1
|
Afanaseva E, Barragan A. TIMP1 secretion induced by Toxoplasma effector GRA24 via p38 MAPK signaling promotes non-disruptive parasite translocation across polarized brain endothelial monolayers. mSphere 2025; 10:e0010225. [PMID: 40265926 DOI: 10.1128/msphere.00102-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
The protozoan Toxoplasma gondii first crosses the intestinal wall and then the blood-brain barrier (BBB) to establish chronic, latent infections in humans and other warm-blooded vertebrates. However, the molecular mechanisms underlying this stealthy colonization remain poorly understood. In this study, we investigated the passage of T. gondii tachyzoites across polarized monolayers of murine brain endothelial cells (bEnd.3) and human intestinal cells (Caco-2). We found that exposure to live T. gondii tachyzoites, but not to tachyzoite lysate or lipopolysaccharide, induced elevated transcription and secretion of tissue inhibitor of metalloproteinases 1 (TIMP1), a pleiotropic protein linked to BBB maintenance. Recombinant TIMP1 consistently increased T. gondii transmigration across monolayers, while pharmacological inhibition of matrix metalloproteinases (MMPs) non-significantly impacted transmigration. Through a combined approach of pharmacological inhibition and mutant T. gondii lines, we identified the MYR translocon-associated effector GRA24 and host cell p38 mitogen-activated protein kinase (MAPK) signaling as key mediators of Timp1 induction. Moreover, despite T. gondii transmigration, cell polarization and barrier integrity were preserved, suggesting a non-disruptive passage of tachyzoites with minimal or transient barrier dysregulation. These findings reveal a role for GRA24-p38 MAPK signalling and TIMP1's MMP-independent effects in facilitating the translocation of T. gondii across restrictive biological barriers.IMPORTANCEThe parasite Toxoplasma gondii, which is globally widespread, colonizes the brains of humans and other warm-blooded animals. To do so, it first crosses the gut wall before entering the brain via the bloodstream. However, the mechanisms by which Toxoplasma overcomes the body's restrictive biological barriers remain largely unknown. In this study, we used cellular models of the gut and brain barriers to investigate how the parasite passes through. We found that Toxoplasma induces cells to secrete TIMP1, a multifunctional protein that reduces inflammation and is linked to blood-brain barrier protection. Surprisingly, TIMP1 also facilitated Toxoplasma's passage across cellular barriers. This elevated TIMP1 production and secretion by host cells was triggered by a secreted Toxoplasma effector protein (GRA24) and mediated through host cell signaling pathways (p38 MAPK). These findings suggest that Toxoplasma manipulates host cells to produce factors that aid its colonization while suppressing inflammation.
Collapse
Affiliation(s)
- Elena Afanaseva
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Stockholm County, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Stockholm County, Sweden
| |
Collapse
|
2
|
Shi J, Lin Z, Zheng Z, Chen M, Huang X, Wang J, Li M, Shao J. Glutamine metabolism promotes human trophoblast cell invasion via COL1A1 mediated by PI3K-AKT pathway. J Reprod Immunol 2024; 166:104321. [PMID: 39243705 DOI: 10.1016/j.jri.2024.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Abnormal trophoblast invasion function is an important cause of recurrent spontaneous abortion (RSA). Recent research has revealed a connection between glutamine metabolism and RSA. However, the interplay between these three factors and their related mechanisms remains unclear. To address this issue, we collected villus tissues from 10 healthy women with induced abortion and from 10 women with RSA to detect glutamine metabolism. Then, the trophoblast cell line HTR-8/SVneo was used in vitro to explore the effect of glutamine metabolism on trophoblast cells invasion, which was tested by transwell assay. We found that the concentration of glutamine in the villi of the normal pregnancy group was significantly higher than that in the RSA group. Correspondingly, the expression levels of key enzymes involved in glutamine synthesis and catabolism, including glutamine synthetase and glutaminase, were significantly higher in the villi of the normal pregnancy group. Regarding trophoblast cells, glutamine markedly enhanced the proliferative and invasive abilities of HTR-8/SVneo cells. Additionally, collagen type I alpha 1 (COL1A1) was confirmed to be a downstream target of glutamine, and glutamine also activated the PI3K-AKT pathway in HTR-8/SVneo cells. These findings indicate that glutamine metabolism facilitates the invasion of trophoblasts by up-regulating COL1A1 expression through the activation of the PI3K-AKT pathway, but the specific mechanism of COL1A1 requires further study.
Collapse
Affiliation(s)
- Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, China
| | - Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jiarui Wang
- Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China.
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200090, China.
| |
Collapse
|
3
|
Siggins C, Pan JA, Löffler AI, Yang Y, Shaw PW, Balfour PC, Epstein FH, Gan LM, Kramer CM, Keeley EC, Salerno M. Cardiometabolic biomarker patterns associated with cardiac MRI defined fibrosis and microvascular dysfunction in patients with heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 11:1334226. [PMID: 38500750 PMCID: PMC10945015 DOI: 10.3389/fcvm.2024.1334226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Heart failure with preserved ejection fraction (HFpEF) is a complex disease process influenced by metabolic disorders, systemic inflammation, myocardial fibrosis, and microvascular dysfunction. The goal of our study is to identify potential relationships between plasma biomarkers and cardiac magnetic resonance (CMR) imaging markers in patients with HFpEF. Methods Nineteen subjects with HFpEF and 15 age-matched healthy controls were enrolled and underwent multiparametric CMR and plasma biomarker analysis using the Olink® Cardiometabolic Panel (Olink Proteomics, Uppsala, Sweden). Partial least squares discriminant analysis (PLS-DA) was used to characterize CMR and biomarker variables that differentiate the subject groups into two principal components. Orthogonal projection to latent structures by partial least squares (OPLS) analysis was used to identify biomarker patterns that correlate with myocardial perfusion reserve (MPR) and extracellular volume (ECV) mapping. Results A PLS-DA could differentiate between HFpEF and normal controls with two significant components explaining 79% (Q2 = 0.47) of the differences. For OPLS, there were 7 biomarkers that significantly correlated with ECV (R2 = 0.85, Q = 0.53) and 6 biomarkers that significantly correlated with MPR (R2 = 0.92, Q2 = 0.32). Only 1 biomarker significantly correlated with both ECV and MPR. Discussion Patients with HFpEF have unique imaging and biomarker patterns that suggest mechanisms associated with metabolic disease, inflammation, fibrosis and microvascular dysfunction.
Collapse
Affiliation(s)
- Connor Siggins
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Jonathan A. Pan
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Adrián I. Löffler
- UCHealth Heart and Vascular Clinic, Greeley Medical Center, Greeley, CO, United States
| | - Yang Yang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter W. Shaw
- New England Heart and Vascular Institute, Catholic Medical Center, Manchester, NH, United States
| | - Pelbreton C. Balfour
- Baptist Heart & Vascular Institute, Baptist Health Care, Pensacola, FL, United States
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christopher M. Kramer
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, United States
| | - Ellen C. Keeley
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Salerno
- Department of Radiology, Stanford University, Stanford, CA, United States
- Department of Medicine, Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Ting KK, Coleman P, Kim HJ, Zhao Y, Mulangala J, Cheng NC, Li W, Gunatilake D, Johnstone DM, Loo L, Neely GG, Yang P, Götz J, Vadas MA, Gamble JR. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models. GeroScience 2023; 45:3307-3331. [PMID: 37782439 PMCID: PMC10643714 DOI: 10.1007/s11357-023-00927-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/27/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.
Collapse
Affiliation(s)
- Ka Ka Ting
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jocelyne Mulangala
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Ngan Ching Cheng
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Wan Li
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Dilini Gunatilake
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Daniel M Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mathew A Vadas
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Jennifer R Gamble
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
5
|
Mulens-Arias V, Portilla Y, Pérez-Yagüe S, Ferreras-Martín R, Martín ME, González VM, Barber DF. An electrostatically conjugated-functional MNK1 aptamer reverts the intrinsic antitumor effect of polyethyleneimine-coated iron oxide nanoparticles in vivo in a human triple-negative cancer xenograft. Cancer Nanotechnol 2023; 14:64. [DOI: 10.1186/s12645-023-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 12/12/2024] Open
Abstract
Abstract
Background
Triple-negative breast cancer (TNBC) remains a difficult breast cancer subtype to treat as it exhibits a particularly aggressive behavior. The dysregulation of distinct signaling pathways underlies this aggressive behavior, with an overactivation of MAP kinase interacting kinases (MNKs) promoting tumor cell behavior, and driving proliferation and migration. Therefore, MNK1 is an excellent target to impair the progression of TNBC and indeed, an MNK1-specific aptamer has proved to be efficient in inhibiting TBNC cell proliferation in vitro. Although polyethyleneimine-coated iron oxide nanoparticles (PEI–IONPs) have been used as transfection and immunomodulating agents, no study has yet addressed the benefits of using these nanoparticles as a magnetic carrier for the delivery of a functional aptamer.
Results
Here, we tested the antitumor effect of a PEI–IONP complexed to the functional MNK1b-specific aptamer in vitro and in vivo. We demonstrated that these apMNKQ2@PEI–IONP nanoconjugates delivered three times more apMNKQ2 to MDA-MB-231 cells than the aptamer alone, and that this enhanced intracellular delivery of the aptamer had consequences for MNK1 signaling, reducing the amount of MNK1 and its target the phospho(Ser209)-eukaryotic initiation factor 4E (eIF4E). As a result, a synergistic effect of the apMNKQ2 and PEI–IONPs was observed that inhibited MDA-MB-231 cell migration, probably in association with an increase in the serum and glucocorticoid-regulated kinase-1 (SGK1) and the phospho(Thr346)-N-myc down-regulated gene 1 (NDRG1). However, intravenous administration of the apMNKQ2 alone did not significantly impair tumor growth in vivo, whereas the PEI–IONP alone did significantly inhibit tumor growth. Significantly, tumor growth was not inhibited when the apMNKQ2@PEI–IONP nanocomplex was administered, possibly due to fewer IONPs accumulating in the tumor. This apMNKQ2-induced reversion of the intrinsic antitumor effect of the PEI–IONPs was abolished when an external magnetic field was applied at the tumor site, promoting IONP accumulation.
