1
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
He E, Shi B, Jia M, Sun W, Chang K, Jiang H, Zhao W, Zhao H, Dong L, Die X, Feng W, Cui H. Hirschsprung's disease may increase the incidence of inflammatory bowel disease through alterations in CA1. Pediatr Res 2025:10.1038/s41390-025-03938-w. [PMID: 39988713 DOI: 10.1038/s41390-025-03938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The role of Hirschsprung's disease (HSCR) for the development of inflammatory bowel disease (IBD) and the common pathogenesis of the diseases remains unclear. The objective is to investigate the relationship between HSCR and IBD. METHODS In our study, the Mendelian randomization approach was employed to analyze the causal relationships. A further search was conducted for differentially expressed genes (DEGs) between disease and control tissues in HSCR and IBD. Subsequently, the potential pathway mechanisms were subjected to an enrichment analysis. Furthermore, the molecular docking was employed to investigate the binding relationship between potential therapeutic targets and drugs. RESULTS The results show HSCR have an increased risk of developing IBD (IVW: OR = 1.048, P < 0.05; weighted median: OR = 1.065, P < 0.05). A total of 111 DEGs were identified in IBD, while 471 DEGs were observed in HSCR. CA1 was identified as core gene and exhibited lower expression levels in IBD (P < 0.05). Concomitantly, CA1 exhibited reduced expression levels in inflamed tissues. And the TNF and IL17 signaling pathway were found closely related to CA1 expression. CONCLUSION In total, our study shows HSCR promote the occurrence of IBD and reveals pathogenesis. Our results suggest CA1 may provide novel insight for the treatment of HSCR complicated with IBD. IMPACT Individuals with HSCR are at a higher risk of developing IBD (IVW: OR = 1.048, P < 0.05; Weighted median: OR = 1.065, P < 0.05). Patients with IBD exhibited lower expression levels of CA1 (P < 0.05). Furthermore, CA1 expression was found to be lower in inflamed tissues (P < 0.05). CA1 may provide novel insight for the treatment of HSCR complicated with IBD.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Bowen Shi
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Miao Jia
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Wenjing Sun
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Kaili Chang
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hongyv Jiang
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Wei Zhao
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hailan Zhao
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Liang Dong
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Xiaohong Die
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Feng
- Department of General & Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China.
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
3
|
Möller B, Becker LL, Saffari A, Afenjar A, Coci EG, Williamson R, Ward-Melver C, Gibaud M, Sedláčková L, Laššuthová P, Libá Z, Vlčková M, William N, Klee EW, Gavrilova RH, Lévy J, Capri Y, Scavina M, Körner RW, Valivullah Z, Weiß C, Möller GM, Frazier Z, Roberts A, Gener B, Scala M, Striano P, Zara F, Thiel M, Sinnema M, Kamsteeg EJ, Donkervoort S, Duboc V, Zaafrane-Khachnaoui K, Elkhateeb N, Selim L, Margot H, Marin V, Beneteau C, Isidor B, Cogne B, Keren B, Küsters B, Beggs AH, Sveden A, Chopra M, Genetti CA, Nicolai J, Dötsch J, Koy A, Bönnemann CG, von der Hagen M, von Kleist-Retzow JC, Voermans NC, Jungbluth H, Dafsari HS. The expanding clinical and genetic spectrum of DYNC1H1-related disorders. Brain 2025; 148:597-612. [PMID: 38848546 PMCID: PMC11788221 DOI: 10.1093/brain/awae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Intracellular trafficking involves an intricate machinery of motor complexes, including the dynein complex, to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains, as well as cytoplasmic light and intermediate chains, have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of neurodevelopmental disorder manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.
Collapse
Affiliation(s)
- Birk Möller
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute for Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Afshin Saffari
- Heidelberg University, Medical Faculty Heidelberg, University Hospital Heidelberg, Center for Pediatrics and Adolescent Medicine, Department of Pediatrics I, Division of Child Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Alexandra Afenjar
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Intellectual Disabilities of Rare Causes, Department of Genetics and Medical Embryology, Sorbonne University, Trousseau Hospital Paris, 75012 Paris, France
| | - Emanuele G Coci
- Department of Paediatrics, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Marc Gibaud
- Service de pédiatrie, CHU de Nantes, 44000 Nantes, France
| | - Lucie Sedláčková
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Petra Laššuthová
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Zuzana Libá
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Nancy William
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | - Eric W Klee
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ralitza H Gavrilova
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Yline Capri
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Mena Scavina
- Division of Neurology, Nemours Children’s Health, Wilmington, Delaware 19803, USA
| | - Robert Walter Körner
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute Harvard, Cambridge, MA 02142, USA
| | - Claudia Weiß
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Greta Marit Möller
- Berlin University of Applied Sciences and Technology, 10587 Berlin, Germany
| | - Zoë Frazier
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amy Roberts
- Center for Cardiovascular Genetics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biobizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Moritz Thiel
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronique Duboc
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Khaoula Zaafrane-Khachnaoui
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Trust, Cambridge CB2 3EH, UK
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Laila Selim
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Henri Margot
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Victor Marin
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Claire Beneteau
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Bertrand Isidor
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Benjamin Cogne
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Benno Küsters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Abigail Sveden
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Maya Chopra
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maja von der Hagen
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nicol C Voermans
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
4
|
Mueller JL, Leavitt AR, Rahman AA, Han CY, Ott LC, Mahdavian NS, Carbone SE, King SK, Burns AJ, Poole DP, Hotta R, Goldstein AM, Stavely R. Highly neurogenic glia from human and mouse myenteric ganglia generate functional neurons following culture and transplantation into the gut. Cell Rep 2024; 43:114919. [PMID: 39471175 PMCID: PMC11697211 DOI: 10.1016/j.celrep.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024] Open
Abstract
Enteric neural stem cell (ENSC) therapy offers great promise for neurointestinal diseases; however, current isolation methods yield insufficient neurons for regenerative applications. Multiomic profiling of enteric glial cells (EGCs) suggests that subpopulations within myenteric ganglia (MyGa) are a reservoir of highly neurogenic ENSCs. Here, we describe protocols to enrich for intraganglionic EGCs by isolating intact fragments of MyGa, generating cultures with higher neuronal purity than traditional methodologies isolating intramuscular single cells (IM-SCs). MyGa-derived EGCs transdifferentiate into more neurons than IM-SC-derived EGCs do, confirming their neurogenic predisposition. Following transplantation to the mouse intestine, MyGa-derived neurons generate calcium transients and activate smooth muscle in response to optogenetic stimulation. In the human intestine, MyGa-derived cells are similarly highly neurogenic, are enriched for a distinct progenitor population identified by single-cell RNA sequencing (scRNA-seq), and exhibit neuromuscular connectivity following xenogeneic transplantation into mice. Highly neurogenic ENSCs are preferentially located within the MyGa, and their selective isolation offers considerable potential for therapy.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Narges S Mahdavian
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sebastian K King
- Department of Paediatric Surgery, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Fujiwara N, Lee D, Li B, Pierro A, Yamataka A. Enhancement of enteric neural stem cell neurogenesis by glial cell-derived neurotrophic factor in experimental Hirschsprung's disease. Pediatr Surg Int 2024; 40:274. [PMID: 39460767 DOI: 10.1007/s00383-024-05861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE Stem cell therapy offers a promising solution for congenital diseases like Hirschsprung's disease (HSCR). Optimizing stem cell efficacy by modifying the cells and their environment is crucial, but in vitro culture conditions need to be further improved. Glial cell-derived neurotrophic factor (GDNF) plays an important role in neuronal survival, proliferation, migration and differentiation during enteric nervous system (ENS) development. In this study, the effects of GDNF on neurites derived from an Ednrb knockout model were investigated with the aim of enhancing the neurogenic potential of enteric neural crest cells (ENCCs). METHODS Neurospheres were generated form Ednrb+/+ (control) and Ednrb-/- mice at embryonic day13.5 (E13.5) with Sox10-green fluorescent protein (Venus) transgenic expression. These neurospheres were cultured in control media and neurospheres from Ednrb-/- were cultured with either control media or media supplemented with GDNF. ENCCs differentiation was assessed using immunofluorescence staining after 18 days. RESULTS GDNF-treated Ednrb-/- neurospheres showed increased size and higher density of Sox10-positive ENCCs compared to untreated Ednrb-/- neurospheres. GDNF also enhanced the distribution of both TUJ1-positive neurons and S100-positive glial cells. CONCLUSION GDNF effectively enhanced the neurogenic potential of ENCCs from HSCR animal model. This finding is crucial for the development of cell therapy in HSCR.
