1
|
Lee EH, Zinshteyn D, Miglo F, Wang MQ, Reinach J, Chau CM, Grosstephan JM, Correa I, Costa K, Vargas A, Johnson A, Longo SM, Alexander JI, O'Reilly AM. Sequential events during the quiescence to proliferation transition establish patterns of follicle cell differentiation in the Drosophila ovary. Biol Open 2023; 12:bio059625. [PMID: 36524613 PMCID: PMC9867896 DOI: 10.1242/bio.059625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells cycle between periods of quiescence and proliferation to promote tissue health. In Drosophila ovaries, quiescence to proliferation transitions of follicle stem cells (FSCs) are exquisitely feeding-dependent. Here, we demonstrate feeding-dependent induction of follicle cell differentiation markers, eyes absent (Eya) and castor (Cas) in FSCs, a patterning process that does not depend on proliferation induction. Instead, FSCs extend micron-scale cytoplasmic projections that dictate Eya-Cas patterning. We identify still life and sickie as necessary and sufficient for FSC projection growth and Eya-Cas induction. Our results suggest that sequential, interdependent events establish long-term differentiation patterns in follicle cell precursors, independently of FSC proliferation induction.
Collapse
Affiliation(s)
- Eric H. Lee
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Daniel Zinshteyn
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Fred Miglo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Melissa Q. Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jessica Reinach
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Cindy M. Chau
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Iliana Correa
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kelly Costa
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alberto Vargas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Aminah Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sheila M. Longo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, Philadelphia, PA 19129, USA
| | - Jennifer I. Alexander
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alana M. O'Reilly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, Philadelphia, PA 19129, USA
| |
Collapse
|
2
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
3
|
Congenital lung malformations: Dysregulated lung developmental processes and altered signaling pathways. Semin Pediatr Surg 2022; 31:151228. [PMID: 36442455 DOI: 10.1016/j.sempedsurg.2022.151228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Congenital lung malformations comprise a diverse group of anomalies including congenital pulmonary airway malformation (CPAM, previously known as congenital cystic adenomatoid malformation or CCAM), bronchopulmonary sequestration (BPS), congenital lobar emphysema (CLE), bronchogenic cysts, and hybrid lesions. Little is known about the signaling pathways that underlie the pathophysiology of these lesions and the processes that may promote their malignant transformation. In the last decade, the use of transgenic/knockout animal models and the implementation of next generation sequencing on surgical lung specimens have increased our knowledge on the pathophysiology of these lesions. Herein, we provide an overview of normal lung development in humans and rodents, and we discuss the current state of knowledge on the pathophysiology and molecular pathways that are altered in each congenital lung malformation.
Collapse
|
4
|
Developmental Pathways Underlying Lung Development and Congenital Lung Disorders. Cells 2021; 10:cells10112987. [PMID: 34831210 PMCID: PMC8616556 DOI: 10.3390/cells10112987] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Lung organogenesis is a highly coordinated process governed by a network of conserved signaling pathways that ultimately control patterning, growth, and differentiation. This rigorously regulated developmental process culminates with the formation of a fully functional organ. Conversely, failure to correctly regulate this intricate series of events results in severe abnormalities that may compromise postnatal survival or affect/disrupt lung function through early life and adulthood. Conditions like congenital pulmonary airway malformation, bronchopulmonary sequestration, bronchogenic cysts, and congenital diaphragmatic hernia display unique forms of lung abnormalities. The etiology of these disorders is not yet completely understood; however, specific developmental pathways have already been reported as deregulated. In this sense, this review focuses on the molecular mechanisms that contribute to normal/abnormal lung growth and development and their impact on postnatal survival.
