1
|
Matsubara H, Inoue T, Agata K. Reintegration of blastema and stump by reciprocal interaction for functional joint regeneration in frogs. Dev Biol 2025:S0012-1606(25)00170-8. [PMID: 40513767 DOI: 10.1016/j.ydbio.2025.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 05/29/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Previous studies suggested the importance of the reciprocal interactions between residual tissues, which we refer to here as the "stump", and the newly formed tissues, referred to as the "blastema", for achieving functional joint regeneration after amputation at the elbow joint level in newts. This reciprocal interaction during regeneration was named "reintegration". When this reintegration mechanism was evoked in the frog Xenopus leavis, regeneration of a functional elbow joint was induced. Interestingly, degradation of extracellular matrix (ECM) in the remaining joint articular cartilage was observed during regeneration in both newts and frogs. Histological and gene expression analyses suggested that the degradation of Type II collagen in the cartilage of the articular head might be performed by matrix metalloproteases (Mmps) that were transiently expressed after amputation. Here we found that fibroblast growth factor (Fgf) induced Mmps expression in the cartilage of the articular head. These results support the possibility that the Fgf signal induces ECM degradation in joint tissues via Mmps expression and that the ECM degradation and subsequent bone morphogenetic protein (Bmp) secretion promote cell proliferation, migration, and differentiation of the cells in the blastema to achieve functional joint regeneration.
Collapse
Affiliation(s)
- Haruka Matsubara
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Mejiro1-5-1, Toshima-ku, Tokyo, 171-8588, Japan; Division of Developmental Biology, Department of Biomedical Sciences, School of Life Science, Faculty of Medicine Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan.
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Mejiro1-5-1, Toshima-ku, Tokyo, 171-8588, Japan; Division of Adaptation Physiology, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan.
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Mejiro1-5-1, Toshima-ku, Tokyo, 171-8588, Japan; , National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
2
|
Raymond MJ, Cherubino MA, Vieira WA, Manon S, McCusker CD. Neural regulation of H3K27me3 during the induction of patterning competency in regenerating Axolotl limb cells. Commun Biol 2025; 8:659. [PMID: 40275079 PMCID: PMC12022170 DOI: 10.1038/s42003-025-08084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Limb regeneration in the Mexican axolotl relies on the dedifferentiation of mature limb cells into blastema cells, which gain the ability to respond to patterning signals that guide tissue regeneration. While limb nerves are essential to make the blastema cells competent to pattern, the mechanisms remain unclear due to the complex and overlapping signals in amputated limbs. To overcome this challenge, we developed the Competency Accessory Limb Model (CALM), a simplified limb regeneration assay to study the induction and maintenance of patterning competency. Using CALM, here we show specific temporal windows during which cells acquire competency and associate this state with distinct H3K27me3 chromatin signatures. Furthermore, a combination of FGF and BMP signaling is sufficient to induce patterning competency in limb wound cells, and the ErBB signaling pathway is a downstream epigenetic target of these signals. These findings offer new insights into the molecular regulation of regenerative patterning.
Collapse
Affiliation(s)
- Michael J Raymond
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Matthew A Cherubino
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Warren A Vieira
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Sheyla Manon
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Catherine D McCusker
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA.
| |
Collapse
|
3
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, Garcia-Arraras JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. eLife 2025; 13:RP100796. [PMID: 40111904 PMCID: PMC11925454 DOI: 10.7554/elife.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In holothurians, the regenerative process following evisceration involves the development of a 'rudiment' or 'anlage' at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
4
|
Ohashi A, Sakamoto H, Kuroda J, Kondo Y, Kamei Y, Nonaka S, Furukawa S, Yamamoto S, Satoh A. Keratinocyte-driven dermal collagen formation in the axolotl skin. Nat Commun 2025; 16:1757. [PMID: 39994199 PMCID: PMC11850728 DOI: 10.1038/s41467-025-57055-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Hirotaka Sakamoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Junpei Kuroda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Kondo
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
| | - Shigenori Nonaka
- The Graduate University for Advanced Studies (SOKENDAI), Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
- Spatiotemporal Regulations Group, Exploratory Research Center for Life and Living Systems, Myodaiji Nishigo-naka 38, Okazaki, Aichi, 444-8585, Japan
| | - Saya Furukawa
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Sakiya Yamamoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Akira Satoh
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Malueg MD, Baig AA, Moser M, Donnelly BM, Im J, Lim J, Okai BK, Housley SB, Siddiqui AH, Snyder KV. Preliminary Experience Using Axolotl (Ambystoma mexicanum) Dermis Patches as a Biologic Agent for Wound Management After Neurosurgical Procedures. World Neurosurg 2025; 194:123409. [PMID: 39522808 DOI: 10.1016/j.wneu.2024.10.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE In the United States, chronic wounds affect more than 6.5 million people annually-a mean cost of $23,755 among neurosurgery patients. Current wound management solutions have disadvantages, including rejection, disease transmission from mammalian sources, and cultural issues prohibiting some products. Here, we describe preliminary use of xenograft tissue derived from axolotl (Ambystoma mexicanum) dermis for use in wound management after neurosurgical procedures. METHODS Our prospective database was retrospectively searched for consecutive patients who underwent wound closures using axolotl dermis patches (NeoMatriX, NeXtGen Biologics, Alachua, FL). Patient demographics, daily alcohol and tobacco use, radiation history, operation type, and antibiotic regimens postclosure were collected. Rates of postoperative infection, wound dehiscence, and wound revision or repeated irrigation were collected for outcomes assessment. RESULTS Twenty-three patients underwent wound closure with the patches. At least 1 comorbidity related to delayed wound closure was present in included patients: obesity = 8 (34.8%), diabetes = 3 (13%), chronic obstructive pulmonary disease = 3 (13%), hypertension = 11 (47.8%), hyperlipidemia = 10 (43.5%), hypothyroidism = 3 (13%), benign prostatic hyperplasia = 3 (13%), human immunodeficiency virus = 1 (4.3%), cancer = 7 (30.4%), daily alcohol use = 4 (17.4%), and current smoking = 7 (30.4%). Wounds treated were from decompressive laminectomy, microvascular decompression, thoracolumbar instrumentation revision, and pseudoaneurysm ligation/resection in 1 (4.3%) patient each. Three (13%) patients had wounds from aneurysm clippings, 6 (26.1%) each from craniotomies and wound dehiscence treatments, and 4 (17.4%) from cranioplasties. Patches were applied for primary wound closure in 14 (60.9%) patients and secondary wound closure in 9 (39.1%) patients. Postapplication wound infection or wound dehiscence and/or revision occurred in 2 (8.7%) patients. CONCLUSIONS Axolotl dermis patches support mammalian wound management, demonstrating favorable potential in improving neurosurgical wound closure and healing and overall outcomes.
