1
|
Zhang L, Wang S, Zhang Y, Zhang X, Xi J, Wu J, Fang J, Zhao H, Zhang B. Troglitazone as a Novel Nrf2 Activator to Attenuate Oxidative Stress and Exert Neuroprotection. ACS Chem Neurosci 2025; 16:1604-1616. [PMID: 40135498 DOI: 10.1021/acschemneuro.5c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) is closely associated with neurodegenerative diseases, and the Nrf2-mediated activation of antioxidant response elements (AREs) brings about validated strategies for treating neurodegenerative diseases. Here, we discovered that troglitazone, a clinical medication for diabetes mellitus, could serve as a Nrf2 activator to rescue neuronal damages both in vitro and in vivo. The mechanism of troglitazone action involves binding with kelch-like ECH-associated protein 1 (Keap1) and the activation of Nrf2. This process leads to the migration of Nrf2 to the cell nucleus and transactivates the AREs. Troglitazone exhibits significant alleviation of oxidative stress in PC12 cells induced by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). In vivo studies indicate that troglitazone could rescue the motor activity and neurodevelopmental deficiency in zebrafish induced by 6-OHDA. Additionally, mass spectrometry imaging demonstrates that troglitazone could cross the zebrafish blood-brain barrier, supporting the application of troglitazone in treating neurodegenerative diseases. Overall, this work reveals that the novel Nrf2 activator troglitazone has potential therapeutic value for neurodegeneration and provides a foundation for its repurposing.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanxia Zhang
- Center of Analysis and Testing, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaopeng Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhang F, Chen XL, Wang HF, Guo T, Yao J, Jiang ZS, Pei Q. The prognostic significance of ubiquitination-related genes in multiple myeloma by bioinformatics analysis. BMC Med Genomics 2024; 17:164. [PMID: 38898455 PMCID: PMC11186196 DOI: 10.1186/s12920-024-01937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Immunoregulatory drugs regulate the ubiquitin-proteasome system, which is the main treatment for multiple myeloma (MM) at present. In this study, bioinformatics analysis was used to construct the risk model and evaluate the prognostic value of ubiquitination-related genes in MM. METHODS AND RESULTS The data on ubiquitination-related genes and MM samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The consistent cluster analysis and ESTIMATE algorithm were used to create distinct clusters. The MM prognostic risk model was constructed through single-factor and multiple-factor analysis. The ROC curve was plotted to compare the survival difference between high- and low-risk groups. The nomogram was used to validate the predictive capability of the risk model. A total of 87 ubiquitination-related genes were obtained, with 47 genes showing high expression in the MM group. According to the consistent cluster analysis, 4 clusters were determined. The immune infiltration, survival, and prognosis differed significantly among the 4 clusters. The tumor purity was higher in clusters 1 and 3 than in clusters 2 and 4, while the immune score and stromal score were lower in clusters 1 and 3. The proportion of B cells memory, plasma cells, and T cells CD4 naïve was the lowest in cluster 4. The model genes KLHL24, HERC6, USP3, TNIP1, and CISH were highly expressed in the high-risk group. AICAr and BMS.754,807 exhibited higher drug sensitivity in the low-risk group, whereas Bleomycin showed higher drug sensitivity in the high-risk group. The nomogram of the risk model demonstrated good efficacy in predicting the survival of MM patients using TCGA and GEO datasets. CONCLUSIONS The risk model constructed by ubiquitination-related genes can be effectively used to predict the prognosis of MM patients. KLHL24, HERC6, USP3, TNIP1, and CISH genes in MM warrant further investigation as therapeutic targets and to combat drug resistance.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China.
| | - Xiao-Lei Chen
- Department of Endocrinology, Kunming First People's Hospital, Kunming, 650051, China
| | - Hong-Fang Wang
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China
| | - Tao Guo
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China
| | - Jin Yao
- Multidisciplinary Diagnosis and Treatment Center for Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Zong-Sheng Jiang
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China
| | - Qiang Pei
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| |
Collapse
|
3
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
4
|
Hwang YJ, Park JH, Cho DH. Far-Infrared Irradiation Decreases Proliferation in Basal and PDGF-Stimulated VSMCs Through AMPK-Mediated Inhibition of mTOR/p70S6K Signaling Axis. J Korean Med Sci 2023; 38:e335. [PMID: 37873631 PMCID: PMC10593596 DOI: 10.3346/jkms.2023.38.e335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Far-infrared (FIR) irradiation has been reported to improve diverse cardiovascular diseases, including heart failure, hypertension, and atherosclerosis. The dysregulated proliferation of vascular smooth muscle cells (VSMCs) is well established to contribute to developing occlusive vascular diseases such as atherosclerosis and in-stent restenosis. However, the effects of FIR irradiation on VSMC proliferation and the underlying mechanism are unclear. This study investigated the molecular mechanism through which FIR irradiation inhibited VSMC proliferation. METHODS We performed cell proliferation and cell death assay, adenosine 5'-triphosphate (ATP) assay, inhibitor studies, transfection of dominant negative (dn)-AMP-activated protein kinase (AMPK) α1 gene, and western blot analyses. We also conducted confocal microscopic image analyses and ex vivo studies using isolated rat aortas. RESULTS FIR irradiation for 30 minutes decreased VSMC proliferation without altering the cell death. Furthermore, FIR irradiation accompanied decreases in phosphorylation of the mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389). The phosphorylation of AMPK at Thr172 (p-AMPK-Thr172) was increased in FIR-irradiated VSMCs, which was accompanied by a decreased cellular ATP level. Similar to in vitro results, FIR irradiation increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448 and p-p70S6K-Thr389 in isolated rat aortas. Pre-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of dn-AMPKα1 gene, significantly reversed FIR irradiation-decreased VSMC proliferation, p-mTOR-Ser2448, and p-p70S6K-Thr389. On the other hand, hyperthermal stimulus (39°C) did not alter VSMC proliferation, cellular ATP level, and AMPK/mTOR/p70S6K phosphorylation. Finally, FIR irradiation attenuated platelet-derived growth factor (PDGF)-stimulated VSMC proliferation by increasing p-AMPK-Thr172, and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in PDGF-induced in vitro atherosclerosis model. CONCLUSION These results show that FIR irradiation decreases the basal and PDGF-stimulated VSMC proliferation, at least in part, by the AMPK-mediated inhibition of mTOR/p70S6K signaling axis irrespective of its hyperthermal effect. These observations suggest that FIR therapy can be used to treat arterial narrowing diseases, including atherosclerosis and in-stent restenosis.
