1
|
Long H, Tian Y, Zhang D, Li L, Hao R, Li H, Wang C, Ru X, Deng Q, Huang Y, Zhu C. Synergistic integration of transcriptomics and metabolomics analyses provides novel insights into the mechanisms underlying unsynchronized growth of greater amberjack (Seriola dumerili). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101441. [PMID: 39961181 DOI: 10.1016/j.cbd.2025.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/12/2025]
Abstract
Greater amberjack (Seriola dumerili) has a significant value in the global aquaculture industry because of its adaptive traits and rapid growth rate. However, the unsynchronized growth of greater amberjack poses challenges in its cultivation, and the molecular mechanisms underlying it remain unclear. In the current study, greater amberjack individuals showing growth differences were collected and subjected to transcriptomics and metabolomics analyses. Metabolomics analysis revealed 164 and 206 significantly different metabolites (SDMs) in the positive ion mode (POS) and negative ion mode (NEG) of liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively (VIP > 1 and P < 0.05). Transcriptomics analysis confirmed 534 differentially expressed genes (DEGs), with |log2FC| > 1 and false discovery rate (FDR) < 0.05. A total of 87 enriched pathways were identified by integrated metabolomics and transcriptomics analyses and exhibited that fast-growing group (FG) hold enhanced digestive and anabolic capacities, superior glycine synthesis capability, strong feeding behavior, and high skeletal biomineralization activity, while the slow-growing group (SG) consumed additional energy to cope with environmental stress, and growth was hindered during the generation of immune responses. These results revealed the underlying molecular mechanisms of unsynchronized growth in S. dumerili, and promoted the selection process for growth traits.
Collapse
Affiliation(s)
- Hongzhao Long
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yali Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Dongying Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Liancheng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Ruijuan Hao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| | - Hang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Chen Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Xiaoying Ru
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Qiuxia Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Ahi EP. Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review. Calcif Tissue Int 2025; 116:58. [PMID: 40180675 PMCID: PMC11968561 DOI: 10.1007/s00223-025-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
In the complex process of skeletal development, the significance of m6A RNA methylation-a predominant form of RNA modification-has not been fully explored. This review discuss how m6A RNA methylation plays an important, though not yet fully understood, role in regulating skeletal formation. It examines how m6A influences key signaling pathways essential for skeletal development and homeostasis, suggesting various possible interactions between m6A methylation and these critical pathways. While the exact mechanisms for many of these interactions remain to be elucidated, m6A RNA methylation is anticipated to be a key emerging regulator in skeletal structure development across vertebrates. Highlighting the need for further research, this overview provides an in-depth look at the potential regulatory interactions of m6A RNA methylation within skeletal system. Uniquely, this review is the most comprehensive compilation of evidence linking components of m6A RNA methylation to signaling pathways involved in skeletogenesis.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Ahi EP, Verta JP, Kurko J, Ruokolainen A, Singh P, Debes PV, Erkinaro J, Primmer CR. Gene co-expression patterns in Atlantic salmon adipose tissue provide a molecular link among seasonal changes, energy balance and age at maturity. Mol Ecol 2024:e17313. [PMID: 38429895 DOI: 10.1111/mec.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Sexual maturation in many fishes requires a major physiological change that involves a rapid transition between energy storage and usage. In Atlantic salmon, this transition for the initiation of maturation is tightly controlled by seasonality and requires a high-energy status. Lipid metabolism is at the heart of this transition since lipids are the main energy storing molecules. The balance between lipogenesis (lipid accumulation) and lipolysis (lipid use) determines energy status transitions. A genomic region containing a transcription co-factor of the Hippo pathway, vgll3, is the main determinant of maturation timing in Atlantic salmon. Interestingly, vgll3 acts as an inhibitor of adipogenesis in mice and its genotypes are potentially associated with seasonal heterochrony in lipid storage and usage in juvenile Atlantic salmon. Here, we explored changes in expression of more than 300 genes directly involved in the processes of adipogenesis, lipogenesis and lipolysis, as well as the Hippo pathway in the adipose tissue of immature and mature Atlantic salmon with distinct vgll3 genotypes. We found molecular evidence consistent with a scenario in which immature males with different vgll3 genotypes exhibit contrasting seasonal dynamics in their lipid profiles. We also identified components of the Hippo signalling pathway as potential major drivers of vgll3 genotype-specific differences in adipose tissue gene expression. This study demonstrates the importance of adipose gene expression patterns for directly linking environmental changes with energy balance and age at maturity through genetic factors bridging lipid metabolism, seasonality and sexual maturation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Verta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Johanna Kurko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Paul Vincent Debes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Aquaculture and Fish Biology, Hólar University, Sauoarkrokur, Iceland
| | | | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Haftorn KL, Romanowska J, Lee Y, Page CM, Magnus PM, Håberg SE, Bohlin J, Jugessur A, Denault WRP. Stability selection enhances feature selection and enables accurate prediction of gestational age using only five DNA methylation sites. Clin Epigenetics 2023; 15:114. [PMID: 37443060 PMCID: PMC10339624 DOI: 10.1186/s13148-023-01528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) is robustly associated with chronological age in children and adults, and gestational age (GA) in newborns. This property has enabled the development of several epigenetic clocks that can accurately predict chronological age and GA. However, the lack of overlap in predictive CpGs across different epigenetic clocks remains elusive. Our main aim was therefore to identify and characterize CpGs that are stably predictive of GA. RESULTS We applied a statistical approach called 'stability selection' to DNAm data from 2138 newborns in the Norwegian Mother, Father, and Child Cohort study. Stability selection combines subsampling with variable selection to restrict the number of false discoveries in the set of selected variables. Twenty-four CpGs were identified as being stably predictive of GA. Intriguingly, only up to 10% of the CpGs in previous GA clocks were found to be stably selected. Based on these results, we used generalized additive model regression to develop a new GA clock consisting of only five CpGs, which showed a similar predictive performance as previous GA clocks (R2 = 0.674, median absolute deviation = 4.4 days). These CpGs were in or near genes and regulatory regions involved in immune responses, metabolism, and developmental processes. Furthermore, accounting for nonlinear associations improved prediction performance in preterm newborns. CONCLUSION We present a methodological framework for feature selection that is broadly applicable to any trait that can be predicted from DNAm data. We demonstrate its utility by identifying CpGs that are highly predictive of GA and present a new and highly performant GA clock based on only five CpGs that is more amenable to a clinical setting.