Collapse
Affiliation(s)
- Naho Fujiwara
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Dorothy Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Stavely R, Rahman AA, Mueller JL, Leavitt AR, Han CY, Pan W, Kaiser KN, Ott LC, Ohkura T, Guyer RA, Burns AJ, Koppes AN, Hotta R, Goldstein AM. Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide. Neuron 2024; 112:3143-3160.e6. [PMID: 39019043 PMCID: PMC11427168 DOI: 10.1016/j.neuron.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kyla N Kaiser
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail N Koppes
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Liu Y, Wu Y, Ren D, Tao Y, Mai F, Zhu J, Li X, Colla E, Grimaldi M, Giovannini R, Giorgi F, Vesci L. The 5HT4R agonist velusetrag efficacy on neuropathic chronic intestinal pseudo-obstruction in PrP-SCA7-92Q transgenic mice. Front Pharmacol 2024; 15:1411642. [PMID: 39139632 PMCID: PMC11319301 DOI: 10.3389/fphar.2024.1411642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background Chronic intestinal pseudo-obstruction (CIPO) is a type of intestinal dysfunction with symptoms of intestinal blockage but without the actual mechanical obstruction. Currently, there are no drugs available to treat this disease. Herein, we report the characterization of the PrP-SCA7-92Q transgenic (Tg) line as a valuable CIPO mouse model and investigated the tolerability and efficacy of the 5-hydroxytryptamine type-4 receptor (5HT4R) agonist velusetrag as a promising pharmacological treatment for CIPO. Methods To test the pharmacodynamics of velusetrag, 8-week-old SCA7 Tg mice, which express human mutated Ataxin-7 gene containing 92 CAG repeats under the mouse prion protein promoter, were treated for 5 weeks by oral route with velusetrag at 1 and 3 mg/kg doses or vehicle. Body weight was monitored throughout the treatment. After sacrifice, the small intestine and proximal colon were collected for whole-mount immunostaining. Untreated, age-matched, C57BL/6J mice were also used as controls in comparison with the other experimental groups. Results Analysis of SCA7 Tg mice showed tissue damage and alterations, mucosal abnormalities, and ulcers in the distal small intestine and proximal colon. Morphological changes were associated with significant neuronal loss, as shown by decreased staining of pan-neuronal markers, and with accumulation of ataxin-7-positive inclusions in cholinergic neurons. Administration of velusetrag reversed intestinal abnormalities, by normalizing tissue damage and re-establishing the normal level of glia/neuron's count in both the small and large intestines. Conclusion We demonstrated that the PrP-SCA7-92Q Tg line, a model originally developed to mimic spinocerebellar ataxia, is suitable to study CIPO pathology and can be useful in establishing new therapeutic strategies, such as in the case of velusetrag. Our results suggest that velusetrag is a promising compound to treat patients affected by CIPO or intestinal dysmotility disease.
Collapse
Affiliation(s)
- Yongqiang Liu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Yunfei Wu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Dewan Ren
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Yulong Tao
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Fangyi Mai
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Jingyi Zhu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Xiang Li
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai, China
| | - Emanuela Colla
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University, Rome, Italy
- BIO@SNS, Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | | | | | | | | |
Collapse
|
8
|
Besendörfer M, Knorr C, Kirchgatter A, Müller H, Reis Wolfertstetter P, Matzel KE, Diez S. Sacral neuromodulation in children and adolescents with defecation disorders. Neurogastroenterol Motil 2024; 36:e14808. [PMID: 38703048 DOI: 10.1111/nmo.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Even if understanding of neuronal enteropathies, such as Hirschsprung's disease and functional constipation, has been improved, specialized therapies are still missing. Sacral neuromodulation (SNM) has been established in the treatment of defecation disorders in adults. The aim of the study was to investigate effects of SNM in children and adolescents with refractory symptoms of chronic constipation. METHODS A two-centered, prospective trial has been conducted between 2019 and 2022. SNM was applied continuously at individually set stimulation intensity. Evaluation of clinical outcomes was conducted at 3, 6, and 12 months after surgery based on the developed questionnaires and quality of life analysis (KINDLR). Primary outcome was assessed based on predefined variables of fecal incontinence and defecation frequency. KEY RESULTS Fifteen patients enrolled in the study and underwent SNM (median age 8.0 years (range 4-17 years)): eight patients were diagnosed with Hirschsprung's disease (53%). Improvement of defecation frequency was seen in 8/15 participants (53%) and an improvement of fecal incontinence in 9/12 patients (75%). We observed stable outcome after 1 year of treatment. Surgical revision was necessary in one patient after electrode breakage. Urinary incontinence was observed as singular side effect of treatment in two patients (13%), which was manageable with the reduction of stimulation intensity. CONCLUSIONS SNM shows promising clinical results in children and adolescents presenting with chronic constipation refractory to conservative therapy. Indications for patients with enteral neuropathies deserve further confirmation.
Collapse
Affiliation(s)
- Manuel Besendörfer
- Department of Surgery, Section of Pediatric Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Christian Knorr
- Pediatric Surgery, RoMed Klinikum Rosenheim (former Pediatric Surgery and Orthopedics Hospital Barmherzige Brüder), Rosenheim, Germany
| | - Annemarie Kirchgatter
- Department of Surgery, Section of Pediatric Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Hanna Müller
- Department of Pediatrics, Division of Neonatology and Pediatric Intensive Care, University Hospital Marburg, University of Marburg, Marburg, Germany
| | | | - Klaus E Matzel
- Department of Surgery, Section of Coloproctology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Sonja Diez
- Department of Surgery, Section of Pediatric Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Benibol Y, Önenerk Men AM, Hakalmaz AE, Çomunoğlu N, Topuzlu Tekant G, Özcan R. The Effect of the Ganglionic Segment Inflammatory Response to Postoperative Enterocolitis in Hirschsprung Disease. Fetal Pediatr Pathol 2024; 43:140-150. [PMID: 38268442 DOI: 10.1080/15513815.2024.2306280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION We examined the relationship between proinflammatory cytokines that occur in the inflammatory reaction in the intestine in Hirschsprung disease (HD) and Hirschsprung-associated enterocolitis (HAEC). METHODS Thirty cases (M:27, F:3) operated on due to HD. The cases were divided into three groups: group 1 with pre and post operative EC, group 2 with post-operative, and group 3 with pre-operative EC. The intestinal segments were evaluated by immunohistochemistry for interleukin 1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). RESULTS IL-1β staining was significantly higher in the ganglionic zone of groups with enterocolitis compared to the control group (p = 0.012). TNF-α staining in the transitional zone of Group 3 and IL-1β staining in the ganglionic zone of Group 1 was significantly higher than the control group (p = 0.030, p = 0.020). CONCLUSION In our study, older age at diagnosis and more than 20% IL-1ß staining in the ganglionic segment were found to be risk factors for HAEC. It is noteworthy that the increase in IL-1ß can be associated with HAEC.
Collapse
Affiliation(s)
- Yalım Benibol
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayşe Mine Önenerk Men
- Cerrahpasa Faculty of Medicine, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ali Ekber Hakalmaz
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nil Çomunoğlu
- Cerrahpasa Faculty of Medicine, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonca Topuzlu Tekant
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rahşan Özcan
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
10
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
11
|
Ullrich S, Denning NL, Holder M, Wittenberg R, Krebs K, Schwan A, Verderber A, Garrison AP, Rymeski B, Rosen N, Frischer JS. Does Length of Extended Resection Beyond Transition Zone Change Clinical Outcome for Hirschsprung Pull-Through? J Pediatr Surg 2024; 59:86-90. [PMID: 37865574 DOI: 10.1016/j.jpedsurg.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION A proximal resection margin greater than 5 cm from the intra-operative histologically determined transition zone has been deemed necessary to minimize the risk of transition zone pull-through. This extended resection may require the sacrifice of vascular supply and even further bowel resection. The impact of extended proximal resection margin on post-operative complications and functional outcomes is unclear. METHODS A retrospective chart review of patients who underwent primary pull-through for Hirschsprung disease at a single institution between January 2008 and December 2022 was performed. An adequate proximal margin was defined by a circumferential normally ganglionated ring and absence of hypertrophic nerves. The extended margin was defined as the total length of proximal colon with normal ganglion cells and without hypertrophic nerves. Fecal incontinence severity was assessed with the Pediatric Fecal Incontinence Severity Score (PFISS). RESULTS Eighty seven patients met criteria for inclusion. Median age at primary pull-through was 17 days (IQR 10-92 days), 55% (n = 48) of patients had an extended proximal margin (EPM) ≤ 5 cm, and 45% (n = 39) had an EPM > 5 cm. An EPM ≤5 cm was not associated with increased rates of Hirschsprung associated enterocolitis (≤5 cm 43%, >5 cm 39%, P = 0.701), diversion post pull-through (≤5 cm 10%, >5 cm 5%, P = 0.367) or reoperation for transition zone pull-through (≤5 cm 3%, >5 cm 0%, P = 0.112). EPM ≤5 cm had more frequent involuntary daytime bowel movements (P = 0.041) and more frequent voluntary bowel movements (P = 0.035). There were no differences in other measures of fecal incontinence severity. CONCLUSIONS Shorter proximal extended margins beyond the adequate ganglionated margin do not significantly impact post-operative complication rates and have an unclear effect on fecal incontinence. TYPE OF STUDY Case Control. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Sarah Ullrich
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA.