Collapse
Affiliation(s)
- Yun-Jin Hwang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | | | - Du-Hyong Cho
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea.
| |
Collapse
|
5
|
Tseng CH. Thiazolidinedione Use Is Associated with a Borderline Lower Risk of Multiple Myeloma and a Significantly Lower Risk of Death in Patients with Type 2 Diabetes Mellitus in Taiwan. Cancers (Basel) 2023; 15:4276. [PMID: 37686552 PMCID: PMC10486533 DOI: 10.3390/cancers15174276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Thiazolidinedione (TZD) exerts anti-proliferative effects on multiple myeloma (MM) cells. However, there has not been any human study investigating the risk of MM associated with TZD use. METHODS We used Taiwan's National Health Insurance database to identify 423,949 patients who had been newly diagnosed with diabetes mellitus between 1999 and 2005. After excluding ineligible patients, 86,999 pairs of patients with and without the use of TZD (rosiglitazone or pioglitazone) that had been matched based on propensity score were selected for a follow-up for MM until 31 December 2011. The hazard ratios for MM were estimated using Cox regression and weighted using a propensity score. RESULTS After a median follow-up of 4.6 years and 4.7 years in ever users and never users of TZD, 32 and 47 cases were diagnosed with MM, respectively. A 35% lower risk (though not statistically significant) was observed among ever users (hazard ratio 0.652, 95% confidence interval: 0.416-1.023, p = 0.0625). When ever users were divided by the median (15 months) cumulative duration of TZD therapy, the hazard ratios (95% confidence interval) for the lower and upper medians were 0.706 (0.394-1.264) and 0.603 (0.346-1.051), respectively. When treated as a continuous variable, the hazard ratio for every 1-month increment of the cumulative duration was 0.980 (95% confidence interval: 0.963-0.997, p = 0.0185). In the age subgroup analysis, a significantly lower risk could be seen in the older age subgroup of ≥65 years (hazard ratio 0.550, 95% confidence interval: 0.305-0.992, p = 0.0468). Additional analyses suggested that there were no interactions between TZD and some medications and between TZD and some clinical diagnoses, and that the use of TZD as a preventive drug for MM might not be cost-effective because a number-needed-to-treat of 5800 was too large. Survival analyses suggested that ever users had a significantly lower risk of death when all patients were analyzed (hazard ratio: 0.84, 95% confidence interval: 0.81-0.87, p < 0.0001 via a log-rank test) or when patients who developed MM were analyzed (hazard ratio: 0.40, 95% confidence interval: 0.19-0.86, p = 0.0153 via a log-rank test). CONCLUSIONS In Taiwanese patients with type 2 diabetes mellitus, TZD use is associated with a borderline lower risk of MM, which is more remarkable in patients aged ≥65 years. Because of the low incidence of MM, the use of TZD for the prevention of MM may not be cost-effective. Patients who have been treated with TZD may have a survival advantage. Future research is required to confirm the findings.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan 35053, Taiwan
| |
Collapse
|
6
|
Metabolic Vulnerabilities in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14081905. [PMID: 35454812 PMCID: PMC9029117 DOI: 10.3390/cancers14081905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) remains an incurable malignancy with eventual emergence of refractory disease. Metabolic shifts, which ensure the availability of sufficient energy to support hyperproliferation of malignant cells, are a hallmark of cancer. Deregulated metabolic pathways have implications for the tumor microenvironment, immune cell function, prognostic significance in MM and anti-myeloma drug resistance. Herein, we summarize recent findings on metabolic abnormalities in MM and clinical implications driven by metabolism that may consequently inspire novel therapeutic interventions. We highlight some future perspectives on metabolism in MM and propose potential targets that might revolutionize the field.
Collapse
|
7
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
8
|
Ragbourne SC, Maghsoodi N, Streetly M, Crook MA. The Association between Metabolic Syndrome and Multiple Myeloma. Acta Haematol 2020; 144:24-33. [PMID: 32408305 DOI: 10.1159/000505992] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/11/2020] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy arising from monoclonal proliferation of plasma cells in the bone marrow, resulting in the presence of paraproteins or M-protein in serum. The involvement of paraproteins produced by malignant plasma cells in the development of hyperlipidaemia and low-HDL cholesterol has been described, as has an association with MM and obesity, hypertension, and type 2 diabetes mellitus, and insulin resistance, that is, features of the metabolic syndrome (MS). There is an association between MS components, inflammatory cytokines, and the development of MM, and some drugs used in the treatment of MS such as statins and metformin may improve outcomes in MM.
Collapse
Affiliation(s)
- Sophie C Ragbourne
- Department of Chemical Pathology, Guys and St Thomas's Hospital, London, United Kingdom
| | - Negar Maghsoodi
- Department of Chemical Pathology, Guys and St Thomas's Hospital, London, United Kingdom
| | - Matthew Streetly
- Department of Haematology, Guys and St Thomas's Hospital, London, United Kingdom
| | - Martin A Crook
- Department of Chemical Pathology, Guy's and St Thomas' and Lewisham and Greenwich Trust, London, United Kingdom,
| |
Collapse
|
9
|
Lind J, Czernilofsky F, Vallet S, Podar K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2019; 24:133-152. [PMID: 31327278 DOI: 10.1080/14728214.2019.1647165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Significant advances have been made during the last two decades in terms of new therapeutic options but also of innovative approaches to diagnosis and management of multiple myeloma (MM). While patient survival has been significantly prolonged, most patients relapse. Including the milestone approval of the first kinase inhibitor imatinib mesylate for CML in 2001, 48 small molecule protein kinase (PK) inhibitors have entered clinical practice until now. However, no PK inhibitor has been approved for MM therapy yet. Areas covered: This review article summarizes up-to-date knowledge on the pathophysiologic role of PKs in MM. Derived small molecules targeting receptor tyrosine kinases (RTKs), the Ras/Raf/MEK/MAPK- pathway, the PI3K/Akt/mTOR- pathway as well as Bruton tyrosine kinase (BTK), Aurora kinases (AURK), and cyclin-dependent kinases (CDKs) are most promising. Preclinical as well as early clinical data focusing on these molecules will be presented and critically reviewed. Expert opinion: Current MM therapy is directed against general vulnerabilities. Novel therapeutic strategies, inhibition of PKs in particular, are directed to target tumor-specific driver aberrations such as genetic abnormalities and microenvironment-driven deregulations. Results of ongoing Precision Medicine trials with PK inhibitors alone or in combination with other agents are eagerly awaited and hold the promise of once more improving MM patient outcome.
Collapse
Affiliation(s)
- Judith Lind
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Felix Czernilofsky
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| |
Collapse
|
10
|
Tomasson MH, Ali M, De Oliveira V, Xiao Q, Jethava Y, Zhan F, Fitzsimmons AM, Bates ML. Prevention Is the Best Treatment: The Case for Understanding the Transition from Monoclonal Gammopathy of Undetermined Significance to Myeloma. Int J Mol Sci 2018; 19:E3621. [PMID: 30453544 PMCID: PMC6274834 DOI: 10.3390/ijms19113621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an invariably fatal cancer of plasma cells. Despite tremendous advances in treatment, this malignancy remains incurable in most individuals. We postulate that strategies aimed at prevention have the potential to be more effective in preventing myeloma-related death than additional pharmaceutical strategies aimed at treating advanced disease. Here, we present a rationale for the development of prevention therapy and highlight potential target areas of study.