Conclusions
Electrostatic conjugation of the apMNKQ2 aptamer with PEI–IONPs impedes the accumulation of the latter in tumors, which appears to be necessary for PEI–IONPs to exert their antitumor activity.
Graphical Abstract
Collapse
|
6
|
Li YY, Zhang LY, Xiang YH, Li D, Zhang J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 2023; 13:1127407. [PMID: 37823051 PMCID: PMC10562598 DOI: 10.3389/fonc.2023.1127407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM), especially for tumor invasion and osteolytic osteopathy. By breaking down extracellular matrix (ECM) components and releasing the proteins composing the ECM and growth factors, as well as their receptors, MMPs affect tissue integrity and promote cancer cell invasion and metastasis. A vital pathophysiological characteristic of MM is the progress of osteolytic lesions, which are brought on by interactions between myeloma cells and the bone marrow microenvironment. MMPs, certainly, are one of the fundamental causes of myeloma bone disease due to their ability to degrade various types of collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also participate in the occurrence and evolution of MM and the formation of bone disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9, MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel perspectives on the clinical diagnostics and therapeutics of MM.
Collapse
Affiliation(s)
- Yan-Ying Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu-Yun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Hui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Guo M, Zhao L, Jiang C, Jia CC, Liu H, Zhou W, Songyang Z, Xiong Y. Multiomics analyses reveal pathological mechanisms of HBV infection and integration in liver cancer. J Med Virol 2023; 95:e28980. [PMID: 37522289 DOI: 10.1002/jmv.28980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Hepatitis B virus (HBV) infection and integration are important for hepatocellular carcinoma (HCC) initiation and progression, while disease mechanisms are still largely elusive. Here, we combined bulk and single-cell sequencing technologies to tackle the disease mechanisms of HBV-related HCC. We observed high HBV mutation rate and diversity only in tumors without HBV integration. We identified human somatic risk loci for HBV integration (VIMs). Transcription factors (TFs) enriched in VIMs were involved in DNA repair and androgen receptor (AR) signaling. Aberration of AR signaling was further observed by single-cell regulon analysis in HBV-infected hepatocytes, which showed remarkable interactions between AR and the complement system that, together with the X-linked ZXDB regulon that contains albumin (ALB), probably contribute to HCC male predominance. Complement system dysregulation caused by HBV infection was further confirmed by analyses of single-cell copy numbers and cell-cell communications. Finally, HBV infection-associated immune cells presented critical defects, including TXNIP in T cells, TYROBP in NK cells, and the X-linked TIMP1 in monocytes. We further experimentally validated our findings in multiple independent patient cohorts. Collectively, our work shed light on the pathogenesis of HBV-related HCC and other liver diseases that affect billions of people worldwide.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Linghao Zhao
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Chang-Chang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
9
|
Azevedo-Silva J, Tavares-Valente D, Almeida A, Queirós O, Baltazar F, Ko YH, Pedersen PL, Preto A, Casal M. Cytoskeleton disruption by the metabolic inhibitor 3-bromopyruvate: implications in cancer therapy. Med Oncol 2022; 39:121. [PMID: 35716210 DOI: 10.1007/s12032-022-01712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
The small molecule 3-bromopyruvate (3BP), is an anticancer molecule that acts by hindering glycolysis and mitochondrial function leading to energy depletion and consequently, to cell death. In this work we have focused on understanding how the glycolytic inhibition affects cancer cell structural features. We showed that 3BP leads to a drastic decrease in the levels of β-actin and α-tubulin followed by disorganization and shrinkage of the cytoskeleton in breast cancer cells. 3BP inhibits cell migration and colony formation independently of the activity of metalloproteinases. To disclose if these structural alterations occurred prior to 3BP toxic effect, non-toxic concentrations of 3BP were used and we could observe that 3BP was able to inhibit energy production and induce loss of β-actin and α-tubulin proteins. This was accompanied with alterations in cytoskeleton organization and an increase in E-cadherin levels which may indicate a decrease in cancer cells aggressiveness. In this study we demonstrate that 3BP glycolytic inhibition of breast cancer cells is accompanied by cytoskeleton disruption and consequently loss of migration ability, suggesting that 3BP can potentially be explored for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- J Azevedo-Silva
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - D Tavares-Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - A Almeida
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal
| | - O Queirós
- Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, CESPU, CRL, University Institute of Health Sciences (IUCS), Gandra, Portugal
| | - F Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Y H Ko
- KoDiscovery, LLC, University of Maryland BioPark, Suites 502 E & F, 801 West Baltimore St., Baltimore, MD, 21201, USA
| | - P L Pedersen
- Departments of Biological Chemistry and Oncology, Member at Large, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, 21205-2185, USA
| | - A Preto
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Casal
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Portugal, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
10
|
Lim L, Ki YJ, Kim H, Chu B, Choi IY, Choi DH, Song H. Plantamajoside Attenuates Neointima Formation via Upregulation of Tissue Inhibitor of Metalloproteinases in Balloon-Injured Rats. J Med Food 2022; 25:503-512. [PMID: 35483086 DOI: 10.1089/jmf.2021.k.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The abnormal change of vascular smooth muscle cell (VSMC) behavior is an important cellular event leading to neointimal hyperplasia in atherosclerosis and restenosis. Plantamajoside (PMS), a phenylethanoid glycoside compound of the Plantago asiatica, has been reported to have anti-inflammatory, antioxidative, and anticancer activities. In this study, the protective effects of PMS against intimal hyperplasia and the mechanisms underlying the regulation of VSMC behavior were investigated. MTT and BrdU assays were performed to evaluate the cytotoxicity and cell proliferative activity of PMS, respectively. Rat aortic VSMC migrations after treatment with the determined concentration of PMS (50 and 150 μM) were evaluated using wound healing and Boyden chamber assays. The inhibitory effects of PMS on intimal hyperplasia were evaluated in balloon-injured (BI) rat carotid artery. PMS suppressed the proliferation in platelet-derived growth factor-BB-induced VSMC, as confirmed from the decrease in cyclin-dependent kinase (CDK)-2, CDK-4, cyclin D1, and proliferating cell nuclear antigen levels. PMS also inhibited VSMC migration, consistent with the downregulated expression and zymolytic activities of matrix metalloproteinase (MMP)2, MMP9, and MMP13. PMS specifically regulated MMP expression through p38 mitogen-activated protein kinase and focal adhesion kinase pathways. Tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2 levels were upregulated via Smad1. TIMPs inhibited the conversion of pro-MMPs to active MMPs. PMS significantly inhibited neointimal formation in BI rat carotid arteries. In conclusion, PMS inhibits VSMC proliferation and migration by upregulating TIMP1 and TIMP2 expression. Therefore, PMS could be a potential therapeutic agent for vascular atherosclerosis and restenosis treatment.
Collapse
Affiliation(s)
- Leejin Lim
- Cancer Mutation Research Center, Chosun University, Gwangju, Korea
| | - Young-Jae Ki
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Korea
| | - Hyeonhwa Kim
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju, Korea
| | - Byeongsam Chu
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju, Korea
| | - In Young Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Korea
| | - Heesang Song
- Department of Biomedical Sciences, Chosun University Graduate School, Gwangju, Korea.,Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Korea
| |
Collapse
|
11
|
Tran PM, Tang SS, Salgado-Pabón W. Staphylococcus aureus β-Toxin Exerts Anti-angiogenic Effects by Inhibiting Re-endothelialization and Neovessel Formation. Front Microbiol 2022; 13:840236. [PMID: 35185854 PMCID: PMC8851161 DOI: 10.3389/fmicb.2022.840236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus causes severe, life-threatening infections that often are complicated by severe local and systemic pathologies with non-healing lesions. A classic example is S. aureus infective endocarditis (IE), where the secreted hemolysin β-toxin potentiates the disease via its sphingomyelinase and biofilm ligase activities. Although these activities dysregulate human aortic endothelial cell activation, β-toxin effect on endothelial cell function in wound healing has not been addressed. With the use of the ex vivo rabbit aortic ring model, we provide evidence that β-toxin prevents branching microvessel formation, highlighting its ability to interfere with tissue re-vascularization and vascular repair. We show that β-toxin specifically targets both human aortic endothelial cell proliferation and cell migration and inhibits human umbilical vein endothelial cell rearrangement into capillary-like networks in vitro. Proteome arrays specific for angiogenesis-related molecules provided evidence that β-toxin promotes an inhibitory profile in endothelial cell monolayers, specifically targeting production of TIMP-1, TIMP-4, and IGFBP-3 to counter the effect of a pro-angiogenic environment. Dysregulation in the production of these molecules is known to result in sprouting defects (including deficient cell proliferation, migration, and survival), vessel instability and/or vascular regression. When endothelial cells are grown under re-endothelialization/wound healing conditions, β-toxin decreases the pro-angiogenic molecule MMP-8 and increases the anti-angiogenic molecule endostatin. Altogether, the data indicate that β-toxin is an anti-angiogenic virulence factor and highlight a mechanism where β-toxin exacerbates S. aureus invasive infections by interfering with tissue re-vascularization and vascular repair.
Collapse
Affiliation(s)
- Phuong M. Tran
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sharon S. Tang
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Coronado BNL, da Cunha FBS, de Oliveira RM, Nóbrega ODT, Ricart CAO, Fontes W, de Sousa MV, de Ávila MP, Martins AMA. Novel Possible Protein Targets in Neovascular Age-Related Macular Degeneration: A Pilot Study Experiment. Front Med (Lausanne) 2022; 8:692272. [PMID: 35155457 PMCID: PMC8828634 DOI: 10.3389/fmed.2021.692272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is among the world's leading causes of blindness. In its neovascular form (nAMD), around 25% of patients present further anatomical and visual deterioration due to persistence of neovascular activity, despite gold-standard treatment protocols using intravitreal anti-VEGF medications. Thus, to comprehend, the molecular pathways that drive choroidal neoangiogenesis, associated with the vascular endothelial growth factor (VEGF), are important steps to elucidate the mechanistic events underneath the disease development. This is a pilot study, a prospective, translational experiment, in a real-life context aiming to evaluate the protein profiles of the aqueous humor of 15 patients divided into three groups: group 1, composed of patients with nAMD, who demonstrated a good response to anti-VEGF intravitreal injections during follow-up (good responsive); group 2, composed of patients with anti-VEGF-resistant nAMD, who demonstrated choroidal neovascularization activity during follow-up (poor/non-responsive); and group 3, composed of control patients without systemic diseases or signs of retinopathy. For proteomic characterization of the groups, mass spectrometry (label-free LC-MS/MS) was used. A total of 2,336 proteins were identified, of which 185 were distinctly regulated and allowed the differentiation of the clinical conditions analyzed. Among those, 39 proteins, including some novel ones, were analyzed as potential disease effectors through their pathophysiological implications in lipid metabolism, oxidative stress, complement system, inflammatory pathways, and angiogenesis. So, this study suggests the participation of other promising biomarkers in neovascular AMD, in addition to the known VEGF.
