1
|
Ma N, Liang XN, Chen QF, Li MH, Pei GS, Yi XF, Guo LY, Chen FG, He ZY. Proteogenomic verifies targets underlying erythromycin alleviate neutrophil extracellular traps-induced inflammation. Respir Res 2025; 26:155. [PMID: 40253327 PMCID: PMC12009532 DOI: 10.1186/s12931-025-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Neutrophil Extracellular Traps (NETs) are closely related to the progression of inflammation in Chronic Obstructive Pulmonary Disease (COPD). Erythromycin (EM) has been shown to inhibit inflammation in COPD, but its molecular mechanisms is still unclear. The aim of our study is investigate the molecular mechanisms of EM's anti-inflammatory effects in NETs-induced inflammation. METHODS Transcriptomics and proteomics data were obtained from U937 cells treated with NETs and EM. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using R software. Pathway enrichment analyses, were employed to identify inflammation-related pathways. Cytoscape were utilized to construct network of hub targets regulated by EM which related with oxidative stress and inflammation. Additionally, Cytoscape and STRING were used to construct protein-protein interaction (PPI) network of key targets regulated by EM. The expression levels of key targets were further confirmed through WB and PCR experiments. RESULTS Both transcriptomics and proteomics indicate that EM decrease NETs -induced AKT1 expression. Enrichment analysis of DEGs and DEPs reveal multiple common pathways involved in EM's regulation inflammation, including the PI3K/AKT pathway, response to oxidative stress, IKK/NF-κB signaling and PTEN signaling pathway. Nine key targets in PI3K/AKT-related inflammatory pathways regulated by EM and ten targets of EM-regulated oxidative stress were identified. WB and PCR results confirmed that EM reversing the NETs-induced inflammation by modulating the activity of these targets. Furthermore, clinical samples and vitro experiments confirm that EM alleviates NETs-induced glucocorticoid resistance via inhibiting PI3K/AKT, thereby repressing inflammation. CONCLUSIONS Our study provides a comprehensive proteogenomic characterization of how EM alleviates NET-related inflammation, and identify PI3K/AKT play a critical role in the mechanism by which EM inhibits inflammation.
Collapse
Affiliation(s)
- Nan Ma
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Na Liang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Quan Fang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mei Hua Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guang Sheng Pei
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Fei Yi
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Yan Guo
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fu Gang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhi Yi He
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Wang C, Liu Y, Tan Y, Xu F, Wang M, Tang Y, Nie G, Chi X, Xu Z, Xu Y, An B, Tian G, Qi D, Yao C. HOGA1 Suppresses Renal Cell Carcinoma Growth via Inhibiting the Wnt/β-Catenin Signalling Pathway. J Cell Mol Med 2025; 29:e70490. [PMID: 40100076 PMCID: PMC11917137 DOI: 10.1111/jcmm.70490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Changes in hydroxyproline metabolism are reported to promote tumorigenesis. HOGA1 is a useful marker for diagnosing primary hyperoxaluria 3, catalysing the final step of mitochondrial hydroxyproline metabolism from 4-hydroxy-2-oxoglutarate (HOG) to glyoxylate and pyruvate; however, its specific mechanism in RCC remains unclear. This study investigated the role of HOGA1 in the pathogenesis of ccRCC. The results showed that HOGA1 was decreased significantly in tumour tissues, with this low expression associated with a poor prognosis in patients with ccRCC. QTL mapping showed that Hoga1 was cis-regulated. Gene enrichment analyses showed that Hoga1 co-expressed genes were enriched in the Wnt/β-catenin signalling pathway. Furthermore, in vitro and in vivo assays demonstrated that HOGA1 significantly inhibited the proliferation, invasion and migration of renal carcinoma cells via the Wnt/β-catenin-c-Myc/CyclinD1 axis, probably via regulating the level of HOG. In conclusion, this study demonstrates that HOGA1 has a tumour suppressor role by inhibiting the Wnt/β-catenin signalling pathway. This finding provides new insights into the function of HOGA1 in ccRCC.
