1
|
Kostina A, Kiselev A, Huang A, Lankerd H, Caywood S, Jurado-Fernandez A, Volmert B, O'Hern C, Juhong A, Liu Y, Qiu Z, Park S, Aguirre A. Self-organizing human heart assembloids with autologous and developmentally relevant cardiac neural crest-derived tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627627. [PMID: 39713343 PMCID: PMC11661279 DOI: 10.1101/2024.12.11.627627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations. However, the complexity and timing of early embryonic heart development pose significant challenges to studying the molecular mechanisms underlying NCC-related cardiac pathologies. Here, we present a sophisticated functional model of human heart assembloids derived from induced pluripotent stem cells, which, for the first time, recapitulates cardiac NCC integration into the human embryonic heart in vitro . NCCs successfully integrated at developmentally relevant stages into heart organoids, and followed developmental trajectories known to occur in the human heart. They demonstrated extensive migration, differentiated into cholinergic neurons capable of generating nerve impulses, and formed mature glial cells. Additionally, they contributed to the mesenchymal populations of the developing outflow tract. Through transcriptomic analysis, we revealed that NCCs acquire molecular features of their cardiac derivatives as heart assembloids develop. NCC-derived parasympathetic neurons formed functional connections with cardiomyocytes, promoting the maturation of the cardiac conduction system. Leveraging this model's cellular complexity and functional maturity, we uncovered that early exposure of NCCs to antidepressants harms the development of NCC derivatives in the context of the developing heart. The commonly prescribed antidepressant Paroxetine disrupted the expression of a critical early neuronal transcription factor, resulting in impaired parasympathetic innervation and functional deficits in cardiac tissue. This advanced heart assembloid model holds great promise for high-throughput drug screening and unraveling the molecular mechanisms underlying NCC-related cardiac formation and congenital heart defects. IN BRIEF Human neural crest heart assembloids resembling the major directions of neural crest differentiation in the human embryonic heart, including parasympathetic innervation and the mesenchymal component of the outflow tract, provide a human-relevant embryonic platform for studying congenital heart defects and drug safety.
Collapse
|
2
|
Zhang G, Wang X, Zhang Q. Cdh11: Roles in different diseases and potential value in disease diagnosis and treatment. Biochem Biophys Rep 2023; 36:101576. [PMID: 38034129 PMCID: PMC10682823 DOI: 10.1016/j.bbrep.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Cadherin is a homophilic, Ca2+-dependent cell adhesion glycoprotein that mediates cell-cell adhesion. Among them, Cadherin-11 (CDH11), as a classical cadherin, participates in and influences many crucial aspects of human growth and development. Furthermore, The involvement of CDH11 has been identified in an increasing number of diseases, primarily including various tumorous diseases, fibrotic diseases, autoimmune diseases, neurodevelopmental disorders, and more. In various tumorous diseases, CDH11 acts not only as a tumor suppressor but can also promote migration and invasion of certain tumors through various mechanisms. Likewise, in non-tumorous diseases, CDH11 remains a pivotal factor in disease progression. In this context, we summarize the specific functionalities and mechanisms of CDH11 in various diseases, aiming to gain a more comprehensive understanding of the potential value of CDH11 in disease diagnosis and treatment. This endeavor seeks to provide more effective diagnostic and therapeutic strategies for clinical management across diverse diseases.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xi Wang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Qingguo Zhang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| |
Collapse
|
3
|
Liu Y, Lei P, Samuel RZ, Kashyap AM, Groth T, Bshara W, Neelamegham S, Andreadis ST. Cadherin-11 increases tumor cell proliferation and metastatic potential via Wnt pathway activation. Mol Oncol 2023; 17:2056-2073. [PMID: 37558205 PMCID: PMC10552893 DOI: 10.1002/1878-0261.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
During epithelial-mesenchymal transition (EMT) in cancer progression, tumor cells switch cadherin profile from E-cadherin to cadherin-11 (CDH11), which is accompanied by increased invasiveness and metastatic activity. However, the mechanism through which CDH11 may affect tumor growth and metastasis remains elusive. Here, we report that CDH11 was highly expressed in multiple human tumors and was localized on the membrane, in the cytoplasm and, surprisingly, also in the nucleus. Interestingly, β-catenin remained bound to carboxy-terminal fragments (CTFs) of CDH11, the products of CDH11 cleavage, and co-localized with CTFs in the nucleus in the majority of breast cancer samples. Binding of β-catenin to CTFs preserved β-catenin activity, whereas inhibiting CDH11 cleavage led to β-catenin phosphorylation and diminished Wnt signaling, similar to CDH11 knockout. Our data elucidate a previously unknown role of CDH11, which serves to stabilize β-catenin in the cytoplasm and facilitates its translocation to the nucleus, resulting in activation of Wnt signaling, with subsequent increased proliferation, migration and invasion potential.
Collapse
Affiliation(s)
- Yayu Liu
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Ronel Z. Samuel
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Anagha M. Kashyap
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Wiam Bshara
- Roswell Park Comprehensive Cancer Center Pathology Resource NetworkBuffaloNYUSA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- Department of Biomedical Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloNYUSA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- Department of Biomedical Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloNYUSA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at BuffaloThe State University of New YorkAmherstNYUSA
| |
Collapse
|
4
|
Nehl D, Goody PR, Maus K, Pfeifer A, Aikawa E, Bakthiary F, Zimmer S, Nickenig G, Jansen F, Hosen MR. Human and porcine aortic valve endothelial and interstitial cell isolation and characterization. Front Cardiovasc Med 2023; 10:1151028. [PMID: 37408661 PMCID: PMC10318150 DOI: 10.3389/fcvm.2023.1151028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Background Calcific aortic valve stenosis (AVS) is defined by pathological changes in the aortic valve (AV) and their predominant cell types: valvular interstitial (VICs) and endothelial cells (VECs). Understanding the cellular and molecular mechanisms of this disease is a prerequisite to identify potential pharmacological treatment strategies. In this study, we present a unique aortic valve cell isolation technique to acquire specific human and porcine cell populations and compared VICs and VECs of these species with each other for the first time. Methods AV cells were isolated from tissue obtained from human patients undergoing surgical aortic valve replacement (SAVR) or from porcine hearts. Functional analysis and in vitro experiments revealed that endothelial-to-mesenchymal transition (EndMT) can be induced in hVECs, leading to a significant increase in mesenchymal markers. In vitro calcification experiments of VICs demonstrated pronounced expression of calcification markers and visible calcific deposits in Alizarin Red staining in both species after incubation with pro-calcific media. Results Cells isolated from patient-derived AVs showed mesenchymal and endothelial-specific gene signatures (VIC and VEC, respectively). For instance, von Willebrand factor (vWF) and platelet endothelial adhesion molecule-1 (PECAM1) were upregulated in VECs, while the myofibroblastic markers alpha-smooth muscle actin (α-SMA) and vimentin (VIM) were downregulated in VECs compared to VICs. Analysis of cell function by migration revealed that VECs are more migratory than VICs. Induction of EndMT in vitro in VECs displayed increased expression of EndMT markers and decreased expression of endothelial markers, confirming their mesenchymal transdifferentiation ability. In vitro calcification of VICs revealed upregulation of alkaline phosphatase (ALPL), a hallmark of calcification. In addition, other calcification-related genes such as osteocalcin (BGLAP) and runt-related factor 2 (RUNX2) were upregulated. Alizarin red staining of calcified cells provided a further layer of confirmation that the isolated cells were VICs with osteoblastic differentiation capacity. Conclusion This study aims to take a first step towards standardizing a reproducible isolation technique for specific human and porcine VEC and VIC populations. A comparison of human and porcine aortic valve cells demonstrated that porcine cells may serve as an alternative cellular model system in settings where human tissue is difficult to obtain.