Collapse
Affiliation(s)
- Bruno Nobre Lins Coronado
- Department of Medical Science, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Faculty of Medicine, CESMAC University Center, Maceio, Brazil
- *Correspondence: Bruno Nobre Lins Coronado
| | | | - Raphaela Menezes de Oliveira
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Aline Maria Araújo Martins
- Department of Medical Science, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Department of Health Science, School of Medicine, University Center of Brasilia (UniCEUB), Brasilia, Brazil
- Aline Maria Araújo Martins
| |
Collapse
|
13
|
Savira F, Kompa AR, Kelly DJ, Magaye R, Xiong X, Huang L, Liew D, Reid C, Kaye D, Scullino CV, Pitson SM, Flynn BL, Wang BH. The effect of dihydroceramide desaturase 1 inhibition on endothelial impairment induced by indoxyl sulfate. Vascul Pharmacol 2021; 141:106923. [PMID: 34600152 DOI: 10.1016/j.vph.2021.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Protein-bound uremic toxins (PBUTs) have adverse effects on vascular function, which is imperative in the progression of cardiovascular and renal diseases. The role of sphingolipids in PBUT-mediated vasculo-endothelial pathophysiology is unclear. This study assessed the therapeutic potential of dihydroceramide desaturase 1 (Des1) inhibition, the last enzyme involved in de novo ceramide synthesis, to mitigate the vascular effects of the PBUT indoxyl sulfate (IS). Rat aortic rings were isolated and vascular reactivity was assessed in organ bath experiments followed by immunohistochemical analyses. Furthermore, cultured human aortic endothelial cells were assessed for phenotypic and mechanistic changes. Inhibition of Des1 by a selective inhibitor CIN038 (0.1 to 0.3 μM) improved IS-induced impairment of vasorelaxation and modulated immunoreactivity of oxidative stress markers. Des1 inhibition also reversed IS-induced reduction in endothelial cell migration (1.0 μM) by promoting the expression of angiogenic cytokines and reducing inflammatory and oxidative stress markers. These effects were associated with a reduction of TIMP1 and the restoration of Akt phosphorylation. In conclusion, Des1 inhibition improved vascular relaxation and endothelial cell migration impaired by IS overload. Therefore, Des1 may be a suitable intracellular target to mitigate PBUT-induced adverse vascular effects.
Collapse
Affiliation(s)
- Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andrew R Kompa
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Australia
| | - Ruth Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xin Xiong
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; School of Public Health, Curtin University, Perth, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Stuart M Pitson
- Molecular Signalling Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Apoptosis signal-regulating kinase 1 inhibition reverses deleterious indoxyl sulfate-mediated endothelial effects. Life Sci 2021; 272:119267. [PMID: 33631173 DOI: 10.1016/j.lfs.2021.119267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022]
Abstract
AIMS Indoxyl sulfate (IS), a protein-bound uremic toxin, is implicated in endothelial dysfunction, which contributes to adverse cardiovascular events in chronic kidney disease. Apoptosis signal regulating kinase 1 (ASK1) is a reactive oxygen species-driven kinase involved in IS-mediated adverse effects. This study assessed the therapeutic potential of ASK1 inhibition in alleviating endothelial effects induced by IS. MAIN METHODS IS, in the presence and absence of a selective ASK1 inhibitor (GSK2261818A), was assessed for its effect on vascular reactivity in rat aortic rings, and cultured human aortic endothelial cells where we evaluated phenotypic and mechanistic changes. KEY FINDINGS IS directly impairs endothelium-dependent vasorelaxation and endothelial cell migration. Mechanistic studies revealed increased production of reactive oxygen species-related markers, reduction of endothelial nitric oxide synthase and increased protein expression of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). IS also increases angiopoietin-2 and tumour necrosis factor α gene expression and promotes transforming growth factor β receptor abundance. Inhibition of ASK1 ameliorated the increase in oxidative stress markers, promoted autocrine interleukin 8 pro-angiogenic signalling and decreased anti-angiogenic responses at least in part via reducing TIMP1 protein expression. SIGNIFICANCE ASK1 inhibition attenuated vasorelaxation and endothelial cell migration impaired by IS. Therefore, ASK1 is a viable intracellular target to alleviate uremic toxin-induced impairment in the vasculature.
Collapse
|
15
|
Jochums A, Volk J, Perduns R, Plum M, Schertl P, Bakopoulou A, Geurtsen W. Influence of 2-hydroxyethyl methacrylate (HEMA) exposure on angiogenic differentiation of dental pulp stem cells (DPSCs). Dent Mater 2021; 37:534-546. [PMID: 33579530 DOI: 10.1016/j.dental.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The angiogenic differentiation of dental pulp stem cells (DPSCs) is important for tissue homeostasis and wound healing. In this study the influence of 2-hydroxyethyl methacrylate (HEMA) on angiogenic differentiation was investigated. METHODS To evaluate HEMA effects on angiogenic differentiation, DPSCs were cultivated in angiogenic differentiation medium (ADM) in the presence or absence of non-toxic HEMA concentrations (0.1 mM and 0.5 mM). Subsequently, angiogenic differentiation was analyzed on the molecular level by qRT-PCR and protein profiler analyzes of angiogenic markers and flow cytometry of PECAM1. The influence of HEMA on angiogenic phenotypes was analyzed by cell migration and sprouting assays. RESULTS Treatment with 0.5 mM HEMA during differentiation can lead to a slight reduction of angiogenic markers on mRNA level. HEMA also seems to slightly reduce the quantity of angiogenic cytokines (not significant). However, these HEMA concentrations have no detectable influence on cell migration, the abundance of PECAM1 and the formation of capillaries. Higher concentrations caused primary cytotoxic effects in angiogenic differentiation experiments conducted for longer periods than 72 h. SIGNIFICANCE Non-cytotoxic HEMA concentrations seem to have a minor impact on the expression of angiogenic markers, essentially on the mRNA level, without affecting the angiogenic differentiation process itself on a detectable level.
Collapse
Affiliation(s)
- André Jochums
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Melanie Plum
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Peter Schertl
- Department of Cell Biology and Biophysics, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
16
|
Laiva AL, O’Brien FJ, Keogh MB. SDF-1α Gene-Activated Collagen Scaffold Restores Pro-Angiogenic Wound Healing Features in Human Diabetic Adipose-Derived Stem Cells. Biomedicines 2021; 9:biomedicines9020160. [PMID: 33562165 PMCID: PMC7914837 DOI: 10.3390/biomedicines9020160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) can lead to leg amputation in diabetic patients. Autologous stem cell therapy holds some potential to solve this problem; however, diabetic stem cells are relatively dysfunctional and restrictive in their wound healing abilities. This study sought to explore if a novel collagen-chondroitin sulfate (coll-CS) scaffold, functionalized with polyplex nanoparticles carrying the gene encoding for stromal-derived factor-1 alpha (SDF-1α gene-activated scaffold), can enhance the regenerative functionality of human diabetic adipose-derived stem cells (ADSCs). We assessed the impact of the gene-activated scaffold on diabetic ADSCs by comparing their response against healthy ADSCs cultured on a gene-free scaffold over two weeks. Overall, we found that the gene-activated scaffold could restore the pro-angiogenic regenerative response in the human diabetic ADSCs similar to the healthy ADSCs on the gene-free scaffold. Gene and protein expression analysis revealed that the gene-activated scaffold induced the overexpression of SDF-1α in diabetic ADSCs and engaged the receptor CXCR7, causing downstream β-arrestin signaling, as effectively as the transfected healthy ADSCs. The transfected diabetic ADSCs also exhibited pro-wound healing features characterized by active matrix remodeling of the provisional fibronectin matrix and basement membrane protein collagen IV. The gene-activated scaffold also induced a controlled pro-healing response in the healthy ADSCs by disabling early developmental factors signaling while promoting the expression of tissue remodeling components. Conclusively, we show that the SDF-1α gene-activated scaffold can overcome the deficiencies associated with diabetic ADSCs, paving the way for autologous stem cell therapies combined with novel biomaterials to treat DFUs.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; (A.L.L.); (F.J.O.)
- Department of Biomedical Science, Royal College of Surgeons in Ireland, Adliya, P.O. Box 15503 Manama, Bahrain
- Correspondence: ; Tel.: +973-17351450
| |
Collapse
|
17
|
Pang W, Zhang Z, Zhang Y, Zhang M, Miao R, Yang Y, Xie W, Wan J, Zhai Z, Wang C. Extracellular matrix collagen biomarkers levels in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis 2020; 52:48-58. [PMID: 33175289 DOI: 10.1007/s11239-020-02329-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Limited data exist on changes in the extracellular matrix (ECM) collagen biomarkers levels during chronic thromboembolic pulmonary hypertension (CTEPH) development. This study aimed to investigate ECM collagen biomarkers levels in stable patients with CTEPH. Patients with CTEPH and healthy persons were enrolled. Serum levels of procollagen III N-terminal peptide (PIIINP), carboxyterminal propeptide of type I procollagen (PICP), matrix metalloproteinases (MMP2), MMP9, and tissue inhibitor of metalloproteinases 1(TIMP1) were measured by ELISA. Clinical data coincident with samples were collected. The pulmonary endarterectomy (PEA) and control pulmonary artery tissue samples were analyzed for genetic and immunohistochemical differences. The serum concentrations of PIIINP, PICP, MMP2, and MMP9 decreased significantly in CTEPH patients compared to healthy controls (P < 0.001 for each). CTEPH patients had higher serum concentrations of TIMP1 (median, 111.97 [interquartile range, 84.35-139.93]) compared to healthy controls (74.97 [44.03-108.45] ng/mL, P < 0.001). The MMP2 to TIMP1 ratio was lower in patients than in the controls (P < 0.001). After adjusting for the body mass index (BMI), the MMP2 to TIMP1 ratio correlated negatively with pulmonary vascular resistance (PVR) (r = - 0.327, P = 0.025). Increased TIMP1 (P = 0.04) gene expression was identified in tissues of CTEPH patients. Immunohistochemistry results of vascular walls substantiated qRT-PCR results. This study indicates that ECM collagen biomarkers levels were significantly different in stable patients with CTEPH and healthy controls with significantly increased TIMP1 and decreased MMP2 and MMP9. Differences in TIMP1 expression should be expected not only among healthy controls and patients serum, but also across pathological tissue regions. These findings suggest that the state of vascular remodeling in pulmonary vascular bed in stable patients may be represented by ECM collagen biomarkers levels. We conclude that TIMP1 may play an important role in pulmonary vascular reconstruction in stable CTEPH patients.