Collapse
Affiliation(s)
- Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020, Bergen, Norway
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Mental and Physical Health, Department of Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020, Bergen, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Ferrante C, Cavin L. Early Mesozoic burst of morphological disparity in the slow-evolving coelacanth fish lineage. Sci Rep 2023; 13:11356. [PMID: 37443368 PMCID: PMC10345187 DOI: 10.1038/s41598-023-37849-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Since the split of the coelacanth lineage from other osteichthyans 420 million years ago, the morphological disparity of this clade has remained remarkably stable. Only few outliers with peculiar body shape stood out over the evolutionary history, but they were phylogenetically and stratigraphically independent of each other. Here, we report the discovery of a new clade of ancient latimeriid coelacanths representing a small flock of species present in the Western Tethys between 242 and 241 million years ago. Among the four species, two show highly derived anatomy. A new genus shows reversal to plesiomorphic conditions in its skull and caudal fin organisation. The new genus and its sister Foreyia have anatomical modules that moved from the general coelacanth Bauplau either in the same direction or in opposite direction that affect proportions of the body, opercle and fins. Comparisons with extant genetic models shows that changes of the regulatory network of the Hedgehog signal gene family may account for most of the altered anatomy. This unexpected, short and confined new clade represents the only known example of a burst of morphological disparity over the long history of coelacanths at a recovery period after the Permian-Triassic Mass Extinction.
Collapse
Affiliation(s)
- Christophe Ferrante
- Department of Geology and Palaeontology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland.
- Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland.
| | - Lionel Cavin
- Department of Geology and Palaeontology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland
| |
Collapse
|
6
|
Markevich GN, Pavlova NS, Kapitanova DV, Esin EV. Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism. Evol Dev 2023; 25:274-288. [PMID: 37540043 DOI: 10.1111/ede.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.
Collapse
Affiliation(s)
- Grigorii N Markevich
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Scientific Department, Kronotsky Nature Reserve, Yelizovo, Kamchatka Region, Russia
| | - Nadezhda S Pavlova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Daria V Kapitanova
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Lab of Postnatal Ontogenesis, N.K. Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Esin
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Soloperto S, Olivier S, Poret A, Minier C, Halm-Lemeille MP, Jozet-Alves C, Aroua S. Effects of 17α-ethinylestradiol on the neuroendocrine gonadotropic system and behavior of European sea bass larvae ( Dicentrarchus labrax). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:198-215. [PMID: 36803253 DOI: 10.1080/15287394.2023.2177781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The widespread use of 17α-ethinylestradiol (EE2), and other estrogenic endocrine disruptors, results in a continuous release of estrogenic compounds into aquatic environments. Xenoestrogens may interfere with the neuroendocrine system of aquatic organisms and may produce various adverse effects. The aim of the present study was to expose European sea bass larvae (Dicentrarchus labrax) to EE2 (0.5 and 50 nM) for 8 d and determine the expression levels of brain aromatase (cyp19a1b), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), kisspeptins (kiss1, kiss2) and estrogen receptors (esr1, esr2a, esr2b, gpera, gperb). Growth and behavior of larvae as evidenced by locomotor activity and anxiety-like behaviors were measured 8 d after EE2 treatment and a depuration period of 20 d. Exposure to 0.5 nM EE2 induced a significant increase in cyp19a1b expression levels, while upregulation of gnrh2, kiss1, and cyp19a1b expression was noted after 8 d at 50 nM EE2. Standard length at the end of the exposure phase was significantly lower in larvae exposed to 50 nM EE2 than in control; however, this effect was no longer observed after the depuration phase. The upregulation of gnrh2, kiss1, and cyp19a1b expression levels was found in conjunction with elevation in locomotor activity and anxiety-like behaviors in larvae. Behavioral alterations were still detected at the end of the depuration phase. Evidence indicates that the long-lasting effects of EE2 on behavior might impact normal development and subsequent fitness of exposed fish.