| | | | - Monica Holder
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Randi Wittenberg
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Kevin Krebs
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Ava Schwan
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Abigail Verderber
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Aaron P Garrison
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Beth Rymeski
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Nelson Rosen
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| | - Jason S Frischer
- Cincinnati Children's Hospital Colorectal Center, Cincinnati, OH, USA
| |
Collapse
|
12
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
13
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Maklad M, Mazariegos G, Ganoza A. Pediatric intestine and multivisceral transplant. Curr Opin Organ Transplant 2023; 28:316-325. [PMID: 37418582 DOI: 10.1097/mot.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
PURPOSE OF REVIEW Intestinal and multivisceral transplantation (ITx, MVTx) is the cornerstone in treatment of irreversible intestinal failure (IF) and complications related to parenteral nutrition. This review aims to highlight the unique aspects of the subject in pediatrics. RECENT FINDINGS Etiology of intestinal failure (IF) in children shares some similarity with adults but several unique considerations when being evaluated for transplantation will be discussed. Owing to significant advancement in IF management and home parenteral nutrition (PN), indication criteria for pediatric transplantation continues to be updated. Outcomes have continued to improve with current long-term patient and graft survival in multicenter registry reports reported at 66.1% and 48.8% at 5 years, respectively. Pediatric specific surgical challenges such abdominal closure, post transplantation outcomes, and quality of life are discussed in this review. SUMMARY ITx and MVTx remain lifesaving treatment for many children with IF. However long-term graft function is still a major challenge.
Collapse
Affiliation(s)
- Mohamed Maklad
- Hillman Center for Pediatric Transplantation, Thomas E. Starzl Transplantation Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
15
|
He E, Jiang Y, Wei D, Wang Y, Sun W, Jia M, Shi B, Cui H. The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14222-14240. [PMID: 37679133 DOI: 10.3934/mbe.2023636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Yuhang Jiang
- Tianjin Medical University of Clinical Medicine, Tianjin, China
| | - Diwei Wei
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Yifan Wang
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Wenjing Sun
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Miao Jia
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Hualei Cui
- Tianjin Children's Hospital of Minimally Invasive Surgery, Tianjin, China
| |
Collapse
|
16
|
Belza C, Wales PW. Intestinal failure among adults and children: Similarities and differences. Nutr Clin Pract 2023; 38 Suppl 1:S98-S113. [PMID: 37115028 DOI: 10.1002/ncp.10987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 04/29/2023] Open
Abstract
Intestinal failure (IF) is a complex medical condition that is caused by a constellation of disorders, resulting in the gut's inability to adequately absorb fluids and nutrients to sustain hydration, growth, and survival, thereby requiring the use of parenteral fluid and/or nutrition. Significant advancements in intestinal rehabilitation have resulted in improved survival rates for individuals with IF. There are distinct differences, however, related to etiology, adaptive potential and complications, and medical and surgical management when comparing children with adults. The purpose of this review is to contrast the similarities and differences between these two distinct groups and provide insight for future directions, as a growing population of pediatric patients will cross into the adult world for IF management.
Collapse
Affiliation(s)
- Christina Belza
- Group for Improvement of Intestinal Function and Treatment (GIFT), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Paul W Wales
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
- Cincinnati Center of Excellence in Intestinal Rehabilitation (CinCEIR), Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Halasy V, Szőcs E, Soós Á, Kovács T, Pecsenye-Fejszák N, Hotta R, Goldstein AM, Nagy N. CXCR4 and CXCL12 signaling regulates the development of extrinsic innervation to the colorectum. Development 2023; 150:dev201289. [PMID: 37039233 PMCID: PMC10263150 DOI: 10.1242/dev.201289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 04/12/2023]
Abstract
The gastrointestinal tract is innervated by an intrinsic neuronal network, known as the enteric nervous system (ENS), and by extrinsic axons arising from peripheral ganglia. The nerve of Remak (NoR) is an avian-specific sacral neural crest-derived ganglionated structure that extends from the cloaca to the proximal midgut and, similar to the pelvic plexus, provides extrinsic innervation to the distal intestine. The molecular mechanisms controlling extrinsic nerve fiber growth into the gut is unknown. In vertebrates, CXCR4, a cell-surface receptor for the CXCL12 chemokine, regulates migration of neural crest cells and axon pathfinding. We have employed chimeric tissue recombinations and organ culture assays to study the role of CXCR4 and CXCL12 molecules in the development of colorectal innervation. CXCR4 is specifically expressed in nerve fibers arising from the NoR and pelvic plexus, while CXCL12 is localized to the hindgut mesenchyme and enteric ganglia. Overexpression of CXCL12 results in significantly enhanced axonal projections to the gut from the NoR, while CXCR4 inhibition disrupts nerve fiber extension, supporting a previously unreported role for CXCR4 and CXCL12 signaling in extrinsic innervation of the colorectum.
Collapse
Affiliation(s)
- Viktória Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Tamás Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Nóra Pecsenye-Fejszák
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
18
|
A pilot study characterizing longitudinal changes in fecal microbiota of patients with Hirschsprung-associated enterocolitis. Pediatr Surg Int 2022; 38:1541-1553. [PMID: 35951092 DOI: 10.1007/s00383-022-05191-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Hirschsprung disease is a neurointestinal disease that occurs due to failure of enteric neural crest-derived cells to complete their rostrocaudal migration along the gut mesenchyme, resulting in aganglionosis along variable lengths of the distal bowel. Despite the effective surgery that removes the aganglionic segment, children with Hirschsprung disease remain at high risk for developing a potentially life-threatening enterocolitis (Hirschsprung-associated enterocolitis). Although the etiology of this enterocolitis remains poorly understood, several recent studies in both mouse models and in human subjects suggest potential involvement of gastrointestinal microbiota in the underlying pathogenesis of Hirschsprung-associated enterocolitis. METHODS We present the first study to exploit the Illumina MiSeq next-generation sequencing platform within a longitudinal framework focused on microbiomes of Hirschsprung-associated enterocolitis in five patients. We analyzed bacterial communities from fecal samples collected at different timepoints starting from active enterocolitis and progressing into remission. RESULTS We observed compositional differences between patients largely attributable to variability in age at the time of sample collection. Remission samples across patients exhibited compositional similarity, including enrichment of Blautia, while active enterocolitis samples showed substantial variability in composition. CONCLUSIONS Overall, our findings provide continued support for the role of GI microbiota in the pathogenesis of Hirschsprung-associated enterocolitis.
Collapse
|
19
|
Lui KNC, NGAN ESW. Human Pluripotent Stem Cell-Based Models for Hirschsprung Disease: From 2-D Cell to 3-D Organoid Model. Cells 2022; 11:cells11213428. [PMID: 36359824 PMCID: PMC9657902 DOI: 10.3390/cells11213428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex congenital disorder caused by defects in the development of the enteric nervous system (ENS). It is attributed to failures of the enteric neural crest stem cells (ENCCs) to proliferate, differentiate and/or migrate, leading to the absence of enteric neurons in the distal colon, resulting in colonic motility dysfunction. Due to the oligogenic nature of the disease, some HSCR conditions could not be phenocopied in animal models. Building the patient-based disease model using human induced pluripotent stem cells (hPSC) has opened up a new opportunity to untangle the unknowns of the disease. The expanding armamentarium of hPSC-based therapies provides needed new tools for developing cell-replacement therapy for HSCR. Here we summarize the recent studies of hPSC-based models of ENS in 2-D and 3-D culture systems. These studies have highlighted how hPSC-based models complement the population-based genetic screens and bioinformatic approaches for the discovery of new HSCR susceptibility genes and provide a human model for the close-to-physiological functional studies. We will also discuss the potential applications of these hPSC-based models in translational medicines and their advantages and limitations. The use of these hPSC-based models for drug discovery or cell replacement therapy likely leads to new treatment strategies for HSCR in the future. Further improvements in incorporating hPSC-based models with the human-mouse chimera model and organ-on-a-chip system for establishing a better disease model of HSCR and for drug discovery will further propel us to success in the development of an efficacious treatment for HSCR.