Collapse
Affiliation(s)
- Wenyi Pang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhu Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yunxia Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China
| | - Ran Miao
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yuanhua Yang
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China. .,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China. .,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
18
|
García-Onrubia L, Valentín-Bravo FJ, Coco-Martin RM, González-Sarmiento R, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD). Int J Mol Sci 2020; 21:ijms21165934. [PMID: 32824762 PMCID: PMC7460693 DOI: 10.3390/ijms21165934] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial and progressive retinal disease affecting millions of people worldwide. In developed countries, it is the leading cause of vision loss and legal blindness among the elderly. Although the pathogenesis of AMD is still barely understood, recent studies have reported that disorders in the regulation of the extracellular matrix (ECM) play an important role in its etiopathogenesis. The dynamic metabolism of the ECM is closely regulated by matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). The present review focuses on the crucial processes that occur at the level of the Bruch’s membrane, with special emphasis on MMPs, TIMPs, and the polymorphisms associated with increased susceptibility to AMD development. A systematic literature search was performed, covering the years 1990–2020, using the following keywords: AMD, extracellular matrix, Bruch’s membrane, MMPs, TIMPs, and MMPs polymorphisms in AMD. In both early and advanced AMD, the pathological dynamic changes of ECM structural components are caused by the dysfunction of specific regulators and by the influence of other regulatory systems connected with both genetic and environmental factors. Better insight into the pathological role of MMP/TIMP complexes may lead to the development of new strategies for AMD treatment and prevention.
Collapse
Affiliation(s)
- Luis García-Onrubia
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Fco. Javier Valentín-Bravo
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Rosa M. Coco-Martin
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca—CSIC, 37007 Salamanca, Spain
| | - J. Carlos Pastor
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Correspondence: (R.U.-M.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.)
| |
Collapse
|
19
|
Yari D, Ehsanbakhsh Z, Validad MH, Langroudi FH. Association of TIMP-1 and COL4A4 Gene Polymorphisms with Keratoconus in an Iranian Population. J Ophthalmic Vis Res 2020; 15:299-307. [PMID: 32864060 PMCID: PMC7431712 DOI: 10.18502/jovr.v15i3.7448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/14/2020] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Keratoconus (KC) is a bilateral and noninflammatory disease, characterized by progressive thinning and anterior protrusion of the cornea and may result in severe visual impairment due to irregular astigmatism. Matrix metalloproteinases (MMP) are the main group of enzymes that degrade extracellular matrix proteins including collagens; Type IV collagen is found in the corneal stroma. MMP enzymatic activity is inhibited by tissue inhibitor of metalloproteinase-1 (TIMP-1). A decrease in TIMP-1 level is associated with the development of KC. In the present study, we investigated the impact of COL4A4 rs2228557 C/T and TIMP-1 rs4898 C/T (X-chromosome) variants on the odds of KC development in a sample of Iranian population. METHODS This case-control study was conducted on 140 patients with KC and 150 healthy control subjects. We used modified methods of Nested-PCR and ARMS-PCR in combination (Nested-ARMS-PCR) and confirmed their validity with RFLP-PCR. RESULTS Significant differences were noticed between KC patients and healthy individuals regarding the genotype TY or T allele frequencies of rs4898 in the male subjects (OR = 0.43, 95%CI: 0.20-0.92, P = 0.03), whereas no significant differences were identified in the female subjects (OR = 1.07, 95%CI: 0.52-2.20, P = 0.85). The rs2228557, T allele was associated with KC (OR = 0.69, 95% CI: 0.50-0.97, P = 0.035). CONCLUSION In the rs2228557 variant, T allele acts as a protective factor from the disease and decreases the risk of KC compared with the C allele. Also, in our investigation about rs4898, we found that TY genotype or T allele decreased the risk of KC compared with the C allele in males and was a protective factor for KC in our population.
Collapse
Affiliation(s)
- Davood Yari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan,
Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical
Sciences, Zahedan, Iran
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ehsanbakhsh
- Mashhad University of Medical Sciences, Mashhad, Iran
- Shariati Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hosein Validad
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences,
Zahedan, Iran
| | - Farzaneh Hasanian Langroudi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical
Sciences, Zahedan, Iran
| |
Collapse
|
20
|
Cho HD, Lee KW, Won YS, Kim JH, Seo KI. Cultivated Orostachys japonicus extract inhibits VEGF-induced angiogenesis via regulation of VEGFR2 signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112664. [PMID: 32045685 DOI: 10.1016/j.jep.2020.112664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonicus A. Berger (O. japonicus), so-called Wa-song in Korea, a traditional food and medicine that grows on mountain rocks and roof tiles. Wa-song containing various phenolic compounds have been reported as a medicinal plant for prevention of fibrosis, cancer, inflammation, and oxidative damage. AIM OF THE STUDY The present study was designed to examine the anti-angiogenic effects of cultivated Orostachys japonicus 70% ethanol extract (CE) in vascular endothelial growth factor (VEGF)-stimulated human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS CE was prepared with 70% ethanol. HUVECs, rat aortic rings, and matrigel plug in mice were treated with CE (10-20 μg/mL) and VEGF (20-50 ng/mL), and the anti-angiogenic activities of CE were analyzed by SRB, wound healing, trans-well invasion, capillary-like tubule formation, rat aortas, Western blot, and matrigel plug assay. Phenolic compounds in CE were analyzed using a high-performance liquid chromatography (HPLC)-PDA system. RESULTS Treatment of CE (10-20 μg/mL) markedly suppressed proliferation of HUVECs in the presence (from 136.5% to 112.2%) or absence of VEGF (from 100.0% to 92.1%). The proliferation inhibitory effect of CE was caused by G0/G1 cell cycle arrest, and the decrease of CDK-2, CDK-4, Cyclin D1 and Cyclin E1. Furthermore, CE treatment showed significant angiogenesis inhibitory effects on motility, invasion and micro-vessel formation of HUVECs, rat aortic rings and subcutaneous matrigels under VEGF-stimulation condition. In HUVECs, CE-induced anti-angiogenic effect was regulated by inhibition of the PI3K/AKT/mTOR, MAPK/p38, MAPK/ERK, FAK-Src, and VEGF-VEGFR2 signaling pathways. CONCLUSION This study demonstrated that CE might be used as a potential natural substance, multi-targeted angiogenesis inhibitor, functional food material.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Industry-Academy Cooperation, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwan-Woo Lee
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Yeong-Seon Won
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Jeong-Ho Kim
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
21
|
Xi Y, Huang H, Zhao Z, Ma J, Chen Y. Tissue inhibitor of metalloproteinase 1 suppresses growth and differentiation of osteoblasts and differentiation of osteoclasts by targeting the AKT pathway. Exp Cell Res 2020; 389:111930. [PMID: 32113948 DOI: 10.1016/j.yexcr.2020.111930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP1) has various biological activities including the regulation of cell growth and differentiation. However, its role in bone homeostasis and remodeling remains poorly understood. In this study, we investigate the effects of TIMP1 on osteoblast and osteoclast activity at both cellular and molecular level using siRNA-mediated knockdown technique. Our results show that knockdown of TIMP1 stimulates proliferation and survival, but decreases apoptosis in osteoblastic MC3T3-E1 cells, suggesting that TIMP1 inhibits cell growth. TIMP1 also dampens differentiation of committed osteoblasts, as well as osteoblastogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). We further show that the modulation of TIMP1 on osteoblast activity is independent of its MMP inhibition. Importantly, we uncover that TIMP1 suppresses osteoblast growth and differentiation by targeting the AKT pathway, and this is associated with TIMP1-mediated induction of PTEN via its binding to the cell surface receptor CD44. Therefore, our results highlight a novel TIMP1/CD44/PTEN/AKT signaling nexus that functions as a suppressor of osteoblast activity. Moreover, we show that TIMP1 also inhibits osteoclast differentiation in osteoclast precursor RAW 264.7 cells by targeting the AKT. In conclusion, our results demonstrate that TIMP1 can act as a suppressor of growth and differentiation of osteoblasts and differentiation of osteoclasts through the negative regulation of the AKT pathway. We propose that TIMP1 may serve as a potential target for low bone mass-related skeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Yongming Xi
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hui Huang
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Zhao
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinfeng Ma
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| |
Collapse
|
22
|
Quade M, Münch P, Lode A, Duin S, Vater C, Gabrielyan A, Rösen‐Wolff A, Gelinsky M. The Secretome of Hypoxia Conditioned hMSC Loaded in a Central Depot Induces Chemotaxis and Angiogenesis in a Biomimetic Mineralized Collagen Bone Replacement Material. Adv Healthc Mater 2020; 9:e1901426. [PMID: 31830380 DOI: 10.1002/adhm.201901426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Indexed: 12/18/2022]
Abstract
The development of biomaterials with intrinsic potential to stimulate endogenous tissue regeneration at the site of injury is a main demand on future implants in regenerative medicine. For critical-sized bone defects, an in situ tissue engineering concept is devised based on biomimetic mineralized collagen scaffolds. These scaffolds are functionalized with a central depot loaded with a signaling factor cocktail, obtained from secretome of hypoxia-conditioned human mesenchymal stem cells (MSC). Therefore, hypoxia-conditioned medium (HCM)-production is standardized and adapted to achieve high signaling factor-yields; a concentration protocol based on dialysis and freeze-drying is established to enable the integration of sufficient and defined amounts into the depot. In humid milieu-as after implantation-signaling factors are released by forming a chemotactic gradient, inducing a directed migration of human bone marrow stroma cells (hBMSC) into the scaffold. Angiogenic potential, determined by coculturing human umbilical vein endothelial cells (HUVEC) with osteogenically induced hBMSC shows prevascular structures, which sprout throughout the interconnected pores in a HCM-concentration-dependent manner. Retarded release by alginate-based (1 vol%) depots, significantly improves sprouting-depth and morphology of tubular structures. With the intrinsic potential to supply attracted cells with oxygen and nutrients, this bioactive material system has great potential for clinical translation.