Collapse
Affiliation(s)
- S Soloperto
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - S Olivier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - A Poret
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - C Minier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - M P Halm-Lemeille
- Ifremer Port-en-Bessin, LaboratoireEnvironnement Ressources de Normandie, Port-en-Bessin, France
| | - C Jozet-Alves
- Normandie Univ, Unicaen, CNRS, Caen, France
- Univ Rennes, CNRS, Rennes, France
| | - S Aroua
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| |
Collapse
|
8
|
Panteli N, Demertzioglou M, Feidantsis K, Karapanagiotis S, Tsele N, Tsakoniti K, Gkagkavouzis K, Mylonas CC, Kormas KA, Mente E, Antonopoulou E. Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1665-1684. [PMID: 36459361 DOI: 10.1007/s10695-022-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.
Collapse
Affiliation(s)
- Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Demertzioglou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Eleni Mente
- School of Veterinary Medicine, Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
9
|
Gebuijs L, Wagener FA, Zethof J, Carels CE, Von den Hoff JW, Metz JR. Targeting fibroblast growth factor receptors causes severe craniofacial malformations in zebrafish larvae. PeerJ 2022; 10:e14338. [PMID: 36444384 PMCID: PMC9700454 DOI: 10.7717/peerj.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objective A key pathway controlling skeletal development is fibroblast growth factor (FGF) and FGF receptor (FGFR) signaling. Major regulatory functions of FGF signaling are chondrogenesis, endochondral and intramembranous bone development. In this study we focus on fgfr2, as mutations in this gene are found in patients with craniofacial malformations. The high degree of conservation between FGF signaling of human and zebrafish (Danio rerio) tempted us to investigate effects of the mutated fgfr2 sa10729 allele in zebrafish on cartilage and bone formation. Methods We stained cartilage and bone in 5 days post fertilization (dpf) zebrafish larvae and compared mutants with wildtypes. We also determined the expression of genes related to these processes. We further investigated whether pharmacological blocking of all FGFRs with the inhibitor BGJ398, during 0-12 and 24-36 h post fertilization (hpf), affected craniofacial structure development at 5 dpf. Results We found only subtle differences in craniofacial morphology between wildtypes and mutants, likely because of receptor redundancy. After exposure to BGJ398, we found dose-dependent cartilage and bone malformations, with more severe defects in fish exposed during 0-12 hpf. These results suggest impairment of cranial neural crest cell survival and/or differentiation by FGFR inhibition. Compensatory reactions by upregulation of fgfr1a, fgfr1b, fgfr4, sp7 and dlx2a were found in the 0-12 hpf group, while in the 24-36 hpf group only upregulation of fgf3 was found together with downregulation of fgfr1a and fgfr2. Conclusions Pharmacological targeting of FGFR1-4 kinase signaling causes severe craniofacial malformations, whereas abrogation of FGFR2 kinase signaling alone does not induce craniofacial skeletal abnormalities. These findings enhance our understanding of the role of FGFRs in the etiology of craniofacial malformations.
Collapse
Affiliation(s)
- Liesbeth Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands,Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank A. Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Carine E. Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
10
|
Singh P, Irisarri I, Torres‐Dowdall J, Thallinger GG, Svardal H, Lemmon EM, Lemmon AR, Koblmüller S, Meyer A, Sturmbauer C. Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecol Evol 2022; 12:e9077. [PMID: 35866021 PMCID: PMC9288888 DOI: 10.1002/ece3.9077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw-shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of BiologyUniversity of GrazGrazAustria
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum HamburgHamburgGermany
| | - Julián Torres‐Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | - Gerhard G. Thallinger
- Institute of Biomedical InformaticsGraz University of TechnologyGrazAustria
- OMICS Center Graz, BioTechMed GrazGrazAustria
| | - Hannes Svardal
- Department of BiologyUniversity of AntwerpAntwerpBelgium
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Emily Moriarty Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | - Alan R. Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | | | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | | |
Collapse
|
11
|
Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, Wang X, Xu H, Bennett S, Xiao J, Xu J. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res 2022; 10:30. [PMID: 35296645 PMCID: PMC8927336 DOI: 10.1038/s41413-022-00203-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit (NVU), pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-β, Desmin, CD146, and NG2, each of which is involved with spinal cord injury (SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Samuel Bennett
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
12
|
Chatterji RM, Hipsley CA, Sherratt E, Hutchinson MN, Jones MEH. Ontogenetic allometry underlies trophic diversity in sea turtles (Chelonioidea). Evol Ecol 2022. [DOI: 10.1007/s10682-022-10162-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractDespite only comprising seven species, extant sea turtles (Cheloniidae and Dermochelyidae) display great ecological diversity, with most species inhabiting a unique dietary niche as adults. This adult diversity is remarkable given that all species share the same dietary niche as juveniles. These ontogenetic shifts in diet, as well as a dramatic increase in body size, make sea turtles an excellent group to examine how morphological diversity arises by allometric processes and life habit specialisation. Using three-dimensional geometric morphometrics, we characterise ontogenetic allometry in the skulls of all seven species and evaluate variation in the context of phylogenetic history and diet. Among the sample, the olive ridley (Lepidochelys olivacea) has a seemingly average sea turtle skull shape and generalised diet, whereas the green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) show different extremes of snout shape associated with their modes of food gathering (grazing vs. grasping, respectively). Our ontogenetic findings corroborate previous suggestions that the skull of the leatherback (Dermochelys coriacea) is paedomorphic, having similar skull proportions to hatchlings of other sea turtle species and retaining a hatchling-like diet of relatively soft bodied organisms. The flatback sea turtle (Natator depressus) shows a similar but less extreme pattern. By contrast, the loggerhead sea turtle (Caretta caretta) shows a peramorphic signal associated with increased jaw muscle volumes that allow predation on hard shelled prey. The Kemp’s ridley (Lepidochelys kempii) has a peramorphic skull shape compared to its sister species the olive ridley, and a diet that includes harder prey items such as crabs. We suggest that diet may be a significant factor in driving skull shape differences among species. Although the small number of species limits statistical power, differences among skull shape, size, and diet are consistent with the hypothesis that shifts in allometric trajectory facilitated diversification in skull shape as observed in an increasing number of vertebrate groups.