Collapse
Affiliation(s)
- Congmin Wang
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yu Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Ying Tan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Fuyi Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Mingyao Wang
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yiming Tang
- The Second School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Guofeng Nie
- The First School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Xiaodong Chi
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Zhaowei Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yuxue Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Baijiao An
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Geng Tian
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Donglai Qi
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| | - Cuifang Yao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and TreatmentBinzhou Medical UniversityYantaiChina
| |
Collapse
|
3
|
Li H, Xu S, Li X, Wang P, Hu M, Li N, Zhou Q, Chang M, Yao S. Inhibition of the ITGB1 gene attenuates crystalline silica-induced pulmonary fibrosis via epithelial-mesenchymal transformation. Braz J Med Biol Res 2024; 57:e13486. [PMID: 39258668 PMCID: PMC11379350 DOI: 10.1590/1414-431x2024e13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
Silicosis is a systemic disease caused by long-term exposure to high concentrations of free silica dust particles in the workplace. It is characterized by a persistent inflammatory response, fibroblast proliferation, and excessive collagen deposition, leading to pulmonary interstitial fibrosis. Epithelial interstitial transformation (EMT) can cause epithelial cells to lose their tight junctions, cell polarity, and epithelial properties, thereby enhancing the properties of interstitial cells, which can lead to the progression of fibrosis and the formation of scar tissue. Integrin 1 (ITGB1) is considered an important factor for promoting EMT and tumor invasion in a variety of tumors and also plays an important role in the progression of fibrotic diseases. Therefore, ITGB1 can be used as a potential target for the treatment of silicosis. In this study, we found that silica exposure induced epithelial-mesenchymal transformation in rats and that the expression of integrin ITGB1 was elevated along with the EMT. We used CRISPR/Cas9 technology to construct integrin ITGB1 knockdown cell lines for in vitro experiments. We compared the expression of the EMT key proteins E-cadherin and vimentin in the ITGB1 knockdown cells and wild-type cells simultaneously stimulated by silica and detected the aggregation point distribution of E-cadherin and vimentin in the cells using laser confocal microscopy. Our results showed that ITGB1 knockout inhibited the ITGB1/ILK/Snail signaling pathway and attenuated the EMT occurrence compared to control cells. These results suggested that ITGB1 is associated with silica-induced EMT and may be a potential target for the treatment of silicosis.
Collapse
Affiliation(s)
- Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Shushuo Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xinxiao Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Penghao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Meng Hu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
Jiang Z, Zhou W, Tian X, Zou P, Li N, Zhang C, Li Y, Liu G. A Protective Role of Canonical Wnt/ β-Catenin Pathway in Pathogenic Bacteria-Induced Inflammatory Responses. Mediators Inflamm 2024; 2024:8869510. [PMID: 38445290 PMCID: PMC10914433 DOI: 10.1155/2024/8869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/β-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/β-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/β-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.
Collapse
Affiliation(s)
- Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang 110034, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Chunmeng Zhang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Yanting Li
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Guangyan Liu
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
5
|
Hassan MH, Nassar AY, Meki ARMA, Nasser SA, Bakri AH, Radwan E. Pharmacogenetic study of phosphatase and tensin homolog polymorphism (rs701848) in childhood epilepsy: relation to circulating Wnt signaling. Neurol Res 2024; 46:99-110. [PMID: 37706249 DOI: 10.1080/01616412.2023.2257465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The present study aimed at evaluating the potential contribution of Phosphatase and Tensin Homolog (PTEN) and its gene polymorphism (PTEN rs701848 T/C) in relation to Wingless/integrase-1 (Wnt) signaling in childhood epilepsy and the impact of antiepileptic medications on their serum levels. METHODS This study included 100 children with epilepsy (50 pharmacoresistant and 50 pharmacoresponsive) and 50 matched controls. All subjects had their genotypes for the PTEN rs701848T/C polymorphism assessed using TaqManTM assays and real-time PCR. By using the sandwich ELISA technique, the blood concentrations of PTEN and Wnt3a were measured. RESULTS Serum Wnt3a levels in epileptic patients were significantly higher than in the control group, p < 0.001. Children with epilepsy who received oxcarbazepine had considerably lower serum Wnt3a levels than those who didn't, p < 0.001.With an AUC of 0.71, the cutoff value for diagnosing epilepsy as serum Wnt3a > 6.2 ng/mL has a sensitivity of 55% and a specificity of 80%. When compared to controls, epileptic children had considerably more (TT) genotype and less (TC and CC) genotypes, p < 0.05 for all. Epileptic children had significantly higher (T) allele frequency than controls, p = 0.006 with OR (95%CI) = 1.962(1.206-3.192). Pharmacoresistant epileptic children had significantly higher (TT) genotype compared to pharmacoresponsive type (p = 0.020). CONCLUSION We originally found a strong association between PTEN rs701848 T/C and childhood epilepsy, in particular pharmacoresistant type. Serum Wnt3a levels increased in epilepsy, but were not significantly different between different alleles of PTEN. In pharmaco-responsive children Wnt3a levels differed significantly between the different PTEN genotypes. Antiepileptics may affect Wnt3a levels.