Collapse
Affiliation(s)
- Mandy Quade
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Pina Münch
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Anja Lode
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Sarah Duin
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Corina Vater
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
- University Centre of Orthopaedica and TraumatologyFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Anastasia Gabrielyan
- Department of PediatricsFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Angela Rösen‐Wolff
- Department of PediatricsFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| |
Collapse
|
23
|
Su VYF, Chiou SH, Lin CS, Mo MH, Yang KY. Induced Pluripotent Stem Cells Attenuate Endothelial Leakage in Acute Lung Injury via Tissue Inhibitor of Metalloproteinases-1 to Reduce Focal Adhesion Kinase Activity. Stem Cells 2019; 37:1516-1527. [PMID: 31588644 DOI: 10.1002/stem.3093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can reduce the severity of endotoxin-induced acute lung injury (ALI). However, the interaction between iPSCs and vascular endothelium remains unclear. In this study, we investigated the effects of iPSCs in moderating pulmonary endothelial leakage in endotoxin-induced ALI. Murine iPSCs were delivered intravenously to male C57BL/6 mice (8-12 weeks old) 4 hours after intratracheal lipopolysaccharide (LPS) delivery. Histology, blood and bronchoalveolar lavage fluid (BALF) cytokine and junctional protein assays, and regulatory signaling pathway assays were performed 24 hours later. Human umbilical vein endothelial cells (HUVECs) were used as a model of junctional protein-expressing cells and stimulated with LPS. Our results showed that iPSC treatment alleviated histological signs of ALI, protein leakage, and proinflammatory cytokines. iPSC therapy restored vascular endothelial cadherin (VE-cadherin) expression in ALI mouse lungs. In HUVECs, human iPSCs (hiPSCs) restored disrupted VE-cadherin expression and reduced the activity of Snail and focal adhesion kinase (FAK) phosphorylation in Tyr397 in response to LPS. iPSC-conditioned medium contained extra antiangiogenic factor of tissue inhibitor of metalloproteinases-1 (TIMP-1) compared with control medium. TIMP-1 inhibition diminished the beneficial effects of iPSC-conditioned medium in ALI mice. Our study suggested that iPSCs attenuate endothelial cell leakage in endotoxin-induced ALI via a mechanism involving TIMP-1 and the FAK/Snail pathway. Stem Cells 2019;37:1516-1527.
Collapse
Affiliation(s)
- Vincent Yi-Fong Su
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, Taipei City Hospital, Taipei City Government, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Shiuan Lin
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Chinese Medicine for Post-Baccalaureate of I-Shou University, Kaohsiung, Taiwan
| | - Min-Hsiang Mo
- Department of Biomedical, MetaTech (AP) Inc, New Taipei City, Taiwan.,Institute of Molecular Biotechnology, Dayeh University, Taipei, Taiwan
| | - Kuang-Yao Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells. Sci Rep 2019; 9:12076. [PMID: 31427631 PMCID: PMC6700204 DOI: 10.1038/s41598-019-48369-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo.
Collapse
|
25
|
Krogh Nielsen M, Subhi Y, Rue Molbech C, Nilsson LL, Nissen MH, Sørensen TL. Imbalances in tissue inhibitors of metalloproteinases differentiate choroidal neovascularization from geographic atrophy. Acta Ophthalmol 2019; 97:84-90. [PMID: 30288950 DOI: 10.1111/aos.13894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Tissue inhibitor of metalloproteinase (TIMP) is known to play a role in age-related macular degeneration (AMD). We wished to investigate alterations in different late stages of AMD: neovascular AMD and geographic atrophy (GA). METHODS This was a prospective case-control study. A total of 125 participants were included consecutively during a period of 18 months. We included 46 patients with neovascular AMD, 46 patients with GA without any sign of choroidal neovascularization in either eye, and 33 healthy aged controls. Patients with immune-affecting disorders were not included. Commercial immunoassay kits were used to quantify levels of TIMP-1, TIMP-3, MMP-2 and MMP-9 in blood plasma. RESULTS We found that patients with neovascular AMD had lower plasma concentration of TIMP-3 (p = 0.028) than healthy controls. Patients with GA had higher plasma levels of TIMP-1 (p < 0.001) and MMP-9 (p = 0.022) compared to healthy controls. Also, we found that TIMP-1 levels in patients with GA increased with age (Spearman's rho = 0.04, p = 0.006). CONCLUSION Matrix metalloproteinases (MMPs) and TIMPs, which are known to be involved in age-related changes in Bruch's membrane, are significantly altered systemically, suggesting the presence of an imbalance in the homeostasis of the extracellular matrix. These imbalances may explain differences in the clinical manifestation of late AMD.
Collapse
Affiliation(s)
- Marie Krogh Nielsen
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Yousif Subhi
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Christopher Rue Molbech
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Line Lynge Nilsson
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Biochemistry; Centre for Immune Regulation and Reproductive Immunology (CIRRI); Zealand University Hospital; Roskilde Denmark
| | - Mogens Holst Nissen
- Eye Research Unit; Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
26
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Compound Danshen Dripping Pill Inhibits Retina Cell Apoptosis in Diabetic Rats. Front Physiol 2018; 9:1501. [PMID: 30405447 PMCID: PMC6207599 DOI: 10.3389/fphys.2018.01501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022] Open
Abstract
Scope: Diabetic retinopathy (DR) is a severe microvascular complication of diabetes. Previous clinical trials have shown that Compound Danshen Dripping Pill (CDDP) improves DR symptoms. However, the mechanism involved remains unclear. Procedures: Rats fed a high-fat diet and injected with streptozotocin (STZ) were used as an experimental type 2 diabetes rodent model. CDDP was administered to two groups of diabetic rats at 0.2 and 0.4 g/kg/day via gastric gavage for 12 weeks. After the 12 weeks of treatment, retinal function was evaluated by electroretinography (ERG). Histological staining and TdT-mediated dUTP nick-end labeling (TUNEL) assays were also performed. Retinal genome expression was determined by gene array. Results: We found that CDDP moderated ERG and histological abnormalities in diabetic rats, independent of blood glucose level. A gene array showed that CDDP changed 262 genes significantly in the diabetic retina. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that differentially expressed genes in the CDDP-treated groups were involved mainly in the apoptosis pathway. Moreover, CDDP reduced the number of TUNEL-positive cells in the diabetic retinas. CDDP prevented the reduction in Bcl-2 expression and the increase in BCL-2 associated X (Bax) and caspase-3 (Casp3) expression in diabetic rats. Conclusion: Our results suggest that CDDP exerts its neuroprotective functions by inhibiting cell apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Kim HS, Vargas A, Eom YS, Li J, Yamamoto KL, Craft CM, Lee EJ. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina. PLoS One 2018; 13:e0197322. [PMID: 29742163 PMCID: PMC5942829 DOI: 10.1371/journal.pone.0197322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/29/2018] [Indexed: 01/06/2023] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1 works in the mouse animal model of RP.
Collapse
Affiliation(s)
- Hwa Sun Kim
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yun Sung Eom
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Justin Li
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kyra L. Yamamoto
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ramer R, Hinz B. Cannabinoids as Anticancer Drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:397-436. [PMID: 28826542 DOI: 10.1016/bs.apha.2017.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics' effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
29
|
Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy. Vaccines (Basel) 2016; 4:vaccines4030031. [PMID: 27618112 PMCID: PMC5041025 DOI: 10.3390/vaccines4030031] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer.
Collapse
|
30
|
Ramer R, Hinz B. Antitumorigenic targets of cannabinoids - current status and implications. Expert Opin Ther Targets 2016; 20:1219-35. [PMID: 27070944 DOI: 10.1080/14728222.2016.1177512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. AREAS COVERED The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. EXPERT OPINION The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.