Collapse
Affiliation(s)
- D. Nehl
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - P. R. Goody
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - K. Maus
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - A. Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, Bonn, Germany
| | - E. Aikawa
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - F. Bakthiary
- Heart Center Bonn, Department of Cardiac Surgery, University Hospital Bonn, Bonn, Germany
| | - S. Zimmer
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - G. Nickenig
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - F. Jansen
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - M. R. Hosen
- Heart Center Bonn, Molecular Cardiology, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Chen J, Lin Y, Sun Z. Inhibition of miR-101-3p prevents human aortic valve interstitial cell calcification through regulation of CDH11/SOX9 expression. Mol Med 2023; 29:24. [PMID: 36809926 PMCID: PMC9945614 DOI: 10.1186/s10020-023-00619-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the second leading cause of adult heart diseases. The purpose of this study is to investigate whether miR-101-3p plays a role in the human aortic valve interstitial cells (HAVICs) calcification and the underlying mechanisms. METHODS Small RNA deep sequencing and qPCR analysis were used to determine changes in microRNA expression in calcified human aortic valves. RESULTS The data showed that miR-101-3p levels were increased in the calcified human aortic valves. Using cultured primary HAVICs, we demonstrated that the miR-101-3p mimic promoted calcification and upregulated the osteogenesis pathway, while anti-miR-101-3p inhibited osteogenic differentiation and prevented calcification in HAVICs treated with the osteogenic conditioned medium. Mechanistically, miR-101-3p directly targeted cadherin-11 (CDH11) and Sry-related high-mobility-group box 9 (SOX9), key factors in the regulation of chondrogenesis and osteogenesis. Both CDH11 and SOX9 expressions were downregulated in the calcified human HAVICs. Inhibition of miR-101-3p restored expression of CDH11, SOX9 and ASPN and prevented osteogenesis in HAVICs under the calcific condition. CONCLUSION miR-101-3p plays an important role in HAVIC calcification through regulation of CDH11/SOX9 expression. The finding is important as it reveals that miR-1013p may be a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Physiology, College of Medicine, UT Cardiovascular Institute, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
6
|
Liu H, Yin H, Wang Z, Yuan Q, Xu F, Chen Y, Li C. Rho A/ROCK1 signaling-mediated metabolic reprogramming of valvular interstitial cells toward Warburg effect accelerates aortic valve calcification via AMPK/RUNX2 axis. Cell Death Dis 2023; 14:108. [PMID: 36774349 PMCID: PMC9922265 DOI: 10.1038/s41419-023-05642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
The aberrant differentiation of valvular interstitial cells (VICs) to osteogenic lineages promotes calcified aortic valves disease (CAVD), partly activated by potentially destructive hemodynamic forces. These involve Rho A/ROCK1 signaling, a mechano-sensing pathway. However, how Rho A/ROCK1 signaling transduces mechanical signals into cellular responses and disrupts normal VIC homeostasis remain unclear. We examined Rho A/ROCK1 signaling in human aortic valves, and further detected how Rho A/ROCK1 signaling regulates mineralization in human VICs. Aortic valves (CAVD n = 22, normal control (NC) n = 12) from patients undergoing valve replacement were investigated. Immunostaining and western blotting analysis indicated that Rho A/ROCK1 signaling, as well as key transporters and enzymes involved in the Warburg effect, were markedly upregulated in human calcified aortic valves compared with those in the controls. In vitro, Rho A/ROCK1-induced calcification was confirmed as AMPK-dependent, via a mechanism involving metabolic reprogramming of human VICs to Warburg effect. Y-27632, a selective ROCK1 inhibitor, suppressed the Warburg effect, rescued AMPK activity and subsequently increased RUNX2 ubiquitin-proteasome degradation, leading to decreased RUNX2 protein accumulation in human VICs under pathological osteogenic stimulus. Rho A/ROCK1 signaling, which is elevated in human calcified aortic valves, plays a positive role in valvular calcification, partially through its ability to drive metabolic switching of VICs to the Warburg effect, leading to altered AMPK activity and RUNX2 protein accumulation. Thus, Rho A/ROCK1 signaling could be an important and unrecognized hub of destructive hemodynamics and cellular aerobic glycolysis that is essential to promote the CAVD process.
Collapse
Affiliation(s)
- Huiruo Liu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hang Yin
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chuanbao Li
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Albert BJ, Butcher JT. Future prospects in the tissue engineering of heart valves: a focus on the role of stem cells. Expert Opin Biol Ther 2023; 23:553-564. [PMID: 37171790 PMCID: PMC10461076 DOI: 10.1080/14712598.2023.2214313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Heart valve disease is a growing burden on the healthcare system. Current solutions are insufficient for young patients and do not offer relief from reintervention. Tissue engineered heart valves (TEHVs) offer a solution that grows and responds to the native environment in a similar way to a healthy valve. Stem cells hold potential to populate these valves as a malleable source that can adapt to environmental cues. AREAS COVERED This review covers current methods of recapitulating features of native heart valves with tissue engineering through use of stem cell populations with in situ and in vitro methods. EXPERT OPINION In the field of TEHVs, we see a variety of approaches in cell source, biomaterial, and maturation methods. Choosing appropriate cell populations may be very patient specific; consistency and predictability will be key to long-term success. In situ methods are closer to translation but struggle with consistent cellularization. In vitro culture requires specialized methods but may recapitulate native valve cell populations with higher fidelity. Understanding how cell populations react to valve conditions and immune response is vital for success. Detrimental valve pathologies have proven to be difficult to avoid in early translation attempts.
