1
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
2
|
Dong Y, Xia X, Wang M, Yu J, Wang L, Yang L, Liu K, He J, Li X. Tiliroside from Lagopsis supina Ameliorates Myocardial Ischemia Injury in Zebrafish by Activating the kdr-Mediated PI3K-Akt and MAPK Signaling Pathways. Int J Mol Sci 2025; 26:2313. [PMID: 40076931 PMCID: PMC11900366 DOI: 10.3390/ijms26052313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Lagopsis supina (Steph. ex. Willd.) Ikonn.-Gal., an ancient Chinese herbal medicine, is traditionally used to treat blood stasis diseases such as myocardial ischemia (MI). However, its pharmacodynamics substances of the anti-MI effect and their potential mechanisms remain unclear. This study aims to elucidate the pharmacodynamics effects of L. supina against MI and reveal their underlying mechanisms in zebrafish. LSD fraction was screened out for anti-MI active fraction from L. supina by isoprenaline hydrochloride (ISO)-induced zebrafish. It could increase the stroke volume, ejection fraction, and ventricular short-axis systolic rate in the zebrafish model. A total of 30 compounds (Nos. 1-30) were isolated and identified from LSD by various chromatographic techniques and nuclear magnetic resonance spectroscopy. Among them, six compounds, including three lignin compounds (Nos. 15, 16, and 18) and three flavonoid glycosides (Nos. 14, 25, and 26), showed noticeable anti-MI activities, and tiliroside (No. 25) was more active. Molecular docking indicated that tiliroside has a strong binding ability with the proteins KDR, PI3K, Akt, Erk, p38, Bcl-2, Bax, and Caspase3. In the end, the results of RT-qPCR manifested that tiliroside markedly upregulated expression levels of genes kdr, pik3cb, akt2, mapk1, mapk11, mapk14, and bcl-2b and prominently downregulated expression levels of genes bax and caspase3. According to the above results, tiliroside activated the kdr-mediated PI3K-Akt and MAPK signaling pathways to exert the anti-MI activity. These discoveries give a scientific basis for applying L. supina in MI treatment and suggest new avenues for developing tiliroside as a candidate for MI therapy.
Collapse
Affiliation(s)
- Yuqing Dong
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Y.D.); (M.W.); (J.Y.); (L.W.); (K.L.)
| | - Xiaoyi Xia
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.X.); (L.Y.)
| | - Miaoyunhuan Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Y.D.); (M.W.); (J.Y.); (L.W.); (K.L.)
| | - Jiahao Yu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Y.D.); (M.W.); (J.Y.); (L.W.); (K.L.)
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Y.D.); (M.W.); (J.Y.); (L.W.); (K.L.)
| | - Li Yang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.X.); (L.Y.)
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Y.D.); (M.W.); (J.Y.); (L.W.); (K.L.)
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.X.); (L.Y.)
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (Y.D.); (M.W.); (J.Y.); (L.W.); (K.L.)