Collapse
Affiliation(s)
- Megan D Malueg
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ammad A Baig
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Matthew Moser
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Brianna M Donnelly
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Justin Im
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Bernard K Okai
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Steven B Housley
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Adnan H Siddiqui
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA; Jacobs Institute, Buffalo, New York, USA
| | - Kenneth V Snyder
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA; Jacobs Institute, Buffalo, New York, USA.
| |
Collapse
|
6
|
Martins JA, Balbueno MCDS, Coelho CDP. Action of Carduus marianus 6cH on Hepatopathy and Gallstone in Ambystoma mexicanum (Axolotl): Case Report. HOMEOPATHY 2025; 114:58-61. [PMID: 38423037 DOI: 10.1055/s-0043-1778686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Carduus marianus is a Mediterranean plant used for treating liver diseases. One of its properties is that it inhibits fat peroxidation, which can contribute toward the prevention of metabolites that are harmful to the liver. OBJECTIVE The aim of this study was to describe the treatment of fatty liver disease in an axolotl (Ambystoma mexicanum). METHODS An approximately 6-year-old female specimen of A. mexicanum, of length 21 cm and weight 153 g, presented edema in the rostral region and inappetence. Ultrasound showed hepatopathy and a gallbladder stone. A globule of C. marianus 6cH was diluted in 30 mL distilled water and administered in spray form over the animal twice a day. RESULTS Twenty days after the beginning of the treatment, improvement of the facial edema and return of appetite were observed. Ultrasound showed improvement in the appearance of the liver and reduction in the size of the gallstone. The Modified Naranjo Criteria for Homeopathy score was +9 in this case, thus suggesting a causal relationship between the use of homeopathic medicine and the clinical outcome. CONCLUSION C. marianus 6cH appeared to be effective in treating fatty liver disease and gallstone in this specimen of A. mexicanum.
Collapse
|
7
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, García-Arrarás JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601561. [PMID: 39005414 PMCID: PMC11244903 DOI: 10.1101/2024.07.01.601561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In holothurians, the regenerative process following evisceration involves the development of a "rudiment" or "anlage" at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and HCR-FISH analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified thirteen distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
8
|
Del Moral-Morales A, Sámano C, Ocampo-Cervantes JA, Topf M, Baumbach J, Hernández J, Torres-Arciga K, González-Barrios R, Soto-Reyes E. Key Proteins for Regeneration in A. mexicanum: Transcriptomic Insights From Aged and Juvenile Limbs. SCIENTIFICA 2024; 2024:5460694. [PMID: 39575453 PMCID: PMC11581807 DOI: 10.1155/2024/5460694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024]
Abstract
The axolotl, known for its remarkable regenerative abilities, is an excellent model for studying regenerative therapies. Nevertheless, the precise molecular mechanisms governing its regenerative potential remain uncertain. In this study, we collected samples from axolotls of different ages, including 8-year-old individuals and 8-month-old juveniles, obtaining their blastemas 10 days after amputation. Subsequently, we conducted a transcriptomic analysis comparing our samples to a set of previously published experiments. Our analysis unveiled a distinctive transcriptional response in the blastema, characterized by differential gene expression associated with processes such as bone and tissue remodeling, transcriptional regulation, angiogenesis, and intercellular communication. To gain deeper insights, we compared these findings with those from aged axolotls that showed no signs of regeneration 10 days after amputation. We identified four genes-FSTL1, ADAMTS17, GPX7, and CTHRC1-that showed higher expression in regenerating tissue compared to aged axolotls. Further scrutiny, including structural and homology analysis, revealed that these genes are conserved across vertebrate species. Our discoveries point to a group of proteins relevant to tissue regeneration, with their conservation in vertebrates suggesting critical roles in development. These findings also propose a novel gene set involved in axolotl regeneration, laying a promising foundation for future investigations across vertebrates.
Collapse
Affiliation(s)
- Aylin Del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - José Antonio Ocampo-Cervantes
- Centro de Investigaciones Biológicas y Acuícolas de Cuemanco (CIBAC), Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City, Mexico
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab., University of Southern Denmark, Odense, Denmark
| | - Jossephlyn Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Karla Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| |
Collapse
|
9
|
Mansor NI, Balqis TN, Lani MN, Lye KL, Nor Muhammad NA, Ismail WIW, Abidin SZ. Nature's Secret Neuro-Regeneration Pathway in Axolotls, Polychaetes and Planarians for Human Therapeutic Target Pathways. Int J Mol Sci 2024; 25:11904. [PMID: 39595973 PMCID: PMC11593954 DOI: 10.3390/ijms252211904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Despite significant improvements in the comprehension of neuro-regeneration, restoring nerve injury in humans continues to pose a substantial therapeutic difficulty. In the peripheral nervous system (PNS), the nerve regeneration process after injury relies on Schwann cells. These cells play a crucial role in regulating and releasing different extracellular matrix proteins, including laminin and fibronectin, which are essential for facilitating nerve regeneration. However, during regeneration, the nerve is required to regenerate for a long distance and, subsequently, loses its capacity to facilitate regeneration during this progression. Meanwhile, it has been noted that nerve regeneration has limited capabilities in the central nervous system (CNS) compared to in the PNS. The CNS contains factors that impede the regeneration of axons following injury to the axons. The presence of glial scar formation results from this unfavourable condition, where glial cells accumulate at the injury site, generating a physical and chemical barrier that hinders the regeneration of neurons. In contrast to humans, several species, such as axolotls, polychaetes, and planarians, possess the ability to regenerate their neural systems following amputation. This ability is based on the vast amount of pluripotent stem cells that have the remarkable capacity to differentiate and develop into any cell within their body. Although humans also possess these cells, their numbers are extremely limited. Examining the molecular pathways exhibited by these organisms has the potential to offer a foundational understanding of the human regeneration process. This review provides a concise overview of the molecular pathways involved in axolotl, polychaete, and planarian neuro-regeneration. It has the potential to offer a new perspective on therapeutic approaches for neuro-regeneration in humans.
Collapse
Affiliation(s)
- Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Tengku Nabilatul Balqis
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Kwan Liang Lye
- ME Scientifique Sdn Bhd, Taman Universiti Indah, Seri Kembangan 43300, Selangor, Malaysia;
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Wan Iryani Wan Ismail
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
- Research Interest Group Biological Security and Sustainability (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
- Research Interest Group Biological Security and Sustainability (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
10
|
Furukawa S, Yamamoto S, Ohashi A, Morishita Y, Satoh A. Allometry in limb regeneration and scale-invariant patterning as the basis of normal morphogenesis from different sizes of blastemas. Development 2024; 151:dev202697. [PMID: 39344771 PMCID: PMC11574362 DOI: 10.1242/dev.202697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Axolotl (Ambystoma mexicanum) limb regeneration begins with blastemas of various sizes, in contrast to the limb developmental process. Despite this size variation, normal limb morphology, consistent with a limb stump size, is regenerated. This outcome suggests the existence of underlying scale-invariant mechanisms. To identify such mechanisms, we examined the allometric relationships between blastema size, and Sonic Hedgehog (Shh) and Fibroblast Growth Factor 8 (Fgf8) expression patterns against limb stump size. We found that all factors showed allometric rather than isometric scaling; specifically, their relative sizes decrease with an increase in limb stump size. However, the ratio of Shh/Fgf8 signaling dominant region was nearly constant, independent of blastema/body size. Furthermore, the relative spatial patterns of cell density and proliferation activity, and the relative position of first digit formation were scale invariant in the summed Shh/Fgf8 crosstalk region. This scale-invariant nature may underlie the morphogenesis of normal limbs from different sizes of blastemas.
