C. Grass carp (Ctenopharyngodon idella) DYRK2 modulates cell apoptosis through phosphorylating p53. FISH & SHELLFISH IMMUNOLOGY 2022; 127:542-548. [PMID: 35781054 DOI: 10.1016/j.fsi.2022.06.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In mammals, DYRK2 increases p53 phosphorylation level by interacting with it and then promotes cell apoptosis. However, the function of fish DYRK2 has not yet been elucidated. In this paper, we cloned and identified the coding sequence (CDS) of a grass carp DYRK2 (CiDYRK2) which is 1773 bp in length and encodes 590 amino acids. SMART predictive analysis showed that CiDYRK2 possesses a serine/threonine kinase domain. Subsequently, we used the dsRNA analog polyinosinic-polycytidylic acid (poly (I:C) and Grass carp reovirus (GCRV) to stimulate grass carp and CIK cells for different times and found that CiDYRK2 mRNA was significantly up-regulated both in fish tissues and cells. To explore the function of CiDYRK2, we carried out overexpression and knockdown experiments of CiDYRK2 in CIK cells. Real-time quantitative PCR (Q-PCR), TdT-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry were used to detect the ratio of BAX/BCL-2 mRNA, the number of TUNEL positive cells, the proportion of Annexin V-positive cells respectively. The results showed that CiDYRK2 significantly up-regulated BAX/Bcl-2 mRNA ratio and increased the number of TUNEL-positive cells, as well as the proportion of Annexin V-positive cells. On the contrary, knock-down of CiDYRK2 significantly down-regulated BAX/Bcl-2 mRNA ratio in the cells. Therefore, CiDYRK2 promoted cell apoptosis. To study the molecular mechanism by which CiDYRK2 promoting cell apoptosis, subcellular localization and immunoprecipitation experiments were used to study the relationship between grass carp DYRK2 and the pro-apoptotic protein p53. The results showed that CiDYRK2 and Cip53 were located and co-localized in the nucleus. Co-immunoprecipitation experiment also showed that CiDYRK2 and Cip53 can bind with each other. We further found that DYRK2 can increase the phosphorylation level of p53. In a word, our results showed that grass carp DYRK2 induces cell apoptosis by increasing the phosphorylation level of p53.
Collapse
Affiliation(s)
- Shanshan Zeng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Meifeng Li
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Xining Cheng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Shina Lu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Zhiqing Feng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Zhichao Sun
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi, Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Mao S, Miao A, Cui Y, Lu J, Pan J, Wang Y, Hong Y, Luo Y. Proteomic Analysis of Retinal Conditioned Medium: The Effect on Early Differentiation of Embyonic Stem Cells into Retina. Stem Cells Dev 2022; 31:730-740. [PMID: 35652355 DOI: 10.1089/scd.2022.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell replacement therapy has emerged as one of the most promising treatment options for retinal degenerative diseases, which are the main causes of irreversible vision loss. Three-dimensional (3D) retinal organoid culture is a cutting-edge technology for differentiating embryonic stem cells into retinal cells by forming a laminated retinal structure. However, 3D culture systems have strict requirements with respect to the experimental environment and culture technologies. Our study aimed to investigate the effect of retinal conditioned medium (RCM) at different developmental stages on the early differentiation of embryonic stem cells into retina in a 3D culture system. Here, we added RCM to the 3D culture system and found it could promote the differentiation of mouse embryonic stem cells (mESCs) into neuroretina. We further explored the possible mechanisms of RCM that regulate differentiation through proteomic analysis. RCM at different time points disclosed different protein profiles. Proteins which improved energy metabolism of mESCs might help improve the viability of embryonic bodies (EBs). We then screened out Snap25, Cntn1, Negr1, Dpysl2, Dpysl3, and Crmp1 as candidate proteins that might play roles in the differentiation and neurogenesis processes of mESCs, hoping to provide a basis for optimizing a retinal differentiation protocol from embryonic stem cells.
Collapse
Affiliation(s)
- Shudi Mao
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Aiwen Miao
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Yamei Cui
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Jing Lu
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Jianying Pan
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Yishen Wang
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Yiwen Hong
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| | - Yan Luo
- Sun Yat-Sen University Zhongshan Ophthalmic Center, 194038, Guangzhou, Guangdong, China;
| |
Collapse
|
6
|
New insights into the roles for DYRK family in mammalian development and congenital diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Boulan B, Ravanello C, Peyrel A, Bosc C, Delphin C, Appaix F, Denarier E, Kraut A, Jacquier-Sarlin M, Fournier A, Andrieux A, Gory-Fauré S, Deloulme JC. CRMP4-mediated fornix development involves Semaphorin-3E signaling pathway. eLife 2021; 10:e70361. [PMID: 34860155 PMCID: PMC8683083 DOI: 10.7554/elife.70361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.