Collapse
|
5
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
6
|
Mereness JA, Mariani TJ. The critical role of collagen VI in lung development and chronic lung disease. Matrix Biol Plus 2021; 10:100058. [PMID: 34195595 PMCID: PMC8233475 DOI: 10.1016/j.mbplus.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
Type VI collagen (collagen VI) is an obligate extracellular matrix component found mainly in the basement membrane region of many mammalian tissues and organs, including skeletal muscle and throughout the respiratory system. Collagen VI is probably most recognized in medicine as the genetic cause of a spectrum of muscular dystrophies, including Ullrich Congenital Myopathy and Bethlem Myopathy. Collagen VI is thought to contribute to myopathy, at least in part, by mediating muscle fiber integrity by anchoring myoblasts to the muscle basement membrane. Interestingly, collagen VI myopathies present with restrictive respiratory insufficiency, thought to be due primarily to thoracic muscular weakening. Although it was recently recognized as one of the (if not the) most abundant collagens in the mammalian lung, there is a substantive knowledge gap concerning its role in respiratory system development and function. A few studies have suggested that collagen VI insufficiency is associated with airway epithelial cell survival and altered lung function. Our recent work suggested collagen VI may be a genomic risk factor for chronic lung disease in premature infants. Using this as motivation, we thoroughly assessed the role of collagen VI in lung development and in lung epithelial cell biology. Here, we describe the state-of-the-art for collagen VI cell and developmental biology within the respiratory system, and reveal its essential roles in normal developmental processes and airway epithelial cell phenotype and intracellular signaling.
Collapse
Affiliation(s)
- Jared A. Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Thomas J. Mariani
- Corresponding author. Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY 14642, USA.
| |
Collapse
|
7
|
Zhou Y, Ji H, Xu Q, Zhang X, Cao X, Chen Y, Shao M, Wu Z, Zhang J, Lu C, Yang J, Shi Y, Bu H. Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver. Theranostics 2021; 11:7262-7275. [PMID: 34158849 PMCID: PMC8210598 DOI: 10.7150/thno.49116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Rationale: Congenital biliary atresia (BA) is a destructive obliterative cholangiopathy of neonates that affects both intrahepatic and extrahepatic bile ducts. However, the cause of BA is largely unknown. Methods: We explored the cell junctions and polarity complexes in early biopsy BA livers by immunofluorescence staining and western blot. Cdc42, as a key cell junction and polarity regulator, was found dramatically decreased in BA livers. Therefore, in order to investigate the role of Cdc42 in BA development, we constructed liver-specific and tamoxifen induced cholangiocyte-specific Cdc42 deleted transgenic mice. We further evaluated the role of bile acid in aggravating biliary damage in Cdc42 insufficient mouse liver. Results: We found a dramatic defect in the assembly of cell junctions and polarity complexes in both cholangiocytes and hepatocytes in BA livers. This defect was characterized by the disordered location of cell junction proteins, including ZO1, β-catenin, E-cadherin and claudin-3. Cdc42 and its active form, Cdc42-GTP, which serves as a small Rho GTPase to orchestrate the assembly of polarity complexes with Par6/Par3/αPKC, were substantially reduced in BA livers. Selective Cdc42 deficiency in fetal mouse cholangiocytes resulted in histological changes similar to those found in human BA livers, including obstruction in both the intra- and extrahepatic bile ducts, epithelial atrophy, and the disruption of cell junction and polarity complexes. A reduction in bile acids notably improved the histology and serological indices in Cdc42-mutant mice. Conclusion: Our results illustrate that BA is closely correlated with the impaired assembly of cell junction and polarity complexes in liver cells, which is likely caused by Cdc42 insufficiency and aggravated by bile acid corrosion.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongjie Ji
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyue Cao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingyang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changli Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayin Yang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Prematurity negatively affects regenerative properties of human amniotic epithelial cells in the context of lung repair. Clin Sci (Lond) 2021; 134:2665-2679. [PMID: 33000862 DOI: 10.1042/cs20200859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
There is a growing appreciation of the role of lung stem/progenitor cells in the development and perpetuation of chronic lung disease including idiopathic pulmonary fibrosis. Human amniotic epithelial cells (hAECs) were previously shown to improve lung architecture in bleomycin-induced lung injury, with the further suggestion that hAECs obtained from term pregnancies possessed superior anti-fibrotic properties compared with their preterm counterparts. In the present study, we aimed to elucidate the differential effects of hAECs from term and preterm pregnancies on lung stem/progenitor cells involved in the repair. Here we showed that term hAECs were better able to activate bronchioalveolar stem cells (BASCs) and type 2 alveolar epithelial cells (AT2s) compared with preterm hAECs following bleomycin challenge. Further, we observed that term hAECs restored TGIF1 and TGFβ2 expression levels, while increasing c-MYC expression despite an absence of significant changes to Wnt/β-catenin signaling. In vitro, term hAECs increased the average size and numbers of BASC and AT2 colonies. The gene expression levels of Wnt ligands were higher in term hAECs, and the expression levels of BMP4, CCND1 and CDC42 were only increased in the BASC and AT2 organoids co-cultured with hAECs from term pregnancies but not preterm pregnancies. In conclusion, term hAECs were more efficient at activating the BASC niche compared with preterm hAECs. The impact of gestational age and/or complications leading to preterm delivery should be considered when applying hAECs and other gestational tissue-derived stem and stem-like cells therapeutically.