Collapse
Affiliation(s)
- Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| | - Shimaa A Nasser
- Department of Biochemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ali Helmi Bakri
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| |
Collapse
|
6
|
Kumari A, Kashyap D, Garg VK. Osteopontin in cancer. Adv Clin Chem 2024; 118:87-110. [PMID: 38280808 DOI: 10.1016/bs.acc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Osteopontin (OPN) is a heavily post-translationally modified protein with a molecular weight of 44-70 kDa, depending on the degree of glycosylation. OPN is involved in various biological processes, including bone remodeling, immune response, cell adhesion, migration, and survival. It is essential for controlling osteoclast and osteoblast activity for maintaining bone mass and bone strength. Additionally, OPN has been linked to cardiovascular, inflammatory illnesses, as well as the onset and progression of cancer. OPN is a multifunctional protein that can interact with a variety of cell surface receptors, such as integrins, CD44, the urokinase-type plasminogen activator receptor (uPAR), as well as extracellular matrix (ECM) components (e.g. collagen and hydroxyapatite). These interactions contribute to its wide range of biological functions in general and has significant implications for bone biology, immunology and cancer, specifically. In this chapter, we summarize the structure of OPN with a focus on its molecular mechanisms of action in various cancers.
Collapse
Affiliation(s)
- Alpana Kumari
- Department of Optometry, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Dharambir Kashyap
- Department of Medicine, The Brown Centre for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
7
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
8
|
Sun C, Wang L, Du DD, Ji JB, Yang XX, Yu BF, Shang PF, Guo XL. DSC2 Suppresses the Metastasis of Gastric Cancer through Inhibiting the BRD4/Snail Signaling Pathway and the Transcriptional Activity of β-Catenin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4813571. [PMID: 36120591 PMCID: PMC9473342 DOI: 10.1155/2022/4813571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Downregulated DSC2 involved in the metastasis of cancers. Unfortunately, its role on the development of gastric cancer (GC) and the potential mechanisms remain unclear. Bioinformatics analysis, Western blot, qRT-PCR, and immunohistochemistry were performed to detect the DSC2 levels of human GC and normal stomach tissues. The role of DSC2 and the downstream signaling in gastric carcinogenesis were explored by using GC specimens, GC cells with different DSC2 expression, inhibitors, and mouse metastasis models. We found that the level of DSC2 decreased significantly in GC tissues and cells. Recovered DSC2 inhibited the invasion and migration of GC cells both in culture and in xenografts. Mechanistically, DSC2 could not only decrease Snail level and nuclear BRD4 level by forming DSC2/BRD4, but also inhibit nuclear translocation of β-catenin. We concluded that DSC2 inhibited the metastasis of GC, and the underlying mechanisms were closely related to the regulation on nuclear translocation of BRD4 and β-catenin. Our results suggest that DSC2 may serve as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dan-dan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-bo Ji
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao-xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bing-fang Yu
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng-fei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
9
|
Ghanbarnasab Behbahani R, Danyaei A, Teimoori A, Tahmasbi MJ, Neisi N. CRISPR/Cas9 mediated knocking out of OPN gene enhances radiosensitivity in MDA-MB-231 breast cancer cell line. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04304-7. [PMID: 36042045 DOI: 10.1007/s00432-022-04304-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Although chemotherapy and radiotherapy in conjunction with surgery have been known as the standard methods for patients with breast cancer, they frequently face resistance due to the failure of cells to death. Accordingly, improving the results requires discovering novel therapeutic approaches based on the changes in the molecular biology of cancer cells. Osteopontin (OPN) is a secreted protein that previous studies have shown to be associated with progression, poor prognosis, and metastasis in breast cancer. The current study examined the synergistic effects of radiotherapy and knocking out of OPN gene, utilizing CRISPR/Cas9 technique in MDA-MB-231 breast cancer cells. METHODS We used to knock out the OPN gene by the two different gRNAs. The cells irradiated 24 h after transfection. The mRNA expression, tumor cell proliferation, cell cycle distribution, growth, and apoptosis were measured. Moreover, activation of Chk1 and AKT were measured via western blot. RESULTS We demonstrated the OPN knocking out along with radiation led to the promotion of apoptosis, suppression of downstream genes, reduction of cell viability, and inhibition of cell-cycle progression. The western blot analysis has indicated that the knocking out of the OPN gene along with radiotherapy changes DNA damage responses substantially. CONCLUSIONS The OPN gene knocking out with radiotherapy might be an efficient approach to overcome the radioresistance in breast cancer.