Collapse
Affiliation(s)
- Benjamin J Albert
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, USA
| | - Jonathan T Butcher
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, USA
| |
Collapse
|
8
|
Angiopoietin-like 2 is essential to aortic valve development in mice. Commun Biol 2022; 5:1277. [PMID: 36414704 PMCID: PMC9681843 DOI: 10.1038/s42003-022-04243-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Aortic valve (AoV) abnormalities during embryogenesis are a major risk for the development of aortic valve stenosis (AVS) and cardiac events later in life. Here, we identify an unexpected role for Angiopoietin-like 2 (ANGPTL2), a pro-inflammatory protein secreted by senescent cells, in valvulogenesis. At late embryonic stage, mice knocked-down for Angptl2 (Angptl2-KD) exhibit a premature thickening of AoV leaflets associated with a dysregulation of the fine balance between cell apoptosis, senescence and proliferation during AoV remodeling and a decrease in the crucial Notch signalling. These structural and molecular abnormalities lead toward spontaneous AVS with elevated trans-aortic gradient in adult mice of both sexes. Consistently, ANGPTL2 expression is detected in human fetal semilunar valves and associated with pathways involved in cell cycle and senescence. Altogether, these findings suggest that Angptl2 is essential for valvulogenesis, and identify Angptl2-KD mice as an animal model to study spontaneous AVS, a disease with unmet medical need.
Collapse
|
9
|
Ding S, Zhang X, Qiu H, Wo J, Zhang F, Na J. Non-cardiomyocytes in the heart in embryo development, health, and disease, a single-cell perspective. Front Cell Dev Biol 2022; 10:873264. [PMID: 36393852 PMCID: PMC9661523 DOI: 10.3389/fcell.2022.873264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Recent single-cell atlases of the heart gave unprecedented details about the diversity of cell types and states during heart development in health and disease conditions. Beyond a profiling tool, researchers also use single-cell analyses to dissect the mechanism of diseases in animal models. The new knowledge from these studies revealed that beating cardiomyocytes account for less than 50% of the total heart cell population. In contrast, non-cardiomyocytes (NCMs), such as cardiac fibroblasts, endothelial cells, and immune cells, make up the remaining proportion and have indispensable roles in structural support, homeostasis maintenance, and injury repair of the heart. In this review, we categorize the composition and characteristics of NCMs from the latest single-cell studies of the heart in various contexts and compare the findings from both human samples and mouse models. This information will enrich our understanding of the cellular basis of heart development and diseases and provide insights into the potential therapeutic targets in NCMs to repair the heart.
Collapse
Affiliation(s)
- Shuangyuan Ding
- School of Medicine, Tsinghua University, Beijing, China
- Center for Life Sciences, Tsinghua University and Peking University, Beijing, China
- *Correspondence: Shuangyuan Ding, ; Jie Na,
| | - Xingwu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Hui Qiu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaoyang Wo
- Center for Life Sciences, Tsinghua University and Peking University, Beijing, China
| | - Fengzhi Zhang
- Central Laboratory, First Hospital of Tsinghua University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
- *Correspondence: Shuangyuan Ding, ; Jie Na,
| |
Collapse
|
10
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|
11
|
Zhou Y, Bai K, Wang Y, Meng Z, Zhou S, Jiang S, Wang H, Wang J, Yang M, Wang Q, Sun K, Chen S. Identification of Rare Variants in Right Ventricular Outflow Tract Obstruction Congenital Heart Disease by Whole-Exome Sequencing. Front Cardiovasc Med 2022; 8:811156. [PMID: 35141295 PMCID: PMC8818757 DOI: 10.3389/fcvm.2021.811156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Pulmonary atresia (PA) is a kind of congenital heart disease characterized by right ventricular outflow tract obstruction. It is divided into PA with intact ventricular septum (PA/IVS) whose favorable form is pulmonary valvular stenosis (PS), and PA with ventricular septal defect (PA/VSD) whose favorable form is tetralogy of Fallot (TOF). Due to limitations in genetics etiology, whole-exome sequencing (WES) was utilized to identify new variants associated with the diseases. Methods The data from PS-PA/IVS (n = 74), TOF-PA/VSD (n = 100), and 100 controls were obtained. The common sites between PS and PA/IVS, PA/VSD and TOF, were compared. The novel rare damage variants, and candidate genes were identified by gene-based burden analysis. Finally, the enrichment analysis of differential genes was conducted between case and control groups. Results Seventeen rare damage variants located in seven genes were predicted to be associated with the PS through burden analysis. Enrichment analysis identified that the Wnt and cadherin signaling pathways were relevant to PS-PA/IVS. Conclusion This study put forth seven candidate genes (APC, PPP1R12A, PCK2, SOS2, TNR, MED13, and TIAM1), resulting in PS-PA/IVS. The Wnt and cadherin signaling pathways were identified to be related to PS-PA/IVS by enrichment analysis. This study provides new evidence for exploring the genetic mechanism of PS-PA/IVS.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Bai
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Jiang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Yang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qingjie Wang
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Kun Sun
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Sun Chen
| |
Collapse
|
12
|
Mazur P, Kopytek M, Ząbczyk M, Undas A, Natorska J. Towards Personalized Therapy of Aortic Stenosis. J Pers Med 2021; 11:1292. [PMID: 34945764 PMCID: PMC8708539 DOI: 10.3390/jpm11121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic stenosis (CAS) is the most common cause of acquired valvular heart disease in adults with no available pharmacological treatment to inhibit the disease progression to date. This review provides an up-to-date overview of current knowledge of molecular mechanisms underlying CAS pathobiology and the related treatment pathways. Particular attention is paid to current randomized trials investigating medical treatment of CAS, including strategies based on lipid-lowering and antihypertensive therapies, phosphate and calcium metabolism, and novel therapeutic targets such as valvular oxidative stress, coagulation proteins, matrix metalloproteinases, and accumulation of advanced glycation end products.