Collapse
|
9
|
Liberti DC, Zepp JA, Bartoni CA, Liberti KH, Zhou S, Lu M, Morley MP, Morrisey EE. Dnmt1 is required for proximal-distal patterning of the lung endoderm and for restraining alveolar type 2 cell fate. Dev Biol 2019; 454:108-117. [PMID: 31242446 DOI: 10.1016/j.ydbio.2019.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Lung endoderm development occurs through a series of finely coordinated transcriptional processes that are regulated by epigenetic mechanisms. However, the role of DNA methylation in regulating lung endoderm development remains poorly understood. We demonstrate that DNA methyltransferase 1 (Dnmt1) is required for early branching morphogenesis of the lungs and for restraining epithelial fate specification. Loss of Dnmt1 leads to an early branching defect, a loss of epithelial polarity and proximal endodermal cell differentiation, and an expansion of the distal endoderm compartment. Dnmt1 deficiency also disrupts epithelial-mesenchymal crosstalk and leads to precocious distal endodermal cell differentiation with premature expression of alveolar type 2 cell restricted genes. These data reveal an important requirement for Dnmt1 mediated DNA methylation in early lung development to promote proper branching morphogenesis, maintain proximal endodermal cell fate, and suppress premature activation of the distal epithelial fate.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jarod A Zepp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christina A Bartoni
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle H Liberti
- Middleware Engineering, Red Hat, Westford, MA, 01886, USA
| | - Su Zhou
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Minmin Lu
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Laviña B, Castro M, Niaudet C, Cruys B, Álvarez-Aznar A, Carmeliet P, Bentley K, Brakebusch C, Betsholtz C, Gaengel K. Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations. Development 2018; 145:dev.161182. [PMID: 29853619 DOI: 10.1242/dev.161182] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Marco Castro
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Colin Niaudet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bert Cruys
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Alberto Álvarez-Aznar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Katie Bentley
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.,Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden .,Integrated Cardio Metabolic Centre (ICMC), Department of Medicine Huddinge, Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
11
|
Nguyen DHT, Gao L, Wong A, Chen CS. Cdc42 regulates branching in angiogenic sprouting in vitro. Microcirculation 2018; 24. [PMID: 28376260 DOI: 10.1111/micc.12372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The morphogenetic events that occur during angiogenic sprouting involve several members of the Rho family of GTPases, including Cdc42. However, the precise roles of Cdc42 in angiogenic sprouting have been difficult to elucidate owing to the lack of models to study these events in vitro. Here, we aim to identify the roles of Cdc42 in branching morphogenesis in angiogenesis. METHODS Using a 3D biomimetic model of angiogenesis in vitro, where endothelial cells were seeded inside a cylindrical channel within collagen gel and sprouted from the channel in response to a defined biochemical gradient of angiogenic factors, we inhibited Cdc42 activity with a small molecule inhibitor ML141 and examined the effects of Cdc42 on the morphogenetic processes of angiogenic sprouting. RESULTS We find that partial inhibition of Cdc42 had minimal effects on directional migration of endothelial cells, but led to fewer branching events without affecting the length of these branches. We also observed that antagonizing Cdc42 reduced collective migration in favor of single cell migration. Additionally, Cdc42 also regulated the initiation of filopodial extensions in endothelial tip cells. CONCLUSIONS Our findings suggest that Cdc42 can affect multiple morphogenetic processes during angiogenic sprouting and ultimately impact the architecture of the vasculature.