Collapse
Affiliation(s)
| | - Amir Danyaei
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Javad Tahmasbi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Znhit1 and HIF-2α are correlated with cancer stem cell markers in breast cancer patients. Sci Rep 2022; 12:13918. [PMID: 35978075 PMCID: PMC9385614 DOI: 10.1038/s41598-022-18133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic alterations have emerged as fundamental players in development and progression of breast cancer (BC). A hypoxic tumour microenvironment regulates the stemness phenotype in breast cancer stem cells (BCSCs). The aim of this study was to investigate Znhit1 and HIF-2α gene expression in breast cancer tissues as well as their relation to CSCs markers LGR5, ALDH1A1 and β-catenin in tissue and serum of BC patients. The present study included 160 females divided into two groups, group I: 80 healthy females served as control group and group II: 80 breast cancer patients. Gene expression of tissue Znhit1 and HIF-2α was determined by qRT-PCR. Tissue and serum ALDH1A1, LGR5 and β-catenin levels were determined by ELISA. We found that gene expression of Znhit1 was significantly downregulated in BC tissues. Moreover, it was significantly negatively correlated with clinical stage and β-catenin levels in BC patients. Regarding HIF-2α, gene expression of HIF-2α was significantly upregulated in BC tissues. Moreover, it was significantly positively correlated with Her-2/neu expression and β-catenin levels in BC patients. Based upon our results, Znhit1 and HIF-2α may serve as novel therapeutic targets for BC therapy. Additionally, each of serum ALDH1A1, LGR5 and β-catenin may play a crucial role in non-invasive detection of BC with a high specificity and sensitivity.
Collapse
|
11
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
12
|
Yi J, Liu Y, Zhang L, Fang C. Secreted phosphoprotein-1 accelerates the progression of human colorectal cancer through activating β-catenin signaling. Oncol Lett 2021; 21:372. [PMID: 33777196 DOI: 10.3892/ol.2021.12633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive tract and one of the leading causes of cancer-associated mortality. Secreted phosphoprotein-1 (SPP-1) is overexpressed in CRC and promotes cancer progression, but the underlying mechanisms underlying SPP-1 function remain unclear. The present study aimed to explore the effects of Wnt/β-catenin signaling in SPP-1-induced CRC progression. The expression patterns of SPP-1 in CRC tissues were examined using reverse transcription-quantitative (RT-q)PCR, western blotting and immunohistochemistry. SPP-1 expression in cells was assessed using RT-qPCR and western blotting. Cell-Counting Kit-8, flow cytometry and tumor-burdened mice experiments were used to determine cell proliferation, apoptosis and in vivo tumor formation abilities. The results showed that SPP-1 expression was markedly elevated in CRC tissues and cells compared with that in normal colorectal tissues and cells. High expression of SPP-1 was associated with advanced clinical process and low overall survival rate in patients with CRC. Besides, SPP-1 could interact with β-catenin and positively regulated β-catenin protein expression, and enhanced its nuclear accumulation. Moreover, SPP-1-upregulation significantly enhanced cell proliferation and in vivo tumor formation ability, and reduced apoptosis, whereas these effects were all abolished when β-catenin was silenced. Overall, the present study revealed that SPP-1 promoted the progression of CRC in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Jianzhong Yi
- Department of Gastroenteric Hernia, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Yungeng Liu
- Department of Gastroenteric Hernia, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Lei Zhang
- Department of Gastroenteric Hernia, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Chuanfa Fang
- Department of Gastroenteric Hernia, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
13
|