Collapse
Affiliation(s)
- Benoît Boulan
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Charlotte Ravanello
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Amandine Peyrel
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Florence Appaix
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, CEAGrenobleFrance
| | | | - Alyson Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill UniversityMontréalCanada
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | | |
Collapse
|
8
|
Carretero-Rodriguez L, Guðjónsdóttir R, Poparic I, Reilly ML, Chol M, Bianco IH, Chiapello M, Feret R, Deery MJ, Guthrie S. The Rac-GAP alpha2-Chimaerin Signals via CRMP2 and Stathmins in the Development of the Ocular Motor System. J Neurosci 2021; 41:6652-6672. [PMID: 34168008 PMCID: PMC8336708 DOI: 10.1523/jneurosci.0983-19.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow toward, and connect with, six extraocular muscles in a stereotyped pattern, to control eye movements. The signaling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that the manipulation of α2-chn signaling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signaling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins-collapsin response mediator protein 2 (CRMP2; encoded by the gene dpysl2), stathmin1, and stathmin 2-bind to α2-CHN. dpysl2, stathmin1, and especially stathmin2 are expressed by ocular motor neurons. We find that the manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases, these phenotypes were reminiscent of DRS. chn1 knock-down phenotypes were rescued by the overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signaling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance and to control eye movements.SIGNIFICANCE STATEMENT The precise control of eye movements is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unraveled how alpha2-chimaerin coordinates axon guidance of the ocular motor system in animal models. In this article, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signaling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the etiology of eye movement disorders in humans.
Collapse
Affiliation(s)
| | | | - Ivana Poparic
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | | | - Mary Chol
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Marco Chiapello
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Renata Feret
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Michael J Deery
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Sarah Guthrie
- School of Life Sciences, University of Sussex, Brighton BN7 9QG, United Kingdom
| |
Collapse
|
9
|
Ferreira APA, Casamento A, Carrillo Roas S, Halff EF, Panambalana J, Subramaniam S, Schützenhofer K, Chan Wah Hak L, McGourty K, Thalassinos K, Kittler JT, Martinvalet D, Boucrot E. Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nat Commun 2021; 12:2424. [PMID: 33893293 PMCID: PMC8065113 DOI: 10.1038/s41467-021-22603-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Fast Endophilin-mediated endocytosis, FEME, is not constitutively active but triggered upon receptor activation. High levels of growth factors induce spontaneous FEME, which can be suppressed upon serum starvation. This suggested a role for protein kinases in this growth factor receptor-mediated regulation. Using chemical and genetic inhibition, we find that Cdk5 and GSK3β are negative regulators of FEME. They antagonize the binding of Endophilin to Dynamin-1 and to CRMP4, a Plexin A1 adaptor. This control is required for proper axon elongation, branching and growth cone formation in hippocampal neurons. The kinases also block the recruitment of Dynein onto FEME carriers by Bin1. As GSK3β binds to Endophilin, it imposes a local regulation of FEME. Thus, Cdk5 and GSK3β are key regulators of FEME, licensing cells for rapid uptake by the pathway only when their activity is low.
Collapse
Affiliation(s)
- Antonio P A Ferreira
- Institute of Structural and Molecular Biology, University College London, London, UK
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sara Carrillo Roas
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Els F Halff
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Panambalana
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Shaan Subramaniam
- Institute of Structural and Molecular Biology, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Kira Schützenhofer
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laura Chan Wah Hak
- Institute of Structural and Molecular Biology, University College London, London, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Kieran McGourty
- Institute of Structural and Molecular Biology, University College London, London, UK
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Josef T Kittler
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | | | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
10
|
Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Morrugares R, Muñoz E, Calzado MA. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases. Cell Mol Life Sci 2020; 77:4747-4763. [PMID: 32462403 PMCID: PMC7658070 DOI: 10.1007/s00018-020-03556-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Members of the dual-specificity tyrosine-regulated kinase (DYRKs) subfamily possess a distinctive capacity to phosphorylate tyrosine, serine, and threonine residues. Among the DYRK class II members, DYRK2 is considered a unique protein due to its role in disease. According to the post-transcriptional and post-translational modifications, DYRK2 expression greatly differs among human tissues. Regarding its mechanism of action, this kinase performs direct phosphorylation on its substrates or acts as a priming kinase, enabling subsequent substrate phosphorylation by GSK3β. Moreover, DYRK2 acts as a scaffold for the EDVP E3 ligase complex during the G2/M phase of cell cycle. DYRK2 functions such as cell survival, cell development, cell differentiation, proteasome regulation, and microtubules were studied in complete detail in this review. We have also gathered available information from different bioinformatic resources to show DYRK2 interactome, normal and tumoral tissue expression, and recurrent cancer mutations. Then, here we present an innovative approach to clarify DYRK2 functionality and importance. DYRK2 roles in diseases have been studied in detail, highlighting this kinase as a key protein in cancer development. First, DYRK2 regulation of c-Jun, c-Myc, Rpt3, TERT, and katanin p60 reveals the implication of this kinase in cell-cycle-mediated cancer development. Additionally, depletion of this kinase correlated with reduced apoptosis, with consequences on cancer patient response to chemotherapy. Other functions like cancer stem cell formation and epithelial-mesenchymal transition regulation are also controlled by DYRK2. Furthermore, the pharmacological modulation of this protein by different inhibitors (harmine, curcumine, LDN192960, and ID-8) has enabled to clarify DYRK2 functionality.