Collapse
Affiliation(s)
- Duc-Huy T Nguyen
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Gao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alec Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Christopher S Chen
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
12
|
Endothelial Cdc42 deficiency impairs endothelial regeneration and vascular repair after inflammatory vascular injury. Respir Res 2018; 19:27. [PMID: 29422044 PMCID: PMC5806471 DOI: 10.1186/s12931-018-0729-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/26/2018] [Indexed: 01/11/2023] Open
Abstract
Background Endothelial cell (EC) regeneration is essential for inflammation resolution and vascular integrity recovery after inflammatory vascular injury. Cdc42 is a central regulator of cell survival and vessel formation in EC development. However, it is unknown that whether Cdc42 could be a regulating role of EC repair following the inflammatory injury in the lung. The study sought to test the hypothesis that Cdc42 is required for endothelial regeneration and vascular integrity recovery after LPS-induced inflammatory injury. Methods and results The role of Cdc42 for the regulation of pulmonary vascular endothelial repair was tested in vitro and in vivo. In LPS-induced acute lung injury (ALI) mouse models, knockout of the Cdc42 gene in ECs increased inflammatory cell infiltration and pulmonary vascular leakage and inhibited vascular EC proliferation, which eventually resulted in more severe inflammatory lung injury. In addition, siRNA-mediated knockdown of Cdc42 protein on ECs disrupted cell proliferation and migration and tube formation, which are necessary processes for recovery after inflammatory vascular injury, resulting in inflammatory vascular injury recovery defects. Conclusion We found that Cdc42 deficiency impairs EC function and regeneration, which are crucial in the post-inflammatory vascular injury repair process. These findings indicate that Cdc42 is a potential target for novel treatments designed to facilitate endothelial regeneration and vascular repair in inflammatory pulmonary vascular diseases, such as ALI/ARDS. Electronic supplementary material The online version of this article (10.1186/s12931-018-0729-8) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Cell Division Cycle 42 plays a Cell type-Specific role in Lung Tumorigenesis. Sci Rep 2017; 7:10407. [PMID: 28871124 PMCID: PMC5583260 DOI: 10.1038/s41598-017-10891-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
Cell division cycle 42 (CDC42) plays important roles in polarity establishment and maintenance as well as cell cycle progression and cell division. Although disruption of cell polarity is a prerequisite in epithelial tumor initiation, the roles of CDC42 in tumorigenesis are still poorly understood. Here we find that Cdc42 deficiency inhibits the KrasG12D-induced lung alveoli tumor formation, while conversely promotes bronchiole tumor formation in mice. Bronchial Cdc42 loss destroys contact inhibition potentially through cell polarity disruption, and results in increased tumor formation. In contrast, deletion of Cdc42 in alveoli cells prevents KrasG12D-induced cell proliferation, which leads to reduced tumor formation. Further analyses of clinical specimens uncover a significant positive correlation between CDC42 and type II alveolar epithelial cells marker SP-A, indicating the potential importance of CDC42 in this specific subset of lung cancer. Collectively, we identify the lineage-specific function of CDC42 in lung tumorigenesis potentially through the regulation of cell polarity integrity.
Collapse
|
14
|
Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson-Peer K, Chuang PT. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 2017; 6:e21130. [PMID: 28323616 PMCID: PMC5360446 DOI: 10.7554/elife.21130] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stacey Croll
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Katherine Thompson-Peer
- Department of Physiology, Howard Hughes Medical institute, University of California, San Francisco, San Francisco, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
15
|
Lv J, Zeng J, Zhao W, Cheng Y, Zhang L, Cai S, Hu G, Chen Y. Cdc42 regulates LPS-induced proliferation of primary pulmonary microvascular endothelial cells via ERK pathway. Microvasc Res 2016; 109:45-53. [PMID: 27769693 DOI: 10.1016/j.mvr.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/21/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND After stimulation due to injury, cell division cycle protein 42 (Cdc42) restores and enhances barrier functions by strengthening intercellular adherens junctions; however, its influence on cell proliferation after injury remains unknown. OBJECTIVE In this study, we sought to investigate the effect of stimulation using small doses of lipopolysaccharide (LPS) on the proliferation of pulmonary microvascular endothelial cells (PMVECs). METHODS We stimulated PMVECs with different doses of LPS and evaluated the effects on cell proliferation. We also constructed a primary gene-knockout cell line lacking Cdc42 to verify the role of Cdc42 in regulating the proliferation of PMVECs that were stimulated using LPS and to explore related signaling pathways. RESULTS Stimulating PMVECs with small doses of LPS increased proliferation. Cdc42 is involved in regulating this process, which was mediated by the extracellular regulated protein kinase (ERK) pathway. CONCLUSIONS Cdc42 plays a role in regulating the proliferation of PMVECs stimulated with small doses of LPS, and this regulation involves the ERK pathway.