Collapse
Affiliation(s)
- Piotr Mazur
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN 55902, USA;
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
| | - Magdalena Kopytek
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| |
Collapse
|
13
|
Gunawan F, Priya R, Stainier DYR. Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Curr Opin Cell Biol 2021; 73:26-34. [PMID: 34147705 DOI: 10.1016/j.ceb.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.
Collapse
Affiliation(s)
- Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
14
|
Johnson CL, Riley L, Bersi M, Linton MF, Merryman WD. Impaired macrophage trafficking and increased helper T-cell recruitment with loss of cadherin-11 in atherosclerotic immune response. Am J Physiol Heart Circ Physiol 2021; 321:H756-H769. [PMID: 34506228 PMCID: PMC8794229 DOI: 10.1152/ajpheart.00263.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Inflammation caused by infiltrating macrophages and T cells promotes plaque growth in atherosclerosis. Cadherin-11 (CDH11) is a cell-cell adhesion protein implicated in several fibrotic and inflammatory diseases. Much of the research on CDH11 concerns its role in fibroblasts, although its expression in immune cells has been noted as well. The objective of this study was to assess the effect of CDH11 on the atherosclerotic immune response. In vivo studies of atherosclerosis indicated an increase in Cdh11 in plaque tissue. However, global loss of Cdh11 resulted in increased atherosclerosis and inflammation. It also altered the immune response in circulating leukocytes, decreasing myeloid cell populations and increasing T-cell populations, suggesting possible impaired myeloid migration. Bone marrow transplants from Cdh11-deficient mice resulted in similar immune cell profiles. In vitro examination of Cdh11-/- macrophages revealed reduced migration, despite upregulation of a number of genes related to locomotion. Flow cytometry revealed an increase in CD3+ and CD4+ helper T-cell populations in the blood of both the global Cdh11 loss and the bone marrow transplant animals, possibly resulting from increased expression by Cdh11-/- macrophages of major histocompatibility complex class II molecule genes, which bind to CD4+ T cells for coordinated activation. CDH11 fundamentally alters the immune response in atherosclerosis, resulting in part from impaired macrophage migration and altered macrophage-induced T-cell activation.NEW & NOTEWORTHY Cadherin-11 is well known to contribute to inflammatory and fibrotic disease. Here, we examined its role in atherosclerosis progression, which is predominantly an inflammatory process. We found that while cadherin-11 is associated with plaque progression, global loss of cadherin-11 exacerbated the disease phenotype. Moreover, loss of cadherin-11 in bone marrow-derived immune cells resulted in impaired macrophage migration and an unexplained increase in circulating helper T cells, presumably due to altered macrophage function without cadherin-11.
Collapse
Grants
- F32 HL154596 NHLBI NIH HHS
- R00 HL146951 NHLBI NIH HHS
- HL148137 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL127173 NHLBI NIH HHS
- HL127173 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL135790 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK059637 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- K99 HL146951 NHLBI NIH HHS
- HL146951 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL116263 NHLBI NIH HHS
- R35 HL135790 NHLBI NIH HHS
- R01 HL148137 NHLBI NIH HHS
- R01 HL146134 NHLBI NIH HHS
- HL146134 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U24 DK059637 NIDDK NIH HHS
- HL154596 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL116263 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- American Heart Association (AHA)
Collapse
Affiliation(s)
- Camryn L Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Lance Riley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Dutta P, Kodigepalli KM, LaHaye S, Thompson JW, Rains S, Nagel C, Thatcher K, Hinton RB, Lincoln J. KPT-330 Prevents Aortic Valve Calcification via a Novel C/EBPβ Signaling Pathway. Circ Res 2021; 128:1300-1316. [PMID: 33601919 PMCID: PMC8085092 DOI: 10.1161/circresaha.120.318503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Punashi Dutta
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH, USA
| | - J. Will Thompson
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Sarah Rains
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Duke Proteomics and Metabolomics Shared Resource, Durham, NC, USA
| | - Casey Nagel
- Ocean Ridge Biosciences, Deerfield Beach, Florida, USA
| | - Kaitlyn Thatcher
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Robert B. Hinton
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joy Lincoln
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Peran I, Dakshanamurthy S, McCoy MD, Mavropoulos A, Allo B, Sebastian A, Hum NR, Sprague SC, Martin KA, Pishvaian MJ, Vietsch EE, Wellstein A, Atkins MB, Weiner LM, Quong AA, Loots GG, Yoo SS, Assefnia S, Byers SW. Cadherin 11 Promotes Immunosuppression and Extracellular Matrix Deposition to Support Growth of Pancreatic Tumors and Resistance to Gemcitabine in Mice. Gastroenterology 2021; 160:1359-1372.e13. [PMID: 33307028 PMCID: PMC7956114 DOI: 10.1053/j.gastro.2020.11.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule CDH11, which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. METHODS We compared levels of CDH11 messenger RNA in human pancreatitis and pancreatic cancer tissues and cells with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11-/- mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. RESULTS Levels of CDH11 messenger RNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/- and KPC/Cdh11-/- mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/- and KPC/Cdh11-/- mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh11+/- mice had increased markers of antigen processing and presentation; more lymphocytes and associated cytokines; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival of KPC/Cdh11+/- and KPC/Cdh11-/- mice only or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice when given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. CONCLUSIONS Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Sivanesan Dakshanamurthy
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matthew D. McCoy
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA,Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA
| | | | | | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Sara C. Sprague
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Michael J. Pishvaian
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Eveline E. Vietsch
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Anton Wellstein
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Michael B. Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Louis M. Weiner
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA,School of Natural Sciences, University of California Merced, Merced, CA, USA,Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | | | - Shahin Assefnia
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
17
|
Johnson CL, Merryman WD. Side-specific valvular endothelial-interstitial cell mechano-communication via cadherin-11. J Biomech 2021; 119:110253. [PMID: 33636459 DOI: 10.1016/j.jbiomech.2021.110253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 12/26/2022]
Abstract
Calcific aortic valve disease (CAVD) is a condition causing stiffening of the aortic valve, impeding cardiac function and resulting in significant morbidity worldwide. CAVD is thought to be driven by the persistent activation of the predominant cell type in the valve, aortic valve interstitial cells (AVICs), into myofibroblasts, resulting in subsequent calcification and stenosis of the valve. Although much of the research into CAVD focuses on AVICs, the aortic valve endothelial cells (AVECs) have been shown to regulate AVICs and maintain tissue homeostasis. Exposed to distinct flow patterns during the cardiac cycle, the AVECs lining either side of the valve demonstrate crucial differences which could contribute to the preferential formation of calcific nodules on the aorta-facing (fibrosa) side of the valve. Cadherin-11 (CDH11) is a cell-cell adhesion protein which has been previously associated with AVIC myofibroblast activation, nodule formation, and CAVD in mice. In this study, we investigated the role of CDH11 in AVECs and examined side-specific differences. The aorta-facing or fibrosa endothelial cells (fibAVECs) express higher levels of CDH11 than the ventricle-facing or ventricularis endothelial cells (venAVECs). This increase in expression corresponds with increased contraction of a free-floating collagen gel compared to venAVECs. Additionally, co-culture of fibAVECs with AVICs demonstrated decreased contraction compared to an AVIC + AVIC control, but increased contraction compared to the venAVECs co-culture. This aligns with the known preferential formation of calcific nodules on the fibrosa. These results together indicate a potential role for CDH11 expression by AVECs in regulating AVIC contraction and subsequent calcification.