Collapse
Affiliation(s)
- Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
11
|
Park CS, Lacorazza HD. DYRK2 controls a key regulatory network in chronic myeloid leukemia stem cells. Exp Mol Med 2020; 52:1663-1672. [PMID: 33067577 PMCID: PMC8080801 DOI: 10.1038/s12276-020-00515-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/02/2023] Open
Abstract
Chronic myeloid leukemia is a hematological cancer driven by the oncoprotein BCR-ABL1, and lifelong treatment with tyrosine kinase inhibitors extends patient survival to nearly the life expectancy of the general population. Despite advances in the development of more potent tyrosine kinase inhibitors to induce a durable deep molecular response, more than half of patients relapse upon treatment discontinuation. This clinical finding supports the paradigm that leukemia stem cells feed the neoplasm, resist tyrosine kinase inhibition, and reactivate upon drug withdrawal depending on the fitness of the patient's immune surveillance. This concept lends support to the idea that treatment-free remission is not achieved solely with tyrosine kinase inhibitors and that new molecular targets independent of BCR-ABL1 signaling are needed in order to develop adjuvant therapy to more efficiently eradicate the leukemia stem cell population responsible for chemoresistance and relapse. Future efforts must focus on the identification of new targets to support the discovery of potent and safe small molecules able to specifically eradicate the leukemic stem cell population. In this review, we briefly discuss molecular maintenance in leukemia stem cells in chronic myeloid leukemia and provide a more in-depth discussion of the dual-specificity kinase DYRK2, which has been identified as a novel actionable checkpoint in a critical leukemic network. DYRK2 controls the activation of p53 and proteasomal degradation of c-MYC, leading to impaired survival and self-renewal of leukemia stem cells; thus, pharmacological activation of DYRK2 as an adjuvant to standard therapy has the potential to induce treatment-free remission.
Collapse
MESH Headings
- Animals
- Carrier Proteins/metabolism
- Cell Self Renewal/genetics
- Disease Susceptibility
- Energy Metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction
- Dyrk Kinases
Collapse
Affiliation(s)
- Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
12
|
Woo Y, Kim SJ, Suh BK, Kwak Y, Jung HJ, Nhung TTM, Mun DJ, Hong JH, Noh SJ, Kim S, Lee A, Baek ST, Nguyen MD, Choe Y, Park SK. Sequential phosphorylation of NDEL1 by the DYRK2-GSK3β complex is critical for neuronal morphogenesis. eLife 2019; 8:e50850. [PMID: 31815665 PMCID: PMC6927744 DOI: 10.7554/elife.50850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
Abstract
Neuronal morphogenesis requires multiple regulatory pathways to appropriately determine axonal and dendritic structures, thereby to enable the functional neural connectivity. Yet, however, the precise mechanisms and components that regulate neuronal morphogenesis are still largely unknown. Here, we newly identified the sequential phosphorylation of NDEL1 critical for neuronal morphogenesis through the human kinome screening and phospho-proteomics analysis of NDEL1 from mouse brain lysate. DYRK2 phosphorylates NDEL1 S336 to prime the phosphorylation of NDEL1 S332 by GSK3β. TARA, an interaction partner of NDEL1, scaffolds DYRK2 and GSK3β to form a tripartite complex and enhances NDEL1 S336/S332 phosphorylation. This dual phosphorylation increases the filamentous actin dynamics. Ultimately, the phosphorylation enhances both axonal and dendritic outgrowth and promotes their arborization. Together, our findings suggest the NDEL1 phosphorylation at S336/S332 by the TARA-DYRK2-GSK3β complex as a novel regulatory mechanism underlying neuronal morphogenesis.