| |
Collapse
|
3
|
Na J, Tai C, Wang Z, Yang Z, Chen X, Zhang J, Zheng L, Fan Y. Stiff extracellular matrix drives the differentiation of mesenchymal stem cells toward osteogenesis by the multiscale 3D genome reorganization. Biomaterials 2025; 312:122715. [PMID: 39094522 DOI: 10.1016/j.biomaterials.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chengzheng Tai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
4
|
Gurung S, Restrepo NK, Anand SK, Sittaramane V, Sumanas S. Requirement of a novel gene, drish, in the zebrafish retinal ganglion cell and primary motor axon development. Dev Dyn 2024; 253:750-770. [PMID: 38340011 DOI: 10.1002/dvdy.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND During neurogenesis, growing axons must navigate through the complex extracellular environment and make correct synaptic connections for the proper functioning of neural circuits. The mechanisms underlying the formation of functional neural networks are still only partially understood. RESULTS Here we analyzed the role of a novel gene si:ch73-364h19.1/drish in the neural and vascular development of zebrafish embryos. We show that drish mRNA is expressed broadly and dynamically in multiple cell types including neural, glial, retinal progenitor and vascular endothelial cells throughout the early stages of embryonic development. To study Drish function during embryogenesis, we generated drish genetic mutant using CRISPR/Cas9 genome editing. drish loss-of-function mutant larvae displayed defects in early retinal ganglion cell, optic nerve and the retinal inner nuclear layer formation, as well as ectopic motor axon branching. In addition, drish mutant adults exhibited deficient retinal outer nuclear layer and showed defective light response and locomotory behavior. However, vascular patterning and blood circulation were not significantly affected. CONCLUSIONS Together, these data demonstrate important roles of zebrafish drish in the retinal ganglion cell, optic nerve and interneuron development and in spinal motor axon branching.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
| | - Surendra Kumar Anand
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a Target Gene of the EWSR1::FLI1 Fusion Oncoprotein, Regulates the Expression of the Focal Adhesion Protein TENSIN3. Mol Cancer Res 2024; 22:625-641. [PMID: 38588446 PMCID: PMC11219265 DOI: 10.1158/1541-7786.mcr-23-1090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X. Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C. Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Wang Y, Chen L. Identification of Senescence-Related Biomarkers and Regulatory Networks in Intracerebral Hemorrhage. Neurologist 2024; 29:225-232. [PMID: 38251721 DOI: 10.1097/nrl.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) is a severe neurological disorder with substantial societal implications. Cellular senescence plays a critical role in ICH pathogenesis. This study aims to identify senescence-related biomarkers in ICH for diagnostic and therapeutic purposes. METHODS Raw data from GSE24265 in Gene Expression Omnibus was downloaded. Senescence-related genes were acquired from CellAge. Differential gene analysis was done between patients with ICH and controls. The intersection of ICH differentially expressed genes and senescence-related genes for senescence-related ICH genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network was constructed through the Search Tool for the Retrieval of Interacting Genes. Single sample gene set enrichment analysis was done for immune cell infiltration and function evaluation in control and ICH groups. miRWalk2.0 database was used for microRNA predictions targeting ICH biomarkers. Transcriptional regulatory relationships unraveled by sentence-based text mining database was employed to predict transcription factors regulating identified biomarkers. RESULTS Thirteen senescence-related ICH genes were identified. They were primarily enriched in the positive regulation of angiogenesis and the Advanced Glycation End Product -Receptor for AGE signaling pathway in diabetic complications. Validation in the GSE149317 data set and receiver operating characteristic analysis highlighted Caveolin 1, C-X-C Motif Chemokine Ligand 1, ETS proto-oncogene 1, transcription factor, and Serpin Family E Member 1 as potential ICH biomarkers. Single sample gene set enrichment analysis revealed increased Type 2 T helper cell 2_cells, Treg cells, and immune functions like Antigen-presenting cells_co_stimulation in patients with ICH. Fourteen microRNA, including has-miR-6728-3p, were predicted to regulate these biomarkers. transcription factors such as PPARG, RARA, HMGA1, and NFKB1 were identified as potential regulators of the ICH biomarkers. CONCLUSION Caveolin 1, C-X-C Motif Chemokine Ligand 1, ETS proto-oncogene 1, transcription factor, and Serpin Family E Member 1 may serve as valuable biomarkers in ICH. Targeting these genes could contribute to ICH prevention and treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of Basic Medicine, Cangzhou Medical College
| | - Ling Chen
- Department of Gynaecology, People's Hospital Affiliated to Cangzhou Medical College, Cangzhou, China
| |
Collapse
|
7
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Gu M, Li X, Wu R, Cheng X, Zhou S, Gu X. The Transcription Factor Ets1 Influences Axonal Growth via Regulation of Lcn2. Mol Neurobiol 2024; 61:971-981. [PMID: 37672148 PMCID: PMC10861751 DOI: 10.1007/s12035-023-03616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Transcription factors are essential for the development and regeneration of the nervous system. The current study investigated key regulatory transcription factors in rat spinal cord development via RNA sequencing. The hub gene Ets1 was highly expressed in the spinal cord during the embryonic period, and then its expression decreased during spinal cord development. Knockdown of Ets1 significantly increased the axonal growth of cultured spinal cord neurons. Luciferase reporter assays and chromatin immunoprecipitation assays indicated that Ets1 could directly bind to the Lcn2 promoter and positively regulate Lcn2 transcription. In conclusion, these findings provide the first direct evidence that Ets1 regulates axon growth by controlling Lcn2 expression, and Ets1 may be a novel therapeutic target for axon regeneration in the central nervous system.