Collapse
|
13
|
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris. BMC Genomics 2021; 22:506. [PMID: 34225643 PMCID: PMC8256507 DOI: 10.1186/s12864-021-07775-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Teleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach. RESULTS We identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human. CONCLUSION Our results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Gene coexpression networks reveal molecular interactions underlying cichlid jaw modularity. BMC Ecol Evol 2021; 21:62. [PMID: 33888061 PMCID: PMC8061045 DOI: 10.1186/s12862-021-01787-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background The oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks. Results We show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modules. We define a global jaw coexpression network and highlight jaw-specific and species-specific modules within it. Furthermore, we annotate a comprehensive in silico gene regulatory network linking the Wnt and AHR signalling pathways to jaw morphogenesis and response to environmental cues, respectively. Components of these pathways are significantly differentially expressed between the oral and pharyngeal jaw apparatus. Conclusion This study describes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that – on the basis of an ancestral gill arch network—transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01787-9.
Collapse
|
15
|
Schäfer N, Kaya Y, Rebl H, Stüeken M, Rebl A, Nguinkal JA, Franz GP, Brunner RM, Goldammer T, Grunow B, Verleih M. Insights into early ontogenesis: characterization of stress and development key genes of pikeperch (Sander lucioperca) in vivo and in vitro. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:515-532. [PMID: 33559015 PMCID: PMC8026417 DOI: 10.1007/s10695-021-00929-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
There are still numerous difficulties in the successful farming of pikeperch in the anthropogenic environment of various aquaculture systems, especially during early developmental steps in the hatchery. To investigate the physiological processes involved on the molecular level, we determined the basal expression patterns of 21 genes involved in stress and immune responses and early ontogenesis of pikeperch between 0 and 175 days post hatch (dph). Their transcription patterns most likely reflect the challenges of growth and feed conversion. The gene coding for apolipoprotein A (APOE) was strongly expressed at 0 dph, indicating its importance for yolk sac utilization. Genes encoding bone morphogenetic proteins 4 and 7 (BMP4, BMP7), creatine kinase M (CKM), and SRY-box transcription factor 9 (SOX9) were highly abundant during the peak phases of morphological changes and acclimatization processes at 4-18 dph. The high expression of genes coding for peroxisome proliferator-activated receptors alpha and delta (PPARA, PPARD) at 121 and 175 dph, respectively, suggests their importance during this strong growth phase of juvenile stages. As an alternative experimental model to replace further in vivo investigations of ontogenetically important processes, we initiated the first approach towards a long-lasting primary cell culture from whole pikeperch embryos. The present study provides a set of possible biomarkers to support the monitoring of pikeperch farming and provides a first basis for the establishment of a suitable cell model of this emerging aquaculture species.
Collapse
Affiliation(s)
- Nadine Schäfer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yagmur Kaya
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18059, Rostock, Germany
| | - Marcus Stüeken
- Institute of Fisheries, Department of Aquaculture, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, 17194, Hohen Wangelin, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julien A Nguinkal
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - George P Franz
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059, Rostock, Germany
| | - Bianka Grunow
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Marieke Verleih
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
16
|
Kerschbaumer M, Postl L, Sturmbauer C. Microevolutionary change in viscerocranial bones under congeneric sympatry in the Lake Tanganyikan cichlid genus Tropheus. HYDROBIOLOGIA 2021; 848:3639-3653. [PMID: 34720168 PMCID: PMC8550039 DOI: 10.1007/s10750-021-04536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The endemic Lake Tanganyika cichlid genus Tropheus lives at rocky shores all around the lake and comprises six species which are subdivided into about 120 morphologically similar but color-wise distinct populations. Typically, they live without a second Tropheus species, but there are some regions where two or even three sister species live in sympatry. We previously showed that there are morphological differences concerning head shape, eye size and insertion of fins among populations living alone compared to those living in sympatry with a second Tropheus. This study goes one step further to test if sympatry affects the shape of viscerocranial bones. By means of geometric morphometrics, we compare the shape of four bones among thirteen Tropheus populations, some of which in sympatry and some living alone. We quantify patterns of shape variation and estimate morphological disparity among the four bony elements in the study species and populations. We found consistent differences in the shape of one bony element among non-sympatric and sympatric populations, besides an extensive variation in the shape of viscerocranial bones within and among species. Furthermore, sexual dimorphism in Tropheus is clearly evident in the viscerocranial bones analyzed. We suggest that the relatively subtle morphological signal in sympatric vs. non-sympatric Tropheus populations is owed to the fact that the depth segregation does not yet represent a full shift in the trophic niche, albeit our data confirm that differences in ecologically relevant traits, such as bones of the preorbital region, play an important role in the process of niche separation and in the context of explosive diversification of cichlid fishes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10750-021-04536-7.