Collapse
Affiliation(s)
- Youngsik Woo
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Soo Jeong Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Bo Kyoung Suh
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Yongdo Kwak
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Hyun-Jin Jung
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Truong Thi My Nhung
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Dong Jin Mun
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ji-Ho Hong
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Su-Jin Noh
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Seunghyun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ahryoung Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Seung Tae Baek
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Cell Biology and Anatomy, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | | | - Sang Ki Park
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
13
|
Yoshida S, Yoshida K. Multiple functions of DYRK2 in cancer and tissue development. FEBS Lett 2019; 593:2953-2965. [PMID: 31505048 DOI: 10.1002/1873-3468.13601] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) are evolutionarily conserved from yeast to mammals. Accumulating studies have revealed that DYRKs have important roles in regulation of the cell cycle and survival. DYRK2, a member of the class II DYRK family protein, is a key regulator of p53, and phosphorylates it at Ser46 to induce apoptosis in response to DNA damage. Moreover, recent studies have uncovered that DYRK2 regulates G1/S transition, epithelial-mesenchymal-transition, and stemness in human cancer cells. DYRK2 also appears to have roles in tissue development in lower eukaryotes. Thus, the elucidation of mechanisms for DYRK2 during mammalian tissue development will promote the understanding of cell differentiation, tissue homeostasis, and congenital diseases as well as cancer. In this review, we discuss the roles of DYRK2 in tumor cells. Moreover, we focus on DYRK2-dependent developmental mechanisms in several species including fly (Drosophila), worm (Caenorhabditis elegans), zebrafish (Danio rerio), and mammals.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Ohtani-Kaneko R. Crmp4-KO Mice as an Animal Model for Investigating Certain Phenotypes of Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E2485. [PMID: 31137494 PMCID: PMC6566569 DOI: 10.3390/ijms20102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has demonstrated that the collapsin response mediator protein (CRMP) family is involved in the formation of neural networks. A recent whole-exome sequencing study identified a de novo variant (S541Y) of collapsin response mediator protein 4 (CRMP4) in a male patient with autism spectrum disorder (ASD). In addition, Crmp4-knockout (KO) mice show some phenotypes similar to those observed in human patients with ASD. For example, compared with wild-type mice, Crmp4-KO mice exhibit impaired social interaction, abnormal sensory sensitivities, broader distribution of activated (c-Fos expressing) neurons, altered dendritic formation, and aberrant patterns of neural gene expressions, most of which have sex differences. This review summarizes current knowledge regarding the role of CRMP4 during brain development and discusses the possible contribution of CRMP4 deficiencies or abnormalities to the pathogenesis of ASD. Crmp4-KO mice represent an appropriate animal model for investigating the mechanisms underlying some ASD phenotypes, such as impaired social behavior, abnormal sensory sensitivities, and sex-based differences, and other neurodevelopmental disorders associated with sensory processing disorders.
Collapse
Affiliation(s)
- Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura 374-0193, Japan.
| |
Collapse
|
16
|
CRMP2 and CRMP4 Are Differentially Required for Axon Guidance and Growth in Zebrafish Retinal Neurons. Neural Plast 2018; 2018:8791304. [PMID: 30034463 PMCID: PMC6032661 DOI: 10.1155/2018/8791304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are directed to their correct targets by guidance cues during neurodevelopment. Many axon guidance cues have been discovered; however, much less known is about how the growth cones transduce the extracellular guidance cues to intracellular responses. Collapsin response mediator proteins (CRMPs) are a family of intracellular proteins that have been found to mediate growth cone behavior in vitro; however, their roles in vivo in axon development are much less explored. In zebrafish embryos, we find that CRMP2 and CRMP4 are expressed in the retinal ganglion cell layer when retinal axons are crossing the midline. Knocking down CRMP2 causes reduced elongation and premature termination of the retinal axons, while knocking down CRMP4 results in ipsilateral misprojections of retinal axons that would normally project to the contralateral brain. Furthermore, CRMP4 synchronizes with neuropilin 1 in retinal axon guidance, suggesting that CRMP4 might mediate the semaphorin/neuropilin signaling pathway. These results demonstrate that CRMP2 and CRMP4 function differentially in axon development in vivo.
Collapse
|
17
|
Gan S, Qiu S, Feng Y, Zhang Y, Qian Q, Wan Z, Tang J. Identification of genes associated with the effect of inflammation on the neurotransmission of vascular smooth muscle cell. Exp Ther Med 2017; 13:1303-1312. [PMID: 28413470 PMCID: PMC5377265 DOI: 10.3892/etm.2017.4138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/09/2016] [Indexed: 01/23/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) accumulation and hypertrophy are common in vascular disorders, and inflammation has a crucial role in the development of these diseases. To investigate the effect of inflammation on the neurotransmission of VSMC, bioinformatic analysis was performed, following next generation sequencing. Genes of lipopolysaccharide (LPS)-treated A7r5 cells and phosphate-buffered saline (PBS)-treated A7r5 cells were sequenced via next generation sequencing, and each assay was repeated three times. Differentially expressed genes (DEGs) were obtained using the NOISeq package in R. Subsequently, their potential functions were predicted by functional and pathway enrichment analyses using the Database for Annotation, Visualization and Integrated Discovery online tool. Interaction relationships of the proteins enriched in pathways associated with neurological diseases, the proteins which had interaction relationships with adrenoceptor α 1D (ADRA1D) or calcium voltage-gated channel subunit α1 S (CACNA1S), separately, were obtained from STRING, and protein-protein interaction (PPI) networks were constructed using Cytoscape software. A total of 2,038 DEGs, including 1,094 upregulated and 944 downregulated genes in the LPS treatment group were identified when compared with the control group. Enrichment analyses showed that NADH:Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2) was involved in several neurological diseases, including oxidative phosphorylation, Alzheimer's disease, Parkinson's disease and Huntington's disease. Furthermore, NDUFV2 (degree, 20) had a higher degree in the PPI network for DEGs enriched in pathways associated with neurological diseases. In the PPI network for ADRA1D, CACNA1S and the DEGs interacting with them, prohibitin (PHB), oxytocin receptor (OXTR), collapsin response mediator protein 1 (CRMP1) and dihydropyrimidinase like 2 (DPYSL2) had interaction relationships with both ADRA1D and CACNA1S. To conclude, the present study revealed that NDUFV2, PHB, OXTR, CRMP1 and DPYSL2 may have key roles in the effect of inflammation on neurotransmission of VSMC.