Collapse
|
20
|
Olivo Freites C, Sy H, Gharamti A, Higuita NIA, Franco-Paredes C, Suárez JA, Henao-Martínez AF. Chronic Chagas Disease-the Potential Role of Reinfections in Cardiomyopathy Pathogenesis. Curr Heart Fail Rep 2022; 19:279-289. [PMID: 35951245 DOI: 10.1007/s11897-022-00568-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE OF THE REVIEW Chagas disease is a neglected anthropozoonosis of global importance with significant cardiovascular-associated mortality. This review focuses on the Trypanosoma cruzi reinfections' role in chronic Chagas cardiomyopathy pathogenesis. We discuss and summarize the available data related to pathology, pathogenesis, diagnosis, and treatment of reinfections. RECENT FINDINGS Reinfections influence the genetic and regional diversity of T. cruzi, tissue tropism, modulation of the host's immune system response, clinical manifestations, the risk for congenital infections, differences in diagnostics performances, response to antiparasitic therapy, and the natural history of the disease. Animal models suggest that reinfections lead to worse outcomes and increased mortality, while other studies showed an association between reinfections and lower parasitemia levels and subsequent infection protection. In some regions, the human risk of reinfections is 14% at 5 years. Evidence has shown that higher anti-T. cruzi antibodies are correlated with an increased rate of cardiomyopathy and death, suggesting that a higher parasite exposure related to reinfections may lead to worse outcomes. Based on the existing literature, reinfections may play a role in developing and exacerbating chronic Chagas cardiomyopathy and are linked to worse outcomes. Control efforts should be redirected to interventions that address structural poverty for the successful and sustainable prevention of Chagas disease.
Collapse
Affiliation(s)
- Christian Olivo Freites
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hendrik Sy
- Internal Medicine Department, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amal Gharamti
- Internal Medicine Department, Yale-Waterbury Hospital, Yale School of Medicine, New Haven, CT, USA
| | | | | | - José Antonio Suárez
- Clinical Research Department, Investigador SNI Senacyt Panamá, Instituto Conmemorativo Gorgas de Estudios de La Salud, Panamá City, Republic of Panama
| | - Andrés F Henao-Martínez
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, USA.
| |
Collapse
|
21
|
Nham S, Nguyen ATM, Holland AJA. Paediatric intestinal pseudo-obstruction: a scoping review. Eur J Pediatr 2022; 181:2619-2632. [PMID: 35482095 PMCID: PMC9192403 DOI: 10.1007/s00431-021-04365-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
Paediatric intestinal pseudo-obstruction (PIPO) encompasses a group of rare disorders in which patients present with the clinical features of bowel obstruction in the absence of mechanical occlusion. The management of PIPO presents a challenge as evidence remains limited on available medical and surgical therapy. Parenteral nutrition is often the mainstay of therapy. Long-term therapy may culminate in life-threatening complications including intestinal failure-related liver disease, central line thrombosis and sepsis. Intestinal transplantation remains the only definitive cure in PIPO but is a complex and resource-limited solution associated with its own morbidity and mortality. We conducted a scoping review to present a contemporary summary of the epidemiology, aetiology, pathophysiology, diagnosis, management and complications of PIPO.Conclusion: PIPO represents a rare disorder that is difficult to diagnose and challenging to treat, with significant morbitity and mortality. The only known cure is intestinal transplantation. What is Known: • Paediatric intestinal pseudo-obstruction is a rare, heterogeneous disorder that confers a high rate of morbidity and mortality • Complications of paediatric intestinal pseudo-obstruction include chronic pain, small intestine bacterial overgrowth and malrotation. Other complications can occur related to its management, such as line infections with parenteral nutrition or cardiac side effects of prokinetic medications What is New: • Progress in medical and surgical therapy in recent years has led to improved patient outcomes • Enteral autonomy has been reported in most patients at as early as 1 month post-transplantation.
Collapse
Affiliation(s)
- Susan Nham
- Liverpool Hospital, Liverpool, NSW Australia
- South West Sydney Clinical School, The University of New South Wales, New South Wales, Australia
| | - Alexander T. M. Nguyen
- Liverpool Hospital, Liverpool, NSW Australia
- South West Sydney Clinical School, The University of New South Wales, New South Wales, Australia
| | - Andrew J. A. Holland
- The Burns Unit, The Children’s Hospital at Westmead Burns Research Institute, Westmead, NSW Australia
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Corner Hawkesbury Road and Hainsworth Street, Westmead, NSW 2145 Australia
| |
Collapse
|
22
|
Abstract
Intestinal failure (IF) secondary to short bowel syndrome is a challenging and complex medical condition with significant risk for surgical and medical complications. Significant advancements in the care of this patient population have led to improved survival rates. Due to their intensive medical needs children with IF are at risk for long-term complications that require comprehensive management and close monitoring. The purpose of this paper is to review the available literature emphasizing the surgical aspects of care for children with IF secondary to short bowel syndrome. A key priority in the surgical care of this patient population includes strategies to preserve available bowel and maximize its function. Utilization of novel surgical techniques and autologous bowel reconstruction can have a significant impact on children with IF secondary to short bowel syndrome related to the function of their bowel and ability to achieve enteral autonomy. It is also important to understand the potential long-term complications to ensure strategies are put in place to mitigate risk with early detection to improve long-term outcomes.
Collapse
Affiliation(s)
- Christina Belza
- Group for Improvement of Intestinal Function and Treatment (GIFT), The Hospital for Sick Children, University of Toronto, Canada
| | - Paul W Wales
- Division of General and Thoracic Surgery, Cincinatti Children's Hospital Medical Center, University of Cincinnati, Cincinnatii, USA; Cincinnati Children's Intestinal Rehabilitation Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 2023, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
23
|
Resveratrol and Curcumin for Chagas Disease Treatment—A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15050609. [PMID: 35631435 PMCID: PMC9143057 DOI: 10.3390/ph15050609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/08/2023] Open
Abstract
Chagas disease (CD) is a neglected protozoan infection caused by Trypanosoma cruzi, which affects about 7 million people worldwide. There are two available drugs in therapeutics, however, they lack effectiveness for the chronic stage—characterized mainly by cardiac (i.e., cardiomyopathy) and digestive manifestations (i.e., megaesophagus, megacolon). Due to the involvement of the immuno-inflammatory pathways in the disease’s progress, compounds exhibiting antioxidant and anti-inflammatory activity seem to be effective for controlling some clinical manifestations, mainly in the chronic phase. Resveratrol (RVT) and curcumin (CUR) are natural compounds with potent antioxidant and anti-inflammatory properties and their cardioprotective effect have been proposed to have benefits to treat CD. Such effects could decrease or block the progression of the disease’s severity. The purpose of this systematic review is to analyze the effectiveness of RVT and CUR in animal and clinical research for the treatment of CD. The study was performed according to PRISMA guidelines and it was registered on PROSPERO (CDR42021293495). The results did not find any clinical study, and the animal research was analyzed according to the SYRCLES risk of bias tools and ARRIVE 2.0 guidelines. We found 9 eligible reports in this study. We also discuss the potential RVT and CUR derivatives for the treatment of CD as well.
Collapse
|
24
|
Rueckert H, Ganz J. How to Heal the Gut's Brain: Regeneration of the Enteric Nervous System. Int J Mol Sci 2022; 23:ijms23094799. [PMID: 35563190 PMCID: PMC9105052 DOI: 10.3390/ijms23094799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
The neural-crest-derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS disorders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed understanding of how regeneration is regulated on a cellular and molecular level in animal models with both high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.
Collapse
Affiliation(s)
- Helen Rueckert
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
25
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
26
|
Wang YJ, He YB, Chen L, Lin Y, Liu MK, Zhou CM. Laparoscopic-assisted Soave procedure for Hirschsprung disease: 10-year experience with 106 cases. BMC Surg 2022; 22:72. [PMID: 35219304 PMCID: PMC8882278 DOI: 10.1186/s12893-022-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The purpose of this study was to summarize the clinical experience and 10 year follow-up results of laparoscopic assisted Soave procedure for the treatment of long-segment Hirschsprung disease (HD).
Methods
From January 2010 to February 2020, 106 children with long-segment HD participated in this study. The laparoscopic-assisted Soave procedure was performed for the treatment of long-segment HD. The follow-up time was two weeks, one month, and three months after the operation, and then every six months to one year.
Results
The operation was successful for all 106 children. All patients were discharged 5–7 days after the operation. The median time in surgery was 150 (100–190) minutes, and the median volume of bleeding was 6 (3–10) ml. The short-term postoperative daily defecation frequency was 4–11 times, 3–7 times within 6 months, and 2–3 times after 6–12 months. Postoperative complications included anastomotic leakage in two cases, perianal dermatitis in 13 cases, anastomotic stenosis in four cases, adhesive bowel obstruction in two cases, enterocolitis in 16 cases, soiling in 11 cases, and constipation recurrence in three cases.
Conclusions
The laparoscopic-assisted Soave procedure is a safe and effective surgical method for treating long-segment HD, and it causes little trauma or bleeding and has a fast postoperative recovery. Yet some complications may occur. Preoperative diagnosis, intraoperative and postoperative standardized processing can reduce the postoperative complications.
