1
|
Huang P, Chen G, Zhu Z, Wang S, Chen Z, Chai Y, Li W, Ou G. Phosphorylation-dependent regional motility of the ciliary kinesin OSM-3. J Cell Biol 2025; 224:e202407152. [PMID: 40272473 PMCID: PMC12020746 DOI: 10.1083/jcb.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/29/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Kinesin motor proteins, vital for intracellular microtubule-based transport, display region-specific motility within cells, a phenomenon that remains molecularly enigmatic. This study focuses on the localized activation of OSM-3, an intraflagellar transport kinesin crucial for the assembly of ciliary distal segments in Caenorhabditis elegans sensory neurons. Fluorescence lifetime imaging microscopy unveiled an extended, active conformation of OSM-3 in the ciliary base and middle segments, where OSM-3 is conveyed as cargo by kinesin-II. We demonstrate that NEKL-3, a never in mitosis kinase-like protein, directly phosphorylates the motor domain of OSM-3, inhibiting its in vitro activity. NEKL-3 and NEKL-4, localized at the ciliary base, function redundantly to restrict OSM-3 activation. Elevated levels of protein phosphatase 2A at the ciliary transition zone or middle segments triggered premature OSM-3 motility, while its deficiency resulted in reduced OSM-3 activity and shorter cilia. These findings elucidate a phosphorylation-mediated mechanism governing the regional motility of kinesins.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Shimin Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of Caenorhabditis elegans. Genetics 2025; 229:iyae216. [PMID: 39722491 DOI: 10.1093/genetics/iyae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Membrane trafficking is a conserved process required for the import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach, we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine flippase that promotes the asymmetric distribution of phosphatidylserine on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a phosphatidylserine sensor, we found that TAT-1 was required for the normal localization of phosphatidylserine at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology domain-containing protein, EHD1. TAT-1, phosphatidylserine biosynthesis, and the phosphatidylserine-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of phosphatidylserine biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.
Collapse
Affiliation(s)
- Shae M Milne
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
3
|
Binti S, Edeen PT, Fay DS. Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects. G3 (BETHESDA, MD.) 2024; 14:jkae244. [PMID: 39428996 PMCID: PMC11631496 DOI: 10.1093/g3journal/jkae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The conserved Caenorhabditis elegans protein kinases NEKL-2 and NEKL-3 regulate membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 encodes a membrane-associated P4-type ATPase involved in Na+-K+ exchange. A previous study found that wild-type worms exposed to the nicotinic agonist dimethylphenylpiperazinium (DMPP) exhibited larval arrest and molting-associated defects, which were suppressed by inhibition of catp-1. By testing a spectrum catp-1 alleles, we found that resistance to DMPP toxicity and the suppression of nekl defects did not strongly correlate, suggesting key differences in the mechanism of catp-1-mediated suppression. Through whole genome sequencing of additional nekl-2; nekl-3 suppressor strains, we identified two additional coding-altering mutations in catp-1. However, neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR, was sufficient to elicit robust suppression of molting defects, suggesting the involvement of other loci. Endogenously tagged CATP-1 was primarily expressed in epidermal cells within punctate structures located near the apical plasma membrane, consistent with a role in regulating cellular processes within the epidermis. Based on previous studies, we tested the hypothesis that catp-1 inhibition induces entry into the pre-dauer L2d stage, potentially accounting for the ability of catp-1 mutants to suppress nekl molting defects. However, we found no evidence that loss of catp-1 leads to entry into L2d. As such, loss of catp-1 may suppress nekl-associated and DMPP-induced defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
4
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. Mol Biol Cell 2024; 35:ar127. [PMID: 39110529 PMCID: PMC11481705 DOI: 10.1091/mbc.e24-05-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.