Collapse
Affiliation(s)
- Saya Furukawa
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Sakiya Yamamoto
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Ayaka Ohashi
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akira Satoh
- Graduate School of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
The people behind the papers - Saya Furukawa, Akira Satoh and Yoshihiro Morishita. Development 2024; 151:dev204443. [PMID: 39514673 DOI: 10.1242/dev.204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A remarkable feature of limb regeneration is the ability to regenerate normal limb morphology and anatomical patterning. Although it is thought that regeneration uses similar mechanisms to those employed during development, it is not well understood how this is achieved in the context of varying blastema size. In a new study, Akira Satoh, Yoshihiro Morishita and colleagues investigate the allometric scaling of blastema size and pattern expressions of key genes relative to the size of the limb stump in axolotls. To find out more about the work, we caught up with first author Saya Furukawa, and corresponding authors Akira Satoh, professor at Okayama University, and Yoshihiro Morishita, Principal Investigator at RIKEN, Japan.
Collapse
|
12
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
13
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
14
|
Kumar S, Umair Z, Kumar V, Goutam RS, Park S, Lee U, Kim J. Xbra modulates the activity of linker region phosphorylated Smad1 during Xenopus development. Sci Rep 2024; 14:8922. [PMID: 38637565 PMCID: PMC11026473 DOI: 10.1038/s41598-024-59299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, B-6041, Belgium
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| |
Collapse
|
15
|
Sugiura N, Agata K. FGF-stimulated tendon cells embrace a chondrogenic fate with BMP7 in newt tissue culture. Dev Growth Differ 2024; 66:182-193. [PMID: 38342985 PMCID: PMC11457504 DOI: 10.1111/dgd.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/13/2024]
Abstract
Newts can regenerate functional elbow joints after amputation at the joint level. Previous studies have suggested the potential contribution of cells from residual tendon tissues to joint cartilage regeneration. A serum-free tissue culture system for tendons was established to explore cell dynamics during joint regeneration. Culturing isolated tendons in this system, stimulated by regeneration-related factors, such as fibroblast growth factor (FGF) and platelet-derived growth factor, led to robust cell migration and proliferation. Moreover, cells proliferating in an FGF-rich environment differentiated into Sox9-positive chondrocytes upon BMP7 introduction. These findings suggest that FGF-stimulated cells from tendons may aid in joint cartilage regeneration during functional elbow joint regeneration in newts.
Collapse
Affiliation(s)
- Nao Sugiura
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- Laboratory for Regenerative BiologyNational Institute for Basic Biology (NIBB)OkazakiJapan
| | - Kiyokazu Agata
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- Laboratory for Regenerative BiologyNational Institute for Basic Biology (NIBB)OkazakiJapan
| |
Collapse
|
16
|
Suzuki M, Okumura A, Chihara A, Shibata Y, Endo T, Teramoto M, Agata K, Bronner ME, Suzuki KIT. Fgf10 mutant newts regenerate normal hindlimbs despite severe developmental defects. Proc Natl Acad Sci U S A 2024; 121:e2314911121. [PMID: 38442169 PMCID: PMC10945807 DOI: 10.1073/pnas.2314911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
In amniote limbs, Fibroblast Growth Factor 10 (FGF10) is essential for limb development, but whether this function is broadly conserved in tetrapods and/or involved in adult limb regeneration remains unknown. To tackle this question, we established Fgf10 mutant lines in the newt Pleurodeles waltl which has amazing regenerative ability. While Fgf10 mutant forelimbs develop normally, the hindlimbs fail to develop and downregulate FGF target genes. Despite these developmental defects, Fgf10 mutants were able to regenerate normal hindlimbs rather than recapitulating the embryonic phenotype. Together, our results demonstrate an important role for FGF10 in hindlimb formation, but little or no function in regeneration, suggesting that different mechanisms operate during limb regeneration versus development.
Collapse
Affiliation(s)
- Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Akinori Okumura
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Akane Chihara
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Yuki Shibata
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Tetsuya Endo
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin470-0195, Japan
| | - Machiko Teramoto
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ken-ichi T. Suzuki
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| |
Collapse
|
17
|
Raymond MJ, McCusker CD. Making a new limb out of old cells: exploring endogenous cell reprogramming and its role during limb regeneration. Am J Physiol Cell Physiol 2024; 326:C505-C512. [PMID: 38105753 PMCID: PMC11192473 DOI: 10.1152/ajpcell.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| | - Catherine D McCusker
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| |
Collapse
|
18
|
Noble A, Qubrosi R, Cariba S, Favaro K, Payne SL. Neural dependency in wound healing and regeneration. Dev Dyn 2024; 253:181-203. [PMID: 37638700 DOI: 10.1002/dvdy.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.
Collapse
Affiliation(s)
- Alexandra Noble
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rozana Qubrosi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Solsa Cariba
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Favaro
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samantha L Payne
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Ohashi A, Terai S, Furukawa S, Yamamoto S, Kashimoto R, Satoh A. Tenascin-C-enriched regeneration-specific extracellular matrix guarantees superior muscle regeneration in Ambystoma mexicanum. Dev Biol 2023; 504:98-112. [PMID: 37778717 DOI: 10.1016/j.ydbio.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Suzuno Terai
- Okayama University, Faculty of Science, Department of Biological Sciences, Okayama, Japan
| | - Saya Furukawa
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Sakiya Yamamoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Rena Kashimoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Akira Satoh
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan; Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan.
| |
Collapse
|
20
|
Tajer B, Savage AM, Whited JL. The salamander blastema within the broader context of metazoan regeneration. Front Cell Dev Biol 2023; 11:1206157. [PMID: 37635872 PMCID: PMC10450636 DOI: 10.3389/fcell.2023.1206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.
Collapse
Affiliation(s)
| | | | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
21
|
Vieira WA, Raymond M, Kelley K, Cherubino MA, Sahin H, McCusker CD. Integration failure of regenerated limb tissue is associated with incongruencies in positional information in the Mexican axolotl. Front Cell Dev Biol 2023; 11:1152510. [PMID: 37333984 PMCID: PMC10272535 DOI: 10.3389/fcell.2023.1152510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: Little is known about how the newly regenerated limb tissues in the Mexican axolotl seamlessly integrate with the remaining stump tissues to form a functional structure, and why this doesn't occur in some regenerative scenarios. In this study, we evaluate the phenomenological and transcriptional characteristics associated with integration failure in ectopic limb structures generated by treating anterior-located ectopic blastemas with Retinoic Acid (RA) and focusing on the "bulbus mass" tissue that forms between the ectopic limb and the host site. We additionally test the hypothesis that the posterior portion of the limb base contains anterior positional identities. Methods: The positional identity of the bulbus mass was evaluated by assaying regenerative competency, the ability to induce new pattern in the Accessory Limb Model (ALM) assay, and by using qRTPCR to quantify the relative expression of patterning genes as the bulbus mass deintegrates from the host site. We additionally use the ALM and qRTPCR to analyze the distribution of anterior and posterior positional identities along the proximal/distal limb axis of uninjured and regenerating limbs. Results: The bulbus mass regenerates limb structures with decreased complexity when amputated and is able to induce complex ectopic limb structure only when grafted into posterior-located ALMs. Expressional analysis shows significant differences in FGF8, BMP2, TBX5, Chrdl1, HoxA9, and HoxA11 expression between the bulbus mass and the host site when deintegration is occuring. Grafts of posterior skin from the distal limb regions into posterior ALMs at the base of the limb induce ectopic limb structures. Proximally-located blastemas express significantly less HoxA13 and Ptch1, and significantly more Alx4 and Grem1 than distally located blastemas. Discussion: These findings show that the bulbus mass has an anterior-limb identity and that the expression of limb patterning genes is mismatched between the bulbus mass and the host limb. Our findings additionally show that anterior positional information is more abundant at the limb base, and that anterior patterning genes are more abundantly expressed in proximally located blastemas compared to blastemas in the more distal regions of the limb. These experiments provide valuable insight into the underlying causes of integration failure and further map the distribution of positional identities in the mature limb.