Collapse
Affiliation(s)
- Michael H Tomasson
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Mahmoud Ali
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Vanessa De Oliveira
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Qian Xiao
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
| | - Yogesh Jethava
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Adam M Fitzsimmons
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Melissa L Bates
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
11
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
Padmanabhan K, Billaud M. Desynchronization of Circadian Clocks in Cancer: A Metabolic and Epigenetic Connection. Front Endocrinol (Lausanne) 2017; 8:136. [PMID: 28674522 PMCID: PMC5474466 DOI: 10.3389/fendo.2017.00136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks are innate oscillators that drive daily rhythms in metabolism, physiology, and behavior. 24-h rhythms in gene expression, driven by core clock transcription factors, reflect the epigenetic state of the cell, which in turn is dictated by the metabolic environment. Cancer cells alter their metabolic state and gene expression and therefore are likely to tweak circadian clock function in their favor. Over the past decade, we have witnessed an extraordinary increase in systems-level studies that suggest intricate mechanistic links between the cellular metabolome and the circadian epigenome. In parallel, reprogramming of cellular clock function in cancers is increasingly evident and the role of clock genes in the development of hematological tumors, as well as their pathophysiological effects on tissues distal to the tumor, has been described. Furthermore, the interplay between components of the circadian clock, metabolic enzymes, and oncogenes is starting to be better understood, such as the close association between overexpression of the Myc oncogene and perturbation of circadian and metabolic rhythms, thus opening new avenues to treat cancers. This review article explores current knowledge on the circadian metabolome and the molecular pathways they control, with a focus on their involvement in the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Kiran Padmanabhan
- “Molecular and Epigenetic Regulation of Biological Clocks”, Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Paris, France
- *Correspondence: Kiran Padmanabhan,
| | - Marc Billaud
- “Clinical and Experimental Model of Lymphomagenesis”, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| |
Collapse
|
13
|
Scudiero O, Nigro E, Monaco ML, Oliviero G, Polito R, Borbone N, D'Errico S, Mayol L, Daniele A, Piccialli G. New synthetic AICAR derivatives with enhanced AMPK and ACC activation. J Enzyme Inhib Med Chem 2015; 31:748-53. [PMID: 26446934 DOI: 10.3109/14756366.2015.1063622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide riboside (AICAR) has an important role in the regulation of the cellular metabolism showing a broad spectrum of therapeutic activities against different metabolic processes. Due to these proven AICAR properties, we have designed, synthesized and tested the biological activity of two ribose-modified AICAR derivatives, named A3 and A4, in comparison to native AICAR and its 5'-phosphorylated counterpart ZMP. Our findings have shown that A3 and A4 derivatives induce the phosphorylation of 5'-AMP activated protein kinase α (AMPKα), which leads to the inhibition of acetyl-CoA carboxylase (ACC), and down-regulate the activity of the extracellular signal-regulated kinases (ERK1/2). Cytotoxicity tests demonstrated that A3 and A4 do not significantly reduce cell viability up to 24 h. Taken together our results indicate that A3 and A4 have a comparable activity to AICAR and ZMP at 0.5 and 1 mM suggesting their potential use in future pharmacological strategies relating to metabolic diseases.
Collapse
Affiliation(s)
- Olga Scudiero
- a CEINGE - Advanced Biotechnologies S.C a r.l. , Napoli , Italy .,b Department of Molecular Medicine and Medical Biotechnologies and
| | - Ersilia Nigro
- a CEINGE - Advanced Biotechnologies S.C a r.l. , Napoli , Italy
| | | | - Giorgia Oliviero
- c Department of Pharmacy , University of Naples Federico II , Napoli , Italy
| | - Rita Polito
- a CEINGE - Advanced Biotechnologies S.C a r.l. , Napoli , Italy
| | - Nicola Borbone
- c Department of Pharmacy , University of Naples Federico II , Napoli , Italy
| | - Stefano D'Errico
- c Department of Pharmacy , University of Naples Federico II , Napoli , Italy
| | - Luciano Mayol
- c Department of Pharmacy , University of Naples Federico II , Napoli , Italy
| | - Aurora Daniele
- a CEINGE - Advanced Biotechnologies S.C a r.l. , Napoli , Italy .,d Department of Environmental Biological and Pharmaceutical Sciences and Technologies , Second University of Naples , Caserta , Italy , and
| | - Gennaro Piccialli
- c Department of Pharmacy , University of Naples Federico II , Napoli , Italy .,e Institute of Protein Biochemistry , Napoli , Italy
| |
Collapse
|
14
|
Kawashima I, Mitsumori T, Nozaki Y, Yamamoto T, Shobu-Sueki Y, Nakajima K, Kirito K. Negative regulation of the LKB1/AMPK pathway by ERK in human acute myeloid leukemia cells. Exp Hematol 2015; 43:524-33.e1. [DOI: 10.1016/j.exphem.2015.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
|
15
|
Montraveta A, Xargay-Torrent S, López-Guerra M, Rosich L, Pérez-Galán P, Salaverria I, Beà S, Kalko SG, de Frias M, Campàs C, Roué G, Colomer D. Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma. Oncotarget 2015; 5:726-39. [PMID: 24519895 PMCID: PMC3996675 DOI: 10.18632/oncotarget.1455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mantle cell lymphoma (MCL) is considered one of the most challenging lymphoma, with limited responses to current therapies. Acadesine, a nucleoside analogue has shown antitumoral effects in different preclinical cancer models as well as in a recent phase I/II clinical trial conducted in patients with chronic lymphocytic leukemia. Here we observed that acadesine exerted a selective antitumoral activity in the majority of MCL cell lines and primary MCL samples, independently of adverse cytogenetic factors. Moreover, acadesine was highly synergistic, both in vitro and in vivo, with the anti-CD20 monoclonal antibody rituximab, commonly used in combination therapy for MCL. Gene expression profiling analysis in harvested tumors suggested that acadesine modulates immune response, actin cytoskeleton organization and metal binding, pointing out a substantial impact on metabolic processes by the nucleoside analog. Rituximab also induced changes on metal binding and immune responses. The combination of both drugs enhanced the gene signature corresponding to each single agent, showing an enrichment of genes involved in inflammation, metabolic stress, apoptosis and proliferation. These effects could be important as aberrant apoptotic and proinflammatory pathways play a significant role in the pathogenesis of MCL. In summary, our results suggest that acadesine exerts a cytotoxic effect in MCL in combination with rituximab, by decreasing the proliferative and survival signatures of the disease, thus supporting the clinical examination of this strategy in MCL patients.