Collapse
Affiliation(s)
- Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Derek T. Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Gwendolyn M. Beacham
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Matthew J. Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613099. [PMID: 39314363 PMCID: PMC11419146 DOI: 10.1101/2024.09.15.613099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Membrane trafficking is a conserved process required for the movement and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. We used a genetic approach to identify reduction-of-function mutations in tat-1 that suppress nekl -associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS to the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with this, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did the inhibition of PS biosynthesis. Using the auxin-inducible degron system, we found that depletion of NEKL-2 or NEKL-3 led to defects in RME-1 localization and that a reduction in TAT-1 function partially restored RME-1 localization in NEKL-3-depleted cells. ARTICLE SUMMARY Endocytosis is an essential process required for the movement of proteins and lipids within cells. NEKL-2 and NEKL-3, two evolutionarily conserved proteins in the nematode Caenorhabditis elegans , are important regulators of endocytosis. In the current study, the authors describe a new functional link between the NEKLs and several proteins with known roles in endocytosis including TAT-1, a conserved enzyme that moves lipids between the bilayers of cellular membranes. As previous work implicated NEKLs in developmental defects and cancer, the present study can provide new insights into how the misregulation of endocytosis affects human health and disease.
Collapse
|
6
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
7
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. PLoS Genet 2024; 20:e1011219. [PMID: 39173071 PMCID: PMC11373843 DOI: 10.1371/journal.pgen.1011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/04/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Adison G. Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Philip T. Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
8
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594761. [PMID: 38798613 PMCID: PMC11118560 DOI: 10.1101/2024.05.17.594761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans , we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologs of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states-an active dimer and an inactive monomer-gates the output of the Inversin complex.
Collapse
|
9
|
Binti S, Edeen PT, Fay DS. Loss of the Na + /K + cation pump CATP-1 suppresses nekl -associated molting defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585189. [PMID: 38559007 PMCID: PMC10979969 DOI: 10.1101/2024.03.15.585189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The conserved C. elegans protein kinases NEKL-2 and NEKL-3 regulate multiple steps of membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a loss-of-function mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 is predicted to encode a membrane- associated P4-type ATPase involved in Na + -K + exchange. Moreover, a mutation predicted to abolish CATP-1 ion-pump activity also suppressed nekl-2; nekl-3 mutants. Endogenously tagged CATP-1 was primarily expressed in epidermal (hypodermal) cells within punctate structures located at or near the apical plasma membrane. Through whole genome sequencing, we identified two additional nekl-2; nekl-3 suppressor strains containing coding-altering mutations in catp-1 but found that neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR methods, was sufficient to elicit robust suppression of molting defects. Our data also suggested that the two catp-1 isoforms, catp-1a and catp-1b , may in some contexts be functionally redundant. On the basis of previously published studies, we tested the hypothesis that loss of catp-1 may suppress nekl -associated defects by inducing partial entry into the dauer pathway. Contrary to expectations, however, we failed to obtain evidence that loss of catp-1 suppresses nekl-2; nekl-3 defects through a dauer-associated mechanism or that loss of catp-1 leads to entry into the pre-dauer L2d stage. As such, loss of catp-1 may suppress nekl- associated molting and membrane trafficking defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
|
10
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584557. [PMID: 38559252 PMCID: PMC10980042 DOI: 10.1101/2024.03.12.584557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Adison G Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| |
Collapse
|
11
|
Roka Pun H, Karp X. An RNAi screen for conserved kinases that enhance microRNA activity after dauer in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae007. [PMID: 38226857 PMCID: PMC10917497 DOI: 10.1093/g3journal/jkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Gene regulation in changing environments is critical for maintaining homeostasis. Some animals undergo a stress-resistant diapause stage to withstand harsh environmental conditions encountered during development. MicroRNAs are one mechanism for regulating gene expression during and after diapause. MicroRNAs downregulate target genes posttranscriptionally through the activity of the microRNA-induced silencing complex. Argonaute is the core microRNA-induced silencing complex protein that binds to both the microRNA and to other microRNA-induced silencing complex proteins. The 2 major microRNA Argonautes in the Caenorhabditis elegans soma are ALG-1 and ALG-2, which function partially redundantly. Loss of alg-1 [alg-1(0)] causes penetrant developmental phenotypes including vulval defects and the reiteration of larval cell programs in hypodermal cells. However, these phenotypes are essentially absent if alg-1(0) animals undergo a diapause stage called dauer. Levels of the relevant microRNAs are not higher during or after dauer, suggesting that activity of the microRNA-induced silencing complex may be enhanced in this context. To identify genes that are required for alg-1(0) mutants to develop without vulval defects after dauer, we performed an RNAi screen of genes encoding conserved kinases. We focused on kinases because of their known role in modulating microRNA-induced silencing complex activity. We found RNAi knockdown of 4 kinase-encoding genes, air-2, bub-1, chk-1, and nekl-3, caused vulval defects and reiterative phenotypes in alg-1(0) mutants after dauer, and that these defects were more penetrant in an alg-1(0) background than in wild type. Our results implicate these kinases as potential regulators of microRNA-induced silencing complex activity during postdauer development in C. elegans.