Collapse
Affiliation(s)
- Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei, China
| | - Xiaodi Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiao Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Xiaosong Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a target gene of the EWSR1::FLI1 fusion oncoprotein, regulates the expression of the focal adhesion protein TENSIN3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572864. [PMID: 38187702 PMCID: PMC10769395 DOI: 10.1101/2023.12.21.572864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zhang X, Du S, Yang D, Jin X, Zhang Y, Wang D, Wang H, Zhang Y, Zhu M. LncRNA MALAT1 knockdown inhibits the development of choroidal neovascularization. Heliyon 2023; 9:e19503. [PMID: 37810031 PMCID: PMC10558713 DOI: 10.1016/j.heliyon.2023.e19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
In the pathogenesis of age-related macular degeneration, long non-coding RNAs have become important regulators. This study aimed to investigate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the progression of choroidal neovascularization (CNV) and the underlying mechanisms. The in vivo and in vitro model of CNV was established using laser-induced mouse CNV model and human choroidal vascular endothelial cells (HCVECs) exposed to hypoxia respectively. We explore the role of MALAT1 in the pathogenesis of CNV by using the small interference RNA both in vivo and in vitro. MALAT1 expression was found to be upregulated in the retinal pigment epithelial-choroidal complexes. MALAT1 knockdown inhibited CNV development and leakage in vivo and decreased HCVECs proliferation, migration, and tube formation in vitro. MALAT1 performed the task as a miR-17-5p sponge to regulate the expression of vascular endothelial growth factor A (VEGFA) and E26 transformation specific-1 (ETS1). This study provides a new perspective on the pathogenesis of CNV and suggests that the axis MALAT/miR-17-5p/VEGFA or ETS1 may be an effective therapeutic target for CNV.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Defeng Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Jin
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Diya Wang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Huixia Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Trinh LT, Osipovich AB, Liu B, Shrestha S, Cartailler JP, Wright CVE, Magnuson MA. Single-Cell RNA Sequencing of Sox17-Expressing Lineages Reveals Distinct Gene Regulatory Networks and Dynamic Developmental Trajectories. Stem Cells 2023; 41:643-657. [PMID: 37085274 PMCID: PMC10465087 DOI: 10.1093/stmcls/sxad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
During early embryogenesis, the transcription factor SOX17 contributes to hepato-pancreato-biliary system formation and vascular-hematopoietic emergence. To better understand Sox17 function in the developing endoderm and endothelium, we developed a dual-color temporal lineage-tracing strategy in mice combined with single-cell RNA sequencing to analyze 6934 cells from Sox17-expressing lineages at embryonic days 9.0-9.5. Our analyses showed 19 distinct cellular clusters combined from all 3 germ layers. Differential gene expression, trajectory and RNA-velocity analyses of endothelial cells revealed a heterogenous population of uncommitted and specialized endothelial subtypes, including 2 hemogenic populations that arise from different origins. Similarly, analyses of posterior foregut endoderm revealed subsets of hepatic, pancreatic, and biliary progenitors with overlapping developmental potency. Calculated gene-regulatory networks predict gene regulons that are dominated by cell type-specific transcription factors unique to each lineage. Vastly different Sox17 regulons found in endoderm versus endothelial cells support the differential interactions of SOX17 with other regulatory factors thereby enabling lineage-specific regulatory actions.