Collapse
Affiliation(s)
- Jiawen Lv
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junchao Zeng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen Zhao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yinghua Chen
- Department of Histology and Embryology, School of Basic Medical Sciences Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
16
|
Boucherat O, Jeannotte L, Hadchouel A, Delacourt C, Benachi A. Pathomechanisms of Congenital Cystic Lung Diseases: Focus on Congenital Cystic Adenomatoid Malformation and Pleuropulmonary Blastoma. Paediatr Respir Rev 2016; 19:62-8. [PMID: 26907828 DOI: 10.1016/j.prrv.2015.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/01/2015] [Accepted: 11/08/2015] [Indexed: 02/05/2023]
Abstract
It is well established that a number of birth defects are associated with improper formation of the respiratory tract. Important progress has been made in the identification of components of the regulatory networks controlling lung morphogenesis. They comprise a variety of soluble factors, receptors, transcription factors, and miRNAs. However, the underlying molecular mechanisms remain unsolved and fundamental questions, such as those related to lung branching are still unanswered. Congenital cystic lung diseases consist of a heterogeneous group of rare lung diseases mainly detected prenatally and characterized by airway dilatation. Despite their apparent phenotypic heterogeneity, these malformations are proposed to be related to a common malformation sequence occurring during lung branching morphogenesis.
Collapse
Affiliation(s)
- Olivier Boucherat
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada, G1 V 4G5
| | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, CRCHUQ, L'Hôtel-Dieu de Québec, QC, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec, Canada
| | - Alice Hadchouel
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France; INSERM, U955, IMRB, Equipe 04, Créteil, France; Université Paris-Descartes, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France; INSERM, U955, IMRB, Equipe 04, Créteil, France; Université Paris-Descartes, Paris, France
| | - Alexandra Benachi
- AP-HP, Hôpital Antoine-Béclère, Université Paris-Sud, Service de Gynécologie Obstétrique et Médecine de la Reproduction, 92141 Clamart, France; INSERM, UMR 986, Université Paris-Sud, Bicêtre, France
| |
Collapse
|
17
|
Fujiwara M, Okamoto M, Hori M, Suga H, Jikihara H, Sugihara Y, Shimamoto F, Mori T, Nakaoji K, Hamada K, Ota T, Wiedemuth R, Temme A, Tatsuka M. Radiation-Induced RhoGDIβ Cleavage Leads to Perturbation of Cell Polarity: A Possible Link to Cancer Spreading. J Cell Physiol 2016; 231:2493-505. [DOI: 10.1002/jcp.25362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Mamoru Fujiwara
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Mayumi Okamoto
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Masato Hori
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Hiroshi Jikihara
- Department of Health Sciences; Faculty of Human Culture and Science; Prefectural University of Hiroshima; Minami-ku Hiroshima Japan
| | - Yuka Sugihara
- Department of Health Sciences; Faculty of Human Culture and Science; Prefectural University of Hiroshima; Minami-ku Hiroshima Japan
| | - Fumio Shimamoto
- Department of Health Sciences; Faculty of Human Culture and Science; Prefectural University of Hiroshima; Minami-ku Hiroshima Japan
| | - Toshio Mori
- Radioisotope Research Center; Nara Medical University School of Medicine; Kashihara Nara Japan
| | - Koichi Nakaoji
- Research & Development Division; Pias Corporation; Kobe Japan
| | - Kazuhiko Hamada
- Research & Development Division; Pias Corporation; Kobe Japan
| | - Takahide Ota
- Department of Life Science; Medical Research Institute; Kanazawa Medical University; Uchinada Ishikawa Japan
| | - Ralf Wiedemuth
- Department of Neurosurgery; University Hospital Carl Gustav Carus; Technical University Dresden; Dresden Germany
| | - Achim Temme
- Department of Neurosurgery; University Hospital Carl Gustav Carus; Technical University Dresden; Dresden Germany
| | - Masaaki Tatsuka
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| |
Collapse
|
18
|