Collapse
Affiliation(s)
- Shujie Gan
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Shenlong Qiu
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yiwen Feng
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yanping Zhang
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Qin Qian
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhong Wan
- Department of Vascular Surgery, The First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai 201399, P.R. China
| |
Collapse
|
18
|
Nagai J, Takaya R, Piao W, Goshima Y, Ohshima T. Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury. Mol Cell Neurosci 2016; 74:42-8. [PMID: 26995506 DOI: 10.1016/j.mcn.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/15/2016] [Indexed: 01/01/2023] Open
Abstract
The capacity for regeneration in the injured adult mammalian central nervous system (CNS) is largely limited by potent inhibitory barriers. Chondroitin sulfate proteoglycans (CSPGs) are major inhibitors of axonal regeneration/sprouting and accumulate at lesion sites after CNS trauma. Despite extensive research during the two decades since their discovery, the molecular mechanisms remain elusive, including intracellular phosphorylation events. Collapsin response mediator protein 4 (CRMP4) is known to directly regulate cytoskeletal dynamics and neurite extension, while phosphorylated CRMP4 loses its binding affinity for cytoskeletal proteins. We have previously found that spinal cord injury (SCI) induces CRMP4 upregulation and phosphorylation and that CRMP4 knockout (Crmp4-/-) mice show behavioral recovery of locomotor function after SCI. However, the role of CRMP4 in the recovery of other forms of physiological function such as sensation remains largely unknown. We here have demonstrated CRMP4 involvement in CSPG-induced inhibitory signaling and nociceptive recovery in Crmp4-/- mice after SCI. We cultured dorsal root ganglion (DRG) neurons on CSPG-coated dishes; Crmp4 deletion overrode CSPG-induced inhibition of axon growth in vitro. CRMP4 levels were increased in DRGs in vivo after SCI. Crmp4-/- mice exhibited axonal growth of sensory neurons and recovery of nociceptive function after spinal transection. These results support Crmp4 deletion as a therapeutic target in the treatment of SCI.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, Tokyo 162-8480, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Ryosuke Takaya
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, Tokyo 162-8480, Japan
| | - Wenhui Piao
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, Tokyo 162-8480, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, Tokyo 162-8480, Japan.
| |
Collapse
|
19
|
Nagai J, Baba R, Ohshima T. CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury. Mol Neurobiol 2016; 54:4243-4256. [PMID: 27339876 DOI: 10.1007/s12035-016-0005-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Neurodegeneration in the adult mammalian central nervous system (CNS) is fundamentally accelerated by its intrinsic neuronal mechanisms, including its poor regenerative capacity and potent extrinsic inhibitory factors. Thus, the treatment of neurodegenerative diseases faces many obstacles. The degenerative processes, consisting of axonal/dendritic structural disruption, abnormal axonal transport, release of extracellular factors, and inflammation, are often controlled by the cytoskeleton. From this perspective, regulators of the cytoskeleton could potentially be a therapeutic target for neurodegenerative diseases and CNS injury. Collapsin response mediator proteins (CRMPs) are known to regulate the assembly of cytoskeletal proteins in neurons, as well as control axonal growth and neural circuit formation. Recent studies have provided some novel insights into the roles of CRMPs in several inhibitory signaling pathways of neurodegeneration, in addition to its functions in neurological disorders and CNS repair. Here, we summarize the roles of CRMPs in axon regeneration and its emerging functions in non-neuronal cells, especially in inflammatory responses. We also discuss the direct and indirect targeting of CRMPs as a novel therapeutic strategy for neurological diseases.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Rina Baba
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
20
|
Draney C, Hobson AE, Grover SG, Jack BO, Tessem JS. Cdk5r1 Overexpression Induces Primary β-Cell Proliferation. J Diabetes Res 2016; 2016:6375804. [PMID: 26788519 PMCID: PMC4691621 DOI: 10.1155/2016/6375804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
Decreased β-cell mass is a hallmark of type 1 and type 2 diabetes. Islet transplantation as a method of diabetes therapy is hampered by the paucity of transplant ready islets. Understanding the pathways controlling islet proliferation may be used to increase functional β-cell mass through transplantation or by enhanced growth of endogenous β-cells. We have shown that the transcription factor Nkx6.1 induces β-cell proliferation by upregulating the orphan nuclear hormone receptors Nr4a1 and Nr4a3. Using expression analysis to define Nkx6.1-independent mechanisms by which Nr4a1 and Nr4a3 induce β-cell proliferation, we demonstrated that cyclin-dependent kinase 5 regulatory subunit 1 (Cdk5r1) is upregulated by Nr4a1 and Nr4a3 but not by Nkx6.1. Overexpression of Cdk5r1 is sufficient to induce primary rat β-cell proliferation while maintaining glucose stimulated insulin secretion. Overexpression of Cdk5r1 in β-cells confers protection against apoptosis induced by etoposide and thapsigargin, but not camptothecin. The Cdk5 kinase complex inhibitor roscovitine blocks islet proliferation, suggesting that Cdk5r1 mediated β-cell proliferation is a kinase dependent event. Overexpression of Cdk5r1 results in pRb phosphorylation, which is inhibited by roscovitine treatment. These data demonstrate that activation of the Cdk5 kinase complex is sufficient to induce β-cell proliferation while maintaining glucose stimulated insulin secretion.