Collapse
Affiliation(s)
- Camryn L Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
18
|
Qian J, Gong ZC, Zhang YN, Wu HH, Zhao J, Wang LT, Ye LJ, Liu D, Wang W, Kang X, Sheng J, Xu W, Liu XL, Wu J, Zheng W. Lactic acid promotes metastatic niche formation in bone metastasis of colorectal cancer. Cell Commun Signal 2021; 19:9. [PMID: 33478523 PMCID: PMC7818572 DOI: 10.1186/s12964-020-00667-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To investigate the effect of lactic acid (LA) on the progression of bone metastasis from colorectal cancer (CRC) and its regulatory effects on primary CD115 (+) osteoclast (OC) precursors. METHODS The BrdU assay, Annexin-V/PI assay, TRAP staining and immunofluorescence were performed to explore the effect of LA on the proliferation, apoptosis and differentiation of OC precursors in vitro and in vivo. Flow cytometry was performed to sort primary osteoclast precursors and CD4(+) T cells and to analyze the change in the expression of target proteins in osteoclast precursors. A recruitment assay was used to test how LA and Cadhein-11 regulate the recruitment of OC precursors. RT-PCR and Western blotting were performed to analyze the changes in the mRNA and protein expression of genes related to the PI3K-AKT pathway and profibrotic genes. Safranin O-fast green staining, H&E staining and TRAP staining were performed to analyze the severity of bone resorption and accumulation of osteoclasts. RESULTS LA promoted the expression of CXCL10 and Cadherin-11 in CD115(+) precursors through the PI3K-AKT pathway. We found that CXCL10 and Cadherin-11 were regulated by the activation of CREB and mTOR, respectively. LA-induced overexpression of CXCL10 in CD115(+) precursors indirectly promoted the differentiation of osteoclast precursors through the recruitment of CD4(+) T cells, and the crosstalk between these two cells promoted bone resorption in bone metastasis from CRC. On the other hand, Cadherin-11 mediated the adhesion between osteoclast precursors and upregulated the production of specific collagens, especially Collagen 5, which facilitated fibrotic changes in the tumor microenvironment. Blockade of the PI3K-AKT pathway efficiently prevented the progression of bone metastasis caused by lactate. CONCLUSION LA promoted metastatic niche formation in the tumor microenvironment through the PI3K-AKT pathway. Our study provides new insight into the role of LA in the progression of bone metastasis from CRC. Video Abstract.
Collapse
Affiliation(s)
- Jin Qian
- College of Medicine, Southwest Jiaotong University, North Section 1 No.111, Second Ring Road, Chengdu, 610000 People’s Republic of China
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Zi-chen Gong
- College of Medicine, Southwest Jiaotong University, North Section 1 No.111, Second Ring Road, Chengdu, 610000 People’s Republic of China
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Yi-na Zhang
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Hong-hua Wu
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Jing Zhao
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Li-ting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Li-juan Ye
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Da Liu
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Wei Wang
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Xia Kang
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Jun Sheng
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Wei Xu
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Xi-lin Liu
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Juan Wu
- Department of Pharmacy, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Wei Zheng
- College of Medicine, Southwest Jiaotong University, North Section 1 No.111, Second Ring Road, Chengdu, 610000 People’s Republic of China
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| |
Collapse
|
19
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cell Signal 2020; 78:109876. [PMID: 33285242 DOI: 10.1016/j.cellsig.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.
Collapse
Affiliation(s)
- Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|
21
|
Abstract
Endocardial cells are specialized endothelial cells that, during embryogenesis, form a lining on the inside of the developing heart, which is maintained throughout life. Endocardial cells are an essential source for several lineages of the cardiovascular system including coronary endothelium, endocardial cushion mesenchyme, cardiomyocytes, mural cells, fibroblasts, liver vasculature, adipocytes, and hematopoietic cells. Alterations in the differentiation programs that give rise to these lineages has detrimental effects, including premature lethality or significant structural malformations present at birth. Here, we will review the literature pertaining to the contribution of endocardial cells to valvular, and nonvalvular lineages and highlight critical pathways required for these processes. The lineage differentiation potential of embryonic, and possibly adult, endocardial cells has therapeutic potential in the regeneration of damaged cardiac tissue or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bailey Dye
- Biomedical Sciences Graduate Program at The Ohio State University, Columbus, Ohio 43210, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
22
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
23
|
Falla Zuñiga LF, Muñoz Cerón YS, Salazar L. Structural remodelling of the heart valves extracellular matrix during embryo development. Anat Histol Embryol 2020; 50:206-211. [PMID: 32797691 DOI: 10.1111/ahe.12603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 07/20/2020] [Indexed: 11/27/2022]
Abstract
Alterations in heart valve development represent more than 20% of congenital cardiovascular malformations. Most of the functional properties of heart valves depend on extracellular matrix. Despite its relevance, little is known about fibrillar components on developing stages. Our objective is to define histological changes on valves fibrillar components in late embryonic development of Mus musculus. We found type III collagen as the predominant fibre type in the ECM in prenatal stages followed by a switch to a type I predominance for postnatal ages. The change in fibrillar components is necessary to support the normal mechanical function of adult heart valves.