Collapse
Affiliation(s)
- Arnau Montraveta
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Al-Moujahed A, Nicolaou F, Brodowska K, Papakostas TD, Marmalidou A, Ksander BR, Miller JW, Gragoudas E, Vavvas DG. Uveal melanoma cell growth is inhibited by aminoimidazole carboxamide ribonucleotide (AICAR) partially through activation of AMP-dependent kinase. Invest Ophthalmol Vis Sci 2014; 55:4175-85. [PMID: 24781943 PMCID: PMC4089421 DOI: 10.1167/iovs.13-12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 04/13/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate the effects and mechanism of aminoimidazole carboxamide ribonucleotide (AICAR), an AMP-dependent kinase (AMPK) activator, on the growth of uveal melanoma cell lines. METHODS Four different cell lines were treated with AICAR (1-4 mM). Cell growth was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Cell cycle analysis was conducted by flow cytometry; additionally, expression of cell-cycle control proteins, cell growth transcription factors, and downstream effectors of AMPK were determined by RT-PCR and Western blot. RESULTS Aminoimidazole carboxamide ribonucleotide inhibited cell growth, induced S-phase arrest, and led to AMPK activation. Aminoimidazole carboxamide ribonucleotide treatment was associated with inhibition of eukaryotic translation initiation factor 4E-BP1 phosphorylation, a marker of mammalian target of rapamycin (mTOR) pathway activity. Aminoimidazole carboxamide ribonucleotide treatment was also associated with downregulation of cyclins A and D, but had minimal effects on the phosphorylation of ribosomal protein S6 or levels of the macroautophagy marker LC3B. The effects of AICAR were abolished by treatment with dipyridamole, an adenosine transporter inhibitor that blocks the entry of AICAR into cells. Treatment with adenosine kinase inhibitor 5-iodotubericidin, which inhibits the conversion of AICAR to its 5'-phosphorylated ribotide 5-aminoimidazole-4-carboxamide-1-D-ribofuranosyl-5'-monophosphate (ZMP; the direct activator of AMPK), reversed most of the growth-inhibitory effects, indicating that some of AICAR's antiproliferative effects are mediated at least partially through AMPK activation. CONCLUSIONS Aminoimidazole carboxamide ribonucleotide inhibited uveal melanoma cell proliferation partially through activation of the AMPK pathway and downregulation of cyclins A1 and D1.
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Fotini Nicolaou
- Pediatric Surgery Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Katarzyna Brodowska
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Thanos D. Papakostas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Anna Marmalidou
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Bruce R. Ksander
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Evangelos Gragoudas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Russe OQ, Möser CV, Kynast KL, King TS, Olbrich K, Grösch S, Geisslinger G, Niederberger E. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR. Biochem Biophys Res Commun 2014; 447:520-5. [PMID: 24732361 DOI: 10.1016/j.bbrc.2014.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/06/2014] [Indexed: 12/17/2022]
Abstract
AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.
Collapse
Affiliation(s)
- Otto Quintus Russe
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Christine V Möser
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Katharina L Kynast
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Tanya S King
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Katrin Olbrich
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ellen Niederberger
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
González-Gironès DM, Moncunill-Massaguer C, Iglesias-Serret D, Cosialls AM, Pérez-Perarnau A, Palmeri CM, Rubio-Patiño C, Villunger A, Pons G, Gil J. AICAR induces Bax/Bak-dependent apoptosis through upregulation of the BH3-only proteins Bim and Noxa in mouse embryonic fibroblasts. Apoptosis 2014; 18:1008-16. [PMID: 23605481 DOI: 10.1007/s10495-013-0850-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
5-Aminoimidazole-4-carboxamide (AICA) riboside (AICAR) is a nucleoside analogue that is phosphorylated to 5-amino-4-imidazolecarboxamide ribotide (ZMP), which acts as an AMP mimetic and activates AMP-activated protein kinase (AMPK). It has been recently described that AICAR triggers apoptosis in chronic lymphocytic leukemia (CLL) cells, and its mechanism of action is independent of AMPK as well as p53. AICAR-mediated upregulation of the BH3-only proteins BIM and NOXA correlates with apoptosis induction in CLL cells. Here we propose mouse embryonic fibroblasts (MEFs) as a useful model to analyze the mechanism of AICAR-induced apoptosis. ZMP formation was required for AICAR-induced apoptosis, though direct Ampk activation with A-769662 failed to induce apoptosis in MEFs. AICAR potently induced apoptosis in Ampkα1 (-/-) /α2 (-/-) MEFs, demonstrating an Ampk-independent mechanism of cell death activation. In addition, AICAR acts independently of p53, as MEFs lacking p53 also underwent apoptosis normally. Notably, MEFs lacking Bax and Bak were completely resistant to AICAR-induced apoptosis, confirming the involvement of the mitochondrial pathway in its mechanism of action. Apoptosis was preceded by ZMP-dependent but Ampk-independent modulation of the mRNA levels of different Bcl-2 family members, including Noxa, Bim and Bcl-2. Bim protein levels were accumulated upon AICAR treatment of MEFs, suggesting its role in the apoptotic process. Strikingly, MEFs lacking both Bim and Noxa displayed high resistance to AICAR. These findings support the notion that MEFs are a useful system to further dissect the mechanism of AICAR-induced apoptosis.
Collapse
Affiliation(s)
- Diana M González-Gironès
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge IDIBELL-Universitat de Barcelona, Campus de Bellvitge, Pavelló de Govern, 4ª planta, L'Hospitalet de Llobregat, 08907 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bardeleben C, Sharma S, Reeve JR, Bassilian S, Frost P, Hoang B, Shi Y, Lichtenstein A. Metabolomics identifies pyrimidine starvation as the mechanism of 5-aminoimidazole-4-carboxamide-1-β-riboside-induced apoptosis in multiple myeloma cells. Mol Cancer Ther 2013; 12:1310-21. [PMID: 23585020 DOI: 10.1158/1535-7163.mct-12-1042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the mechanism by which 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAr) induces apoptosis in multiple myeloma cells, we conducted an unbiased metabolomics screen. AICAr had selective effects on nucleotide metabolism, resulting in an increase in purine metabolites and a decrease in pyrimidine metabolites. The most striking abnormality was a 26-fold increase in orotate associated with a decrease in uridine monophosphate (UMP) levels, indicating an inhibition of UMP synthetase (UMPS), the last enzyme in the de novo pyrimidine biosynthetic pathway, which produces UMP from orotate and 5-phosphoribosyl-α-pyrophosphate (PRPP). As all pyrimidine nucleotides can be synthesized from UMP, this suggested that the decrease in UMP would lead to pyrimidine starvation as a possible cause of AICAr-induced apoptosis. Exogenous pyrimidines uridine, cytidine, and thymidine, but not purines adenosine or guanosine, rescued multiple myeloma cells from AICAr-induced apoptosis, supporting this notion. In contrast, exogenous uridine had no protective effect on apoptosis resulting from bortezomib, melphalan, or metformin. Rescue resulting from thymidine add-back indicated apoptosis was induced by limiting DNA synthesis rather than RNA synthesis. DNA replicative stress was identified by associated H2A.X phosphorylation in AICAr-treated cells, which was also prevented by uridine add-back. Although phosphorylation of AICAr by adenosine kinase was required to induce multiple myeloma cell death, apoptosis was not associated with AMP-activated kinase activation or mTORC1 inhibition. A possible explanation for inhibition of UMP synthase activity by AICAr was a depression in cellular levels of PRPP, a substrate of UMP synthase. These data identify pyrimidine biosynthesis as a potential molecular target for future therapeutics in multiple myeloma cells.