Collapse
Affiliation(s)
| | - Lisbeth Postl
- Library Feldkirch, Widnau 2-4, 6800 Feldkirch, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
17
|
Heading for higher ground: Developmental origins and evolutionary diversification of the amniote face. Curr Top Dev Biol 2021; 141:241-277. [PMID: 33602490 DOI: 10.1016/bs.ctdb.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amniotes, a clade of terrestrial vertebrates, which includes all of the descendants of the last common ancestor of the reptiles (including dinosaurs and birds) and mammals, is one of the most successful group of animals on our planet. In addition to having an egg equipped with an amnion, an adaptation to lay eggs on land, amniotes possess a number of other major morphological characteristics. Chief among them is the amniote skull, which can be classified into several major types distinguished by the presence and number of temporal fenestrae (windows) in the posterior part. Amniotes evolved from ancestors who possessed a skull composed of a complex mosaic of small bones separated by sutures. Changes in skull composition underlie much of the large-scale evolution of amniotes with many lineages showing a trend in reduction of cranial elements known as the "Williston's Law." The skull of amniotes is also arranged into a set of modules of closely co-evolving bones as revealed by modularity and integration tests. One of the most consistently recovered and at the same time most versatile modules is the "face," anatomically defined as the anterior portion of the head. The faces of amniotes display extraordinary amount of variation, with many adaptive radiations showing parallel tendencies in facial scaling, e.g., changes in length or width. This review explores the natural history of the amniote face and discusses how a better understanding of its anatomy and developmental biology helps to explain the outstanding scale of adaptive facial diversity. We propose a model for facial evolution in the amniotes, based on the differential rate of cranial neural crest cell proliferation and the timing of their skeletal differentiation.
Collapse
|
18
|
Beck SV, Räsänen K, Leblanc CA, Skúlason S, Jónsson ZO, Kristjánsson BK. Differences among families in craniofacial shape at early life-stages of Arctic charr (Salvelinus alpinus). BMC DEVELOPMENTAL BIOLOGY 2020; 20:21. [PMID: 33106153 PMCID: PMC7586659 DOI: 10.1186/s12861-020-00226-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression. RESULTS Craniofacial shape (i.e. the Meckel's cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel's cartilage in comparison to smaller offspring. CONCLUSIONS This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.
Collapse
Affiliation(s)
- Samantha V Beck
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland. .,Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland. .,The Rivers and Lochs Institute, University of the Highlands and Islands, Inverness, UK.
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Camille A Leblanc
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland
| | - Zophonías O Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University, 551, Sauðárkrókur, Iceland
| |
Collapse
|
19
|
Lee HW, Esteve-Altava B, Abzhanov A. Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Sci Rep 2020; 10:16138. [PMID: 32999389 PMCID: PMC7528100 DOI: 10.1038/s41598-020-73083-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Comparative anatomy studies of the skull of archosaurs provide insights on the mechanisms of evolution for the morphologically and functionally diverse species of crocodiles and birds. One of the key attributes of skull evolution is the anatomical changes associated with the physical arrangement of cranial bones. Here, we compare the changes in anatomical organization and modularity of the skull of extinct and extant archosaurs using an Anatomical Network Analysis approach. We show that the number of bones, their topological arrangement, and modular organization can discriminate birds from non-avian dinosaurs, and crurotarsans. We could also discriminate extant taxa from extinct species when adult birds were included. By comparing within the same framework, juveniles and adults for crown birds and alligator (Alligator mississippiensis), we find that adult and juvenile alligator skulls are topologically similar, whereas juvenile bird skulls have a morphological complexity and anisomerism more similar to those of non-avian dinosaurs and crurotarsans than of their own adult forms. Clade-specific ontogenetic differences in skull organization, such as extensive postnatal fusion of cranial bones in crown birds, can explain this pattern. The fact that juvenile and adult skulls in birds do share a similar anatomical integration suggests the presence of a specific constraint to their ontogenetic growth.
Collapse
Affiliation(s)
- Hiu Wai Lee
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK.