Bonastre E, Brambilla E, Sanchez-Cespedes M. Cell adhesion and polarity in squamous cell carcinoma of the lung. J Pathol 2016; 238:606-16. [PMID: 26749265 DOI: 10.1002/path.4686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023]
Abstract
Lung cancer is a deadly disease that can roughly be classified into three histopathological groups: lung adenocarcinomas, lung squamous cell carcinomas (LSCCs), and small cell carcinomas. These types of lung cancer are molecularly, phenotypically, and regionally diverse neoplasms, reflecting differences in their cells of origin. LSCCs commonly arise in the airway epithelium of a main or lobar bronchus, which is an important line of defence against the external environment. Furthermore, most LSCCs are characterized histopathologically by the presence of keratinization and/or intercellular bridges, consistent with the molecular features of these tumours, characterized by high levels of transcripts encoding keratins and proteins relevant to intercellular junctions and cell polarity. In this review, the relationships between the molecular features of LSCCs and the types of cell and epithelia of origin are discussed. Recurrent alterations in genes involved in intercellular adhesion and cell polarity in LSCCs are also reviewed, emphasizing the importance of the disruption of PAR3 and the PAR complex. Finally, the possible functional effects of these alterations on epithelial homeostasis, and how they contribute to the development of LSCC, are discussed.
Collapse
Affiliation(s)
- Ester Bonastre
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Brambilla
- Department of Pathology, Institut Albert Bonniot, INSERM U823, University Joseph Fourier, CHU, Grenoble Hopital Michallon, Grenoble, France
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
19
|
Loebel DAF, Plageman TF, Tang TL, Jones VJ, Muccioli M, Tam PPL. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open 2016; 5:130-9. [PMID: 26772200 PMCID: PMC4823982 DOI: 10.1242/bio.014415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. Summary: Conditional Cdc42 knockout revealed requirements for Cdc42 in endoderm polarity, and in thyroid apical constriction and morphogenesis. Shroom3 mutant embryos also displayed thyroid bud abnormalities, suggesting a possible functional interaction.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy F Plageman
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Theresa L Tang
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Vanessa J Jones
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Maria Muccioli
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Bowers S, Norden P, Davis G. Molecular Signaling Pathways Controlling Vascular Tube Morphogenesis and Pericyte-Induced Tube Maturation in 3D Extracellular Matrices. ADVANCES IN PHARMACOLOGY 2016; 77:241-80. [DOI: 10.1016/bs.apha.2016.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Elias BC, Das A, Parekh DV, Mernaugh G, Adams R, Yang Z, Brakebusch C, Pozzi A, Marciano DK, Carroll TJ, Zent R. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J Cell Sci 2015; 128:4293-305. [PMID: 26490995 DOI: 10.1242/jcs.164509] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/14/2015] [Indexed: 01/06/2023] Open
Abstract
The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.
Collapse
Affiliation(s)
- Bertha C Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Das
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diptiben V Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca Adams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhufeng Yang
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cord Brakebusch
- Biotech Research Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Veterans Affairs Hospital, Nashville, TN 37232, USA
| | - Denise K Marciano
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas J Carroll
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Abstract
In the last decade, several mouse models for RhoA, Rac1, and Cdc42 have emerged and have contributed a great deal to understanding the precise functions of Rho GTPases at early stages of development. This review summarizes our current knowledge of various mouse models of tissue-specific ablation of Cdc42, Rac1, and RhoA with emphasis on early embryogenesis, epithelial and skin morphogenesis, tubulogenesis, development of the central nervous system, and limb development.