Collapse
Affiliation(s)
| | | | - Liliana Salazar
- Department of Morphology, Universidad del Valle, Cali, Colombia
| |
Collapse
|
24
|
Guo L, Glover J, Risner A, Wang C, Fulmer D, Moore K, Gensemer C, Rumph MK, Moore R, Beck T, Norris RA. Dynamic Expression Profiles of β-Catenin during Murine Cardiac Valve Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030031. [PMID: 32824435 PMCID: PMC7570242 DOI: 10.3390/jcdd7030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
β-catenin has been widely studied in many animal and organ systems across evolution, and gain or loss of function has been linked to a number of human diseases. Yet fundamental knowledge regarding its protein expression and localization remains poorly described. Thus, we sought to define whether there was a temporal and cell-specific regulation of β-catenin activities that correlate with distinct cardiac morphological events. Our findings indicate that activated nuclear β-catenin is primarily evident early in gestation. As development proceeds, nuclear β-catenin is down-regulated and becomes restricted to the membrane in a subset of cardiac progenitor cells. After birth, little β-catenin is detected in the heart. The co-expression of β-catenin with its main transcriptional co-factor, Lef1, revealed that Lef1 and β-catenin expression domains do not extensively overlap in the cardiac valves. These data indicate mutually exclusive roles for Lef1 and β-catenin in most cardiac cell types during development. Additionally, these data indicate diverse functions for β-catenin within the nucleus and membrane depending on cell type and gestational timing. Cardiovascular studies should take into careful consideration both nuclear and membrane β-catenin functions and their potential contributions to cardiac development and disease.
Collapse
|
25
|
Biomechanical Cues Direct Valvulogenesis. J Cardiovasc Dev Dis 2020; 7:jcdd7020018. [PMID: 32438610 PMCID: PMC7345189 DOI: 10.3390/jcdd7020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
The vertebrate embryonic heart initially forms with two chambers, a ventricle and an atrium, separated by the atrioventricular junction. Localized genetic and biomechanical information guides the development of valves, which function to ensure unidirectional blood flow. If the valve development process goes awry, pathology associated with congenital valve defects can ensue. Congenital valve defects (CVD) are estimated to affect 1–2% of the population and can often require a lifetime of treatment. Despite significant clinical interest, molecular genetic mechanisms that direct valve development remain incompletely elucidated. Cells in the developing valve must contend with a dynamic hemodynamic environment. A growing body of research supports the idea that cells in the valve are highly sensitive to biomechanical forces, which cue changes in gene expression required for normal development or for maintenance of the adult valve. This review will focus on mechanotransductive pathways involved in valve development across model species. We highlight current knowledge regarding how cells sense physical forces associated with blood flow and pressure in the forming heart, and summarize how these changes are transduced into genetic and developmental responses. Lastly, we provide perspectives on how altered biomechanical cues may lead to CVD pathogenesis.
Collapse
|
26
|
Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. Cell Rep 2020; 26:1934-1950.e5. [PMID: 30759401 DOI: 10.1016/j.celrep.2019.01.079] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
The heart is the central organ of the circulatory system, and its proper development is vital for maintaining human life. Here, we used single-cell RNA sequencing to profile the gene expression landscapes of ∼4,000 cardiac cells from human embryos and identified four major types of cells: cardiomyocytes (CMs), cardiac fibroblasts, endothelial cells (ECs), and valvar interstitial cells (VICs). Atrial and ventricular CMs acquired distinct features early in heart development. Furthermore, both CMs and fibroblasts show stepwise changes in gene expression. As development proceeds, VICs may be involved in the remodeling phase, and ECs display location-specific characteristics. Finally, we compared gene expression profiles between humans and mice and identified a series of unique features of human heart development. Our study lays the groundwork for elucidating the mechanisms of in vivo human cardiac development and provides potential clues to understand cardiac regeneration.
Collapse
|
27
|
Gunawan F, Gentile A, Gauvrit S, Stainier DYR, Bensimon-Brito A. Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish. Circ Res 2020; 126:968-984. [PMID: 32070236 DOI: 10.1161/circresaha.119.315992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics. OBJECTIVE To understand the role of Nfatc1 in cardiac valve formation. METHODS AND RESULTS Using the zebrafish atrioventricular valve, we focus on the valve interstitial cells (VICs), which confer biomechanical strength to the cardiac valve leaflets. We find that initially atrioventricular endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the ECM (extracellular matrix) between the 2 endocardial cell monolayers, undergo endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a promigratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. With high-speed microscopy and echocardiography, we show that reduced VIC formation correlates with valvular dysfunction and severe retrograde blood flow that persist into adulthood. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b-a well-known regulator of epithelial-to-mesenchymal transition. CONCLUSIONS Our study sheds light on the function of Nfatc1 in zebrafish cardiac valve development and reveals its role in VIC formation. It also further establishes the zebrafish as a powerful model to carry out longitudinal studies of valve formation and function.
Collapse
Affiliation(s)
- Felix Gunawan
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Alessandra Gentile
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.)
| | - Sébastien Gauvrit
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Didier Y R Stainier
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Anabela Bensimon-Brito
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| |
Collapse
|
28
|
Balistreri CR, Forte M, Greco E, Paneni F, Cavarretta E, Frati G, Sciarretta S. An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132:146-153. [PMID: 31103478 DOI: 10.1016/j.yjmcc.2019.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart malformation frequently associated with the development of aortic valve diseases and severe aortopathy, such as aortic dilatation, aneurysm and dissection. To date, different genetic loci have been identified in syndromic and non- syndromic forms of BAV. Among these, genes involved in the regulation of extracellular matrix remodelling, epithelial to mesenchymal transition and nitric oxide metabolism appear to be the main contributors to BAV pathogenesis. However, no- single gene model explains BAV inheritance, suggesting that more factors are simultaneously involved. In this regard, characteristic epigenetic and immunological profiles have been documented to contradistinguish BAV individuals. In this review, we provide a comprehensive overview addressing molecular mechanisms involved in BAV development and progression.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | | | - Ernesto Greco
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
29
|
Gunawan F, Gentile A, Fukuda R, Tsedeke AT, Jiménez-Amilburu V, Ramadass R, Iida A, Sehara-Fujisawa A, Stainier DYR. Focal adhesions are essential to drive zebrafish heart valve morphogenesis. J Cell Biol 2019; 218:1039-1054. [PMID: 30635353 PMCID: PMC6400548 DOI: 10.1083/jcb.201807175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Gunawan et al. analyze at single-cell resolution collective endocardial cell migration into the extracellular matrix and the cellular rearrangements forming leaflets during zebrafish heart valve formation. They show that focal adhesion activity driven by Integrin α5β1 and Talin1 are essential to drive cardiac valve morphogenesis in zebrafish. Elucidating the morphogenetic events that shape vertebrate heart valves, complex structures that prevent retrograde blood flow, is critical to understanding valvular development and aberrations. Here, we used the zebrafish atrioventricular (AV) valve to investigate these events in real time and at single-cell resolution. We report the initial events of collective migration of AV endocardial cells (ECs) into the extracellular matrix (ECM), and their subsequent rearrangements to form the leaflets. We functionally characterize integrin-based focal adhesions (FAs), critical mediators of cell–ECM interactions, during valve morphogenesis. Using transgenes to block FA signaling specifically in AV ECs as well as loss-of-function approaches, we show that FA signaling mediated by Integrin α5β1 and Talin1 promotes AV EC migration and overall shaping of the valve leaflets. Altogether, our investigation reveals the critical processes driving cardiac valve morphogenesis in vivo and establishes the zebrafish AV valve as a vertebrate model to study FA-regulated tissue morphogenesis.