Collapse
|
27
|
Keller J, Wedel T, Seidl H, Kreis ME, van der Voort I, Gebhard M, Langhorst J, Lynen Jansen P, Schwandner O, Storr M, van Leeuwen P, Andresen V, Preiß JC, Layer P, Allescher H, Andus T, Bischoff SC, Buderus S, Claßen M, Ehlert U, Elsenbruch S, Engel M, Enninger A, Fischbach W, Freitag M, Frieling T, Gillessen A, Goebel-Stengel M, Gschossmann J, Gundling F, Haag S, Häuser W, Helwig U, Hollerbach S, Holtmann G, Karaus M, Katschinski M, Krammer H, Kruis W, Kuhlbusch-Zicklam R, Lynen Jansen P, Madisch A, Matthes H, Miehlke S, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Posovszky C, Raithel M, Röhrig-Herzog G, Schäfert R, Schemann M, Schmidt-Choudhury A, Schmiedel S, Schweinlin A, Schwille-Kiuntke J, Stengel A, Tesarz J, Voderholzer W, von Boyen G, von Schönfeld J. Update S3-Leitlinie Intestinale Motilitätsstörungen: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:192-218. [PMID: 35148561 DOI: 10.1055/a-1646-1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jutta Keller
- Medizinische Klinik, Israelitisches Krankenhaus in Hamburg, Hamburg, Deutschland
| | - Thilo Wedel
- Institut für Anatomie, Christian-Albrechts-Universität Kiel, Kiel, Deutschland
| | - Holger Seidl
- Klinik für Gastroenterologie, Hepatologie und Gastroenterologische Onkologie, Isarklinikum München, München, Deutschland
| | - Martin E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité, Campus Benjamin Franklin, Berlin, Deutschland
| | - Ivo van der Voort
- Klinik für Innere Medizin - Gastroenterologie und Diabetologie, Jüdisches Krankenhaus Berlin, Deutschland
| | | | - Jost Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Klinikum Bamberg, Bamberg, Deutschland
| | - Petra Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - Oliver Schwandner
- Abteilung für Proktologie, Krankenhaus Barmherzige Brüder, Regensburg
| | - Martin Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg
| | - Pia van Leeuwen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - Viola Andresen
- Medizinische Klinik, Israelitisches Krankenhaus in Hamburg, Hamburg, Deutschland
| | - Jan C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Klinikum Neukölln, Berlin
| | - Peter Layer
- Medizinische Klinik, Israelitisches Krankenhaus in Hamburg, Hamburg, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Shi B, Gao Z, Chen Q, Xiao Y, Zhang S, Qiang S. Clinical Evaluation of Laparoscopic Surgery for Hirschsprung Disease Combined with Colorectal Anastomosis with a Stapling Technique in Infants. J Laparoendosc Adv Surg Tech A 2021. [PMID: 34935482 DOI: 10.1089/lap.2020.0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: To evaluate the effect of laparoscopic-assisted resection and colorectal anastomosis with a stapling technique in the treatment of Hirschsprung disease (HSCR) in infants. Methods: From June 2018 to January 2019, 25 cases of HSCR diagnosed by clinical examination and pathology were selected at the Children's Hospital, School of Medicine, Zhejiang University, China. All children were treated with standard laparoscopic-assisted transanal endorectal pull-through surgery (the modified Swenson technique). The short segment type and the typical type with a descending colon-rectum anastomosis were both included. The long segment type had an ascending colon-rectal anastomosis after ascending colon turnover. The colorectal anastomosis was divided into traditional manual anastomosis and straight intraluminal stapler (SIS) anastomosis. According to the different methods of anastomosis, the patients were divided into a traditional group and a SIS group. Age, gender, body weight, operation time, blood loss, postoperative anal exhaust and defecation time, postoperative hospitalization time, and postoperative short-term complications were analyzed retrospectively. Results: A total of 25 children were diagnosed with HSCR. There were 17 boys and 8 girls, and their average age was 10.20 months (interquartile range, 8.60-11.30). Their average body weight was 7.90 kg (interquartile range, 7.50-8.40). There were 17 cases of the typical type, 5 cases of the short segment type, and 3 cases of the long segment type. The different colorectal anastomosis methods were divided into 10 cases in the traditional group and 15 cases in the SIS group. There were no intraoperative complications, wound infections, or anastomotic fistula. Compared with the SIS group, children in the traditional group had an increased operative time (129.5 versus 103.00 minutes; P < .0001), increased intraoperative blood loss (20.00 versus 7.00 mL; P < .0001), increased postoperative hospitalization time (12.00 versus 9.00 days; P = .0003), and increased postoperative defecation time (18.40 versus 13.20 hours; P < .0001). After 6-12 months of follow-up, there was no anastomotic stenosis or enterocolitis in the SIS group. In the traditional group, 1 child had anastomotic stenosis, which improved 6 months after anal dilatation. One case of enterocolitis occurred 4 months after the operation and was cured after enema and infusion. Conclusion: Laparoscopic-assisted resection combined with colorectal anastomosis with the stapling technique in the treatment of HSCR in infants is feasible. It had a short operation time, less bleeding, less trauma, and a rapid recovery of postoperative intestinal function. The anastomosis was smooth, wide, and reliable, and anastomotic fistula and stenosis did not occur.
Collapse
Affiliation(s)
- Lifeng Zhang
- General Surgery Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Bo Shi
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Zhigang Gao
- The Children's Hospital, Zhejiang University School of Medicine, Pediatric Laparoscopic Center, Hangzhou City, Zhejiang Province, China
| | - Qingjiang Chen
- The Children's Hospital, Zhejiang University School of Medicine, Pediatric Laparoscopic Center, Hangzhou City, Zhejiang Province, China
| | - Yi Xiao
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Shuhao Zhang
- General Surgery Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Shu Qiang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
29
|
Wang YJ, Han ZC, Chen L, He YB, Lin Y, Zhou CM. Clinical Efficacy of an Indwelling Transanal Tube for the Prevention of Anastomotic Leakage After Hirschsprung's Disease: A Single Center Experience with Chinese Patients. J Laparoendosc Adv Surg Tech A 2021; 32:342-346. [PMID: 34783258 DOI: 10.1089/lap.2021.0644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The aim of this study was to investigate the clinical effectiveness of an indwelling transanal tube for the prevention of anastomotic leakage (AL) after a radical operation for Hirschsprung's disease (HD). Methods: We retrospectively analyzed the clinical data from 158 patients who had undergone laparoscopic-assisted Soave procedures for HD at our hospital from May 2015 to May 2019. Patients were divided into two groups depending upon whether the anal drainage tube was retained or not retained: an indwelling group (group A, n = 86) and a no-indwelling group (group B, n = 72). Results: All 158 children had a successful operation by a laparoscopic technique. There was no significant difference in the duration of the operation, the length of the incision, the amount of bleeding, or the postoperative hospitalization time between the two groups. Compared with the no-indwelling group, maintaining the transanal tube had significant advantages for preventing incidences of AL (P < .05). The 4-year follow-up showed that the incidence of postoperative enterocolitis with the indwelling transanal tube was significantly lower than in the group without the drainage tube (P < .05). Conclusions: The laparoscopic-assisted Soave procedure with an indwelling transanal tube is a safe and feasible method for the treatment of HD in children. This method can not only drain intestinal contents but also reduce the occurrence of AL.
Collapse
Affiliation(s)
- Yun-Jin Wang
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Zhong-Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Beijing, P.R. China
| | - Liu Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Yuan-Bin He
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Yu Lin
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Ming Zhou
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
30
|
Nagy N, Kovacs T, Stavely R, Halasy V, Soos A, Szocs E, Hotta R, Graham H, Goldstein AM. Avian ceca are indispensable for hindgut enteric nervous system development. Development 2021; 148:dev199825. [PMID: 34792104 PMCID: PMC8645208 DOI: 10.1242/dev.199825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
Abstract
The enteric nervous system (ENS), which is derived from enteric neural crest cells (ENCCs), represents the neuronal innervation of the intestine. Compromised ENCC migration can lead to Hirschsprung disease, which is characterized by an aganglionic distal bowel. During the craniocaudal migration of ENCCs along the gut, we find that their proliferation is greatest as the ENCC wavefront passes through the ceca, a pair of pouches at the midgut-hindgut junction in avian intestine. Removal of the ceca leads to hindgut aganglionosis, suggesting that they are required for ENS development. Comparative transcriptome profiling of the cecal buds compared with the interceca region shows that the non-canonical Wnt signaling pathway is preferentially expressed within the ceca. Specifically, WNT11 is highly expressed, as confirmed by RNA in situ hybridization, leading us to hypothesize that cecal expression of WNT11 is important for ENCC colonization of the hindgut. Organ cultures using embryonic day 6 avian intestine show that WNT11 inhibits enteric neuronal differentiation. These results reveal an essential role for the ceca during hindgut ENS formation and highlight an important function for non-canonical Wnt signaling in regulating ENCC differentiation.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,USA
| | - Viktoria Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Adam Soos
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Emoke Szocs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,USA
| | - Hannah Graham
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,USA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,USA
| |
Collapse
|
31
|
Chanpong A, Borrelli O, Thapar N. Hirschsprung disease and Paediatric Intestinal Pseudo-obstruction. Best Pract Res Clin Gastroenterol 2021; 56-57:101765. [PMID: 35331399 DOI: 10.1016/j.bpg.2021.101765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/31/2023]
Abstract
Hirschsprung disease (HSCR) and Paediatric Intestinal Pseudo-obstruction (PIPO) comprise two of the most recognized and severe disorders of gastrointestinal (GI) motility. HSCR is a developmental disorder of the enteric nervous system invariably affecting the large intestine, whereas the majority of PIPO conditions represent congenital disorders of one or more components of the neuromusculature and more diffusely affect the GI tract. Histopathology is deemed the gold standard for the diagnosis of HSCR and, arguably, of PIPO, but, other diagnostic modalities such as manometric and genetic studies have seen recent advances that may increase their utility. Especially for PIPO, management is multidisciplinary and best performed in specialist referral centres. Surgery remains the only viable treatment for HSCR and appears essential to optimize and sustain feeding and viability of intestinal function in PIPO patients. Novel therapies such as neural stem cell transplants show promise for the future.