Collapse
Affiliation(s)
- Philippe M Duquette
- a McGill University ; Department of Anatomy and Cell Biology ; Montreal , QC Canada
| | | |
Collapse
|
23
|
Xia J, Swiercz JM, Bañón-Rodríguez I, Matković I, Federico G, Sun T, Franz T, Brakebusch CH, Kumanogoh A, Friedel RH, Martín-Belmonte F, Gröne HJ, Offermanns S, Worzfeld T. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair. Dev Cell 2015; 33:299-313. [PMID: 25892012 DOI: 10.1016/j.devcel.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023]
Abstract
Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central regulatory mechanism of mitotic spindle orientation necessary for the alignment of epithelial cell divisions with the epithelial plane.
Collapse
Affiliation(s)
- Jingjing Xia
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ivana Matković
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35043 Marburg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tianliang Sun
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Timo Franz
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cord H Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University, Osaka 565-0871, Japan
| | - Roland H Friedel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Medical Faculty, University of Frankfurt, 60590 Frankfurt, Germany
| | - Thomas Worzfeld
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
24
|
Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4. [PMID: 25803487 PMCID: PMC4370217 DOI: 10.7554/elife.05098] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.
Collapse
Affiliation(s)
- Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - David R Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Michael A H Ferguson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Melinda S Nagy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Rachel Dyal
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Roy Nattiv
- Institute for Human Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ophir D Klein
- Institute for Human Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Eric S White
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Gail H Deutsch
- Department of Laboratories, Seattle Children's Hospital and University of Washington, Seattle, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
25
|
McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 2015; 32:98-105. [PMID: 25796078 PMCID: PMC4763935 DOI: 10.1016/j.gde.2015.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022]
Abstract
Each of the steps of respiratory system development relies on intricate interactions and coordinated development of the lung epithelium and mesenchyme. In the past, more attention has been paid to the epithelium than the mesenchyme. The mesenchyme is a source of specification and morphogenetic signals as well as a host of surprisingly complex cell lineages that are critical for normal lung development and function. This review highlights recent research focusing on the mesenchyme that has revealed genetic and epigenetic mechanisms of its development in the context of other cell layers during respiratory lineage specification, branching morphogenesis, epithelial differentiation, lineage distinction, vascular development, and alveolar maturation.
Collapse
Affiliation(s)
- David McCulley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mark Wienhold
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
26
|
Qi XJ, Ning W, Xu F, Dang HX, Fang F, Li J. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, attenuates hyperoxia-induced pulmonary fibrosis in neonatal rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12140-50. [PMID: 26722398 PMCID: PMC4680343 DOI: pmid/26722398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/24/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Oxygen therapy is important during the management of high-risk neonatal infants, such as those with preterm birth, low birth weight, and asphyxia. However, prolonged exposure to high oxygen concentrations can readily lead to diffuse nonspecific inflammation, which promotes airway remodeling and pulmonary fibrosis. The Rho/Rho-associated coiled-coil kinase (Rho/ROCK) signaling pathway plays an important role in numerous developmental and proliferative diseases. This study was performed to determine the efficacy of ROCK inhibitor fasudil in blocking the development of hyperoxia-induced lung injury and fibrosis in neonatal rats. METHODS Neonatal rats were randomly divided into four groups: air + saline group, air + fasudil group, hyperoxia + saline group, and hyperoxia + fasudil group. The hyperoxia + saline and Hyp + fasudil groups were exposed to 95% oxygen for 21 days and administered intraperitoneal saline or fasudil once daily. The air + saline and air + fasudil group were exposed to 21% oxygen (room air) and administered the same volume of intraperitoneal saline or fasudil. RESULTS Fasudil-treated rats exhibited improved histopathological changes and decreased lung hydroxyproline content. Fasudil attenuated the protein level of alpha-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor. Additionally, fasudil reduced the activation of ROCK1 and myosin phosphatase targeting subunit 1 protein in the Rho/ROCK signaling pathway. CONCLUSIONS Fasudil may be a potentially effective therapeutic drug for hyperoxia-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiu-Jie Qi
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing 400014, China ; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Wei Ning
- Daping Hospital and The Research Institute of Surgery of The Third Military Medical University Chongqing 400042, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Hong-Xing Dang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Fang Fang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Jing Li
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| |
Collapse
|
27
|
Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate. Exp Cell Res 2014; 328:296-302. [PMID: 25128813 DOI: 10.1016/j.yexcr.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.