Collapse
|
22
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Kashimoto R, Kamei Y, Nonaka S, Kondo Y, Yamamoto S, Furukawa S, Ohashi A, Satoh A. FGF signaling induces the regeneration of collagen fiber structure during skin wound healing in axolotls. Dev Biol 2023; 498:14-25. [PMID: 36963624 DOI: 10.1016/j.ydbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Axolotls have been considered to be able to regenerate their skin completely. Our recent study updated this theory with the finding that the lattice structure of dermal collagen fibers was not fully regenerated after skin injury. We also discovered that nerves induce the regeneration of collagen fibers. The mechanism of collagen fiber regeneration remains unknown, however. In this study, we focused on the structure of collagen fibers with collagen braiding cells, and cell origin in axolotl skin regeneration. In the wounded dermis, cells involved in skin repair/regeneration were derived from both the surrounding dermis and the subcutaneous tissue. Regardless of cell origin, cells acquired the proper cell morphology to braid collagen fiber with nerve presence. We also found that FGF signaling could substitute for the nerve roles in the conversion of subcutaneous fibroblasts to lattice-shaped dermal fibroblasts. Our findings contribute to the elucidation of the fundamental mechanisms of true skin regeneration and provide useful insights for pioneering new skin treatments.
Collapse
Affiliation(s)
- Rena Kashimoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigenori Nonaka
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yohei Kondo
- National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Exploratory Research Center for Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Sakiya Yamamoto
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Saya Furukawa
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ayaka Ohashi
- Division of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
24
|
Suzuki M, Iida M, Hayashi T, Suzuki KIT. CRISPR-Cas9-Based Functional Analysis in Amphibians: Xenopus laevis, Xenopus tropicalis, and Pleurodeles waltl. Methods Mol Biol 2023; 2637:341-357. [PMID: 36773159 DOI: 10.1007/978-1-0716-3016-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Amphibians have made many fundamental contributions to our knowledge, from basic biology to biomedical research on human diseases. Current genome editing tools based on the CRISPR-Cas system enable us to perform gene functional analysis in vivo, even in non-model organisms. We introduce here a highly efficient and easy protocol for gene knockout, which can be used in three different amphibians seamlessly: Xenopus laevis, Xenopus tropicalis, and Pleurodeles waltl. As it utilizes Cas9 ribonucleoprotein complex (RNP) for injection, this cloning-free method enables researchers to obtain founder embryos with a nearly complete knockout phenotype within a week. To evaluate somatic mutation rate and its correlation to the phenotype of a Cas9 RNP-injected embryo (crispant), we also present accurate and cost-effective genotyping methods using pooled amplicon-sequencing and a user-friendly web-based tool.
Collapse
Affiliation(s)
- Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Midori Iida
- Department of Bioscience and Bioinformatics, School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Ken-Ichi T Suzuki
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| |
Collapse
|
25
|
Min S, Whited JL. Limb blastema formation: How much do we know at a genetic and epigenetic level? J Biol Chem 2023; 299:102858. [PMID: 36596359 PMCID: PMC9898764 DOI: 10.1016/j.jbc.2022.102858] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Regeneration of missing body parts is an incredible ability which is present in a wide number of species. However, this regenerative capability varies among different organisms. Urodeles (salamanders) are able to completely regenerate limbs after amputation through the essential process of blastema formation. The blastema is a collection of relatively undifferentiated progenitor cells that proliferate and repattern to form the internal tissues of a regenerated limb. Understanding blastema formation in salamanders may enable comparative studies with other animals, including mammals, with more limited regenerative abilities and may inspire future therapeutic approaches in humans. This review focuses on the current state of knowledge about how limb blastemas form in salamanders, highlighting both the possible roles of epigenetic controls in this process as well as limitations to scientific understanding that present opportunities for research.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
26
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
27
|
Kashimoto R, Furukawa S, Yamamoto S, Satoh A. Bead Implantation and Delivery of Exogenous Growth Factors. Methods Mol Biol 2023; 2562:209-216. [PMID: 36272078 DOI: 10.1007/978-1-0716-2659-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetic methods in axolotls (Ambystoma mexicanum) remain in their infancy which has hampered the study of limb regeneration. There is much room for advancement, especially with respect to spatiotemporal regulation of gene expression. Secreted growth factors play a major role in each stage of regeneration. The use of slow-release beads is one of the most effective methods to control the spatiotemporal expression of secretory gene products. The topical administration of secreted factors by slow-release beads may also prove effective for future applications in non-regenerative animals and for medical applications in humans, in which genetic methods are not available. In this chapter, we describe a methodology for using and implanting slow-release beads to deliver exogenous growth factors to salamanders.
Collapse
Affiliation(s)
- Rena Kashimoto
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Saya Furukawa
- Okayama University, Faculty of Science, Department of Biological Science, Okayama, Japan
| | - Sakiya Yamamoto
- Okayama University, Faculty of Science, Department of Biological Science, Okayama, Japan
| | - Akira Satoh
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan.
- Okayama University, Research Core for Interdisciplinary Sciences (RCIS), Okayama, Japan.
| |
Collapse
|
28
|
Abstract
When the Accessory Limb Model (ALM) regenerative assay was first published by Endo, Bryant, and Gardiner in 2004, it provided a robust system for testing the cellular and molecular contributions during each of the basic steps of regeneration: the formation of the wound epithelium, neural induction of the apical epithelial cap, and the formation of a positional disparity between blastema cells. The basic ALM procedure was developed in the axolotl and involves deviating a limb nerve into a lateral wound and grafting skin from the opposing side of the limb axis into the site of injury. In this chapter, we will review the studies that lead to the conception of the ALM, as well as the studies that have followed the development of this assay. We will additionally describe in detail the standard ALM surgery and how to perform this surgery on different limb positions.