Collapse
Affiliation(s)
- Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ryuichi Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ayele Taddese Tsedeke
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Atsuo Iida
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
30
|
The adhesion molecule cadherin 11 is essential for acquisition of normal hearing ability through middle ear development in the mouse. J Transl Med 2018; 98:1364-1374. [PMID: 29967341 DOI: 10.1038/s41374-018-0083-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Cadherin 11 (Cdh11), a member of the cadherin adhesion molecule family, is expressed in various regions of the brain as well as the head and ear. To gain further insights into the roles of Cdh11 in the development of the ear, we performed behavioral tests using Cdh11 knockout (KO) mice. KO mice showed reduced acoustic startle responses and increased thresholds for auditory brainstem responses, indicating moderate hearing loss. The auditory bulla volume and ratio of air-filled to non-air-filled space in the middle ear cavity were reduced in KO mice, potentially causing conductive hearing loss. Furthermore, residual mesenchymal and inflammatory cells were observed in the middle ear cavity of KO mice. Cdh11 was expressed in developing mesenchymal cells just before the start of cavitation, indicating that Cdh11 may be directly involved in middle ear cavitation. Since the auditory bulla is derived from the neural crest, the regulation of neural crest-derived cells by Cdh11 may be responsible for structural development. This mutant mouse may be a promising animal model for elucidating the causes of conductive hearing loss and otitis media.
Collapse
|
31
|
Novel pharmacological targets for calcific aortic valve disease: Prevention and treatments. Pharmacol Res 2018; 136:74-82. [DOI: 10.1016/j.phrs.2018.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022]
|
32
|
Dekker S, van Geemen D, van den Bogaerdt AJ, Driessen-Mol A, Aikawa E, Smits AIPM. Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves. Front Cardiovasc Med 2018; 5:105. [PMID: 30159315 PMCID: PMC6104173 DOI: 10.3389/fcvm.2018.00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
The creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves.
Collapse
Affiliation(s)
- Sylvia Dekker
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Daphne van Geemen
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Anita Driessen-Mol
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Anthal I. P. M. Smits
- Soft Tissue Engineering & Mechanobiology Division, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review aims to highlight the past and more current literature related to the multifaceted pathogenic programs that contribute to calcific aortic valve disease (CAVD) with a focus on the contribution of developmental programs. RECENT FINDINGS Calcification of the aortic valve is an active process characterized by calcific nodule formation on the aortic surface leading to a less supple and more stiffened cusp, thereby limiting movement and causing clinical stenosis. The mechanisms underlying these pathogenic changes are largely unknown, but emerging studies have suggested that signaling pathways common to valvulogenesis and bone development play significant roles and include Transforming Growth Factor-β (TGF-β), bone morphogenetic protein (BMP), Wnt, Notch, and Sox9. This comprehensive review of the literature highlights the complex nature of CAVD but concurrently identifies key regulators that can be targeted in the development of mechanistic-based therapies beyond surgical intervention to improve patient outcome.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is relatively common and encompasses both congenital and acquired forms. Bicuspid aortic valve (BAV) is the most common type of cardiac malformation and predisposes to the development of calcific aortic valve disease (CAVD). Since the description of the link between NOTCH1, BAV and CAVD approximately a decade ago, there have been significant advances in the genetic and molecular understanding of these diseases. RECENT FINDINGS Recent work has defined the congenital cardiac phenotypes linked to mutations in NOTCH1, and in addition, novel etiologic genes for BAV have been discovered using new genetic technologies in humans. Furthermore, several mouse models of BAV have been described defining the role of endothelial Notch1 in aortic valve morphogenesis, whereas others have implicated new genes. These murine models along with other cell-based studies have led to molecular insights in the pathogenesis of CAVD. SUMMARY These findings provide important insights into the molecular and genetic basis of aortic valve malformations, including BAV, specifically highlighting the etiologic role of endothelial cells. In addition, numerous investigations in to the mechanisms of CAVD demonstrate the importance of developmental origins and signaling pathways as well as communication between valve endothelial cells and the underlying interstitial cells in valve disease onset and progression.
Collapse
|
35
|
Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B. Developmental Mechanisms of Aortic Valve Malformation and Disease. Annu Rev Physiol 2017; 79:21-41. [DOI: 10.1146/annurev-physiol-022516-034001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Feng Xiao
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853;
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229;
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| |
Collapse
|
36
|
Hulin A, Moore V, James JM, Yutzey KE. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease. Cardiovasc Res 2016; 113:40-51. [PMID: 28069701 DOI: 10.1093/cvr/cvw229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/09/2016] [Accepted: 10/28/2016] [Indexed: 11/12/2022] Open
Abstract
AIMS Myxomatous valve disease (MVD) is the most common aetiology of primary mitral regurgitation. Recent studies suggest that defects in heart valve development can lead to heart valve disease in adults. Wnt/β-catenin signalling is active during heart valve development and has been reported in human MVD. The consequences of increased Wnt/β-catenin signalling due to Axin2 deficiency in postnatal valve remodelling and pathogenesis of MVD were determined. METHODS AND RESULTS To investigate the role of Wnt/β-catenin signalling, we analysed heart valves from mice deficient in Axin2 (KO), a negative regulator of Wnt/β-catenin signalling. Axin2 KO mice display enlarged mitral and aortic valves (AoV) after birth with increased Wnt/β-catenin signalling and cell proliferation, whereas Sox9 expression and collagen deposition are decreased. At 2 months in Axin2 KO mice, the valve extracellular matrix (ECM) is stratified but distal AoV leaflets remain thickened and develop aortic insufficiency. Progressive myxomatous degeneration is apparent at 4 months with extensive ECM remodelling and focal aggrecan-rich areas, along with increased BMP signalling. Infiltration of inflammatory cells is also observed in Axin2 KO AoV prior to ECM remodelling. Overall, these features are consistent with the progression of human MVD. Finally, Axin2 expression is decreased and Wnt/β-catenin signalling is increased in myxomatous mitral valves in a murine model of Marfan syndrome, supporting the importance of Wnt/β-catenin signalling in the development of MVD. CONCLUSIONS Altogether, these data indicate that Axin2 limits Wnt/β-catenin signalling after birth and allows proper heart valve maturation. Moreover, dysregulation of Wnt/β-catenin signalling resulting from loss of Axin2 leads to progressive MVD.