Collapse
Affiliation(s)
- Carrie Draney
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Amanda E. Hobson
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Samuel G. Grover
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin O. Jack
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S. Tessem
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
- *Jeffery S. Tessem:
| |
Collapse
|
21
|
Protein expression profiles characterize distinct features of mouse cerebral cortices at different developmental stages. PLoS One 2015; 10:e0125608. [PMID: 25915664 PMCID: PMC4411115 DOI: 10.1371/journal.pone.0125608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
The proper development of the mammalian cerebral cortex requires precise protein synthesis and accurate regulation of protein expression levels. To reveal signatures of protein expression in developing mouse cortices, we here generate proteomic profiles of cortices at embryonic and postnatal stages using tandem mass spectrometry (MS/MS). We found that protein expression profiles are mostly consistent with biological features of the developing cortex. Gene Ontology (GO) and KEGG pathway analyses demonstrate conserved molecules that maintain cortical development such as proteins involved in metabolism. GO and KEGG pathway analyses further identify differentially expressed proteins that function at specific stages, for example proteins regulating the cell cycle in the embryonic cortex, and proteins controlling axon guidance in the postnatal cortex, suggesting that distinct protein expression profiles determine biological events in the developing cortex. Furthermore, the STRING network analysis has revealed that many proteins control a single biological event, such as the cell cycle regulation, through cohesive interactions, indicating a complex network regulation in the cortex. Our study has identified protein networks that control the cortical development and has provided a protein reference for further investigation of protein interactions in the cortex.
Collapse
|
22
|
Khazaei MR, Girouard MP, Alchini R, Ong Tone S, Shimada T, Bechstedt S, Cowan M, Guillet D, Wiseman PW, Brouhard G, Cloutier JF, Fournier AE. Collapsin response mediator protein 4 regulates growth cone dynamics through the actin and microtubule cytoskeleton. J Biol Chem 2014; 289:30133-43. [PMID: 25225289 PMCID: PMC4208019 DOI: 10.1074/jbc.m114.570440] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4-/- mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4-/- mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.
Collapse
Affiliation(s)
- Mohamad R Khazaei
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, 3801 Rue University, Montréal, Québec H3A 2B4, Canada
| | - Marie-Pier Girouard
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, 3801 Rue University, Montréal, Québec H3A 2B4, Canada
| | - Ricardo Alchini
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, 3801 Rue University, Montréal, Québec H3A 2B4, Canada
| | - Stephan Ong Tone
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, 3801 Rue University, Montréal, Québec H3A 2B4, Canada
| | - Tadayuki Shimada
- Neural Plasticity Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | - Mitra Cowan
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal H2X 0A9, Canada
| | | | - Paul W Wiseman
- Department of Physics, McGill University, Montréal H3A 2T8, Canada, Department of Chemistry, McGill University, Montréal H3A 2K6, Canada, and
| | - Gary Brouhard
- Department of Biology, McGill University, Montréal H3G 0B1, Canada
| | - Jean Francois Cloutier
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, 3801 Rue University, Montréal, Québec H3A 2B4, Canada
| | - Alyson E Fournier
- From the Department of Neurology and Neurosurgery, Montréal Neurological Institute, 3801 Rue University, Montréal, Québec H3A 2B4, Canada,
| |
Collapse
|
23
|
Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura KI, Ogino H, Ueno N, Kawakami K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol 2014; 12:40. [PMID: 24885223 PMCID: PMC4084797 DOI: 10.1186/1741-7007-12-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
24
|
Contreras-Vallejos E, Utreras E, Bórquez DA, Prochazkova M, Terse A, Jaffe H, Toledo A, Arruti C, Pant HC, Kulkarni AB, González-Billault C. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 2014; 9:e90363. [PMID: 24658276 PMCID: PMC3962345 DOI: 10.1371/journal.pone.0090363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5−/− embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5−/− brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Elías Utreras
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Daniel A. Bórquez
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Howard Jaffe
- Protein and Peptide Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Andrea Toledo
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cristina Arruti
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
- * E-mail: (CGB); (ABK)
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CGB); (ABK)
| |
Collapse
|
25
|
Blanco-Sánchez B, Clément A, Fierro J, Washbourne P, Westerfield M. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis. Dis Model Mech 2014; 7:547-59. [PMID: 24626987 PMCID: PMC4007406 DOI: 10.1242/dmm.014068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome (USH), the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER). Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.