Collapse
Affiliation(s)
- Michael Raymond
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | | |
Collapse
|
29
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
30
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
31
|
Hu Y, Pan X, Shi Y, Qiu Y, Wang L, Murawala P, Liu Y, Xing W, Tanaka EM, Fei JF. Muscles are barely required for the patterning and cell dynamics in axolotl limb regeneration. Front Genet 2022; 13:1036641. [PMID: 36299593 PMCID: PMC9589296 DOI: 10.3389/fgene.2022.1036641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of a complex appendage structure such as limb requires upstream and downstream coordination of multiple types of cells. Given type of cell may sit at higher upstream position to control the activities of other cells. Muscles are one of the major cell masses in limbs. However, the subtle functional relationship between muscle and other cells in vertebrate complex tissue regeneration are still not well established. Here, we use Pax7 mutant axolotls, in which the limb muscle is developmentally lost, to investigate limb regeneration in the absence of skeletal muscle. We find that the pattern of regenerated limbs is relative normal in Pax7 mutants compared to the controls, but the joint is malformed in the Pax7 mutants. Lack of muscles do not affect the early regeneration responses, specifically the recruitment of macrophages to the wound, as well as the proliferation of fibroblasts, another major population in limbs. Furthermore, using single cell RNA-sequencing, we show that, other than muscle lineage that is mostly missing in Pax7 mutants, the composition and the status of other cell types in completely regenerated limbs of Pax7 mutants are similar to that in the controls. Our study reveals skeletal muscle is barely required for the guidance of other cells, as well the patterning in complex tissue regeneration in axolotls, and provides refined views of the roles of muscle cell in vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Yan Hu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiangyu Pan
- Department of Medical Research, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuanhui Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Prayag Murawala
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| |
Collapse
|
32
|
Carbonell-M B, Zapata Cardona J, Delgado JP. Post-amputation reactive oxygen species production is necessary for axolotls limb regeneration. Front Cell Dev Biol 2022; 10:921520. [PMID: 36092695 PMCID: PMC9458980 DOI: 10.3389/fcell.2022.921520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction: Reactive oxygen species (ROS) represent molecules of great interest in the field of regenerative biology since several animal models require their production to promote and favor tissue, organ, and appendage regeneration. Recently, it has been shown that the production of ROS such as hydrogen peroxide (H2O2) is required for tail regeneration in Ambystoma mexicanum. However, to date, it is unknown whether ROS production is necessary for limb regeneration in this animal model. Methods: forelimbs of juvenile animals were amputated proximally and the dynamics of ROS production was determined using 2′7- dichlorofluorescein diacetate (DCFDA) during the regeneration process. Inhibition of ROS production was performed using the NADPH oxidase inhibitor apocynin. Subsequently, a rescue assay was performed using exogenous hydrogen peroxide (H2O2). The effect of these treatments on the size and skeletal structures of the regenerated limb was evaluated by staining with alcian blue and alizarin red, as well as the effect on blastema formation, cell proliferation, immune cell recruitment, and expression of genes related to proximal-distal identity. Results: our results show that inhibition of post-amputation limb ROS production in the A. mexicanum salamander model results in the regeneration of a miniature limb with a significant reduction in the size of skeletal elements such as the ulna, radius, and overall autopod. Additionally, other effects such as decrease in the number of carpals, defective joint morphology, and failure of integrity between the regenerated structure and the remaining tissue were identified. In addition, this treatment affected blastema formation and induced a reduction in the levels of cell proliferation in this structure, as well as a reduction in the number of CD45+ and CD11b + immune system cells. On the other hand, blocking ROS production affected the expression of proximo-distal identity genes such as Aldha1a1, Rarβ, Prod1, Meis1, Hoxa13, and other genes such as Agr2 and Yap1 in early/mid blastema. Of great interest, the failure in blastema formation, skeletal alterations, as well as the expression of the genes evaluated were rescued by the application of exogenous H2O2, suggesting that ROS/H2O2 production is necessary from the early stages for proper regeneration and patterning of the limb.
Collapse
Affiliation(s)
- Belfran Carbonell-M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quiron, Escuela de MedicinaVeterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| |
Collapse
|
33
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
34
|
Satoh A, Kashimoto R, Ohashi A, Furukawa S, Yamamoto S, Inoue T, Hayashi T, Agata K. An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration. ZOOLOGICAL LETTERS 2022; 8:6. [PMID: 35484631 PMCID: PMC9047331 DOI: 10.1186/s40851-022-00190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Urodele amphibians, Pleurodeles waltl and Ambystoma mexicanum, have organ-level regeneration capability, such as limb regeneration. Multipotent cells are induced by an endogenous mechanism in amphibian limb regeneration. It is well known that dermal fibroblasts receive regenerative signals and turn into multipotent cells, called blastema cells. However, the induction mechanism of the blastema cells from matured dermal cells was unknown. We previously found that BMP2, FGF2, and FGF8 (B2FF) could play sufficient roles in blastema induction in urodele amphibians. Here, we show that B2FF treatment can induce dermis-derived cells that can participate in multiple cell lineage in limb regeneration. We first established a newt dermis-derived cell line and confirmed that B2FF treatment on the newt cells provided plasticity in cellular differentiation in limb regeneration. To clarify the factors that can provide the plasticity in differentiation, we performed the interspecies comparative analysis between newt cells and mouse cells and found the Pde4b gene was upregulated by B2FF treatment only in the newt cells. Blocking PDE4B signaling by a chemical PDE4 inhibitor suppressed dermis-to-cartilage transformation and the mosaic knockout animals showed consistent results. Our results are a valuable insight into how dermal fibroblasts acquire multipotency during the early phase of limb regeneration via an endogenous program in amphibian limb regeneration.
Collapse
Affiliation(s)
- Akira Satoh
- Research Core for Interdisciplinary Sciences (RCIS), Okayama University, 3-1-1, Tsushima-naka, Kitaku, Okayama, 700-8530, Japan.