Collapse
Affiliation(s)
- Linh T Trinh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Bryan Liu
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
Li M, Wang D, Liu Z, Huang Y, Zhang Q, Pan C, Lin Y, Sun L, Zheng Y. Assessing the effects of aging on the renal endothelial cell landscape using single-cell RNA sequencing. Front Genet 2023; 14:1175716. [PMID: 37214419 PMCID: PMC10196692 DOI: 10.3389/fgene.2023.1175716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Endothelial cells (ECs) with senescence-associated secretory phenotypes (SASP) have been identified as a key mechanism of aging that contributes to various age-related kidney diseases. In this study, we used single-cell RNA sequencing (scRNA-seq) to create a transcriptome atlas of murine renal ECs and identify transcriptomic changes that occur during aging. We identified seven different subtypes of renal ECs, with glomerular ECs and angiogenic ECs being the most affected by senescence. We confirmed our scRNA-seq findings by using double immunostaining for an EC marker (CD31) and markers of specialized EC phenotypes. Our analysis of the dynamics of capillary lineage development revealed a chronic state of inflammation and compromised glomerular function as prominent aging features. Additionally, we observed an elevated pro-inflammatory and pro-coagulant microenvironment in aged glomerular ECs, which may contribute to age-related glomerulosclerosis and renal fibrosis. Through intercellular communication analysis, we also identified changes in signaling involved in immune regulation that may contribute to a hostile microenvironment for renal homeostasis and function. Overall, our findings provide new insights into the mechanisms of aging in the renal endothelium and may pave the way for the discovery of diagnostic biomarkers and therapeutic interventions against age-related kidney diseases.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Wang M, Liu J, Wang H, Hu T. Spiromesifen contributes vascular developmental toxicity via disrupting endothelial cell proliferation and migration in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105242. [PMID: 36464354 DOI: 10.1016/j.pestbp.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Spiromesifen (SPF) is a specific contact pesticide, which has been widely used to control the growth of sucking insects like mites and whiteflies on crops. Although its residues in crops and effects on organisms has been extensively reported, its impact on the vasculature is still not being reported. In the present study, using human umbilical vein endothelial cells (HUVECs) and zebrafish embryos, we investigated the effects of SPF on blood vessel development and its mechanism of action. SPF exposure triggered abnormal blood vessel development, including vascular deletions and malformations, inhibition of CCV remodeling, and decrease of SIV areas. SPF exposure also obstructed the migration of endothelial cell from caudal hematopoietic tissue in zebrafish embryos. SPF damaged cytoskeleton, caused cell cycle arrest, inhibited the viability and migration of HUVECs. In addition, SPF also inhibited the expression of the VEGF/VEGFR pathway-related genes (hif1a, vegfa, flt1, and kdrl), cell cycle-related genes (ccnd1, ccne1, cdk2, and pcna), and Rho/ROCK pathway-related genes (itgb1, rho, rock, mlc-1, and vim-1). Taken together, SPF may inhibit the proliferation and migration of vascular endothelial cells through disturbing cytoskeleton via the Rho/ ROCK pathway, resulting in vascular malformation. Our study contributes to potential insight into the mechanism of SPF toxicity in angiocardiopathy.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
14
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
15
|
Wang L, Lin L, Qi H, Chen J, Grossfeld P. Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ Res 2022; 131:371-387. [PMID: 35894043 PMCID: PMC9624262 DOI: 10.1161/circresaha.121.319955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Jacobsen syndrome is a rare chromosomal disorder caused by deletions in the long arm of human chromosome 11, resulting in multiple developmental defects including congenital heart defects. Combined studies in humans and genetically engineered mice implicate that loss of ETS1 (E26 transformation specific 1) is the cause of congenital heart defects in Jacobsen syndrome, but the underlying molecular and cellular mechanisms are unknown. OBJECTIVE To determine the role of ETS1 in heart development, specifically its roles in coronary endothelium and endocardium and the mechanisms by which loss of ETS1 causes coronary vascular defects and ventricular noncompaction. METHODS AND RESULTS ETS1 global and endothelial-specific knockout mice were used. Phenotypic assessments, RNA sequencing, and chromatin immunoprecipitation analysis were performed together with expression analysis, immunofluorescence and RNAscope in situ hybridization to uncover