Collapse
Affiliation(s)
- Robert Ramer
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
31
|
Arpino V, Mehta S, Wang L, Bird R, Rohan M, Pape C, Gill SE. Tissue inhibitor of metalloproteinases 3-dependent microvascular endothelial cell barrier function is disrupted under septic conditions. Am J Physiol Heart Circ Physiol 2016; 310:H1455-67. [PMID: 26993226 DOI: 10.1152/ajpheart.00796.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/13/2016] [Indexed: 11/22/2022]
Abstract
Sepsis is associated with dysfunction of microvascular endothelial cells (MVEC) leading to tissue edema and multiple organ dysfunction. Metalloproteinases can regulate MVEC function through processing of cell surface proteins, and tissue inhibitor of metalloproteinases 3 (TIMP3) regulates metalloproteinase activity in the lung following injury. We hypothesize that TIMP3 promotes normal pulmonary MVEC barrier function through inhibition of metalloproteinase activity. Naive Timp3(-/-) mice had significantly higher basal pulmonary microvascular Evans blue (EB) dye-labeled albumin leak vs. wild-type (WT) mice. Additionally, cecal-ligation/perforation (CLP)-induced sepsis significantly increased pulmonary microvascular EB-labeled albumin leak in WT but not Timp3(-/-) mice. Similarly, PBS-treated isolated MVEC monolayers from Timp3(-/-) mice displayed permeability barrier dysfunction vs. WT MVEC, evidenced by lower transendothelial electrical resistance and greater trans-MVEC flux of fluorescein-dextran and EB-albumin. Cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) treatment of WT MVEC induced significant barrier dysfunction (by all three methods), and was associated with a time-dependent decrease in TIMP3 mRNA and protein levels. Additionally, basal Timp3(-/-) MVEC barrier dysfunction was associated with disrupted MVEC surface VE-cadherin localization, and both barrier dysfunction and VE-cadherin localization were rescued by treatment with GM6001, a synthetic metalloproteinase inhibitor. TIMP3 promotes normal MVEC barrier function, at least partially, through inhibition of metalloproteinase-dependent disruption of adherens junctions, and septic downregulation of TIMP3 may contribute to septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Ryan Bird
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Marta Rohan
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
32
|
Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia 2016; 30:1143-54. [PMID: 26898191 PMCID: PMC4858586 DOI: 10.1038/leu.2016.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Collapse
|
33
|
Lepelletier FX, Mann DMA, Robinson AC, Pinteaux E, Boutin H. Early changes in extracellular matrix in Alzheimer's disease. Neuropathol Appl Neurobiol 2015; 43:167-182. [PMID: 26544797 DOI: 10.1111/nan.12295] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023]
Abstract
AIMS Although changes in extracellular matrix (ECM) scaffold have been reported previously in Alzheimer's disease (AD) compared to normal ageing, it is not known how alterations in the numerous components of the perivascular ECM might occur at different stages of AD. This study therefore investigates potential changes in basement membrane-associated ECM molecules in relation to increasing Braak stages. METHODS Thirty patients were divided into three groups (control subject, subclinical AD and AD patients). ECM levels of collagen IV, perlecan and fibronectin as well as human platelet endothelial cell adhesion molecule (hPECAM) were quantified by immunohistochemistry. Von Willebrand factor staining was measured to assess vessel density. Expression levels were correlated with the presence of amyloid plaques. RESULTS Collagen IV, perlecan and fibronectin expression was increased in subclinical AD and AD patients when compared to controls, in frontal and temporal cortex, whilst no further increase was detected between subclinical AD and AD. These changes were not associated with an increase in vessel density, which was instead decreased in the temporal cortex of AD patients. In contrast, hPECAM levels remained unchanged. Finally, we found similar pattern in levels of amyloid deposition between the different Braak stages and showed that changes in ECM components correlated with amyloid deposition. CONCLUSION Present data support the hypothesis that significant ECM changes occur during the early stages of AD. ECM changes affecting brain microvascular functions could therefore drive disease progression and provide potential new early investigational biomarkers in AD.
Collapse
Affiliation(s)
- F-X Lepelletier
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - D M A Mann
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK.,Department of Clinical and Cognitive Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - A C Robinson
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK.,Department of Clinical and Cognitive Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - E Pinteaux
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - H Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Faculty of Medical and Human Sciences, Institute of Population Health, University of Manchester, Manchester, UK
| |
Collapse
|
34
|
Jarray R, Pavoni S, Borriello L, Allain B, Lopez N, Bianco S, Liu WQ, Biard D, Demange L, Hermine O, Garbay C, Raynaud F, Lepelletier Y. Disruption of phactr-1 pathway triggers pro-inflammatory and pro-atherogenic factors: New insights in atherosclerosis development. Biochimie 2015; 118:151-61. [PMID: 26362351 DOI: 10.1016/j.biochi.2015.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/04/2015] [Indexed: 01/02/2023]
Abstract
Significant interest has recently emerged for phosphatase and actin regulatory protein (PHACTR1) gene in heart diseases prognosis. However, the functional role of phactr-1 protein remains elusive in heart related-diseases such as atherosclerosis, coronary artery calcification, ischaemic stroke, coronary artery stenosis and early-onset myocardial infarction. Phactr-1 is directly regulated by vascular endothelial growth factor A165 (VEGF-A165) through VEGF receptor 1 (VEGR-1) and Neuropilin-1 (NRP-1). Using an antagonist peptide approach to inhibit the interaction of VEGF-A165 to NRP-1 and VEGF-R1, we highlighted the importance of both cysteine residues located at the end of VEGF-A165 exon-7 and at the exon-8 to generate functional peptides, which decreased Phactr-1 expression. Here, we report original data showing Phactr-1 down-expression induces the expression of Matrix Metalloproteinase (MMP) regulators such as Tissue inhibitor of metalloproteinase (TIMP-1/-2) and Reversion-inducing-cysteine-rich protein with kazal motifs (RECK). Furthermore, focal adhesion kinases (FAK/PYK2/PAXILLIN) and metabolic stress (AMPK/CREB/eNOS) pathways were inhibited in endothelial cells. Moreover, the decrease of phactr-1 expression induced several factors implicated in atherosclerotic events such as oxidized low-density lipoprotein receptors (CD36, Clusterin, Cadherin-13), pro-inflammatory proteins including Thrombin, Thrombin receptor 1 (PAR-1), A Disintegrin And Metalloprotease domain-9/-17 (ADAM-9/-17), Trombospondin-2 and Galectin-3. Besides, Phactr-1 down-expression also induces emerging atherosclerosis biomarkers such as semicarbazide-sensitive amine oxidase (SSAO) and TGF-beta-inducible gene h3 (βIG-H3). In this report, we show for the first time the direct evidence of the phactr-1 biological function in the regulation of pro-atherosclerotic molecules. This intriguing result strengthened heart diseases PHACTR-1 single-nucleotide polymorphisms (SNP) correlation. Taken together, our result highlighted the pivotal role of phactr-1 protein in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Rafika Jarray
- Sup'Biotech, 66 Rue Guy Môquet, 94800 Villejuif, France; CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Serena Pavoni
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Lucia Borriello
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Barbara Allain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | | | - Sara Bianco
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Wang-Qing Liu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Denis Biard
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Luc Demange
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France; Institut de Chimie de Nice (ICN), UMR 7272 CNRS, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders, 24 Boulevard Montparnasse 75015 Paris, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, 24 Boulevard Montparnasse 75015 Paris, France; CNRS ERL 8254, 24 Boulevard Montparnasse 75015 Paris, France
| | - Christiane Garbay
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Françoise Raynaud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France.
| | - Yves Lepelletier
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders, 24 Boulevard Montparnasse 75015 Paris, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, 24 Boulevard Montparnasse 75015 Paris, France; CNRS ERL 8254, 24 Boulevard Montparnasse 75015 Paris, France.
| |
Collapse
|
35
|
Wang CY, Liou JP, Tsai AC, Lai MJ, Liu YM, Lee HY, Wang JC, Pan SL, Teng CM. A novel action mechanism for MPT0G013, a derivative of arylsulfonamide, inhibits tumor angiogenesis through up-regulation of TIMP3 expression. Oncotarget 2015; 5:9838-50. [PMID: 25226613 PMCID: PMC4259441 DOI: 10.18632/oncotarget.2451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tissue inhibitors of metalloproteinases 3 (TIMP3) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), acting as potent antiangiogenic proteins. In this study, we demonstrated that the arylsulfonamide derivative MPT0G013 has potent antiangiogenic activities in vitro and in vivo via inducing TIMP3 expression. Treatments with MPT0G013 significantly inhibited endothelial cell functions, such as cell proliferation, migration, and tube formation, as well as induced p21 and cell cycle arrest at the G0/G1 phase. Subsequent microarray analysis showed significant induction of TIMP3 gene expression by MPT0G013, and siRNA-mediated blockage of TIMP3 up-regulation abrogated the antiangiogenic activities of MPT0G013 and prevented inhibition of p-AKT and p-ERK proteins. Importantly, MPT0G013 exhibited antiangiogenic activities in in vivo Matrigel plug assays, inhibited tumor growth and up-regulated TIMP3 and p21 proteins in HCT116 mouse xenograft models. These data suggest potential therapeutic application of MPT0G013 for angiogenesis-related diseases such as cancer.