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|
20
|
Transcriptional responses in newly-hatched Japanese medaka (Oryzias latipes) associated with developmental malformations following diluted bitumen exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100685. [DOI: 10.1016/j.cbd.2020.100685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
|
21
|
López‐Romero FA, Klimpfinger C, Tanaka S, Kriwet J. Growth trajectories of prenatal embryos of the deep-sea shark Chlamydoselachus anguineus (Chondrichthyes). JOURNAL OF FISH BIOLOGY 2020; 97:212-224. [PMID: 32307702 PMCID: PMC7497067 DOI: 10.1111/jfb.14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Chlamydoselachus anguineus, Garman 1884, commonly called the frilled shark, is a deep-sea shark species occurring up to depths of 1300 m. It is assumed to represent an ancient morphotype of sharks (e.g., terminal mouth opening, more than five gill slits) and thus is often considered to represent plesiomorphic traits for sharks. Therefore, its early ontogenetic developmental traits are important for understanding the evolution of its particular phenotype. Here, we established six stages for prenatal embryos and used linear measurements and geometric morphometrics to analyse changes in shape and size as well as their timing during different embryonic stages. Our results show a change in head shape and a relocation of the mouth opening at a late stage of development. We also detected a negative allometric growth of the head and especially the eye compared to the rest of the body and a sexual dimorphism in total body length, which differs from the known data for adults. A multivariate analysis of covariance shows a significant interaction of shape related to the logarithm of centroid size and developmental stage. Geometric morphometrics results indicate that the head shape changes as a covariate of body size while not accounting for differences between sexes. The growth pattern of stages 32 and 33 indicates a shift in head shape, thus highlighting the moment in development when the jaws start to elongate anteriorly to finally achieve the adult condition of terminal mouth opening rather than retaining the early embryonic subterminal position as is typical for sharks. Thus, the antero-terminal mouth opening of the frilled shark has to be considered a derived feature.
Collapse
Affiliation(s)
| | | | - Sho Tanaka
- School of Marine Science and Technology, Faculty of Marine Science and TechnologyTokai UniversityShizuoka Shimizu‐kuJapan
| | - Jürgen Kriwet
- Department of PaleontologyUniversity of ViennaViennaAustria
| |
Collapse
|
22
|
Ozernyuk ND. History of Evolutionary Developmental Biology. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360419060067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid, Cyrtocara moorii. Sci Rep 2019; 9:20296. [PMID: 31889116 PMCID: PMC6937230 DOI: 10.1038/s41598-019-56771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
East African cichlid fishes represent a model to tackle adaptive changes and their connection to rapid speciation and ecological distinction. In comparison to bony craniofacial tissues, adaptive morphogenesis of soft tissues has been rarely addressed, particularly at the molecular level. The nuchal hump in cichlids fishes is one such soft-tissue and exaggerated trait that is hypothesized to play an innovative role in the adaptive radiation of cichlids fishes. It has also evolved in parallel across lakes in East Africa and Central America. Using gene expression profiling, we identified and validated a set of genes involved in nuchal hump formation in the Lake Malawi dolphin cichlid, Cyrtocara moorii. In particular, we found genes differentially expressed in the nuchal hump, which are involved in controlling cell proliferation (btg3, fosl1a and pdgfrb), cell growth (dlk1), craniofacial morphogenesis (dlx5a, mycn and tcf12), as well as regulators of growth-related signals (dpt, pappa and socs2). This is the first study to identify the set of genes associated with nuchal hump formation in cichlids. Given that the hump is a trait that evolved repeatedly in several African and American cichlid lineages, it would be interesting to see if the molecular pathways and genes triggering hump formation follow a common genetic track or if the trait evolved in parallel, with distinct mechanisms, in other cichlid adaptive radiations and even in other teleost fishes.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Institute of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden.
| |
Collapse
|
24
|
Bonini‐Campos B, Lofeu L, Brandt R, Kohlsdorf T. Different developmental environments reveal multitrait plastic responses in South American Anostomidae fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:238-244. [DOI: 10.1002/jez.b.22905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Bianca Bonini‐Campos
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
| | - Leandro Lofeu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
| | - Renata Brandt
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
- Science Communication Program, School of the EnvironmentLaurentian University Ontario Canada
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
| |
Collapse
|
25
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
26
|
Ahi EP, Singh P, Duenser A, Gessl W, Sturmbauer C. Divergence in larval jaw gene expression reflects differential trophic adaptation in haplochromine cichlids prior to foraging. BMC Evol Biol 2019; 19:150. [PMID: 31340758 PMCID: PMC6657104 DOI: 10.1186/s12862-019-1483-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Understanding how variation in gene expression contributes to morphological diversity is a major goal in evolutionary biology. Cichlid fishes from the East African Great lakes exhibit striking diversity in trophic adaptations predicated on the functional modularity of their two sets of jaws (oral and pharyngeal). However, the transcriptional basis of this modularity is not so well understood, as no studies thus far have directly compared the expression of genes in the oral and pharyngeal jaws. Nor is it well understood how gene expression may have contributed to the parallel evolution of trophic morphologies across the replicate cichlid adaptive radiations in Lake Tanganyika, Malawi and Victoria. Results We set out to investigate the role of gene expression divergence in cichlid fishes from these three lakes adapted to herbivorous and carnivorous trophic niches. We focused on the development stage prior to the onset of exogenous feeding that is critical for understanding patterns of gene expression after oral and pharyngeal jaw skeletogenesis, anticipating environmental cues. This framework permitted us for the first time to test for signatures of gene expression underlying jaw modularity in convergent eco-morphologies across three independent adaptive radiations. We validated a set of reference genes, with stable expression between the two jaw types and across species, which can be important for future studies of gene expression in cichlid jaws. Next we found evidence of modular and non-modular gene expression between the two jaws, across different trophic niches and lakes. For instance, prdm1a, a skeletogenic gene with modular anterior-posterior expression, displayed higher pharyngeal jaw expression and modular expression pattern only in carnivorous species. Furthermore, we found the expression of genes in cichlids jaws from the youngest Lake Victoria to exhibit low modularity compared to the older lakes. Conclusion Overall, our results provide cross-species transcriptional comparisons of modularly-regulated skeletogenic genes in the two jaw types, implicating expression differences which might contribute to the formation of divergent trophic morphologies at the stage of larval independence prior to foraging. Electronic supplementary material The online version of this article (10.1186/s12862-019-1483-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria. .,Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden.