Collapse
Affiliation(s)
- Atchariya Chanpong
- Neurogastroenterology & Motility Unit, Gastroenterology Department, Great Ormond Street Hospital for Children, London, WC1N 3JH, United Kingdom; Division of Gastroenterology and Hepatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand; Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Osvaldo Borrelli
- Neurogastroenterology & Motility Unit, Gastroenterology Department, Great Ormond Street Hospital for Children, London, WC1N 3JH, United Kingdom
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, United Kingdom; Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Queensland, 4101, Australia.
| |
Collapse
|
32
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
33
|
Bonora E, Chakrabarty S, Kellaris G, Tsutsumi M, Bianco F, Bergamini C, Ullah F, Isidori F, Liparulo I, Diquigiovanni C, Masin L, Rizzardi N, Cratere MG, Boschetti E, Papa V, Maresca A, Cenacchi G, Casadio R, Martelli P, Matera I, Ceccherini I, Fato R, Raiola G, Arrigo S, Signa S, Sementa AR, Severino M, Striano P, Fiorillo C, Goto T, Uchino S, Oyazato Y, Nakamura H, Mishra SK, Yeh YS, Kato T, Nozu K, Tanboon J, Morioka I, Nishino I, Toda T, Goto YI, Ohtake A, Kosaki K, Yamaguchi Y, Nonaka I, Iijima K, Mimaki M, Kurahashi H, Raams A, MacInnes A, Alders M, Engelen M, Linthorst G, de Koning T, den Dunnen W, Dijkstra G, van Spaendonck K, van Gent DC, Aronica EM, Picco P, Carelli V, Seri M, Katsanis N, Duijkers FAM, Taniguchi-Ikeda M, De Giorgio R. Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain 2021; 144:1451-1466. [PMID: 33855352 DOI: 10.1093/brain/awab056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.
Collapse
Affiliation(s)
- Elena Bonora
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy
| | - Sanjiban Chakrabarty
- Department of Molecular Genetics, Erasmus MC, Rotterdam, 3000 CA, The Netherlands
| | - Georgios Kellaris
- Center for Human Disease Modeling, Duke University, Durham, NC 27710, USA
| | - Makiko Tsutsumi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, 470-1192, Japan
| | - Francesca Bianco
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Farid Ullah
- Center for Human Disease Modeling, Duke University, Durham, NC 27710, USA
| | - Federica Isidori
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Mariapia Giuditta Cratere
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy.,Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Elisa Boschetti
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy
| | - Valentina Papa
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, 40139, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Biological, Geological, Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Pierluigi Martelli
- Biocomputing Group, Department of Biological, Geological, Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Ivana Matera
- IRCCS Istituto Giannina Gaslini, Genova, 16128, Italy
| | | | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Giuseppe Raiola
- Department of Paediatrics, Pugliese-Ciaccio Hospital, Catanzaro, 88100, Italy
| | - Serena Arrigo
- IRCCS Istituto Giannina Gaslini, Genova, 16128, Italy
| | - Sara Signa
- IRCCS Istituto Giannina Gaslini, Genova, 16128, Italy
| | | | | | | | | | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Shumpei Uchino
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, 173-8605, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshinobu Oyazato
- Department of Pediatrics, Kakogawa Central City Hospital, Kakogawa, Hyogo, 675-8611, Japan
| | - Hisayoshi Nakamura
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Sushil K Mishra
- Glycoscience Group, National University of Ireland, Galway, H91 CF50, Ireland
| | - Yu-Sheng Yeh
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, 470-1192, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Jantima Tanboon
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yoshiki Yamaguchi
- Laboratory of Pharmaceutical Physical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi, 981-8558, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, 470-1192, Japan
| | - Anja Raams
- Department of Molecular Genetics, Erasmus MC, Rotterdam, 3000 CA, The Netherlands
| | - Alyson MacInnes
- Department of Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Mariel Alders
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Marc Engelen
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Gabor Linthorst
- Department of Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Tom de Koning
- Department of Metabolic Diseases, UMCG, Groningen, 9700 RB, The Netherlands
| | | | - Gerard Dijkstra
- Department of Gastroenterology, UMCG, Groningen, 9700 RB, The Netherlands
| | - Karin van Spaendonck
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC, Rotterdam, 3000 CA, The Netherlands
| | - Eleonora M Aronica
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Paolo Picco
- IRCCS Istituto Giannina Gaslini, Genova, 16128, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, 40139, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138, Italy
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27710, USA
| | - Floor A M Duijkers
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, 1100 DD, The Netherlands
| | - Mariko Taniguchi-Ikeda
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, 470-1192, Japan.,Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan.,Department of Clinical Genetics, Fujita Health University Hospital, Aichi, 470-1192, Japan
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, St. Anna Hospital, University of Ferrara, Ferrara, 44124, Italy
| |
Collapse
|
34
|
Dantas RO. Management of Esophageal Dysphagia in Chagas Disease. Dysphagia 2021; 36:517-522. [PMID: 33855597 DOI: 10.1007/s00455-021-10297-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Chagas disease, caused by the infection of the protozoan parasite Trypanosoma cruzi, has clinical consequences in the heart and digestive tract. The most important changes in the digestive tract occur in the esophagus (megaesophagus) and colon (megacolon). Esophageal dysfunction in Chagas disease results from damage of the esophageal myenteric plexus, with loss of esophageal peristalsis, partial or absent lower esophageal sphincter relaxation, and megaesophagus, which characterizes secondary esophageal achalasia. The treatment options for the disease are similar to those for idiopathic achalasia, consisting of diet and behavior changes, drugs, botulinum toxin, peroral endoscopic myotomy (POEM), pneumatic dilation of the lower esophageal sphincter, laparoscopic Heller myotomy, and esophagectomy. Chagas disease causes a life-threatening cardiopathy, and this should be considered when choosing the most appropriate treatment for the disease. While some options are palliative, for temporary relief of dysphagia (such as drugs, botulinum toxin, and pneumatic dilation), other therapies provide a long-term benefit. In this case, POEM stands out as a modern and successful strategy, with good results in more than 90% of the patients. Esophagectomy is the option in Chagas disease patients with advanced megaesophagus, despite the increased risk of complications. In these cases, peroral endoscopic myotomy may be an option, which needs further evaluation.