Collapse
Affiliation(s)
- Alexia Hulin
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Vicky Moore
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeanne M James
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH 45229, USA;
| |
Collapse
|
37
|
Ortega A, Gil-Cayuela C, Tarazón E, García-Manzanares M, Montero JA, Cinca J, Portolés M, Rivera M, Roselló-Lletí E. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction. PLoS One 2016; 11:e0160168. [PMID: 27472518 PMCID: PMC4966940 DOI: 10.1371/journal.pone.0160168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | | | - Estefanía Tarazón
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | | | - José Anastasio Montero
- Cardiovascular Surgery Service, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Juan Cinca
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, The Health Research Institute La Fe, Valencia, Spain
- * E-mail:
| |
Collapse
|
38
|
Sung DC, Bowen CJ, Vaidya KA, Zhou J, Chapurin N, Recknagel A, Zhou B, Chen J, Kotlikoff M, Butcher JT. Cadherin-11 Overexpression Induces Extracellular Matrix Remodeling and Calcification in Mature Aortic Valves. Arterioscler Thromb Vasc Biol 2016; 36:1627-37. [PMID: 27312222 DOI: 10.1161/atvbaha.116.307812] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Calcific aortic valve (AoV) disease is a significant clinical problem for which the regulatory mechanisms are poorly understood. Enhanced cell-cell adhesion is a common mechanism of cellular aggregation, but its role in calcific lesion formation is not known. Cadherin-11 (Cad-11) has been associated with lesion formation in vitro, but its function during adult valve homeostasis and pathogenesis is not known. This study aims to elucidate the specific functions of Cad-11 and its downstream targets, RhoA and Sox9, in extracellular matrix remodeling and AoV calcification. APPROACH AND RESULTS We conditionally overexpressed Cad-11 in murine heart valves using a novel double-transgenic Nfatc1(Cre);R26-Cad11(TglTg) mouse model. These mice developed hemodynamically significant aortic stenosis with prominent calcific lesions in the AoV leaflets. Cad-11 overexpression upregulated downstream targets, RhoA and Sox9, in the valve interstitial cells, causing calcification and extensive pathogenic extracellular matrix remodeling. AoV interstitial cells overexpressing Cad-11 in an osteogenic environment in vitro rapidly form calcific nodules analogous to in vivo lesions. Molecular analyses revealed upregulation of osteoblastic and myofibroblastic markers. Treatment with a Rho-associated protein kinase inhibitor attenuated nodule formation, further supporting that Cad-11-driven calcification acts through the small GTPase RhoA/Rho-associated protein kinase signaling pathway. CONCLUSIONS This study identifies one of the underlying molecular mechanisms of heart valve calcification and demonstrates that overexpression of Cad-11 upregulates RhoA and Sox9 to induce calcification and extracellular matrix remodeling in adult AoV pathogenesis. The findings provide a potential molecular target for clinical treatment.
Collapse
Affiliation(s)
- Derek C Sung
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Caitlin J Bowen
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Kiran A Vaidya
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Jingjing Zhou
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Nikita Chapurin
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Andrew Recknagel
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Bin Zhou
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Jonathan Chen
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Michael Kotlikoff
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Jonathan T Butcher
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.).
| |
Collapse
|
39
|
Huk DJ, Austin BF, Horne TE, Hinton RB, Ray WC, Heistad DD, Lincoln J. Valve Endothelial Cell-Derived Tgfβ1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification. Arterioscler Thromb Vasc Biol 2015; 36:328-38. [PMID: 26634652 DOI: 10.1161/atvbaha.115.306091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Aortic valve disease, including calcification, affects >2% of the human population and is caused by complex interactions between multiple risk factors, including genetic mutations, the environment, and biomechanics. At present, there are no effective treatments other than surgery, and this is because of the limited understanding of the mechanisms that underlie the condition. Previous work has shown that valve interstitial cells within the aortic valve cusps differentiate toward an osteoblast-like cell and deposit bone-like matrix that leads to leaflet stiffening and calcific aortic valve stenosis. However, the mechanisms that promote pathological phenotypes in valve interstitial cells are unknown. APPROACH AND RESULTS Using a combination of in vitro and in vivo tools with mouse, porcine, and human tissue, we show that in valve interstitial cells, reduced Sox9 expression and nuclear localization precedes the onset of calcification. In vitro, Sox9 nuclear export and calcific nodule formation is prevented by valve endothelial cells. However, in vivo, loss of Tgfβ1 in the endothelium leads to reduced Sox9 expression and calcific aortic valve disease. CONCLUSIONS Together, these findings suggest that reduced nuclear localization of Sox9 in valve interstitial cells is an early indicator of calcification, and therefore, pharmacological targeting to prevent nuclear export could serve as a novel therapeutic tool in the prevention of calcification and stenosis.
Collapse
Affiliation(s)
- Danielle J Huk
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.)
| | - Blair F Austin
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.)
| | - Tori E Horne
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.)
| | - Robert B Hinton
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.)
| | - William C Ray
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.)
| | - Donald D Heistad
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.)
| | - Joy Lincoln
- From the Molecular and Cellular Pharmacology Graduate Program, Leonard M. Miller School of Medicine, Miami, FL (D.J.H.); Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital Research Institute, Columbus, OH (D.J.H., B.F.A., T.E.H., J.L.); Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (R.B.H.); Battelle Center for Mathematical Medicine, Nationwide Children's Hospital Research Institute, Columbus, OH (W.C.R.); The Ohio State University Interdisciplinary Graduate Program in Biophysics, Columbus, OH (W.C.R.); Department of Pediatrics, The Ohio State University, Columbus, OH (W.C.R., J.L.); and Division of Cardiovascular Medicine and Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA (D.D.H.).
| |
Collapse
|