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
27
|
Zare Mirakabad H, Farsi M, Malekzadeh Shafaroudi S, Bagheri A, Iranshahi M, Moshtaghi N. Comparison the Effect of Ferutinin and 17β-Estradiol on Bone Mineralization of Developing Zebrafish ( Danio rerio) Larvae. Int J Mol Sci 2019; 20:ijms20061507. [PMID: 30917511 PMCID: PMC6470982 DOI: 10.3390/ijms20061507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need to develop novel drugs for osteoporosis which occurs due to estrogen deficiency. Phytoestrogens derived from medicinal plants would be the best alternative to chemical drugs with harmful side effects. The main purpose of the present study was to investigate the effect of ferutinin compared to 17β-estradiol (E2) on bone mineralization of zebrafish larvae. Regarding the lack of publications, the histology analysis was performed after exposure to E2 to find effective treatment on bone mineralization of developing zebrafish larvae. Then, the larvae were exposed to four concentrations of ferutinin at three time points to assess the mortality, the expression of some related genes and histology of the ceratohyal and hyomandibular of treated larvae. The RT-PCR result of the treatment groups demonstrated the similar expression pattern in the larvae which were exposed to 1.25 μg/mL of ferutinin and 2 µM of E2 at 2 dpf, which confirmed the result of histology analysis. In addition, RT-qPCR of high concentration of ferutinin and E2 demonstrated that bmp2a/b and esr1 were downregulated and upregulated when the larvae were exposed to 5 μg/mL of ferutinin and 10 µM of E2, respectively.
Collapse
Affiliation(s)
- Hoda Zare Mirakabad
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| | - Mohammad Farsi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| | - Mehrdad Iranshahi
- Department of Pharmacognosy; Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad 91775-1163, Iran.
| |
Collapse
|
28
|
Morris ZS, Vliet KA, Abzhanov A, Pierce SE. Heterochronic shifts and conserved embryonic shape underlie crocodylian craniofacial disparity and convergence. Proc Biol Sci 2019; 286:20182389. [PMID: 30963831 PMCID: PMC6408887 DOI: 10.1098/rspb.2018.2389] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
The distinctive anatomy of the crocodylian skull is intimately linked with dietary ecology, resulting in repeated convergence on blunt- and slender-snouted ecomorphs. These evolutionary shifts depend upon modifications of the developmental processes which direct growth and morphogenesis. Here we examine the evolution of cranial ontogenetic trajectories to shed light on the mechanisms underlying convergent snout evolution. We use geometric morphometrics to quantify skeletogenesis in an evolutionary context and reconstruct ancestral patterns of ontogenetic allometry to understand the developmental drivers of craniofacial diversity within Crocodylia. Our analyses uncovered a conserved embryonic region of morphospace (CER) shared by all non-gavialid crocodylians regardless of their eventual adult ecomorph. This observation suggests the presence of conserved developmental processes during early development (before Ferguson stage 20) across most of Crocodylia. Ancestral state reconstruction of ontogenetic trajectories revealed heterochrony, developmental constraint, and developmental systems drift have all played essential roles in the evolution of ecomorphs. Based on these observations, we conclude that two separate, but interconnected, developmental programmes controlling craniofacial morphogenesis and growth enabled the evolutionary plasticity of skull shape in crocodylians.
Collapse
Affiliation(s)
- Zachary S. Morris
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Kent A. Vliet
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Rapid niche expansion by selection on functional genomic variation after ecosystem recovery. Nat Ecol Evol 2018; 3:77-86. [DOI: 10.1038/s41559-018-0742-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/02/2018] [Indexed: 11/08/2022]
|
30
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
31
|
Beck SV, Räsänen K, Ahi EP, Kristjánsson BK, Skúlason S, Jónsson ZO, Leblanc CA. Gene expression in the phenotypically plastic Arctic charr (Salvelinus alpinus): A focus on growth and ossification at early stages of development. Evol Dev 2018; 21:16-30. [PMID: 30474913 PMCID: PMC9285049 DOI: 10.1111/ede.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life‐stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non‐linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life‐stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.