Collapse
Affiliation(s)
- Himal Roka Pun
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Xantha Karp
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
12
|
Drozd CJ, Quinn CC. UNC-116 and UNC-16 function with the NEKL-3 kinase to promote axon targeting. Development 2023; 150:dev201654. [PMID: 37756604 PMCID: PMC10561693 DOI: 10.1242/dev.201654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.
Collapse
Affiliation(s)
- Cody J. Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
13
|
Joseph BB, Naslavsky N, Binti S, Conquest S, Robison L, Bai G, Homer RO, Grant BD, Caplan S, Fay DS. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet 2023; 19:e1010741. [PMID: 37099601 PMCID: PMC10166553 DOI: 10.1371/journal.pgen.1010741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Human NIMA-related kinases have primarily been studied for their roles in cell cycle progression (NEK1/2/6/7/9), checkpoint-DNA-damage control (NEK1/2/4/5/10/11), and ciliogenesis (NEK1/4/8). We previously showed that Caenorhabditis elegans NEKL-2 (NEK8/9 homolog) and NEKL-3 (NEK6/7 homolog) regulate apical clathrin-mediated endocytosis (CME) in the worm epidermis and are essential for molting. Here we show that NEKL-2 and NEKL-3 also have distinct roles in controlling endosome function and morphology. Specifically, loss of NEKL-2 led to enlarged early endosomes with long tubular extensions but showed minimal effects on other compartments. In contrast, NEKL-3 depletion caused pronounced defects in early, late, and recycling endosomes. Consistently, NEKL-2 was strongly localized to early endosomes, whereas NEKL-3 was localized to multiple endosomal compartments. Loss of NEKLs also led to variable defects in the recycling of two resident cargoes of the trans-Golgi network (TGN), MIG-14/Wntless and TGN-38/TGN38, which were missorted to lysosomes after NEKL depletion. In addition, defects were observed in the uptake of clathrin-dependent (SMA-6/Type I BMP receptor) and independent cargoes (DAF-4/Type II BMP receptor) from the basolateral surface of epidermal cells after NEKL-2 or NEKL-3 depletion. Complementary studies in human cell lines further showed that siRNA knockdown of the NEKL-3 orthologs NEK6 and NEK7 led to missorting of the mannose 6-phosphate receptor from endosomes. Moreover, in multiple human cell types, depletion of NEK6 or NEK7 disrupted both early and recycling endosomal compartments, including the presence of excess tubulation within recycling endosomes, a defect also observed after NEKL-3 depletion in worms. Thus, NIMA family kinases carry out multiple functions during endocytosis in both worms and humans, consistent with our previous observation that human NEKL-3 orthologs can rescue molting and trafficking defects in C. elegans nekl-3 mutants. Our findings suggest that trafficking defects could underlie some of the proposed roles for NEK kinases in human disease.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sylvia Conquest
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Lexi Robison
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rafael O. Homer
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
14
|
Changes in body shape implicate cuticle stretch in C. elegans growth control. Cells Dev 2022; 170:203780. [DOI: 10.1016/j.cdev.2022.203780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022]
|
15
|