Collapse
Affiliation(s)
- Roberto Oliveira Dantas
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - Campus da USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Bhave S, Arciero E, Baker C, Ho WL, Guyer RA, Hotta R, Goldstein AM. Pan-enteric neuropathy and dysmotility are present in a mouse model of short-segment Hirschsprung disease and may contribute to post-pullthrough morbidity. J Pediatr Surg 2021; 56:250-256. [PMID: 32414519 PMCID: PMC7572464 DOI: 10.1016/j.jpedsurg.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Hirschsprung disease (HSCR) is characterized by distal intestinal aganglionosis. While surgery is lifesaving, gastrointestinal (GI) motility disorders persist in many patients. Our objective was to determine whether enteric nervous system (ENS) abnormalities exist in the ganglionated portions of the GI tract far proximal to the aganglionic region and whether these are associated with GI dysmotility. METHODS Using Ednrb-null mice, a model of HSCR, immunohistochemical analysis was performed to evaluate quantitatively ENS structure in proximal colon, small intestine, and stomach. Gastric emptying and intestinal transit were measured in vivo and small and large bowel contractility was assessed by spatiotemporal mapping ex vivo. RESULTS Proximal colon of HSCR mice had smaller ganglia and decreased neuronal fiber density, along with a marked reduction in migrating motor complexes. The distal small intestine exhibited significantly fewer ganglia and decreased neuronal fiber density, and this was associated with delayed small intestinal transit time. Finally, in the stomach of HSCR mice, enteric neuronal packing density was increased and gastric emptying was faster. CONCLUSIONS ENS abnormalities and motility defects are present throughout the ganglionated portions of the GI tract in Ednrb-deficient mice. This may explain the GI morbidity that often occurs following pull-through surgery for HSCR.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Corey Baker
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Wing Lam Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
36
|
PHOX2B Immunostaining: A Simple and Helpful Tool for the Recognition of Ganglionic Cells and Diagnosis of Hirschsprung Disease. Am J Surg Pathol 2020; 44:1389-1397. [PMID: 32604166 DOI: 10.1097/pas.0000000000001528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hirschsprung disease (HD) is a congenital disorder of the enteric nervous system that occurs in ∼1 in 5000 live births. It is characterized by the absence of ganglionic cells (GCs) in the distal intestine. The diagnosis relies on the thorough analysis of a rectal suction biopsy (RSB), which must show a complete absence of GCs after careful examination of at least 100 serial sections. Such a negative characteristic explains the difficulty of this diagnosis. Moreover, GCs may be immature in very young or preterm born children, making them hard to recognize. Therefore, ancillary techniques have been developed as diagnostic help, such as acetylcholinesterase histochemistry and calretinin immunostaining. These techniques reveal only indirect clues, focusing mainly on the changes in nerve fibers, but not on GCs themselves. As PHOX2B has been shown to be a very specific transcription factor in GCs and in progenitor enteric nerve cells, we have assessed (i) PHOX2B immunostaining in immature enteric ganglia and (ii) the use of PHOX2B immunostaining for the recognition of GCs on RSBs for suspicion of HD. We have observed PHOX2B expression in all GCs, both mature and immature, and its complete absence in Hirschsprung cases. We suggest that the use of PHOX2B immunostaining is of great help (i) in the recognition of GCs on RSBs regardless of their differentiation and therefore (ii) in the diagnosis of HD.
Collapse
|
37
|
Unexpected High Prevalence of Lymphocytic Infiltrates in Myenteric Ganglions in Intestinal Inertia. Am J Surg Pathol 2020; 44:1137-1142. [PMID: 32271192 DOI: 10.1097/pas.0000000000001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intestinal inertia is a severe form of gut dysmotility that may require surgical resection. Loss of myenteric ganglion cells has been proposed as a possible etiology. Preclinical models have also suggested that virus infection-associated ganglionitis may be an alternative pathogenic factor. We determined to the extent intestinal inertia is associated with the lack of myenteric ganglion cells or ganglionitis using resection specimens from 27 intestinal inertia and 28 colon cancer patients. A hot spot approach with 5 HPFs was used for quantifying inflammatory cells. CD3, CD8, and CD20 immunohistochemistry was used to quantify T and B lymphocytes, along with subtyping the T-lymphocyte population by CD8. None of the intestinal inertia nor control cases showed the absence of myenteric ganglion cells. A total of 15 (55.6%) of the intestinal inertia cases showed inflammatory cell infiltration in the myenteric ganglion cells, compared with only 1 of 28 (3.6%) control cases (P<0.0001 by Fisher exact test). The inertia cases with inflammatory infiltrates were all associated predominantly with lymphocytes, including 3 cases (11.1%) with concurrent eosinophil infiltration, and 1 case (3.7%) with concurrent neutrophil infiltration. Furthermore, all 15 inertia cases with myenteric lymphocytic ganglionitis were associated with T lymphocytes (100%), including 1 case with a subset of concurrent B lymphocytes. The average CD3 count was 3.8 cells/HPF. CD8 immunohistochemical stain showed positive staining in 12 of the 15 cases (80%) with CD8-positive cells ranging from 1 to 8/HPF. In contrast, the only control case with lymphocytic ganglionitis showed mixed B and T lymphocytes and eosinophils. The high prevalence of T-lymphocyte infiltration in the myenteric ganglion in intestinal inertia cases suggests a possible pathogenic role.
Collapse
|
38
|
Kahaleh M, Tyberg A, Suresh S, Lambroza A, Gaidhane M, Zamarripa F, Martínez GM, Carames JC, Moura ET, Farias GF, Porfilio MG, Nieto J, Rey M, Rodriguez Casas F, Mondragón Hernández OV, Vargas-Rubio R, Canadas R, Hani A, Munoz G, Castillo B, Lukashok HP, Robles-Medranda C, de Moura EG. How does per-oral endoscopic myotomy compare to Heller myotomy? The Latin American perspective. Endosc Int Open 2020; 8:E1392-E1397. [PMID: 33015342 PMCID: PMC7508649 DOI: 10.1055/a-1223-1521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background and study aims Both Heller myotomy (HM) and per-oral endoscopic myotomy (POEM) are efficacious therapies for achalasia. The efficacy and safety of POEM vs HM in Latin America and specifically in patients with Chagas disease is unknown. Patients and methods Consecutive patients undergoing either HM or POEM for achalasia were included from nine Latin American centers in a prospective registry over 5 years. Technical success was defined as undergoing a successful myotomy. Clinical success was defined as achieving an Eckardt score < 3. Data on demographics, procedure info, Eckardt score, and adverse events (AEs) were collected. Student's t test, Chi squared, and logistic regression analyses were conducted. Results One hundred thirty-three patients were included (59 male; 44 %; mean age 47). POEM was performed in 69 patients, HM in 64 patients. A total of 35 patients had Chagas disease, 17 of 69 in the POEM group, 18 of 64 in the HM group. Both groups had significant reduction in Eckardt scores ( P < 0.00001), but successful initial therapy was significantly higher in the POEM group compared to the HM group ( P = 0.01304). AEs were similar in both group (17 % vs 14 %) and consisted of pneumothorax (n = 3 vs 2), bleeding requiring transfusion (n = 3 vs 2), and mediastinitis (n = 3 vs 1). Hospital stay was longer in the HM group than in the POEM group ( P < 0.00001). In the Chagas subgroup, post-procedure Eckardt score in the POEM group was significantly reduced by 5.71 points ( P < 0.00001) versus 1.56 points in the HM group ( P = 0.042793). Conclusion Both HM and POEM are efficacious for achalasia, but POEM was associated with higher initial therapy success and shorter hospital stay in Latin America. In Chagas patients with achalasia, POEM was significantly more effective than HM.
Collapse
Affiliation(s)
- Michel Kahaleh
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Amy Tyberg
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Supriya Suresh
- Weill Cornell Medical School, New York, New York, United States
| | - Arnon Lambroza
- Weill Cornell Medical School, New York, New York, United States
| | - Monica Gaidhane
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | | | | | | | | | | | | | - Jose Nieto
- Borland-Groover, Jacksonville, Florida, United States
| | - Mario Rey
- La Policia Hospital, Bogota, Colombia
| | | | | | | | - Raul Canadas
- San Ignacio University Hospital, Bogota, Colombia
| | - Albis Hani
- San Ignacio University Hospital, Bogota, Colombia
| | - Guillermo Munoz
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | | | | | | | | |
Collapse
|
39
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
40
|
Dubrovsky G, Ha D, Thomas AL, Zhu M, Hubacher J, Itoh T, Dunn JCY. Electroacupuncture to Increase Neuronal Stem Cell Growth. Med Acupunct 2020; 32:16-23. [PMID: 32104523 DOI: 10.1089/acu.2019.1381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Neuropathic intestinal disorders continue to pose a significant burden, and current treatment options do not target the underlying cellular deficiencies. The goal of this study is to determine whether acupuncture and electroacupuncture (EA) can affect the growth of neuronal cells. Methods: Three groups of Lewis rats received 25 minutes of acupuncture twice a week for 10 weeks. The 3 groups of rats received treatment with either sham acupuncture (SA), real acupuncture (RA), or EA. After 10 weeks of treatment, skin and intestinal tissue were collected and analyzed for histology and mRNA expression of neuronal marker genes. Results: Compared with rats that received SA, rats that received RA and EA showed a significant increase in the mRNA expression levels of multiple neuronal genes in the skin. No significant histologic changes were seen. Conclusions: Acupuncture and EA result in significant changes in the expression of genes implicated as markers for neural stem cells, neural cell development, and neurons. This may, therefore, provide a novel avenue for developing treatments in patients suffering from intestinal aganglionic and neuropathic diseases.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Don Ha
- Santa Monica Acupuncture Center, Los Angeles, CA
| | - Anne-Laure Thomas
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Minji Zhu
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA
| | | | - Tatsuo Itoh
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
41
|
Ganz J, Melancon E, Wilson C, Amores A, Batzel P, Strader M, Braasch I, Diba P, Kuhlman JA, Postlethwait JH, Eisen JS. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev Biol 2019; 455:473-484. [PMID: 31394080 DOI: 10.1016/j.ydbio.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Catherine Wilson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Angel Amores
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Marie Strader
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ingo Braasch
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
42
|
Santos LP, Coimbra D, Cunha C, Lopes MF. Oesophageal atresia with tracheo-oesophageal fistula, ileal atresia and Hirschsprung's disease: outcome of a rare phenotype. BMJ Case Rep 2019; 12:12/2/e226675. [PMID: 30798270 DOI: 10.1136/bcr-2018-226675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Oesophageal atresia with or without tracheo-oesophageal fistula, ileal atresia and Hirschsprung's disease are surgical malformations of the gastrointestinal tract typically diagnosed early in the neonatal period and varying in severity and prognosis. This report describes a full-term male newborn presenting simultaneous oesophageal atresia with distal tracheo-oesophageal fistula, ileal atresia and Hirschsprung's disease. In addition to the complex types of gastrointestinal malformations involved, the combination of ileal atresia and Hirschsprung's disease, as well as ganglion cells distal to intestinal atresia, resulted in a challenging diagnosis. Despite a successful outcome, the patient presented increased morbidity and prolonged hospitalisation. We highlight some important findings that may aid the early diagnosis of Hirschsprung's disease in this clinical setting. To our knowledge, the association of oesophageal atresia/tracheo-oesophageal fistula, ileal atresia and Hirschsprung's disease has not been previously reported.