Collapse
Affiliation(s)
- Chih-Ya Wang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - An-Chi Tsai
- The Ph.D. program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Min Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Chi Wang
- The Ph.D. program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Lindsey ML, Yabluchanskiy A, Ma Y. Tissue Inhibitor of Metalloproteinase-1: Actions beyond Matrix Metalloproteinase Inhibition. Cardiology 2015; 132:147-50. [PMID: 26279068 DOI: 10.1159/000433419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Merry L Lindsey
- San Antonio Cardiovascular Proteomics Center, Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss., USA
| | | | | |
Collapse
|
37
|
Chaturvedi P, Kalani A, Familtseva A, Kamat PK, Metreveli N, Tyagi SC. Cardiac tissue inhibitor of matrix metalloprotease 4 dictates cardiomyocyte contractility and differentiation of embryonic stem cells into cardiomyocytes: Road to therapy. Int J Cardiol 2015; 184:350-363. [PMID: 25745981 PMCID: PMC4417452 DOI: 10.1016/j.ijcard.2015.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/08/2015] [Accepted: 01/24/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND TIMP4 (Tissue Inhibitors of Matrix Metalloprotease 4), goes down in failing hearts and mice lacking TIMP4 show poor regeneration capacity after myocardial infarction (MI). This study is based on our previous observation that administration of cardiac inhibitor of metalloproteinase (~TIMP4) attenuates oxidative stress and remodeling in failing hearts. Therefore, we hypothesize that TIMP4 helps in cardiac regeneration by augmenting contractility and inducing the differentiation of cardiac progenitor cells into cardiomyocytes. METHODS To validate this hypothesis, we transfected mouse cardiomyocytes with TIMP4 and TIMP4-siRNA and performed contractility studies in the TIMP4 transfected cardiomyocytes as compared to siRNA-TIMP4 transfected cardiomyocytes. We evaluated the calcium channel gene serca2a (sarcoplasmic reticulum calcium ATPase2a) and mir122a which tightly regulates serca2a to explain the changes in contractility. We treated mouse embryonic stem cells with cardiac extract and cardiac extract minus TIMP4 (using TIMP4 monoclonal antibody) to examine the effect of TIMP4 on differentiation of cardiac progenitor cells. RESULTS Contractility was augmented in the TIMP4 transfected cardiomyocytes as compared to siRNA-TIMP4 transfected cardiomyocytes. There was elevated expression of serca2a in the TIMP4 transformed myocytes and down regulation of mir122a. The cells treated with cardiac extract containing TIMP4 showed cardiac phenotype in terms of Ckit+, GATA4+ and Nkx2.5 expression. CONCLUSION This is a novel report suggesting that TIMP4 augments contractility and induces differentiation of progenitor cells into cardiac phenotype. In view of the failure of MMP9 inhibitors for cardiac therapy, TIMP4 provides an alternative approach, being an indigenous molecule and a natural inhibitor of MMP9.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| | - Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Pradip Kumar Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| |
Collapse
|
38
|
Peeters SA, Engelen L, Buijs J, Chaturvedi N, Fuller JH, Schalkwijk CG, Stehouwer CD. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: the EURODIAB Prospective Complications Study. Cardiovasc Diabetol 2015; 14:31. [PMID: 25848912 PMCID: PMC4355971 DOI: 10.1186/s12933-015-0195-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/22/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Impaired regulation of extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) may contribute to vascular complications in patients with type 1 diabetes. We investigated associations between plasma MMP-1, -2, -3, -9, -10 and TIMP-1, and cardiovascular disease (CVD) or microvascular complications in type 1 diabetic patients. We also evaluated to which extent these associations could be explained by low-grade inflammation (LGI) or endothelial dysfunction (ED). METHODS 493 type 1 diabetes patients (39.5 ± 9.9 years old, 51% men) from the EURODIAB Prospective Complications Study were included. Linear regression analysis was applied to investigate differences in plasma levels of MMP-1, -2, -3, -9, -10, and TIMP-1 between patients with and without CVD, albuminuria or retinopathy. All analyses were adjusted for age, sex, duration of diabetes, Hba1c and additionally for other cardiovascular risk factors including LGI and ED. RESULTS Patients with CVD (n = 118) showed significantly higher levels of TIMP-1 [β = 0.32 SD (95%CI: 0.12; 0.52)], but not of MMPs, than patients without CVD (n = 375). Higher plasma levels of MMP-2, MMP-3, MMP-10 and TIMP-1 were associated with higher levels of albuminuria (p-trends were 0.028, 0.004, 0.005 and 0.001, respectively). Severity of retinopathy was significantly associated with higher levels of MMP-2 (p-trend = 0.017). These associations remained significant after further adjustment for markers of LGI and ED. CONCLUSIONS These data support the hypothesis that impaired regulation of matrix remodeling by actions of MMP-2, -3 and-10 and TIMP-1 contributes to the pathogenesis of vascular complications in type 1 diabetes.
Collapse
|
39
|
Kuchroo P, Dave V, Vijayan A, Viswanathan C, Ghosh D. Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angiogenesis in vitro by a VEGF-independent pathway. Stem Cells Dev 2015; 24:437-50. [PMID: 25229480 PMCID: PMC4313407 DOI: 10.1089/scd.2014.0184] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Improvement in angiogenesis using mesenchymal stem cells (MSCs) is evolving as an option in patients with vascular insufficiencies. The paracrine factors secreted by MSCs have been attributed to the angiogenic response. This study was conducted to identify the factors secreted by umbilical cord-derived MSCs (UCMSCs) that might play a role in angiogenesis. To this aim, we evaluated the presence of well known proangiogenic factors in the conditioned media (CM) derived from UCMSCs by ELISA. While vascular endothelial growth factor (VEGF), a well known angiogenic factor, was not detected in the CM, gene expression was nevertheless detected in these cells. Further investigations revealed the presence of soluble VEGF receptors (sVEGF-R1 and R2) that were capable of neutralizing exogenous VEGF. Human umbilical cord vein-derived endothelial cells exposed in vitro to CM, in comparison to control media, showed improved migration (P<0.007) and capillary-like network formation (P<0.001) with no significant change in endothelial cell proliferation. The angiogenic response observed with the paracrine factors secreted by UCMSC could be due to the presence of significant levels of a metalloprotease and matrix metalloproteases-2 (237.4±47.1 ng/10(6) cells). Data suggest that a VEGF-independent pathway is involved in the angiogenic response observed with endothelial cells in the presence of UCMSC-CM.
Collapse
Affiliation(s)
- Pushpa Kuchroo
- Tissue Engineering Group, Regenerative Medicine, Reliance Life Sciences Pvt. Ltd. , Navi-Mumbai, Maharashtra, India
| | | | | | | | | |
Collapse
|
40
|
Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma. Tumour Biol 2015; 36:3957-67. [PMID: 25578494 DOI: 10.1007/s13277-015-3039-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022] Open
Abstract
Tissue inhibitor metalloproteinase-1 (TIMP-1) is clinically associated with a poor prognosis for various cancers, but the roles of TIMP-1 in lung cancer metastasis are controversial. Our previous secretomic study revealed that TIMP-1 is highly abundant in high invasiveness cells of lung adenocarcinoma. In the current study, TIMP-1 abundances in primary lung adenocarcinoma tissues, as revealed by immunohistochemistry, are significantly higher in patients with lymph invasion and distant metastasis than in those without. Receiver operating characteristic curve analyses suggest 73.7 and 86.2 % accuracy to separate patients with lymph node and distant metastasis and those without, respectively. Moreover, we demonstrate that the expression level of TIMP-1 positively associates with cell mobility, invasiveness, and metastatic colonization. Most notably, the novel mechanism in which TIMP-1 facilitates metastatic colonization through the mediation of pericellular polyFN1 assembly was revealed. In summary, this study presents novel functions of TIMP-1 in promoting cancer metastasis and suggests TIMP-1 is a potential tissue biomarker for lymph invasion and distant metastasis of lung adenocarcinoma.
Collapse
|
41
|
Ramezani-Moghadam M, Wang J, Ho V, Iseli TJ, Alzahrani B, Xu A, Van der Poorten D, Qiao L, George J, Hebbard L. Adiponectin reduces hepatic stellate cell migration by promoting tissue inhibitor of metalloproteinase-1 (TIMP-1) secretion. J Biol Chem 2015; 290:5533-42. [PMID: 25575598 DOI: 10.1074/jbc.m114.598011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin.
Collapse
Affiliation(s)
- Mehdi Ramezani-Moghadam
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Jianhua Wang
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Vikki Ho
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Tristan J Iseli
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Badr Alzahrani
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Aimin Xu
- the Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - David Van der Poorten
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Liang Qiao
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Jacob George
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| | - Lionel Hebbard
- From the Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia and
| |
Collapse
|
42
|
Ji Y, Yu WQ, Eom YS, Bruce F, Craft CM, Grzywacz NM, Lee EJ. The effect of TIMP-1 on the cone mosaic in the retina of the rat model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2014; 56:352-64. [PMID: 25515575 DOI: 10.1167/iovs.14-15398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The array of photoreceptors found in normal retinas provides uniform and regular sampling of the visual space. In contrast, cones in retinas of the S334ter-line-3 rat model for RP migrate to form a mosaic of rings, leaving large holes with few or no photoreceptors. Similar mosaics appear in human patients with other forms of retinal dystrophy. In the current study, we aimed to investigate the effect of tissue inhibitor of metalloproteinase-1 (TIMP-1) on the mosaic of cones in S334ter-line-3 rat retinas. We focused on TIMP-1 because it is one of the regulators of the extracellular matrix important for cellular migration. METHODS Immunohistochemistry was performed to reveal M-opsin cone cells (M-cone) and the results were quantified to test statistically whether or not TIMP-1 restores the mosaics to normal. In particular, the tests focused on the Voronoi and nearest-neighbor distance analyses. RESULTS Our tests indicated that TIMP-1 led to significant disruption of the M-opsin cone rings in S334ter-line-3 rat retinas and resulted in almost complete homogeneous mosaics. In addition, TIMP-1 induced the M-cone spatial distribution to become closer to random with decreased regularity in S334ter-line-3 rat retinas. CONCLUSIONS These findings confirm that TIMP-1 induced M-cone mosaics in S334ter-line-3 to gain homogeneity without reaching the degree of regularity seen in normal retinal mosaics. Even if TIMP-1 fails to promote regularity, the effects of this drug on homogeneity appear to be so dramatic that TIMP-1 may be a potential therapeutic agent. TIMP-1 improves sampling of the visual field simply by causing homogeneity.
Collapse
Affiliation(s)
- Yerina Ji
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Center for Vision Science and Technology, University of Southern California, Los Angeles, California, United States
| | - Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Center for Vision Science and Technology, University of Southern California, Los Angeles, California, United States
| | - Yun Sung Eom
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States
| | - Farouk Bruce
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States
| | - Cheryl Mae Craft
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Mary D. Allen Laboratory for Vision Research, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States
| | - Eun-Jin Lee
- Center for Vision Science and Technology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
43
|
TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem J 2014; 459:565-76. [DOI: 10.1042/bj20131119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human neural stem cells possess an inherent brain tumour tropism. We identified brain tumour-derived TIMP-1 as a novel chemoattractant for human neural stem cells. TIMP-1 binding to CD63 at the plasma membrane activated β1 integrin-mediated signalling, inducing cell adhesion and migration.