Joseph BB, Edeen PT, Meadows S, Binti S, Fay DS. An unexpected role for the conserved ADAM-family metalloprotease ADM-2 in Caenorhabditis elegans molting. PLoS Genet 2022; 18:e1010249. [PMID: 35639786 PMCID: PMC9187072 DOI: 10.1371/journal.pgen.1010249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Molting is a widespread developmental process in which the external extracellular matrix (ECM), the cuticle, is remodeled to allow for organismal growth and environmental adaptation. Studies in the nematode Caenorhabditis elegans have identified a diverse set of molting-associated factors including signaling molecules, intracellular trafficking regulators, ECM components, and ECM-modifying enzymes such as matrix metalloproteases. C. elegans NEKL-2 and NEKL-3, two conserved members of the NEK family of protein kinases, are essential for molting and promote the endocytosis of environmental steroid-hormone precursors by the epidermis. Steroids in turn drive the cyclic induction of many genes required for molting. Here we report a role for the sole C. elegans ADAM–meltrin metalloprotease family member, ADM-2, as a mediator of molting. Loss of adm-2, including mutations that disrupt the metalloprotease domain, led to the strong suppression of molting defects in partial loss-of-function nekl mutants. ADM-2 is expressed in the epidermis, and its trafficking through the endo-lysosomal network was disrupted after NEKL depletion. We identified the epidermally expressed low-density lipoprotein receptor–related protein, LRP-1, as a candidate target of ADM-2 regulation. Whereas loss of ADM-2 activity led to the upregulation of apical epidermal LRP-1, ADM-2 overexpression caused a reduction in LRP-1 levels. Consistent with this, several mammalian ADAMs, including the meltrin ADAM12, have been shown to regulate mammalian LRP1 via proteolysis. In contrast to mammalian homologs, however, the regulation of LRP-1 by ADM-2 does not appear to involve the metalloprotease function of ADM-2, nor is proteolytic processing of LRP-1 strongly affected in adm-2 mutants. Our findings suggest a noncanonical role for an ADAM family member in the regulation of a lipoprotein-like receptor and lead us to propose that endocytic trafficking may be important for both the internalization of factors that promote molting as well as the removal of proteins that can inhibit the process. The molecular and cellular features of molting in nematodes share many similarities with cellular and developmental processes that occur in mammals. This includes the degradation and reorganization of extracellular matrix materials that surround cells, as well as the intracellular machineries that allow cells to sample and modify their environments. In the current study, we found an unexpected function for a conserved protein that cleaves other proteins on the external surface of cells. Rather than promoting molting through extracellular matrix reorganization, however, the ADM-2 protease appears to function as a negative regulator of molting. This observation can be explained in part by data showing that ADM-2 negatively regulates a cell surface receptor required for molting. Surprisingly, it appears to do so through a mechanism that does not involve proteolysis. Our data provide insights into the mechanisms controlling molting and link several conserved proteins to show how they function together during development.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Phillip T. Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarina Meadows
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wolbachia depletion blocks transmission of lymphatic filariasis by preventing chitinase-dependent parasite exsheathment. Proc Natl Acad Sci U S A 2022; 119:e2120003119. [PMID: 35377795 PMCID: PMC9169722 DOI: 10.1073/pnas.2120003119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.