Collapse
Affiliation(s)
- Liliana Pimenta Santos
- Department of Paediatric Surgery, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Diana Coimbra
- Department of Paediatric Surgery, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Catarina Cunha
- Department of Paediatric Surgery, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Maria Francelina Lopes
- Department of Paediatric Surgery, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Dubrovsky G, Lo YK, Wang PM, Wu MD, Huynh N, Liu W, Dunn JCY. Intestinal Electrical Stimulation to Increase the Rate of Peristalsis. J Surg Res 2019; 236:153-158. [PMID: 30694750 DOI: 10.1016/j.jss.2018.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pediatric gastrointestinal motility disorders are a large and broad group. Some of these disorders have been effectively treated with electrical stimulation. The goal of our present study is to determine whether the rate of intestinal peristalsis can be increased with electrical stimulation. METHODS Juvenile mini-Yucatan pigs were placed under general anesthesia and a short segment of the jejunum was transected. Ultrasound gel was placed inside the segment. The segment of the jejunum was first monitored for 20 min under no stimulation, followed by direct electrical stimulation using a planar electrode. The gel extruded out of the intestine via peristalsis was collected and weighed for each 20-min time interval. RESULTS Effective delivery of the current to the intestine was confirmed via direct measurements. When there was no direct intestinal electrical stimulation, an average of 0.40 g of gel was expelled in 20 min, compared to 1.57 g of gel expelled during direct electrical stimulation (P < 0.01). CONCLUSIONS Direct intestinal electrical stimulation accelerates the transit of gastrointestinal contents. This approach may be useful in the treatment of a range of pediatric motility disorders.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yi-Kai Lo
- Niche Biomedical LLC, Los Angeles, California
| | - Po-Min Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - Ming-Dou Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - Nhan Huynh
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wentai Liu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Bioengineering, University of California Los Angeles, Los Angeles, California; Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California; Department of Bioengineering, Stanford University, Stanford, California.
| |
Collapse
|
44
|
Zuber SM, Grikscheit TC. Stem cells for babies and their surgeons: The future is now. J Pediatr Surg 2019; 54:16-20. [PMID: 30497818 DOI: 10.1016/j.jpedsurg.2018.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022]
Abstract
Pediatric surgeons are ideal allies for the translation of basic science including stem cell therapies. In the spirit of Robert E. Gross, of applying creative solutions to pediatric problems with technical expertise, we describe the impending cellular therapies that may be derived from stem and progenitor cells. Understanding the types and capabilities of stem and progenitor cells is important for pediatric surgeons to join and facilitate progress for babies. We are developing an induced pluripotent stem cell therapy for enteric neuropathies such as Hirschsprung disease that might be helpful for children in the near future. Our goals, which we hope to share with other surgeons and scientists, include working to establish safe clinical trials and meeting regulatory standards in a thoughtful way that balances patients need and unknown risks.
Collapse
Affiliation(s)
- Samuel M Zuber
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
| | - Tracy C Grikscheit
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
45
|
Hao MM, Bergner AJ, Newgreen DF, Enomoto H, Young HM. Technologies for Live Imaging of Enteric Neural Crest-Derived Cells. Methods Mol Biol 2019; 1976:97-105. [PMID: 30977068 DOI: 10.1007/978-1-4939-9412-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Time-lapse imaging of gut explants from embryonic mice in which neural crest-derived cells express fluorescent proteins allows the behavior of enteric neural crest cells to be observed and analyzed. Explants of embryonic gut are dissected, mounted on filter paper supports so the gut retains its tubular three-dimensional structure, and then placed in coverglass bottom culture dishes in tissue culture medium. A stainless steel ring is placed on top of the filter support to prevent movement. Imaging is performed using a confocal microscope in an environmental chamber. A z series of images through the network of fluorescent cells is collected every 3, 5, or 10 min. At the end of imaging, the z series are projected.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Leuven, Belgium
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Pesce M, Borrelli O, Saliakellis E, Thapar N. Gastrointestinal Neuropathies: New Insights and Emerging Therapies. Gastroenterol Clin North Am 2018; 47:877-894. [PMID: 30337038 DOI: 10.1016/j.gtc.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bewildering complexity of the enteric nervous system makes it susceptible to develop a wide array of motility disorders, collectively called enteric neuropathies. These gastrointestinal conditions are among the most challenging to manage, mainly given poor characterization of their etiopathophysiology and outcomes. Not surprisingly, therefore, targeted or curative therapies for enteric neuropathies are lacking and management is largely symptomatic. Nonetheless, recent advances in neurogastroenterology have witnessed improvements in established strategies, such as intestinal transplantation and the emergence of new treatments including novel drugs, electrical pacing, and manipulation of fecal microbiota, as well as stem cell and gene therapy.
Collapse
Affiliation(s)
- Marcella Pesce
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK; Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Via Pansini 5, Naples 80131, Italy
| | - Osvaldo Borrelli
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Efstratios Saliakellis
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Nikhil Thapar
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK; Stem Cells and Regenerative Medicine, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
47
|
Anorectal Manometry for the Diagnosis of Hirschsprung Disease: New Heights for the Balloon or Just Hot Air? J Pediatr Gastroenterol Nutr 2018; 67:311-312. [PMID: 29927866 DOI: 10.1097/mpg.0000000000002076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
48
|
Estrogen receptor β controls proliferation of enteric glia and differentiation of neurons in the myenteric plexus after damage. Proc Natl Acad Sci U S A 2018; 115:5798-5803. [PMID: 29760072 DOI: 10.1073/pnas.1720267115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Injury to the enteric nervous system (ENS) can cause several gastrointestinal (GI) disorders including achalasia, irritable bowel syndrome, and gastroparesis. Recently, a subpopulation of enteric glial cells with neuronal stem/progenitor properties (ENSCs) has been identified in the adult ENS. ENSCs have the ability of reconstituting the enteric neuronal pool after damage of the myenteric plexus. Since the estrogen receptor β (ERβ) is expressed in enteric glial cells and neurons, we investigated whether a selective ERβ agonist, LY3201, can influence neuronal and glial cell differentiation. Myenteric ganglia from the murine muscularis externa were isolated and cultured in either glial cell medium or neuronal medium. In glial cell medium, the number of glial progenitor cells (Sox10+) was increased by fourfold in the presence of LY3201. In the neuronal medium supplemented with an antimitotic agent to block glial cell proliferation, LY3201 elicited a 2.7-fold increase in the number of neurons (neurofilament+ or HuC/D+). In addition, the effect of LY3201 was evaluated in vivo in two murine models of enteric neuronal damage and loss, namely, high-fat diet and topical application of the cationic detergent benzalkonium chloride (BAC) on the intestinal serosa, respectively. In both models, treatment with LY3201 significantly increased the recovery of neurons after damage. Thus, LY3201 was able to stimulate glial-to-neuron cell differentiation in vitro and promoted neurogenesis in the damaged myenteric plexus in vivo. Overall, our study suggests that selective ERβ agonists may represent a therapeutic tool to treat patients suffering from GI disorders, caused by excessive neuronal/glial cell damage.
Collapse
|
49
|
Nagy N, Barad C, Hotta R, Bhave S, Arciero E, Dora D, Goldstein AM. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 2018; 145:dev.160317. [PMID: 29678817 DOI: 10.1242/dev.160317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Csilla Barad
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
50
|
Chandra R, Kesavan A. Progressive Dysphagia in an Adolescent Female. Clin Pediatr (Phila) 2018; 57:491-493. [PMID: 28770622 DOI: 10.1177/0009922817724401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Anil Kesavan
- 2 Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|