phenotypic and transcriptomic changes in response to loss of ETS1. Loss of ETS1 in endothelial cells causes ventricular noncompaction, reproducing the phenotype arising from global deletion of ETS1. Endothelial-specific deletion of ETS1 decreased the levels of Alk1 (activin receptor-like kinase 1), Cldn5 (claudin 5), Sox18 (SRY-box transcription factor 18), Robo4 (roundabout guidance receptor 4), Esm1 (endothelial cell specific molecule 1) and Kdr (kinase insert domain receptor), 6 important angiogenesis-relevant genes in endothelial cells, causing a coronary vasculature developmental defect in association with decreased compact zone cardiomyocyte proliferation. Downregulation of ALK1 expression in endocardium due to the loss of ETS1, along with the upregulation of TGF (transforming growth factor)-β1 and TGF-β3, occurred with increased TGFBR2/TGFBR1/SMAD2 signaling and increased extracellular matrix expression in the trabecular layer, in association with increased trabecular cardiomyocyte proliferation. CONCLUSIONS These results demonstrate the importance of endothelial and endocardial ETS1 in cardiac development. Delineation of the gene regulatory network involving ETS1 in heart development will enhance our understanding of the molecular mechanisms underlying ventricular and coronary vascular developmental defects and will lead to improved approaches for the treatment of patients with congenital heart disease.
Collapse
Affiliation(s)
- Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Hui Qi
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
16
|
Metikala S, Warkala M, Casie Chetty S, Chestnut B, Rufin Florat D, Plender E, Nester O, Koenig AL, Astrof S, Sumanas S. Integration of vascular progenitors into functional blood vessels represents a distinct mechanism of vascular growth. Dev Cell 2022; 57:767-782.e6. [PMID: 35276066 PMCID: PMC9365108 DOI: 10.1016/j.devcel.2022.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
During embryogenesis, the initial vascular network forms by the process of vasculogenesis, or the specification of vascular progenitors de novo. In contrast, the majority of later-forming vessels arise by angiogenesis from the already established vasculature. Here, we show that new vascular progenitors in zebrafish embryos emerge from a distinct site along the yolk extension, or secondary vascular field (SVF), incorporate into the posterior cardinal vein, and contribute to subintestinal vasculature even after blood circulation has been initiated. We further demonstrate that SVF cells participate in vascular recovery after chemical ablation of vascular endothelial cells. Inducible inhibition of the function of vascular progenitor marker etv2/etsrp prevented SVF cell differentiation and resulted in the defective formation of subintestinal vasculature. Similar late-forming etv2+ progenitors were also observed in mouse embryos, suggesting that SVF cells are evolutionarily conserved. Our results characterize a distinct mechanism by which new vascular progenitors incorporate into established vasculature.
Collapse
Affiliation(s)
- Sanjeeva Metikala
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Michael Warkala
- Department of Cell Biology and Molecular Medicine, Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Diandra Rufin Florat
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Elizabeth Plender
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Olivia Nester
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
Xia W, Han X, Wang L. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression. J Biomed Res 2022; 36:39-47. [PMID: 35403609 PMCID: PMC8894288 DOI: 10.7555/jbr.35.20210123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chronic high glucose (HG) plays a crucial role in the pathogenesis of diabetes-induced osteoporosis by inhibiting the differentiation and proliferation of osteoblasts. This study aims to examine the role of E26 transformation-specific 1 (ETS1) in the inhibition of osteoblast differentiation and proliferation caused by chronic HG, as well as the underlying mechanism. Chronic HG treatment downregulated ETS1 expression and inhibited differentiation and proliferation of MC3T3-E1 cells. Downregulation of ETS1 expression inhibited the differentiation and proliferation of MC3T3-E1 cells under normal glucose conditions, and ETS1 overexpression attenuated the damage to cells exposed to chronic HG. In addition, ETS1 overexpression reversed the decrease in runt-related transcription factor 2 (Runx2) expression in MC3T3-E1 cells treated with chronic HG. Using chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we confirmed that ETS1 directly bound to and increased the activity of the Runx2 promoter. In summary, our study suggested that ETS1 was involved in the inhibitory effect of chronic HG on osteogenic differentiation and proliferation and may be a potential therapeutic target for diabetes-induced osteoporosis.