Collapse
Affiliation(s)
- Carolyne Bardeleben
- Division of Hematology-Oncology, Greater Los Angeles VA Healthcare Center, 111H, VA West LA Med Ctr., 11301 Wilshire BLVD, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Houston SK, Lampidis TJ, Murray TG. Models and discovery strategies for new therapies of retinoblastoma. Expert Opin Drug Discov 2013; 8:383-94. [DOI: 10.1517/17460441.2013.772975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samuel K Houston
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology,
900 NW 17th St., Miami, 33136L, USA
| | - Theodore J Lampidis
- University of Miami, Department of Cell Biology,
P.O. Box 016960, Miami, 33101, USA
| | - Timothy G Murray
- University of Miami, Bascom Palmer Eye Institute, Department of Ophthalmology,
900 NW 17th St., Miami, 33136L, USA
| |
Collapse
|
21
|
Theodoropoulou S, Brodowska K, Kayama M, Morizane Y, Miller JW, Gragoudas ES, Vavvas DG. Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis. PLoS One 2013; 8:e52852. [PMID: 23300996 PMCID: PMC3536763 DOI: 10.1371/journal.pone.0052852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/23/2012] [Indexed: 01/22/2023] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma.
Collapse
Affiliation(s)
- Sofia Theodoropoulou
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katarzyna Brodowska
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maki Kayama
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuki Morizane
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan W. Miller
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Evangelos S. Gragoudas
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Demetrios G. Vavvas
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Korsse SE, Peppelenbosch MP, van Veelen W. Targeting LKB1 signaling in cancer. Biochim Biophys Acta Rev Cancer 2012; 1835:194-210. [PMID: 23287572 DOI: 10.1016/j.bbcan.2012.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022]
Abstract
The serine/threonine kinase LKB1 is a master kinase involved in cellular responses such as energy metabolism, cell polarity and cell growth. LKB1 regulates these crucial cellular responses mainly via AMPK/mTOR signaling. Germ-line mutations in LKB1 are associated with the predisposition of the Peutz-Jeghers syndrome in which patients develop gastrointestinal hamartomas and have an enormously increased risk for developing gastrointestinal, breast and gynecological cancers. In addition, somatic inactivation of LKB1 has been associated with sporadic cancers such as lung cancer. The exact mechanisms of LKB1-mediated tumor suppression remain so far unidentified; however, the inability to activate AMPK and the resulting mTOR hyperactivation has been detected in PJS-associated lesions. Therefore, targeting LKB1 in cancer is now mainly focusing on the activation of AMPK and inactivation of mTOR. Preclinical in vitro and in vivo studies show encouraging results regarding these approaches, which have even progressed to the initiation of a few clinical trials. In this review, we describe the functions, regulation and downstream signaling of LKB1, and its role in hereditary and sporadic cancers. In addition, we provide an overview of several AMPK activators, mTOR inhibitors and additional mechanisms to target LKB1 signaling, and describe the effect of these compounds on cancer cells. Overall, we will explain the current strategies attempting to find a way of treating LKB1-associated cancer.
Collapse
Affiliation(s)
- S E Korsse
- Dept. of Gastroenterology and Hepatology, Erasmus Medical University Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Acadesine for patients with relapsed/refractory chronic lymphocytic leukemia (CLL): a multicenter phase I/II study. Cancer Chemother Pharmacol 2012; 71:581-91. [PMID: 23228986 PMCID: PMC3579463 DOI: 10.1007/s00280-012-2033-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/13/2012] [Indexed: 01/24/2023]
Abstract
Purpose Acadesine has shown in vitro to selectively induce apoptosis in B cells from chronic lymphocytic leukemia (CLL) patients. We conducted a phase I/II open-label clinical study, to determine the safety and tolerability of acadesine given intravenously as a 4-h infusion to CLL patients. Methods Patient population included CLL patients with relapsed/refractory disease who had received one or more prior lines of treatment including either a fludarabine or an alkylator-based regimen. Twenty-four patients were included: eighteen in Part I treated at single doses of 50–315 mg/kg, and six in Part II, three with two doses at 210 mg/kg and three with five doses at 210 mg/kg. Results A manageable and predictable safety profile was demonstrated for acadesine at single doses between 50 and 210 mg/kg; 210 mg/kg was the maximum tolerated dose (MTD) and optimal biological dose (OBD). Grade ≥2 hyperuricemia occurred commonly but was not clinically significant and resolved with the administration of prophylactic allopurinol. Other adverse events included transient anemia and/or thrombocytopenia (not clinically significant), renal impairment, and transient infusion-related hypotension (clinically significant). Trends of efficacy such as a reduction of peripheral CLL cells and reduction in lymphadenopathy were observed; however, the results were variable due to the small population and the range of doses tested. Conclusions A MTD of 210 mg/kg was established with single acadesine dose. Multiple dose administrations at the OBD were tested with an acceptable safety profile, showing that acadesine might be a valuable agent for the treatment of relapsed/refractory CLL patients.
Collapse
|
24
|
Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma 2012; 54:683-7. [PMID: 22966948 DOI: 10.3109/10428194.2012.728597] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although several mechanisms have been proposed to explain the activity of thalidomide, lenalidomide and pomalidomide in multiple myeloma (MM), including demonstrable anti-angiogenic, anti-proliferative and immunomodulatory effects, the precise cellular targets and molecular mechanisms have only recently become clear. A landmark study recently identified cereblon (CRBN) as a primary target of thalidomide teratogenicity. Subsequently it was demonstrated that CRBN is also required for the anti-myeloma activity of thalidomide and related drugs, the so-called immune-modulatory drugs (IMiDs). Low CRBN expression was found to correlate with drug resistance in MM cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by IMiD treatment. CRBN is also implicated in several effects of IMiDs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the IMiDs are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance.
Collapse
Affiliation(s)
- Yuan Xiao Zhu
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|
25
|
Martelli AM, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, Billi AM, Manzoli L, Cappellini A, McCubrey JA. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opin Ther Targets 2012; 16:729-42. [PMID: 22686561 DOI: 10.1517/14728222.2012.694869] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Despite considerable advances, several hematological malignancies remain incurable with standard treatments. Therefore, there is a need for novel targeted and less toxic therapies, particularly for patients who develop resistance to traditional chemotherapeutic drugs. The liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling pathway has recently emerged as a tumor suppressor axis. A critical point is that the LKB1/AMPK network remains functional in a wide range of cancers and could be stimulated by drugs, such as N,N-dimethylimidodicarbonimidic diamide (metformin) or 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR). AREAS COVERED The literature data show that drugs activating LKB1/AMPK signaling induced cell cycle arrest, caspase-dependent apoptosis or autophagy in hematopoietic tumors. Moreover, metformin effectively inhibited mammalian target of rapamycin complex 1 (mTORC1)-controlled oncogenetic protein translation, which does not occur with allosteric mTORC1 inhibitors, such as rapamycin and its derivatives. Metformin was also capable of targeting leukemic stem cells, the most relevant target for leukemia eradication. EXPERT OPINION Data emerging from preclinical settings suggest that the LKB1/AMPK pathway is critically involved in regulating proliferation and survival of malignant hematopoietic cells. Thus, it is proposed that drugs activating the LKB1/AMPK axis may offer a novel and less toxic treatment option for some types of hematological malignancies.