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Rena Kashimoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ayaka Ohashi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Saya Furukawa
- Faculty of Science, Department of Biological Sciences, Okayama University, Okayama, Japan
| | - Sakiya Yamamoto
- Faculty of Science, Department of Biological Sciences, Okayama University, Okayama, Japan
| | - Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
35
|
Yamamoto S, Kashimoto R, Furukawa S, Ohashi A, Satoh A. Lmx1b activation in axolotl limb regeneration. Dev Dyn 2022; 251:1509-1523. [PMID: 35403281 DOI: 10.1002/dvdy.476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Axolotls can regenerate their limbs. In their limb regeneration process, developmental genes are re-expressed and reorganize the developmental axes, in which the position-specific genes are properly re-expressed. However, how such position specificity is reorganized in the regeneration processes has not been clarified. To address this issue, we focused on the reactivation process of Lmx1b, which determines the limb dorsal identity in many animals. RESULTS Here, we show that Lmx1b expression is maintained in the dorsal skin before amputation and is activated after amputation. Furthermore, we demonstrate that only cells located in the dorsal side prior to limb amputation could reactivate Lmx1b after limb amputation. We also found that Lmx1b activation was achieved by nerve presence. The nerve factors, BMP2 + FGF2 + FGF8 (B2FF), consistently reactivate Lmx1b when applied to the dorsal skin. CONCLUSIONS These results imply that the retained Lmx1b expression in the intact skin plays a role in positional memory, which instruct cells about the spatial positioning before amputation. This memory is reactivated by nerves or nerve factors that can trigger the entire limb regeneration process. Our findings highlight the role of nerves in amphibian limb regeneration, including both the initiation of limb regeneration and the reactivation of position-specific gene expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sakiya Yamamoto
- Department of Biological Sciences, Okayama University, Faculty of Science, Okayama, Japan
| | - Rena Kashimoto
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Saya Furukawa
- Department of Biological Sciences, Okayama University, Faculty of Science, Okayama, Japan
| | - Ayaka Ohashi
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Akira Satoh
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan.,Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| |
Collapse
|
36
|
Duerr TJ, Jeon EK, Wells KM, Villanueva A, Seifert AW, McCusker CD, Monaghan JR. A constitutively expressed fluorescent ubiquitination-based cell-cycle indicator (FUCCI) in axolotls for studying tissue regeneration. Development 2022; 149:dev199637. [PMID: 35266986 PMCID: PMC8977096 DOI: 10.1242/dev.199637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/18/2022] [Indexed: 01/29/2023]
Abstract
Regulation of cell cycle progression is essential for cell proliferation during regeneration following injury. After appendage amputation, the axolotl (Ambystoma mexicanum) regenerates missing structures through an accumulation of proliferating cells known as the blastema. To study cell division during blastema growth, we generated a transgenic line of axolotls that ubiquitously expresses a bicistronic version of the fluorescent ubiquitination-based cell-cycle indicator (FUCCI). We demonstrate near-ubiquitous FUCCI expression in developing and adult tissues, and validate these expression patterns with DNA synthesis and mitosis phase markers. We demonstrate the utility of FUCCI for live and whole-mount imaging, showing the predominantly local contribution of cells during limb and tail regeneration. We also show that spinal cord amputation results in increased proliferation at least 5 mm from the site of injury. Finally, we use multimodal staining to provide cell type information for cycling cells by combining fluorescence in situ hybridization, EdU click-chemistry and immunohistochemistry on a single FUCCI tissue section. This new line of animals will be useful for studying cell cycle dynamics using in situ endpoint assays and in vivo imaging in developing and regenerating animals.
Collapse
Affiliation(s)
- Timothy J. Duerr
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Eun Kyung Jeon
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Kaylee M. Wells
- University of Massachusetts Boston, Department of Biology, Boston, MA 02125, USA
| | | | - Ashley W. Seifert
- University of Kentucky, Department of Biology, Lexington, KY 40506, USA
| | | | - James R. Monaghan
- Northeastern University, Department of Biology, Boston, MA 02115, USA
| |
Collapse
|
37
|
Wells KM, Baumel M, McCusker CD. The Regulation of Growth in Developing, Homeostatic, and Regenerating Tetrapod Limbs: A Minireview. Front Cell Dev Biol 2022; 9:768505. [PMID: 35047496 PMCID: PMC8763381 DOI: 10.3389/fcell.2021.768505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.
Collapse
|
38
|
Wells KM, Kelley K, Baumel M, Vieira WA, McCusker CD. Neural control of growth and size in the axolotl limb regenerate. eLife 2021; 10:68584. [PMID: 34779399 PMCID: PMC8716110 DOI: 10.7554/elife.68584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the ‘tiny-limb’ stage, which is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the accessory limb model (ALM), we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the neural modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb. Humans’ ability to regrow lost or damaged body parts is relatively limited, but some animals, such as the axolotl (a Mexican salamander), can regenerate complex body parts, like legs, many times over their lives. Studying regeneration in these animals could help researchers enhance humans’ abilities to heal. One way to do this is using the Accessory Limb Model (ALM), where scientists wound an axolotl’s leg, and study the additional leg that grows from the wound. The first stage of limb regeneration creates a new leg that has the right structure and shape. The new leg is very small so the next phase involves growing the leg until its size matches the rest of the animal. This phase must be controlled so that the limb stops growing when it reaches the right size, but how this regulation works is unclear. Previous research suggests that the number of nerves in the new leg could be important. Wells et al. used a ALM to study how the size of regenerating limbs is controlled. They found that changing the number of nerves connected to the new leg altered its size, with more nerves leading to a larger leg. Next, Wells et al. created a system that used transplanted nerve bundles of different sizes to grow new legs in different sized axolotls. This showed that the size of the resulting leg is controlled by the number of nerves connecting it to the CNS. Wells et al. also showed that nerves can only control regeneration if they remain connected to the central nervous system. These results explain how size is controlled during limb regeneration in axolotls, highlighting the fact that regrowth is directly controlled by the number of nerves connected to a regenerating leg. Much more work is needed to reveal the details of this process and the signals nerves use to control growth. It will also be important to determine whether this control system is exclusive to axolotls, or whether other animals also use it.
Collapse
Affiliation(s)
- Kaylee M Wells
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Kristina Kelley
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Mary Baumel
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Warren A Vieira
- Biology Department, University of Massachusetts Boston, Boston, United States
| | | |
Collapse
|
39
|
Yamamoto S, Kashimoto R, Furukawa S, Sakamoto H, Satoh A. Nerve-mediated FGF-signaling in the early phase of various organ regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:529-539. [PMID: 34387925 DOI: 10.1002/jez.b.23093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 07/25/2021] [Indexed: 01/17/2023]
Abstract
Amphibians have a very high capacity for regeneration among tetrapods. This superior regeneration capability in amphibians can be observed in limbs, the tail, teeth, external gills, the heart, and some internal organs. The mechanisms underlying the superior organ regeneration capability have been studied for a long time. Limb regeneration has been investigated as the representative phenomenon for organ-level regeneration. In limb regeneration, a prominent difference between regenerative and nonregenerative animals after limb amputation is blastema formation. A regeneration blastema requires the presence of nerves in the stump region. Thus, nerve regulation is responsible for blastema induction, and it has received much attention. Nerve regulation in regeneration has been investigated using the limb regeneration model and newly established alternative experimental model called the accessory limb model. Previous studies have identified some candidate genes that act as neural factors in limb regeneration, and these studies also clarified related events in early limb regeneration. Consistent with the nervous regulation and related events in limb regeneration, similar regeneration mechanisms in other organs have been discovered. This review especially focuses on the role of nerve-mediated fibroblast growth factor in the initiation phase of organ regeneration. Comparison of the initiation mechanisms for regeneration in various amphibian organs allows speculation about a fundamental regenerative process.