Collapse
|
17
|
Binti S, Melinda RV, Joseph BB, Edeen PT, Miller SD, Fay DS. A life cycle alteration can correct molting defects in Caenorhabditis elegans. Dev Biol 2022; 483:143-156. [PMID: 35038442 PMCID: PMC8867747 DOI: 10.1016/j.ydbio.2022.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
Molting is a widespread feature in the development of many invertebrates, including nematodes and arthropods. In Caenorhabditis elegans, the highly conserved protein kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (NEKLs) promote molting through their involvement in the uptake and intracellular trafficking of epidermal cargos. We found that the relative requirements for NEKL-2 and NEKL-3 differed at different life-cycle stages and under different environmental conditions. Most notably, the transition from the second to the third larval stage (L2→L3 molt) required a higher level of NEKL function than during several other life stages or when animals had experienced starvation at the L1 stage. Specifically, larvae that entered the pre-dauer L2d stage could escape molting defects when transiting to the (non-dauer) L3 stage. Consistent with this, mutations that promote entry into L2d suppressed nekl-associated molting defects, whereas mutations that inhibit L2d entry reduced starvation-mediated suppression. We further showed that loss or reduction of NEKL functions led to defects in the transcription of cyclically expressed molting genes, many of which are under the control of systemic steroid hormone regulation. Moreover, the timing and severity of these transcriptional defects correlated closely with the strength of nekl alleles and with their stage of arrest. Interestingly, transit through L2d rescued nekl-associated expression defects in suppressed worms, providing an example of how life-cycle decisions can impact subsequent developmental events. Given that NEKLs are implicated in the uptake of sterols by the epidermis, we propose that loss of NEKLs leads to a physiological reduction in steroid-hormone signaling and consequent defects in the transcription of genes required for molting.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Rosa V Melinda
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Braveen B Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Phillip T Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Sam D Miller
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
18
|
Huang Y, Wu J, Chen X, Tong D, Zhou J, Wu F, Zhang H, Yang Y, Ma G, Du A. A Zinc Metalloprotease nas-33 Is Required for Molting and Survival in Parasitic Nematode Haemonchus contortus. Front Cell Dev Biol 2021; 9:695003. [PMID: 34327203 PMCID: PMC8313830 DOI: 10.3389/fcell.2021.695003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Molting is of great importance for the survival and development of nematodes. Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed as novel anthelmintic targets due to their multiple roles in biological processes of parasitic nematodes. In this study, we report a well conserved nas-33 gene in nematodes of clade V and elucidate how this gene is involved in the molting process of the free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval stages of these worms, particularly in the molting process. Knockdown of this gene results in marked molecular changes of genes involved in cuticle synthesis and ecdysis, compromised shedding of the old cuticle, and reduced worm viability in H. contortus. The crucial role of nas-33 in molting is closely associated with a G protein beta subunit (GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle, compromises the connection between the cuticle and hypodermis, and leads to an increased number of sick and dead worms, indicating essentiality of this module in nematode development and survival. These findings reveal the functional role of nas-33 in nematode molting process and identify astacins as novel anthelmintic targets for parasitic nematodes of socioeconomic significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Yan Y, Liu S, Hu C, Xie C, Zhao L, Wang S, Zhang W, Cheng Z, Gao J, Fu X, Yang Z, Wang X, Zhang J, Lin L, Shi A. RTKN-1/Rhotekin shields endosome-associated F-actin from disassembly to ensure endocytic recycling. J Cell Biol 2021; 220:211976. [PMID: 33844824 PMCID: PMC8047894 DOI: 10.1083/jcb.202007149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity. Loss of RTKN-1 led to a prominent decrease in actin structures and basolateral recycling defects. Furthermore, we showed that the presence of RTKN-1 thwarts the actin disassembly competence of UNC-60A/cofilin. Consistently, in RTKN-1–deficient cells, UNC-60A knockdown replenished actin structures and alleviated the recycling defects. Notably, an intramolecular interaction within RTKN-1 could mediate the formation of oligomers. Overexpression of an RTKN-1 mutant form that lacks self-binding capacity failed to restore actin structures and recycling flow in rtkn-1 mutants. Finally, we demonstrated that SDPN-1/Syndapin acts to direct the recycling endosomal dwelling of RTKN-1 and promotes actin integrity there. Taken together, these findings consolidated the role of SDPN-1 in organizing the endosomal actin network architecture and introduced RTKN-1 as a novel regulatory protein involved in this process.