Collapse
Affiliation(s)
- Wenqian Xia
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210009, China
- The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Xiao Han, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869426, E-mail:
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210009, China
- Lin Wang, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 Shanghai Road, Nanjing, Jiangsu 210009, China. Tel: +86-25-69593065, E-mail:
| |
Collapse
|
18
|
Tang J, Li Y, Liu B, Liang W, Hu S, Shi M, Zeng J, Li M, Huang M. Uncovering a Key Role of ETS1 on Vascular Abnormality in Glioblastoma. Pathol Oncol Res 2021; 27:1609997. [PMID: 34867089 PMCID: PMC8641556 DOI: 10.3389/pore.2021.1609997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. Microvascular proliferation and abnormal vasculature are the hallmarks of the GBM, aggravating disease progression and increasing patient morbidity. Here, we uncovered a key role of ETS1 on vascular abnormality in glioblastoma. ETS1 was upregulated in endothelial cells from human tumors compared to endothelial cells from paired control brain tissue. Knockdown of Ets1 in mouse brain endothelial cells inhibited cell migration and proliferation, and suppressed expression of genes associated with vascular abnormality in GBM. ETS1 upregulation in tumor ECs was dependent on TGFβ signaling, and targeting TGFβ signaling by inhibitor decreased tumor angiogenesis and vascular abnormality in CT-2A glioma model. Our results identified ETS1 as a key factor regulating tumor angiogenesis, and suggested that TGFβ inhibition may suppress the vascular abnormality driven by ETS1.
Collapse
Affiliation(s)
- Jiefu Tang
- Trauma Center, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yaling Li
- Department of Obstetrics and Gynaecology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Boxuan Liu
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Wei Liang
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Sanbao Hu
- Department of Orthopaedics, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meilian Shi
- Department of Infectious Diseases, The Second People's Hospital of Huaihua, Huaihua, China
| | - Jie Zeng
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Mingzhen Li
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | | |
Collapse
|
19
|
Uncovering the anti-angiogenic effect of semisynthetic triterpenoid CDDO-Im on HUVECs by an integrated network pharmacology approach. Comput Biol Med 2021; 141:105034. [PMID: 34802714 DOI: 10.1016/j.compbiomed.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023]
Abstract
AIM To reveal the molecular mechanism of anti-angiogenic activity of semisynthetic triterpenoid CDDO-Im. MATERIALS AND METHODS Using re-analysis of cDNA microarray data of CDDO-Im-treated human vascular endothelial cells (HUVECs) (GSE71622), functional annotation of revealed differentially expressed genes (DEGs) and analysis of their co-expression, the key processes induced by CDDO-Im in HUVECs were identified. Venn diagram analysis was further performed to reveal the common DEGs, i.e. genes both susceptible to CDDO-Im and involved in the regulation of angiogenesis. A list of probable protein targets of CDDO-Im was prepared based on Connectivity Map/cheminformatics analysis and chemical proteomics data, among which the proteins that were most associated with the angiogenesis-related regulome were identified. Finally, identified targets were validated by molecular docking and text mining approaches. KEY FINDINGS The effect of CDDO-Im in HUVECs can be divided into two main phases: the short early phase (0.5-3 h) with an acute FOXD1/CEBPA/JUNB-regulated pro-angiogenic response induced by xenobiotic stress, and the second anti-angiogenic step (6-24 h) with massive suppression of various angiogenesis-related processes, accompanied by the activation of cytoprotective mechanisms. Our analysis showed that the anti-angiogenic activity of CDDO-Im is mediated by its inhibition of the expression of PLAT, ETS1, A2M, SPAG9, RASGRP3, FBXO32, GCNT1 and HDGFRP3 and its direct interactions with EGFR, mTOR, NOS2, HSP90AA1, MDM2, SYK, IRF3, ATR and KIF14. SIGNIFICANCE Our findings provide valuable insights into the understanding of the molecular mechanisms of the anti-angiogenic activity of cyano enone-bearing triterpenoids and revealed a range of novel promising therapeutic targets to control pathological neovascularization.