Collapse
Affiliation(s)
- Sakiya Yamamoto
- Department of Biological Science, Faculty of Science, Okayama University, Okayama, Japan
| | - Rena Kashimoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Saya Furukawa
- Department of Biological Science, Faculty of Science, Okayama University, Okayama, Japan
| | - Hirotaka Sakamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Ushimado Marine Institute (UMI), Okayama University, Okayama, Japan
| | - Akira Satoh
- Department of Biological Science, Faculty of Science, Okayama University, Okayama, Japan.,Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| |
Collapse
|
40
|
Prudovsky I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021; 10:cells10071830. [PMID: 34360000 PMCID: PMC8304273 DOI: 10.3390/cells10071830] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Growth factors belonging to the FGF family play important roles in tissue and organ repair after trauma. In this review, I discuss the regulation by FGFs of the aspects of cellular behavior important for reparative processes. In particular, I focus on the FGF-dependent regulation of cell proliferation, cell stemness, de-differentiation, inflammation, angiogenesis, cell senescence, cell death, and the production of proteases. In addition, I review the available literature on the enhancement of FGF expression and secretion in damaged tissues resulting in the increased FGF supply required for tissue repair.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| |
Collapse
|
41
|
Sader F, Roy S. Tgf-β superfamily and limb regeneration: Tgf-β to start and Bmp to end. Dev Dyn 2021; 251:973-987. [PMID: 34096672 DOI: 10.1002/dvdy.379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Axolotls represent a popular model to study how nature solved the problem of regenerating lost appendages in tetrapods. Our work over many years focused on trying to understand how these animals can achieve such a feat and not end up with a scarred up stump. The Tgf-β superfamily represents an interesting family to target since they are involved in wound healing in adults and pattern formation during development. This family is large and comprises Tgf-β, Bmps, activins and GDFs. In this review, we present work from us and others on Tgf-β & Bmps and highlight interesting observations between these two sub-families. Tgf-β is important for the preparation phase of regeneration and Bmps for the redevelopment phase and they do not overlap with one another. We present novel data showing that the Tgf-β non-canonical pathway is also not active during redevelopment. Finally, we propose a molecular model to explain how Tgf-β and Bmps maintain distinct windows of expression during regeneration in axolotls.
Collapse
Affiliation(s)
- Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
42
|
Czarkwiani A, Dylus DV, Carballo L, Oliveri P. FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star Amphiura filiformis. Development 2021; 148:dev180760. [PMID: 34042967 PMCID: PMC8180256 DOI: 10.1242/dev.180760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells that flank underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star-specific differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes, and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David V. Dylus
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK
| | - Luisana Carballo
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Life's Origin and Evolution (CLOE), University College London, London WC1E 6BT, UK
| |
Collapse
|
43
|
Wang MH, Hsu CL, Wu CH, Chiou LL, Tsai YT, Lee HS, Lin SP. Timing Does Matter: Nerve-Mediated HDAC1 Paces the Temporal Expression of Morphogenic Genes During Axolotl Limb Regeneration. Front Cell Dev Biol 2021; 9:641987. [PMID: 34041236 PMCID: PMC8143519 DOI: 10.3389/fcell.2021.641987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/04/2022] Open
Abstract
Sophisticated axolotl limb regeneration is a highly orchestrated process that requires highly regulated gene expression and epigenetic modification patterns at precise positions and timings. We previously demonstrated two waves of post-amputation expression of a nerve-mediated repressive epigenetic modulator, histone deacetylase 1 (HDAC1), at the wound healing (3 days post-amputation; 3 dpa) and blastema formation (8 dpa onward) stages in juvenile axolotls. Limb regeneration was profoundly inhibited by local injection of an HDAC inhibitor, MS-275, at the amputation sites. To explore the transcriptional response of post-amputation axolotl limb regeneration in a tissue-specific and time course-dependent manner after MS-275 treatment, we performed transcriptome sequencing of the epidermis and soft tissue (ST) at 0, 3, and 8 dpa with and without MS-275 treatment. Gene Ontology (GO) enrichment analysis of each coregulated gene cluster revealed a complex array of functional pathways in both the epidermis and ST. In particular, HDAC activities were required to inhibit the premature elevation of genes related to tissue development, differentiation, and morphogenesis. Further validation by Q-PCR in independent animals demonstrated that the expression of 5 out of 6 development- and regeneration-relevant genes that should only be elevated at the blastema stage was indeed prematurely upregulated at the wound healing stage when HDAC1 activity was inhibited. WNT pathway-associated genes were also prematurely activated under HDAC1 inhibition. Applying a WNT inhibitor to MS-275-treated amputated limbs partially rescued HDAC1 inhibition, resulting in blastema formation defects. We propose that post-amputation HDAC1 expression is at least partially responsible for pacing the expression timing of morphogenic genes to facilitate proper limb regeneration.
Collapse
Affiliation(s)
- Mu-Hui Wang
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Ling Chiou
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Yi-Tzang Tsai
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Shu Lee
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shau-Ping Lin
- College of Bioresources and Agriculture, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Center of Systems Biology, National Taiwan University, Taipei, Taiwan.,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Vieira WA, Goren S, McCusker CD. ECM-mediated positional cues are able to induce pattern, but not new positional information, during axolotl limb regeneration. PLoS One 2021; 16:e0248051. [PMID: 33667253 PMCID: PMC7935289 DOI: 10.1371/journal.pone.0248051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
The Mexican Axolotl is able to regenerate missing limb structures in any position along the limb axis throughout its life and serves as an excellent model to understand the basic mechanisms of endogenous regeneration. How the new pattern of the regenerating axolotl limb is established has not been completely resolved. An accumulating body of evidence indicates that pattern formation occurs in a hierarchical fashion, which consists of two different types of positional communications. The first type (Type 1) of communication occurs between connective tissue cells, which retain memory of their original pattern information and use this memory to generate the pattern of the regenerate. The second type (Type 2) of communication occurs from connective tissue cells to other cell types in the regenerate, which don’t retain positional memory themselves and arrange themselves according to these positional cues. Previous studies suggest that molecules within the extracellular matrix (ECM) participate in pattern formation in developing and regenerating limbs. However, it is unclear whether these molecules play a role in Type 1 or Type 2 positional communications. Utilizing the Accessory Limb Model, a regenerative assay, and transcriptomic analyses in regenerates that have been reprogrammed by treatment with Retinoic Acid, our data indicates that the ECM likely facilities Type-2 positional communications during limb regeneration.