Collapse
Affiliation(s)
- Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyi Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenrong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Joseph BB, Wang Y, Edeen P, Lažetić V, Grant BD, Fay DS. Control of clathrin-mediated endocytosis by NIMA family kinases. PLoS Genet 2020; 16:e1008633. [PMID: 32069276 PMCID: PMC7048319 DOI: 10.1371/journal.pgen.1008633] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Endocytosis, the process by which cells internalize plasma membrane and associated cargo, is regulated extensively by posttranslational modifications. Previous studies suggested the potential involvement of scores of protein kinases in endocytic control, of which only a few have been validated in vivo. Here we show that the conserved NIMA-related kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (the NEKLs) control clathrin-mediated endocytosis in C. elegans. Loss of NEKL-2 or NEKL-3 activities leads to penetrant larval molting defects and to the abnormal localization of trafficking markers in arrested larvae. Using an auxin-based degron system, we also find that depletion of NEKLs in adult-stage C. elegans leads to gross clathrin mislocalization and to a dramatic reduction in clathrin mobility at the apical membrane. Using a non-biased genetic screen to identify suppressors of nekl molting defects, we identified several components and regulators of AP2, the major clathrin adapter complex acting at the plasma membrane. Strikingly, reduced AP2 activity rescues both nekl mutant molting defects as well as associated trafficking phenotypes, whereas increased levels of active AP2 exacerbate nekl defects. Moreover, in a unique example of mutual suppression, NEKL inhibition alleviates defects associated with reduced AP2 activity, attesting to the tight link between NEKL and AP2 functions. We also show that NEKLs are required for the clustering and internalization of membrane cargo required for molting. Notably, we find that human NEKs can rescue molting and trafficking defects in nekl mutant worms, suggesting that the control of intracellular trafficking is an evolutionarily conserved function of NEK family kinases. In order to function properly, cells must continually import materials from the outside. This process, termed endocytosis, is necessary for the uptake of nutrients and for interpreting signals coming from the external environment or from within the body. These signals are critical during animal development but also affect many types of cell behaviors throughout life. In our current work, we show that several highly conserved proteins in the nematode Caenorhabditis elegans, NEKL-2 and NEKL-3, regulate endocytosis. The human counterparts of NEKL-2 and NEKL-3 have been implicated in cardiovascular and renal diseases as well as many types of cancers. However, their specific functions within cells is incompletely understood and very little is known about their role in endocytosis or how this role might impact disease processes. Here we use several complementary approaches to characterize the specific functions of C. elegans NEKL-2 and NEKL-3 in endocytosis and show that their human counterparts likely have very similar functions. This work paves the way to a better understanding of fundamental biological processes and to determining the cellular functions of proteins connected to human diseases.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Phil Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ren HN, Liu RD, Song YY, Zhuo TX, Guo KX, Zhang Y, Jiang P, Wang ZQ, Cui J. Label-free quantitative proteomic analysis of molting-related proteins of Trichinella spiralis intestinal infective larvae. Vet Res 2019; 50:70. [PMID: 31547875 PMCID: PMC6757440 DOI: 10.1186/s13567-019-0689-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Molting is a key step for body-size expansion and environmental adaptation of parasitic nematodes, and it is extremely important for Trichinella spiralis growth and development, but the molting mechanism is not fully understood. In this work, label-free LC-MS/MS was used to determine the proteome differences between T. spiralis muscle larvae (ML) at the encapsulated stage and intestinal infective larvae (IIL) at the molting stage. The results showed that a total of 2885 T. spiralis proteins were identified, 323 of which were differentially expressed. These proteins were involved in cuticle structural elements, regulation of cuticle synthesis, remodeling and degradation, and hormonal regulation of molting. These differential proteins were also involved in diverse intracellular pathways, such as fatty acid biosynthesis, arachidonic acid metabolism, and mucin type O-glycan biosynthesis. qPCR results showed that five T. spiralis genes (cuticle collagen 14, putative DOMON domain-containing protein, glutamine synthetase, cathepsin F and NADP-dependent isocitrate dehydrogenase) had significantly higher transcriptional levels in 10 h IIL than ML (P < 0.05), which were similar to their protein expression levels, suggesting that they might be T. spiralis molting-related genes. Identification and characterization of T. spiralis molting-related proteins will be helpful for developing vaccines and new drugs against the early enteral stage of T. spiralis.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Tong Xu Zhuo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