Collapse
|
44
|
Ries C. Cytokine functions of TIMP-1. Cell Mol Life Sci 2014; 71:659-72. [PMID: 23982756 PMCID: PMC11113289 DOI: 10.1007/s00018-013-1457-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are well recognized for their role in extracellular matrix remodeling by controlling the activity of matrix metalloproteinases (MMPs). Independent of MMP inhibition, TIMPs act as signaling molecules with cytokine-like activities thereby influencing various biological processes including cell growth, apoptosis, differentiation, angiogenesis, and oncogenesis. Recent studies on TIMP-1's cytokine functions have identified complex regulatory networks involving a specific surface receptor and subsequent signaling pathways including miRNA-mediated posttranscriptional regulation of gene expression that ultimately control the fate and behavior of the cells. The present review summarizes the current knowledge on TIMP-1 as a cytokine modulator of cell functions, outlines recent progress in defining molecular pathways that transmit TIMP-1 signals from the cell periphery into the nucleus, and discusses TIMP-1's role as a cytokine in the pathophysiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany,
| |
Collapse
|
45
|
Cao T, Xing Y, Yang Y, Mei H. Correlation between matrix metalloproteinase expression and activation of the focal adhesion kinase signaling pathway in herpes stromal keratitis. Exp Ther Med 2013; 7:280-286. [PMID: 24348806 PMCID: PMC3861038 DOI: 10.3892/etm.2013.1407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/31/2013] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the correlation between matrix metalloproteinase-2 (MMP-2) expression and activation of the focal adhesion kinase (FAK) signaling pathway in herpes stromal keratitis (HSK). The cornea of 24 BALB/c mice was infected with herpes simplex virus type 1 (HSV-1) to construct a model of HSK. Six additional mice served as negative controls. Immunohistochemical staining was used to detect FAK expression levels. Human corneal epithelial (HCE) cells cultured in vitro were infected with HSV-1 and the expression levels of MMP-2, FAK and phosphorylated-FAK (p-FAK) in HCE cells were detected using reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry at 2, 20 and 40 h following infection. In the HSK rat model, the corneal epithelial cells appeared deranged and the number of neutrophils and FAK-positive cells was significantly increased compared with that of the negative control group (P<0.05). Repeated measures analysis of variance of RT-PCR showed no significant differences in MMP-2 and FAK mRNA expression levels in the infected cells at various time points, and no significant differences between infected cells and the negative control group were observed. There was no interaction between groups and time points. Pairwise comparisons showed that MMP-2 and FAK mRNA expression levels were significantly increased in virus-infected cells compared with those of the control group. Over time, MMP-2 and FAK mRNA expression levels did not differ significantly in virus-infected cells or in control cells. Western blot analysis indicated no significant differences in p-FAK, FAK and MMP-2 expression levels between the infected and control cells at 2 h (P>0.05). Infected cells showed a significant increase in MMP-2 and p-FAK expression levels than that of the control cells at 20 and 40 h (P<0.05). p-FAK, FAK and MMP-2 expression levels in virus-infected cells at 2 h differed significantly from those at 20 and 40 h (P<0.05). Immunohistochemical staining results showed that a longer infection time was associated with an increased number of cells staining positive for MMP-2, FAK and p-FAK. Following HSV-1 infection of the corneal epithelium, the FAK signaling pathway was activated, resulting in increased secretion of MMP-2 in the corneal tissue and accelerated formation of corneal ulcers and necrotic lesions.
Collapse
Affiliation(s)
- Ting Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haifeng Mei
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
46
|
Mansouri K, Khodarahmi R, Ghadami SA. An in vitro model for spontaneous angiogenesis using rat mesenteric endothelial cells: possible therapeutic perspective for obesity and related disorders. PHARMACEUTICAL BIOLOGY 2013; 51:974-980. [PMID: 23735119 DOI: 10.3109/13880209.2013.773452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Abnormal obesity and the related diseases, such as diabetes and cardiovascular disease, are the main causes of mortality, around the world. A key feature of the adipogenesis and obesity is angiogenesis-dependent tissue growth accompanied with extracellular remodeling. In this way, suppression of angiogenesis may be a key point for preventing the adipogenesis. OBJECTIVE In the present study, to provide a deeper insight to understand obesity and screening for more effective therapeutics, we have developed a three-dimensional in vitro model of microvessel formation under collagen matrix culture using endothelial cells, extracted from a suitable tissue. MATERIALS AND METHODS In a successful approach for developing an angiogenesis model, the rat mesenteric microvascular endothelial cells (RMMECs) were isolated, coated on dextran beads and then suspended in collagen gel. Additionally, the proliferation as well as migration of endothelial cells were analyzed and compared with human umbilical vein endothelial cells (HUVECs). RESULTS RMMECs showed remarkable migration ability and had higher growth during the logarithmic growth phase, when compared with HUVECs. Also, no significance differences in morphogenesis were observed between HUVECs and RMMECs. DISCUSSION AND CONCLUSION The model may be useful in providing insights to develop potential intervention strategies in vivo against obesity-related disorders. Targeting endothelial cells is an interesting and exciting possibility that may be raised in further investigations.
Collapse
Affiliation(s)
- Kamran Mansouri
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
47
|
Holubova M, Leba M, Sedmikova M, Vannucci L, Horak V. Characterization of three newly established rat sarcoma cell clones. In Vitro Cell Dev Biol Anim 2012; 48:610-8. [PMID: 23150138 DOI: 10.1007/s11626-012-9563-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 01/13/2023]
Abstract
Establishment of new animal models using selected cell lines with different behaviour is very important for cancer investigations. In this study, we describe three morphologically distinct rat sarcoma clones-C4, C7 and D6-isolated from the R5-28 cell line. Cells of all clones expressed vimentin, fibronectin, laminin, collagen IV and matrix metalloproteinases 2 and 9. However, desmin, cytokeratins 8 and 18, ZO-1 and desmoplakins I and II were not detected. Significant proliferative capacity was documented by proliferating cell nuclear antigen expression and BrdU positivity. Karyotype of the C4, C7 and D6 cells greatly differed from diploid chromosome number of normal rat somatic cells. High expression of three cytokines-monocyte chemoattractant protein 1, tissue inhibitor of metalloproteinases 1 and vascular endothelial growth factor-was observed in all three clones. However, they varied in concentration of chemokines associated with neutrophil migration and activation-cytokine induced neutrophil chemoattractant 2 and lipopolysaccharide induced CXC chemokine. The C4 clone showed spontaneous tumour regression in vivo that was associated with significant changes in lymphocyte subpopulations.
Collapse
Affiliation(s)
- Monika Holubova
- Institute of Animal Physiology and Genetics, AS CR v.v.i., 277 21, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
48
|
Angiogenic properties of myofibroblasts isolated from normal human skin wounds. Angiogenesis 2012; 15:199-212. [PMID: 22350743 DOI: 10.1007/s10456-012-9253-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
During wound healing, angiogenesis plays a crucial role in inducing adequate perfusion of the new tissue, thereby allowing its survival. This angiogenic process contributes to the formation of granulation tissue, alongside myofibroblasts. Myofibroblasts are cells specialized in wound contraction and synthesis of new extracellular matrix. Fibroblasts, considered by some to be at the origin of myofibroblasts, have already been shown to promote neovascularization. Thus, we hypothesized that myofibroblasts play a key role during angiogenic development in wound healing. We isolated myofibroblasts from normal human skin wounds and dermal microvascular endothelial cells (HDMVEC) and fibroblasts from skin. Using an in vitro fibrin-based model, we compared the proangiogenic activity of wound myofibroblasts to that of fibroblasts in the presence of HDMVEC. By immunostaining with collagen IV antibodies, we observed the formation of a capillary network significantly more developed when HDMVEC were cultured with myofibroblasts compared to the network formed in the presence of fibroblasts. The differences between these cell types did not result from a differential secretion of Vascular Endothelial Growth Factor or basic Fibroblast Growth Factor. However, in the presence of myofibroblasts, a significant decrease in matrix metalloproteinase activity was observed. This finding was correlated with a significant increase in Tissue Inhibitor of MetalloProteinase (TIMP)-1 and TIMP-3. Furthermore, inhibition of TIMP-1 secretion using shRNA significantly decreased myofibroblasts induced angiogenesis. These results led to the hypothesis that normal wound myofibroblasts contribute to the vascular network development during wound healing. Our data emphasize the critical role of wound myofibroblasts during healing.
Collapse
|
49
|
Tanoue T, Tateshima S, Villablanca JP, Viñuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol 2012; 32:1732-7. [PMID: 21984256 DOI: 10.3174/ajnr.a2607] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hemodynamic stimulation has been suggested to affect the growth of cerebral aneurysms. The present study examined the effects of intra-aneurysmal hemodynamics on aneurysm growth. MATERIALS AND METHODS Velocity profiles were measured for 2 cases of AcomA aneurysms. Realistically shaped models of these aneurysms were constructed, based on CT angiograms. Flow fields and WSS in the models were measured by using particle image velocimetry and LDV. In 1 case, hemodynamic changes were observed in 4 stages of growth over a 27-month period, whereas no development was observed in the other case. RESULTS The growing model had a smaller and more stagnant recirculation area than that in the nongrowth model. The WSS was markedly reduced in the enlarging region in the growing models, whereas extremely low WSS was not found in the nongrowth model. In addition, a higher WSSG was consistently observed adjacent to the enlarging region during aneurysm growth. CONCLUSIONS The results indicated that the flow structure of recirculation itself does not necessarily lead to high likelihood of cerebral aneurysm. However, WSSG and WSS were distinctly different between the 2 cases. Higher WSSG was found surrounding the growing region, and extremely low WSS was found at the growing region of the growing cerebral aneurysm.
Collapse
Affiliation(s)
- T Tanoue
- Department of System Design Engineering, Keio University Faculty of Science and Technology, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
50
|
Bernert B, Porsch H, Heldin P. Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J Biol Chem 2011; 286:42349-42359. [PMID: 22016393 DOI: 10.1074/jbc.m111.278598] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Invasion and metastasis are the primary causes of breast cancer mortality, and increased knowledge about the molecular mechanisms involved in these processes is highly desirable. High levels of hyaluronan in breast tumors have been correlated with poor patient survival. The involvement of hyaluronan in the early invasive phase of a clone of breast cancer cell line MDA-MB-231 that forms bone metastases was studied using an in vivo-like basement membrane model. The metastatic to bone tumor cells exhibited a 7-fold higher hyaluronan-synthesizing capacity compared with MDA-MB-231 cells predominately due to an increased expression of hyaluronan synthase 2 (HAS2). We found that knockdown of HAS2 completely suppressed the invasive capability of these cells by the induction of tissue metalloproteinase inhibitor 1 (TIMP-1) and dephosphorylation of focal adhesion kinase. HAS2 knockdown-mediated inhibition of basement membrane remodeling was rescued by HAS2 overexpression, transfection with TIMP-1 siRNA, or addition of TIMP-1-blocking antibodies. Moreover, knockdown of HAS2 suppressed the EGF-mediated induction of the focal adhesion kinase/PI3K/Akt signaling pathway. Thus, this study provides new insights into a possible mechanism whereby HAS2 enhances breast cancer invasion.
Collapse
Affiliation(s)
- Berit Bernert
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Helena Porsch
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden.
| |
Collapse
|