Collapse
Affiliation(s)
- Warren A. Vieira
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
| | - Shira Goren
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
| | - Catherine D. McCusker
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Otsuka T, Mengsteab PY, Laurencin CT. Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res 2021; 51:102155. [PMID: 33445073 PMCID: PMC8027992 DOI: 10.1016/j.scr.2021.102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
In order to develop strategies to regenerate complex tissues in mammals, understanding the role of signaling in regeneration competent species and mammalian development is of critical importance. Fibroblast growth factor 8 (FGF-8) signaling has an essential role in limb morphogenesis and blastema outgrowth. Therefore, we aimed to study the effect of FGF-8b on the proliferation and differentiation of mesenchymal stem cells (MSCs), which have tremendous potential for therapeutic use of cell-based therapy. Rat adipose derived stem cells (ADSCs) and muscle progenitor cells (MPCs) were isolated and cultured in growth medium and various types of differentiation medium (osteogenic, chondrogenic, adipogenic, tenogenic, and myogenic medium) with or without FGF-8b supplementation. We found that FGF-8b induced robust proliferation regardless of culture medium. Genes related to limb development were upregulated in ADSCs by FGF-8b supplementation. Moreover, FGF-8b enhanced chondrogenic differentiation and suppressed adipogenic and tenogenic differentiation in ADSCs. Osteogenic differentiation was not affected by FGF-8b supplementation. FGF-8b was found to enhance myofiber formation in rat MPCs. Overall, this study provides foundational knowledge on the effect of FGF-8b in the proliferation and fate determination of MSCs and provides insight in its potential efficacy for musculoskeletal therapies.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
46
|
Mengsteab PY, Otsuka T, McClinton A, Shemshaki NS, Shah S, Kan HM, Obopilwe E, Vella AT, Nair LS, Laurencin CT. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc Natl Acad Sci U S A 2020; 117:28655-28666. [PMID: 33144508 PMCID: PMC7682397 DOI: 10.1073/pnas.2012347117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gold standard treatment for anterior cruciate ligament (ACL) reconstruction is the use of tendon autografts and allografts. Limiting factors for this treatment include donor site morbidity, potential disease transmission, and variable graft quality. To address these limitations, we previously developed an off-the-shelf alternative, a poly(l-lactic) acid (PLLA) bioengineered ACL matrix, and demonstrated its feasibility to regenerate ACL tissue. This study aims to 1) accelerate the rate of regeneration using the bioengineered ACL matrix by supplementation with bone marrow aspirate concentrate (BMAC) and growth factors (BMP-2, FGF-2, and FGF-8) and 2) increase matrix strength retention. Histological evaluation showed robust tissue regeneration in all groups. The presence of cuboidal cells reminiscent of ACL fibroblasts and chondrocytes surrounded by an extracellular matrix rich in anionic macromolecules was up-regulated in the BMAC group. This was not observed in previous studies and is indicative of enhanced regeneration. Additionally, intraarticular treatment with FGF-2 and FGF-8 was found to suppress joint inflammation. To increase matrix strength retention, we incorporated nondegradable fibers, polyethylene terephthalate (PET), into the PLLA bioengineered ACL matrix to fabricate a "tiger graft." The tiger graft demonstrated the greatest peak loads among the experimental groups and the highest to date in a rabbit model. Moreover, the tiger graft showed superior osteointegration, making it an ideal bioengineered ACL matrix. The results of this study illustrate the beneficial effect bioactive factors and PET incorporation have on ACL regeneration and signal a promising step toward the clinical translation of a functional bioengineered ACL matrix.
Collapse
Affiliation(s)
- Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
| | - Aneesah McClinton
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, 06030
| | - Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Shiv Shah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
| | - Elifho Obopilwe
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030;
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
47
|
Ohashi A, Saito N, Kashimoto R, Furukawa S, Yamamoto S, Satoh A. Axolotl liver regeneration is accomplished via compensatory congestion mechanisms regulated by ERK signaling after partial hepatectomy. Dev Dyn 2020; 250:838-851. [DOI: 10.1002/dvdy.262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ayaka Ohashi
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) Okayama Japan
- Okayama University Faculty of Science, Department of Biology Okayama Japan
| | - Nanami Saito
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) Okayama Japan
- Okayama University Graduate School of Natural Science and Technology Okayama Japan
| | - Rena Kashimoto
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) Okayama Japan
- Okayama University Graduate School of Natural Science and Technology Okayama Japan
| | - Saya Furukawa
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) Okayama Japan
- Okayama University Faculty of Science, Department of Biology Okayama Japan
| | - Sakiya Yamamoto
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) Okayama Japan
- Okayama University Faculty of Science, Department of Biology Okayama Japan
| | - Akira Satoh
- Okayama University Research Core for Interdisciplinary Sciences (RCIS) Okayama Japan
| |
Collapse
|
48
|
Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front Cell Dev Biol 2020; 8:781. [PMID: 32984311 PMCID: PMC7477050 DOI: 10.3389/fcell.2020.00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular plasticity refers to the ability of cell fates to be reprogrammed given the proper signals, allowing for dedifferentiation or transdifferentiation into different cell fates. In vitro, this can be induced through direct activation of gene expression, however this process does not naturally occur in vivo. Instead, the microenvironment consisting of the extracellular matrix (ECM) and signaling factors, directs the signals presented to cells. Often the ECM is involved in regulating both biochemical and mechanical signals. In stem cell populations, this niche is necessary for maintenance and proper function of the stem cell pool. However, recent studies have demonstrated that differentiated or lineage restricted cells can exit their current state and transform into another state under different situations during development and regeneration. This may be achieved through (1) cells responding to a changing niche; (2) cells migrating and encountering a new niche; and (3) formation of a transitional niche followed by restoration of the homeostatic niche to sequentially guide cells along the regenerative process. This review focuses on examples in musculoskeletal biology, with the concept of ECM regulating cells and stem cells in development and regeneration, extending beyond the conventional concept of small population of progenitor cells, but under the right circumstances even “lineage-restricted” or differentiated cells can be reprogrammed to enter into a different fate.
Collapse
Affiliation(s)
- Sophia Ka Yan Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Department of Orthopedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
49
|
Makanae A, Tajika Y, Nishimura K, Saito N, Tanaka JI, Satoh A. Neural regulation in tooth regeneration of Ambystoma mexicanum. Sci Rep 2020; 10:9323. [PMID: 32518359 PMCID: PMC7283310 DOI: 10.1038/s41598-020-66142-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/15/2020] [Indexed: 12/03/2022] Open
Abstract
The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nerve-dependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration. The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nervedependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration.
Collapse
Affiliation(s)
- Aki Makanae
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Yuki Tajika
- Gunma University, Department of Anatomy, Graduate School of Medicine 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Koki Nishimura
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Nanami Saito
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Jun-Ichi Tanaka
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Akira Satoh
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan.
| |
Collapse
|
50
|
Identification of Heparan-Sulfate Rich Cells in the Loose Connective Tissues of the Axolotl (Ambystoma mexicanum) with the Potential to Mediate Growth Factor Signaling during Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:7-17. [PMID: 33748405 DOI: 10.1007/s40883-019-00140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Limb regeneration is the outcome of a complex sequence of events that are mediated by interactions between cells derived from the tissues of the amputated stump. Early in regeneration, these interactions are mediated by growth factor/morphogen signaling associated with nerves and the wound epithelium. One shared property of these proregenerative signaling molecules is that their activity is dependent on interactions with sulfated glycosaminoglycans (GAGs), heparan sulfate proteoglycan (HSPG) in particular, in the extracellular matrix (ECM). We hypothesized that there are cells in the axolotl that synthesize specific HSPGs that control growth factor signaling in time and space. In this study we have identified a subpopulation of cells within the ECM of axolotl skin that express high levels of sulfated GAGs on their cell surface. These cells are dispersed in a grid-like pattern throughout the dermis as well as the loose connective tissues that surround the tissues of the limb. These cells alter their morphology during regeneration, and are candidates for being a subpopulation of connective tissue cells that function as the cells required for pattern-formation during regeneration. Given their high level of HSPG expression, their stellate morphology, and their distribution throughout the loose connective tissues, we refer to these as the positional information GRID (Groups that are Regenerative, Interspersed and Dendritic) cells. In addition, we have identified cells that stain for high levels of expression of sulfated GAGs in mouse limb connective tissue that could have an equivalent function to GRID cells in the axolotl. The identification of GRID cells may have important implications for work in the area of Regenerative Engineering.
Collapse
|