Collapse
|
28
|
Yang J, Chen J. Developmental programs of lung epithelial progenitors: a balanced progenitor model. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:331-47. [PMID: 25124755 DOI: 10.1002/wdev.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/17/2014] [Accepted: 05/04/2014] [Indexed: 01/17/2023]
Abstract
UNLABELLED The daunting task of lung epithelium development is to transform a cluster of foregut progenitors into a three-dimensional (3D) tubular network with distinct cell types distributed at their appropriate locations. A complete understanding of lung development needs to address not only how, but also where, different cell types form. We propose that the lung epithelium forms through regulated deployment of three developmental programs: branching morphogenesis to expand progenitors and build a tree-like tubular network, airway differentiation to specify cells for the proximal conducting airways, and alveolar differentiation to specify cells for the peripheral gas exchange region. Each developmental program has its unique morphological features and molecular control mechanisms; their spatiotemporal coordination can be accounted for in a balanced progenitor model where progenitors balance between alternative developmental programs in response to spatiotemporal cues. This model integrates progenitor morphogenesis and differentiation, and provides new insights to lung immaturity in preterm birth and lung evolution. Advanced gene targeting and 3D imaging tools are needed to achieve a comprehensive understanding of lung epithelial progenitors on molecular, cellular, and morphological levels. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
29
|
Genome-wide analysis of functional and evolutionary features of tele-enhancers. G3-GENES GENOMES GENETICS 2014; 4:579-93. [PMID: 24496725 PMCID: PMC4059231 DOI: 10.1534/g3.114.010447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated sequence features of enhancers separated from their target gene by at least one intermediate gene/exon (named tele-enhancers in this study) and enhancers residing inside their target gene locus. In this study, we used whole genome enhancer maps and gene expression profiles to establish a large panel of tele-enhancers. By contrasting tele-enhancers to proximal enhancers targeting heart genes, we observed that heart tele-enhancers use unique regulatory mechanisms based on the cardiac transcription factors SRF, TEAD, and NKX-2.5, whereas proximal heart enhancers rely on GATA4 instead. A functional analysis showed that tele-enhancers preferentially regulate house-keeping genes and genes with a metabolic role during heart development. In addition, tele-enhancers are significantly more conserved than their proximal counterparts. Similar trends have been observed for non-heart tissues and cell types, suggesting that our findings represent general characteristics of tele-enhancers.
Collapse
|
30
|
Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci U S A 2013; 110:E4456-64. [PMID: 24191021 DOI: 10.1073/pnas.1311847110] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lung branching morphogenesis is a highly orchestrated process that gives rise to the complex network of gas-exchanging units in the adult lung. Intricate regulation of signaling pathways, transcription factors, and epithelial-mesenchymal cross-talk are critical to ensuring branching morphogenesis occurs properly. Here, we describe a role for the transcription factor Sox9 during lung branching morphogenesis. Sox9 is expressed at the distal tips of the branching epithelium in a highly dynamic manner as branching occurs and is down-regulated starting at embryonic day 16.5, concurrent with the onset of terminal differentiation of type 1 and type 2 alveolar cells. Using epithelial-specific genetic loss- and gain-of-function approaches, our results demonstrate that Sox9 controls multiple aspects of lung branching. Fine regulation of Sox9 levels is required to balance proliferation and differentiation of epithelial tip progenitor cells, and loss of Sox9 leads to direct and indirect cellular defects including extracellular matrix defects, cytoskeletal disorganization, and aberrant epithelial movement. Our evidence shows that unlike other endoderm-derived epithelial tissues, such as the intestine, Wnt/β-catenin signaling does not regulate Sox9 expression in the lung. We conclude that Sox9 collectively promotes proper branching morphogenesis by controlling the balance between proliferation and differentiation and regulating the extracellular matrix.
Collapse
|