Collapse
|
26
|
Tan F, Wahdan-Alaswad R, Yan S, Thiele CJ, Li Z. Dihydropyrimidinase-like protein 3 expression is negatively regulated by MYCN and associated with clinical outcome in neuroblastoma. Cancer Sci 2013; 104:1586-92. [PMID: 24011394 DOI: 10.1111/cas.12278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 02/01/2023] Open
Abstract
Dihydropyrimidinase-like proteins (DPYSLs) are a family of proteins developmentally regulated during maturation of the nervous system. Recently, members of the DPYSL family have been reported to be involved in cancer with low expression of DPYSL1 correlating with poor clinical outcomes in non-small cell lung cancer and functioning as a metastasis suppressor. Neuroblastoma (NB) is a tumor derived from precursor cells of the sympathetic nervous system and is the most common solid tumor in childhood. So far the biological functions of DPYSLs in NB remain elusive. Studying the potential roles of DPYSLs in NB may give us new insights into NB tumorigenesis. In the present study, using antibodies specific to different members of the DPYSL family, DPYSL1, DPYSL2 and DPYSL3, we investigated regulation of their expression and their subcellular distribution during retinoic acid (RA)-induced differentiation in NB cells. The correlation between DPYSLs and MYCN, a biomarker for poor prognosis of NB, was evaluated. We found that DPYSL3 levels increased during RA-induced cell differentiation. Downregulation of MYCN by small interfering RNA (siRNA) increased DPYSL3 levels, while upregulation of MYCN in non-MYCN NB cells decreased DPYSL3 levels. DPYSL1 and DPYSL2 expression didn't change during RA treatment or under different expression levels of MYCN. Moreover, a high level of DPYSL3 mRNA, but not that of DPYSL1 or DPYSL2 mRNA, was detected in tumors from advanced-stage NB that have a better survival. These data indicated that DPYSL3, not DPYSL1 or DPYSL2, is negatively regulated by MYCN and may be used as a potential biomarker for NB.
Collapse
Affiliation(s)
- Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China; Cell & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
27
|
Stenberg J, Rüetschi U, Skiöldebrand E, Kärrholm J, Lindahl A. Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients. Proteome Sci 2013; 11:43. [PMID: 24090399 PMCID: PMC3851248 DOI: 10.1186/1477-5956-11-43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/26/2013] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is a destructive joint disease and there are no known biomarkers available for an early diagnosis. To identify potential disease biomarkers and gain further insight into the disease mechanisms of OA we applied quantitative proteomics with SILAC technology on the secretomes from chondrocytes of OA knees, designated as high Mankin (HM) scored secretome. A quantitative comparison was made between the secretomes of the medial and lateral femur condyle chondrocytes in the same knee since the medial femur condyle is usually more affected in OA than the lateral condyle, which was confirmed by Mankin scoring. The medial/lateral comparison was also made on the secretomes from chondrocytes taken from one individual with no clinically apparent joint-disease, designated as low Mankin (LM) scored secretome. Results We identified 825 proteins in the HM secretome and 69 of these showed differential expression when comparing the medial and lateral femoral compartment. The LM scored femoral condyle showed early signs of OA in the medial compartment as assessed by Mankin score. We here report the identification and relative quantification of several proteins of interest for the OA disease mechanism e.g. CYTL1, DMD and STAB1 together with putative early disease markers e.g. TIMP1, PPP2CA and B2M. Conclusions The present study reveals differences in protein abundance between medial/lateral femur condyles in OA patients. These regulatory differences expand the knowledge regarding OA disease markers and mechanisms.