Collapse
Affiliation(s)
- Samantha V Beck
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland.,Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Katja Räsänen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Ehsan P Ahi
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland.,Institute of Zoology, University of Graz, Universitätsplatz 2, Graz, Austria
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| | - Zophonías O Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Camille A Leblanc
- Department of Aquaculture and Fish Biology, Hólar University College, Háskólinn á Hólum, Sauðárkrókur, Iceland
| |
Collapse
|
32
|
Haaland ØA, Lie RT, Romanowska J, Gjerdevik M, Gjessing HK, Jugessur A. A Genome-Wide Search for Gene-Environment Effects in Isolated Cleft Lip with or without Cleft Palate Triads Points to an Interaction between Maternal Periconceptional Vitamin Use and Variants in ESRRG. Front Genet 2018. [PMID: 29535761 PMCID: PMC5834486 DOI: 10.3389/fgene.2018.00060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: It is widely accepted that cleft lip with or without cleft palate (CL/P) results from the complex interplay between multiple genetic and environmental factors. However, a robust investigation of these gene-environment (GxE) interactions at a genome-wide level is still lacking for isolated CL/P. Materials and Methods: We used our R-package Haplin to perform a genome-wide search for GxE effects in isolated CL/P. From a previously published GWAS, genotypes and information on maternal periconceptional cigarette smoking, alcohol intake, and vitamin use were available on 1908 isolated CL/P triads of predominantly European or Asian ancestry. A GxE effect is present if the relative risk estimates for gene-effects in the offspring are different across exposure strata. We tested this using the relative risk ratio (RRR). Besides analyzing all ethnicities combined ("pooled analysis"), separate analyses were conducted on Europeans and Asians to investigate ethnicity-specific effects. To control for multiple testing, q-values were calculated from the p-values. Results: We identified significant GxVitamin interactions with three SNPs in "Estrogen-related receptor gamma" (ESRRG) in the pooled analysis. The RRRs (95% confidence intervals) were 0.56 (0.45-0.69) with rs1339221 (q = 0.011), 0.57 (0.46-0.70) with rs11117745 (q = 0.011), and 0.62 (0.50-0.76) with rs2099557 (q = 0.037). The associations were stronger when these SNPs were analyzed as haplotypes composed of two-SNP and three-SNP combinations. The strongest effect was with the "t-t-t" haplotype of the rs1339221-rs11117745-rs2099557 combination [RRR = 0.50 (0.40-0.64)], suggesting that the effects observed with the other SNP combinations, including those in the single-SNP analyses, were mainly driven by this haplotype. Although there were potential GxVitamin effects with rs17734557 and rs1316471 and GxAlcohol effects with rs9653456 and rs921876 in the European sample, respectively, none of the SNPs was located in or near genes with strong links to orofacial clefts. GxAlcohol and GxSmoke effects were not assessed in the Asian sample because of a lack of observations for these exposures. Discussion/Conclusion: We identified significant interactions between vitamin use and variants in ESRRG in the pooled analysis. These GxE effects are novel and warrant further investigations to elucidate their roles in orofacial clefting. If validated, they could provide prospects for exploring the impact of estrogens and vitamins on clefting, with potential translational applications.
Collapse
Affiliation(s)
- Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
33
|
Singh P, Börger C, More H, Sturmbauer C. The Role of Alternative Splicing and Differential Gene Expression in Cichlid Adaptive Radiation. Genome Biol Evol 2017; 9:2764-2781. [PMID: 29036566 PMCID: PMC5737861 DOI: 10.1093/gbe/evx204] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Species diverge eco-morphologically through the continuous action of natural selection on functionally important structures, producing alternative adaptive morphologies. In cichlid fishes, the oral and pharyngeal jaws are such key structures. Adaptive variation in jaw morphology contributes to trophic specialization, which is hypothesized to fuel their rapid speciation in the East African Great Lakes. Much is known about the genes involved in cichlid jaw and craniofacial development. However, it is still unclear what salient sources of variation gave rise to trophic-niche specialization, facilitating adaptive radiation. Here, we explore two sources of transcriptional variation that may underlie species-specific disparities in jaw morphology. Using whole transcriptome RNA-sequencing, we analyze differences in gene expression and alternative splicing, at the end of postlarval development, in fully functional jaws of six species of cichlids from the Lake Tanganyika tribe Tropheini. Our data reveal a surprisingly high degree of alternative splicing events compared with gene expression differences among species and trophic types. This suggests that differential trophic adaptation of the jaw apparatus may have been shaped by transcriptional rewiring of splicing as well as gene expression variation during the rapid radiation of the Tropheini. Specifically, genes undergoing splicing across most species were found to be enriched for pharyngeal jaw gene ontology terms. Overall, jaw transcriptional patterns at postlarval developmental stage were highly dynamic and species-specific. In conclusion, this work indicates that shifts in alternative splicing could have played a more important role in cichlid adaptive radiation, and possibly adaptive radiation in general, than currently recognized.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Zoology, University of Graz, Austria
- Department of Biology, University of Konstanz, Germany
| | | | - Heather More
- Department of Zoology, University of Graz, Austria
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|