Collapse
Affiliation(s)
- Alberto M Martelli
- University of Bologna, Human Anatomy, via Irnerio 48, Bologna, 40126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vakana E, Altman JK, Platanias LC. Targeting AMPK in the treatment of malignancies. J Cell Biochem 2012; 113:404-9. [PMID: 21928327 DOI: 10.1002/jcb.23369] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The AMPK pathway is a metabolic stress-related and energy censor pathway which plays important regulatory roles in normal and malignant cells. This cellular cascade controls generation of signals for initiation of mRNA translation via the mTOR pathway and exhibits regulatory roles on the initiation of autophagy. AMPK activators have been shown to suppress mTOR activity and to negatively control malignant transformation and cell proliferation of diverse malignant cell types. Such properties of AMPK inducers have generated substantial interest for the use of AMPK targeting compounds as antineoplastic agents and have provoked extensive research efforts to better define and classify the mechanisms controlling AMPK activity and its functional consequences in malignant cells.
Collapse
Affiliation(s)
- Eliza Vakana
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
27
|
Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anticancer Drugs 2012; 23:131-8. [DOI: 10.1097/cad.0b013e32834c8683] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
|
29
|
Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood 2011; 118:5872-82. [PMID: 21908434 DOI: 10.1182/blood-2011-01-330407] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The contributions of the host microenvironment to the pathogenesis of multiple myeloma, including progression from the non-malignant disorder monoclonal gammopathy of undetermined significance, are poorly understood. In the present study, microarray analysis of a murine model requiring a unique host microenvironment for myeloma development identified decreased host-derived adiponectin compared with normal mice. In support, clinical analysis revealed decreased serum adiponectin concentrations in monoclonal gammopathy of undetermined significance patients who subsequently progressed to myeloma. We investigated the role of adiponectin in myeloma pathogenesis and as a treatment approach, using both mice deficient in adiponectin and pharmacologic enhancement of circulating adiponectin. Increased tumor burden and bone disease were observed in myeloma-bearing adiponectin-deficient mice, and adiponectin was found to induce myeloma cell apoptosis. The apolipoprotein peptide mimetic L-4F was used for pharmacologic enhancement of adiponectin. L-4F reduced tumor burden, increased survival of myeloma-bearing mice, and prevented myeloma bone disease. Collectively, our studies have identified a novel mechanism whereby decreased host-derived adiponectin promotes myeloma tumor growth and osteolysis. Furthermore, we have established the potential therapeutic benefit of increasing adiponectin for the treatment of myeloma and the associated bone disease.
Collapse
|
30
|
Jose C, Hébert-Chatelain E, Bellance N, Larendra A, Su M, Nouette-Gaulain K, Rossignol R. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:707-18. [PMID: 21692240 DOI: 10.1016/j.bbabio.2010.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The AMP-activated protein kinase agonist AICAR mimics a low intracellular energy state and inhibits the proliferation of cancer cells by different mechanisms, which may depend on the bioenergetic signature of these cells. AICAR can also stimulate mitochondrial biogenesis in myoblasts, neurons and HeLa cells. Yet, whether the reactivation of oxidative phosphorylation biogenesis by AICAR contributes to the growth arrest of cancer cells remains undetermined. To investigate this possibility, we looked at the impact of 24- and 48-hour treatments with 750 μM AICAR on human cancer cell lines (HeLa, DU145, and HEPG2), non-cancer cells (EM64, FM14, and HLF), embryonic cells (MRC5) and Rho(0) cells. We determined the bioenergetic profile of these cells and assessed the effect of AICAR on oxidative phosphorylation biogeneis, cell viability and cell proliferation, ROS generation, mitochondrial membrane potential and apoptosis induction. We also followed possible changes in metabolic regulators such as Akt and Hif1-α stabilization which might participate to the anti-proliferative effect of AICAR. Our results demonstrated a strong and cancer-specific anti-growth effect of AICAR that may be explained by three different modes according to cell type: the first mode included stimulation of the mitochondrial apoptotic pathway however with compensatory activation of Akt and upregulation of oxidative phosphorylation. In the second mode of action of AICAR Akt phosphorylation was reduced. In the third mode of action, apoptosis was activated by different pathways. The sensitivity to AICAR was higher in cells with a low steady-state ATP content and a high proliferation rate.
Collapse
Affiliation(s)
- Caroline Jose
- (MRGM) Maladies Rares: Génétique et Métabolisme, Université Victor Segalen, F-33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Cobbold SP, Adams E, Nolan KF, Regateiro FS, Waldmann H. Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol Rev 2010; 236:203-18. [PMID: 20636819 DOI: 10.1111/j.1600-065x.2010.00913.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of different molecular mechanisms have been proposed to explain the suppressive action of regulatory T cells, including the production of anti-inflammatory cytokines, negative costimulatory ligands, indoleamine 2,3-dioxygenase-mediated tryptophan catabolism, CD73-mediated adenosine generation, and downregulation of antigen-presenting cells. Until now it has been unclear how important each of these different mechanisms might be and how they are coordinated. In this review, we examine the hypothesis that it is the interaction between regulatory T cells and dendritic cells that creates a local microenvironment depleted of essential amino acids and rich in adenosine that leads to the amplification of a range of different tolerogenic signals. These signals are all eventually integrated by mammalian target of rapamycin inhibition, which enables the induction of new forkhead box protein 3-expressing Tregs. If correct, this provides a molecular explanation for the in vivo phenomena of linked suppression and infectious tolerance.
Collapse
Affiliation(s)
- Stephen P Cobbold
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
32
|
Downs SM, Ya R, Davis CC. Role of AMPK throughout meiotic maturation in the mouse oocyte: evidence for promotion of polar body formation and suppression of premature activation. Mol Reprod Dev 2010; 77:888-99. [PMID: 20830737 PMCID: PMC3995477 DOI: 10.1002/mrd.21229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK-activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK-activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C-induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles, and midbody during maturation. Immunolocalization of the α1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle but not in the spindle poles or midbody; α2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
33
|
Theodoropoulou S, Kolovou PE, Morizane Y, Kayama M, Nicolaou F, Miller JW, Gragoudas E, Ksander BR, Vavvas DG. Retinoblastoma cells are inhibited by aminoimidazole carboxamide ribonucleotide (AICAR) partially through activation of AMP-dependent kinase. FASEB J 2010; 24:2620-30. [PMID: 20371623 DOI: 10.1096/fj.09-152546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), an analog of AMP, is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. We studied the effects of AICAR on the growth of retinoblastoma cell lines (Y79, WERI, and RB143). AICAR inhibited Rb cell growth, induced apoptosis and S-phase cell cycle arrest, and led to activation of AMPK. These effects were abolished by treatment with dypiridamole, an inhibitor that blocks entrance of AICAR into cells. Treatment with the adenosine kinase inhibitor 5-iodotubericidin to inhibit the conversion of AICAR to ZMP (the direct activator of AMPK) reversed most of the growth-inhibiting effects of AICAR, indicating that some of the antiproliferative effects of AICAR are mediated through AMPK activation. In addition, AICAR treatment was associated with inhibition of the mammalian target of rapamycin pathway, decreased phosphorylation of ribosomal protein-S6 and 4E-BP1, down-regulation of cyclins A and E, and decreased expression of p21. Our results indicate that AICAR-induced activation of AMPK inhibits retinoblastoma cell growth. This is one of the first descriptions of a nonchemotherapeutic drug with low toxicity that may be effective in treating Rb patients.