23
|
Lažetić V, Joseph BB, Bernazzani SM, Fay DS. Actin organization and endocytic trafficking are controlled by a network linking NIMA-related kinases to the CDC-42-SID-3/ACK1 pathway. PLoS Genet 2018; 14:e1007313. [PMID: 29608564 PMCID: PMC5897031 DOI: 10.1371/journal.pgen.1007313] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023] Open
Abstract
Molting is an essential process in the nematode Caenorhabditis elegans during which the epidermal apical extracellular matrix, termed the cuticle, is detached and replaced at each larval stage. The conserved NIMA-related kinases NEKL-2/NEK8/NEK9 and NEKL-3/NEK6/NEK7, together with their ankyrin repeat partners, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, are essential for normal molting. In nekl and mlt mutants, the old larval cuticle fails to be completely shed, leading to entrapment and growth arrest. To better understand the molecular and cellular functions of NEKLs during molting, we isolated genetic suppressors of nekl molting-defective mutants. Using two independent approaches, we identified CDC-42, a conserved Rho-family GTPase, and its effector protein kinase, SID-3/ACK1. Notably, CDC42 and ACK1 regulate actin dynamics in mammals, and actin reorganization within the worm epidermis has been proposed to be important for the molting process. Inhibition of NEKL-MLT activities led to strong defects in the distribution of actin and failure to form molting-specific apical actin bundles. Importantly, this phenotype was reverted following cdc-42 or sid-3 inhibition. In addition, repression of CDC-42 or SID-3 also suppressed nekl-associated defects in trafficking, a process that requires actin assembly and disassembly. Expression analyses indicated that components of the NEKL-MLT network colocalize with both actin and CDC-42 in specific regions of the epidermis. Moreover, NEKL-MLT components were required for the normal subcellular localization of CDC-42 in the epidermis as well as wild-type levels of CDC-42 activation. Taken together, our findings indicate that the NEKL-MLT network regulates actin through CDC-42 and its effector SID-3. Interestingly, we also observed that downregulation of CDC-42 in a wild-type background leads to molting defects, suggesting that there is a fine balance between NEKL-MLT and CDC-42-SID-3 activities in the epidermis.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - Sarina M. Bernazzani
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
- * E-mail:
| |
Collapse
|
24
|
Use of a Sibling Subtraction Method for Identifying Causal Mutations in Caenorhabditis elegans by Whole-Genome Sequencing. G3-GENES GENOMES GENETICS 2018; 8:669-678. [PMID: 29237702 PMCID: PMC5919755 DOI: 10.1534/g3.117.300135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome sequencing (WGS) is an indispensable tool for identifying causal mutations obtained from genetic screens. To reduce the number of causal mutation candidates typically uncovered by WGS, Caenorhabditis elegans researchers have developed several strategies. One involves crossing N2-background mutants to the polymorphic Hawaiian (HA) strain, which can be used to simultaneously identify mutant strain variants and obtain high-density mapping information. This approach, however, is not well suited for uncovering mutations in complex genetic backgrounds, and HA polymorphisms can alter phenotypes. Other approaches make use of DNA variants present in the initial background or introduced by mutagenesis. This information is used to implicate genomic regions with high densities of DNA lesions that persist after backcrossing, but these methods can provide lower resolution than HA mapping. To identify suppressor mutations using WGS, we developed an approach termed the sibling subtraction method (SSM). This method works by eliminating variants present in both mutants and their nonmutant siblings, thus greatly reducing the number of candidates. We used this method with two members of the C. elegans NimA-related kinase family, nekl-2 and nekl-3. Combining weak aphenotypic alleles of nekl-2 and nekl-3 leads to penetrant molting defects and larval arrest. We isolated ∼50 suppressors of nekl-2; nekl-3 synthetic lethality using F1 clonal screening methods and a peel-1–based counterselection strategy. When applied to five of the suppressors, SSM led to only one to four suppressor candidates per strain. Thus SSM is a powerful approach for identifying causal mutations in any genetic background and provides an alternative to current methods.
Collapse
|
25
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
26
|
Lažetić V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-293. [PMID: 27799278 PMCID: PMC5223508 DOI: 10.1534/genetics.116.194464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|