Collapse
|
20
|
Han F, Pang S, Sun Z, Cui Y, Yan B. Genetic Variants and Functional Analyses of the ATG16L1 Gene Promoter in Acute Myocardial Infarction. Front Genet 2021; 12:591954. [PMID: 34220924 PMCID: PMC8248370 DOI: 10.3389/fgene.2021.591954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background Acute myocardial infarction (AMI), a common complex disease caused by an interaction between genetic and environmental factors, is a serious type of coronary artery disease and is also a leading cause of death worldwide. Autophagy-related 16-like 1 (ATG16L1) is a key regulatory factor of autophagy and plays an important role in induced autophagy. In the cardiovascular system, autophagy is essential to preserve the homeostasis and function of the heart and blood vessels. No studies have hitherto examined the association between AMI and ATG16L1 gene promoter. Methods We conducted a case-control study, using polymerase chain reaction and sequencing techniques, dual luciferase reporter assay, and electrophoretic mobility shift assay, to analyze genetic and functional variation in the ATG16L1 gene promoter between AMI and controls. A variety of statistical analyses were used to analyze the allele and genotype frequencies and the relationship between single-nucleotide polymorphisms (SNPs) and AMI. Results In all, 10 SNPs and two DNA-sequence variants (DSVs) were identified in 688 subjects, and three ATG16L1 gene promoter mutations [g.233250693 T > C (rs185213911), g.233250946 G > A (rs568956599), g.233251133 C > G (rs1301744254)] that were identified in AMI patients significantly altered the transcriptional activity of ATG16L1 gene promoter in HEH2, HEK-293, and H9c2 cells (P < 0.05). Further electrophoretic mobility shift assays indicated that the SNPs affected the binding of transcription factors (P < 0.01). Conclusion ATG16L1 gene promoter mutations in AMI patients may affect the binding of transcription factors and change the transcriptional activity of the ATG16L1 gene, changing the level of autophagy and contributing to the occurrence and development of AMI as rare and low-frequency risk factors.
Collapse
Affiliation(s)
- Falan Han
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhaoqing Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
21
|
Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr Polym 2021; 265:118080. [PMID: 33966844 DOI: 10.1016/j.carbpol.2021.118080] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
A neutral water-soluble polysaccharide (RLP50-2) was extracted and purified from the fruits of Rosa laevigata. The absolute molecular weight was determined as 1.26 × 104 g/mol. Monosaccharide composition analysis showed that RLP50-2 mainly consisted of glucose, arabinose, and galactose. Structural analysis revealed that RLP50-2 consisted of →5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →3,6)-β-D-Glcp-(1→, →4)-α-D-Galp-(1→, →6)-β-D-Galp-(1→, →2)-β-D-Xylp-(1→, terminal α-L-arabinose, and terminal β-D-mannose. Biological assays showed that RLP50-2 had immunomodulatory activities using cell and zebrafish models. Moreover, RLP50-2 showed significantly antitumor activities by inhibiting tumor cell proliferation and migration and blocking angiogenesis. These results suggested that RLP50-2 could be developed as a potential immunomodulatory agent or antitumor candidate drug in biomedicine field.
Collapse
|