Collapse
Affiliation(s)
- Sofia Theodoropoulou
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Van Den Neste E, Van den Berghe G, Bontemps F. AICA-riboside (acadesine), an activator of AMP-activated protein kinase with potential for application in hematologic malignancies. Expert Opin Investig Drugs 2010; 19:571-8. [DOI: 10.1517/13543781003703694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Bai LY, Weng JR, Tsai CH, Sargeant A, Lin CW, Chiu CF. OSU-03012 sensitizes TIB-196 myeloma cells to imatinib mesylate via AMP-activated protein kinase and STAT3 pathways. Leuk Res 2009; 34:816-20. [PMID: 20006997 DOI: 10.1016/j.leukres.2009.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022]
Abstract
Although c-Kit is expressed on the surface of myeloma cells in one-third of myeloma patients, the efficacy of imatinib mesylate for patients with myeloma is still controversial. To investigate the combinatorial effect of OSU-03012 and imatinib mesylate, we treated a c-Kit-expressing myeloma cell line, TIB-196, with DMSO, OSU-03012 alone, imatinib mesylate alone and OSU-03012 plus imatinib mesylate. OSU-03012 sensitized TIB-196 cells to imatinib mesylate cytotoxicity. p-STAT3 (Tyr705), as well as down-stream cyclin D1 and Mcl-1, was down regulated. Additionally, there was markedly increased p-AMPK (Thr172) and down-regulation of p-p70S6K (Thr386) in the combination group. Combined treatments targeting c-Kit, AMPK and STAT3 may be a potential strategy for treating patients with myeloma.
Collapse
Affiliation(s)
- Li-Yuan Bai
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, Reilly CM. Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol 2009; 156:542-51. [PMID: 19438609 DOI: 10.1111/j.1365-2249.2009.03924.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent reports show that 5-amino-4-imidazole carboxamide riboside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), inhibits the lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. MRL/MPJ-Fas(lpr) (MRL/lpr) mice show an intrinsic decreased threshold for the production of inflammatory mediators when stimulated. In our current studies, we sought to determine if AMPK activation would inhibit inflammatory mediator production in stimulated kidney mesangial cells. Cultured mesangial cells from MRL/lpr mice were treated with AICAR and stimulated with LPS/interferon (IFN)-gamma. AICAR decreased dose-dependently inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and interleukin-6 production in LPS/IFN-gamma-stimulated mesangial cells. Mechanistically, AICAR inhibited the LPS/IFN-gamma-stimulated PI3K/Akt signalling inflammatory cascade but did not affect LPS/IFN-gamma-mediated inhibitory kappa B phosphorylation or nuclear factor (NF)-kappaB (p65) nuclear translocation. Treatment with the adenosine kinase inhibitor 5'-iodotubercidin blocked the ability of AICAR to activate AMPK and prevented AICAR from inhibiting the LPS/IFN-gamma-stimulated PI3K/Akt pathway and attenuating iNOS expression. Taken together, these observations suggest that AICAR inhibits LPS/IFN-gamma-induced Akt phosphorylation through AMPK activation and may serve as a potential therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- A Peairs
- Virginia College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001. Anticancer Drugs 2009; 20:259-66. [PMID: 19240643 DOI: 10.1097/cad.0b013e328328d18b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple myeloma is still incurable. Myeloma cells become resistant to common drugs and patients eventually die of tumour progression. Therefore, new targets and drugs are needed immediately. NVP-AEW541 is a new, orally bioavailable small molecule inhibitor of the insulin-like growth factor-1 receptor (IGF-1R). Here, we show that NVP-AEW541 inhibits cell growth in myeloma cells at low concentrations in a time-dependent and a dose-dependent manner. Further experiments using the annexin-V-fluorescein isothiocyanate/propidium iodide assay revealed induction of apoptosis in common myeloma cell lines, but not in peripheral blood mononuclear cell from healthy donors. Stimulation of myeloma cells with IGF-1 led to a vast increase of cell growth and this was blocked by low doses of NVP-AEW541. Stimulation of myeloma cells with conditioned medium obtained from a 48-h-old HS-5 stromal cell culture was only partly blocked by NVP-AEW541. Western blotting experiments revealed that NVP-AEW541 decreased the phosphorylation status of P70S6 kinase and 4E-BP-1 but not of mammalian target of rapamycin (mTOR). Combined inhibition of IGF-1R and mTOR using the novel mTOR inhibitor Rad001 led to additive/synergistic increase of cell growth inhibition in multiple myeloma cells, which was accompanied by a stronger dephosphorylation of P70S6 kinase and 4E-BP-1. Taken together, we show that the combined inhibition of IGF-1R and mTOR by combining NVP-AEW541 and Rad001 is highly effective in multiple myeloma and might represent a potential new treatment strategy.
Collapse
|
38
|
Baumann P, Müller K, Mandl-Weber S, Leban J, Doblhofer R, Ammendola A, Baumgartner R, Oduncu F, Schmidmaier R. The peptide-semicarbazone S-2209, a representative of a new class of proteasome inhibitors, induces apoptosis and cell growth arrest in multiple myeloma cells. Br J Haematol 2009; 144:875-86. [DOI: 10.1111/j.1365-2141.2008.07570.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Baumann P, Mandl-Weber S, Völkl A, Adam C, Bumeder I, Oduncu F, Schmidmaier R. Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Mol Cancer Ther 2009; 8:366-75. [PMID: 19174558 DOI: 10.1158/1535-7163.mct-08-0664] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is still an incurable disease; therefore, new therapeutics are urgently needed. A771726 is the active metabolite of the immunosuppressive drug leflunomide, which is currently applied in the treatment of rheumatoid arthritis, BK virus nephropathy, and cytomegaly viremia. Here, we show that dihydroorotate dehydrogenase (DHODH) is commonly expressed in multiple myeloma cell lines and primary multiple myeloma cells. The DHODH inhibitor A771726 inhibits cell growth in common myeloma cell lines at clinically achievable concentrations in a time- and dose-dependent manner. Annexin V-FITC/propidium iodide staining revealed induction of apoptosis of multiple myeloma cell lines and primary multiple myeloma cells. The 5-bromo-2'-deoxyuridine cell proliferation assay showed that inhibition of cell growth was partly due to inhibition of multiple myeloma cell proliferation. A771726 induced G(1) cell cycle arrest via modulation of cyclin D2 and pRb expression. A771726 decreased phosphorylation of protein kinase B (Akt), p70S6K, and eukaryotic translation initiation factor 4E-binding protein-1 as shown by Western blotting experiments. Furthermore, we show that the stimulatory effect of conditioned medium of HS-5 bone marrow stromal cells on multiple myeloma cell growth is completely abrogated by A771726. In addition, synergism studies revealed synergistic and additive activity of A771726 together with the genotoxic agents melphalan, treosulfan, and doxorubicin as well as with dexamethasone and bortezomib. Taken together, we show that inhibition of DHODH by A771726/leflunomide is effective in multiple myeloma. Considering the favorable toxicity profile and the great clinical experience with leflunomide in rheumatoid arthritis, this drug represents a potential new candidate for targeted therapy in multiple myeloma.