Collapse
Affiliation(s)
- Johan Stenberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Box 7028, SLUS-75007 Uppsala, Sweden
| | - Johan Kärrholm
- Institute of Clinical Sciences, Department of Orthopaedic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry at Sahlgrenska University Hospital, Bruna Stråket 16, SE-41345 Gothenburg, Sweden
| |
Collapse
|
28
|
Morimura R, Nozawa K, Tanaka H, Ohshima T. Phosphorylation of Dpsyl2 (CRMP2) and Dpsyl3 (CRMP4) is required for positioning of caudal primary motor neurons in the zebrafish spinal cord. Dev Neurobiol 2013; 73:911-20. [DOI: 10.1002/dneu.22117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/23/2013] [Accepted: 07/28/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rii Morimura
- Department of Life Science and Medical Bioscience; Waseda University; 2-2 Wakamatsu-cho, Shinjuku-ku Tokyo 162-8480 Japan
| | - Keisuke Nozawa
- Department of Life Science and Medical Bioscience; Waseda University; 2-2 Wakamatsu-cho, Shinjuku-ku Tokyo 162-8480 Japan
| | - Hideomi Tanaka
- Department of Life Science and Medical Bioscience; Waseda University; 2-2 Wakamatsu-cho, Shinjuku-ku Tokyo 162-8480 Japan
- Laboratory for Developmental Gene Regulation; RIKEN Brain Science Institute (BSI); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience; Waseda University; 2-2 Wakamatsu-cho, Shinjuku-ku Tokyo 162-8480 Japan
| |
Collapse
|
29
|
Yeh CW, Kao SH, Cheng YC, Hsu LS. Knockdown of cyclin-dependent kinase 10 (cdk10) gene impairs neural progenitor survival via modulation of raf1a gene expression. J Biol Chem 2013; 288:27927-39. [PMID: 23902762 DOI: 10.1074/jbc.m112.420265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we used zebrafish as an animal model to elucidate the developmental function of cdk10 in vertebrates. In situ hybridization analyses demonstrated that cdk10 is expressed throughout development with a relative enrichment in the brain in the late stages. Similar to its mammalian ortholog, cdk10 can interact with the transcription factor ETS2 and exhibit kinase activity by phosphorylating histone H1. Morpholino-based loss of cdk10 expression caused apoptosis in sox2-positive cells and decreased the expression of subsequent neuronal markers. Acetylated tubulin staining revealed a significant reduction in the number of Rohon-Beard sensory neurons in cdk10 morphants. This result is similar to that demonstrated by decreased islet2 expression in the dorsal regions. Moreover, cdk10 morphants exhibited a marked loss of huC-positive neurons in the telencephalon and throughout the spinal cord axis. The population of retinal ganglion cells was also diminished in cdk10 morphants. These phenotypes were rescued by co-injection of cdk10 mRNA. Interestingly, the knockdown of cdk10 significantly elevated raf1a mRNA expression. Meanwhile, an MEK inhibitor (U0126) recovered sox2 and ngn1 transcript levels in cdk10 morphants. Our findings provide the first functional characterization of cdk10 in vertebrate development and reveal its critical function in neurogenesis by modulation of raf1a expression.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- From the Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | | | | | | |
Collapse
|
30
|
Hubbard C, Benda E, Hardin T, Baxter T, St. John E, O'Brien S, Hensley K, Holgado AM. Lanthionine ketimine ethyl ester partially rescues neurodevelopmental defects inunc-33(DPYSL2/CRMP2) mutants. J Neurosci Res 2013; 91:1183-90. [DOI: 10.1002/jnr.23239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Caleb Hubbard
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Erica Benda
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Tyler Hardin
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Taylor Baxter
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Elizabeth St. John
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Sean O'Brien
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Kenneth Hensley
- Department of Pathology and Department of Neuroscience; University of Toledo Medical Center; Toledo; Ohio
| | - Andrea M. Holgado
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| |
Collapse
|
31
|
Easley-Neal C, Fierro J, Buchanan J, Washbourne P. Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep 2013; 3:1199-212. [PMID: 23602570 DOI: 10.1016/j.celrep.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022] Open
Abstract
Synapse formation is a complex process that involves the recruitment and assembly of a myriad of pre- and postsynaptic proteins. Despite being present at every synapse in the vertebrate CNS, little is known about the transport, recruitment, and stabilization of synapsin at nascent synapses during development. We examined the transport and recruitment of synapsin to nascent presynaptic terminals in vivo in the developing zebrafish spinal cord. Synapsin was transported in a transport packet independently of two other presynaptic organelles: synaptic vesicle (SV) protein transport vesicles (STVs) and Piccolo-containing active zone precursor transport vesicles (PTVs). During presynaptic assembly, recruitment of all three transport packets occurred in an ordered sequence: STVs preceded PTVs, which in turn preceded synapsin. Importantly, cyclin-dependent kinase 5 (Cdk5) specifically regulated the late recruitment of synapsin transport packets at synapses. These results point to additional layers of complexity in the established mechanisms of synaptogenesis.
Collapse
|