Collapse
Affiliation(s)
- Philipp Baumann
- Department of Hematology and Oncology, Medizinische Klinik Innenstadt, Klinikum der Universität München, München, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Baumann P, Mandl-Weber S, Oduncu F, Schmidmaier R. The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res 2008; 315:485-97. [PMID: 19071109 DOI: 10.1016/j.yexcr.2008.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 11/28/2022]
Abstract
NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.
Collapse
Affiliation(s)
- Philipp Baumann
- Department of Hematology and Oncology Medizinische Klinik Innenstadt, Klinikum der Universität München, Germany.
| | | | | | | |
Collapse
|
41
|
Stensløkken KO, Ellefsen S, Stecyk JAW, Dahl MB, Nilsson GE, Vaage J. Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am J Physiol Regul Integr Comp Physiol 2008; 295:R1803-14. [PMID: 18922957 DOI: 10.1152/ajpregu.90590.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We investigated whether two kinases critical for survival during periods of energy deficiency in anoxia-intolerant mammalian species, AMP-activated kinase (AMPK), and protein kinase B (AKT), are equally important for hypoxic/anoxic survival in the extremely anoxia-tolerant crucian carp (Carassius carassius). We report that phosphorylation of AMPK and AKT in heart and brain showed small changes after 10 days of severe hypoxia (0.3 mg O2/l at 9 degrees C). In contrast, anoxia exposure (0.01 mg O2/l at 8 degrees C) substantially increased AMPK phosphorylation but decreased AKT phosphorylation in carp heart and brain, indicating activation of AMPK and deactivation of AKT. In agreement, blocking the activity of AMPK in anoxic fish in vivo with 20 mg/kg Compound C resulted in an elevated metabolic rate (as indicated by increased ethanol production) and tended to reduce energy charge. This is the first in vivo experiment with Compound C in a nonmammalian vertebrate, and it appears that AMPK plays a role in mediating anoxic metabolic depression in crucian carp. Real-time RT-PCR analysis of the investigated AMPK subunit revealed that the most likely composition of subunits in the carp heart is alpha2, beta1B, gamma2a, whereas a more even expression of subunits was found in the brain. In the heart, expression of the regulatory gamma2-subunit increased in the heart during anoxia. In the brain, expression of the alpha1-, alpha2-, and gamma1-subunits decreased with anoxia exposure, but expression of the gamma2-subunit remained constant. Combined, our findings suggest that AMPK and AKT may play important, but opposing roles for hypoxic/anoxic survival in the anoxia-tolerant crucian carp.
Collapse
|
42
|
Abdel-Karim IA, Giles FJ. Mammalian target of rapamycin as a target in hematological malignancies. Curr Probl Cancer 2008; 32:161-77. [PMID: 18655914 DOI: 10.1016/j.currproblcancer.2008.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Isam A Abdel-Karim
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
43
|
Overexpression of CYP2E1 induces HepG2 cells death by the AMP kinase activator 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). Cell Biol Toxicol 2008; 25:253-63. [PMID: 18473182 DOI: 10.1007/s10565-008-9075-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/31/2008] [Indexed: 12/24/2022]
Abstract
5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a phylogenetically conserved serine/threonine protein kinase. AMPK may inhibit cell growth and proliferation and also regulates apoptosis. 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) is a cell-permeable AMPK activator. Activation of AMPK with AICAR has been shown to induce apoptosis of the rat hepatoma cell line FTO2B cells and almost completely inhibited HepG2 cells growth. In this study, a HepG2 cell line, which was transfected with a vector containing human CYP2E1 cDNA (E47 cells), was treated with AICAR. Cell proliferation was blocked, and apoptosis and necrosis were elevated as assessed by cellular morphology, DNA content assay, and lactate dehydrogenase leakage. AICAR treatment significantly increases CYP2E1 activity (20-fold) and expression (5.5-fold) in E47 cells. Iodotubericidin, which inhibits the conversion of AICAR to its activated form AICAR monophosphate, the antioxidants trolox and MnTMPyP, and 4-methylpyrazole, an inhibitor of CYP2E1, all can protect the E47 cells from AICAR-induced necrosis. Production of intracellular reactive oxygen species was increased by AICAR treatment in E47 cells. The cytotoxicity mechanism of AICAR in E47 cells is suggested to include AMPK activation, p53 phosphorylation, p21 expression, overexpression of CYP2E1, and intracellular ROS accumulation.
Collapse
|
44
|
Phoenix KN, Vumbaca F, Claffey KP. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat 2008; 113:101-11. [PMID: 18256928 DOI: 10.1007/s10549-008-9916-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 01/22/2008] [Indexed: 12/26/2022]
Abstract
Metformin, a first line treatment for type 2 diabetes, has been implicated as a potential anti-neoplastic agent for breast cancers as well as other cancers. Metformin is known to work in part through the activation of AMP-dependent kinase (AMPK). AMPK is a key regulator of cellular energy homeostasis, especially under stress conditions where biosynthetic pathways are blocked by the phosphorylation of downstream AMPK substrates. Stimulation of AMPK by metformin resulted in a significant repression of cell proliferation and active MAPK1/2 in both estrogen receptor alpha (ERalpha) negative (MDA-MB-231, MDA-MB-435) and positive (MCF-7, T47D) human breast cancer cell lines. However, when ERalpha negative MDA-MB-435 cells were treated with metformin, they demonstrated increased expression of vascular endothelial growth factor (VEGF) in an AMPK dependent manner; while the ERalpha positive MCF-7 cells did not. Systemic therapy with metformin was tested for efficacy in an orthotopic model of ERalpha negative breast cancer performed in athymic nude mice. Surprisingly, metformin therapy significantly improved tumorigenic progression as compared to untreated controls. The metformin-treated group showed increased VEGF expression, intratumoral microvascular density and reduced necrosis. Metformin treatment was sufficient, however, to reduce systemic IGF-1 and the proliferation rate of tumor cells in vascularized regions. The data presented here suggests that, although metformin significantly represses breast cancer cell growth in vitro, the efficacy with respect to its therapeutic application for ERalpha negative breast cancer lesions in vivo may result in promotion of the angiogenic phenotype and increased tumorigenic progression.
Collapse
Affiliation(s)
- Kathryn N Phoenix
- Center for Vascular Biology, EM028, Department of Cell Biology-MC3501, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3501, USA
| | | | | |
Collapse
|