Distinct Signatures of Genomic Copy Number Variants Define Subgroups of Merkel Cell Carcinoma Tumors. Cancers (Basel) 2021; 13:cancers13051134. [PMID: 33800889 PMCID: PMC7961454 DOI: 10.3390/cancers13051134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer results from genetic changes in cells. These changes are often mutations that alter the DNA sequence of critical genes. However, duplications and deletions in cancer-related genes can also contribute to malignant transformation. In this study we use Nanostring technology to assess DNA copy number changes in samples of Merkel cell carcinoma (MCC), a rare and aggressive neuroendocrine skin tumor. We were able to identify recurrent amplifications and deletions in cancer-related genes. We also found that MCC tumors grouped into three distinct copy number variant profiles. The first group consisted of tumors with multiple deletions. The second group contained tumors with low levels of genomic structural alterations. The last group comprised tumors containing multiple amplifications. Our study suggests that most MCC tumors are associated with deletions in cancer-related genes or are lacking in copy number changes, whereas a small percentage of tumors are associated with genomic amplifications. Abstract Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated Merkel cell polyomavirus DNA (virus-positive MCC, VP-MCC) and carry a low somatic mutation burden whereas virus-negative MCC (VN-MCC) possess numerous ultraviolet-signature mutations. In contrast to viral oncogenes and sequence mutations, little is known about genomic structural variants in MCC. To identify copy number variants in commonly altered genes, we analyzed genomic DNA from 31 tumor samples using the Nanostring nCounter copy number cancer panel. Unsupervised clustering revealed three tumor groups with distinct genomic structural variant signatures. The first cluster was characterized by multiple recurrent deletions in genes such as RB1 and WT1. The second cluster contained eight VP-MCC and displayed very few structural variations. The final cluster contained one VP-MCC and four VN-MCC with predominantly genomic amplifications in genes like MDM4, SKP2, and KIT and deletions in TP53. Overall, VN-MCC contained more structure variation than VP-MCC but did not cluster separately from VP-MCC. The observation that most MCC tumors demonstrate a deletion-dominated structural group signature, independent of virus status, suggests a shared pathophysiology among most VP-MCC and VN-MCC tumors.
Collapse
|
14
|
Ashraf MAB, Zahid A, Ashraf S, Waquar S, Iqbal S, Malik A. Implication of Prophetic Variables and their Impulsive Interplay in CA Prostate Patients Experiencing Osteo-Metastasis. Anticancer Agents Med Chem 2020; 20:2106-2113. [PMID: 32718298 DOI: 10.2174/1871520620666200727094430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022]
Abstract
AIMS To identify variables having a critical role in prostate cancer patients experiencing osteometastasis. BACKGROUND Prostatic carcinoma is a multifactorial complex disorder that exhibits an increased propensity to develop bone metastasis. An interplay of inflammatory and bone remodeling parameters promotes the formation of pre-metastatic niches in bones of patients, which could render them more vulnerable to skeletal disabilities. OBJECTIVE To evaluate the multi-dynamic inter-relationship of circulating variables in prostate cancer patients experiencing osteo-metastasis. MATERIALS AND METHODS Fifty-seven (n=57) men with clinically confirmed prostate cancer, fifty-nine (n=59) with skeletal metastases, and one hundred (n=100) healthy subjects i.e., men aging from 53-84 years with no clinical evidence of prostate were recruited from the Jinnah Hospital Lahore, Pakistan. Informed consent was obtained, and a venous blood sample was drawn and stored at -70oC until assayed. Levels of variables were evaluated using appropriate methods. Levels of Matrix Metalloproteinases (MMPs), Osteopontin (OPN), TGH- β, and sRANKL were estimated by the ELISA method. Each sample was suspended and the given protocol was employed. ELISA readings were obtained for the estimation of all variables. RESULTS Highly significant (P˂0.05) differential expression of oxidative stress, inflammatory cytokines, and bone remodeling variables were observed in localized and osteo-metastatic CA prostate patients. A strong positive correlation was revealed among OPN, sRANKL, MMP-7, MMP-9, PSA, and TGF-β (OPN vs. MMP-7, r=0.698* and OPN vs. MMP-9, r=0.765**, OPN vs. RANKL, =0.856*, sRANKL vs. MMP-9, r=0.825**, TGF- β vs. RANKL, r=0.868* and PSA vs. TGF- β, r=0.752*); lower levels of OPG were estimated in metastasized patients, showing that both osteolytic and osteoblastic phases of bone remodeling occur simultaneously. CONCLUSION The altered oxidative and inflammatory responses endorse Matrix Metalloproteinases (MMPs) increased activity, RANKL/OPG imbalance, and enhanced bone matrix proteins turnover, which can foster the process of osteo-metastasis. The perturbed RANKL/OPG drift and enhanced PSA levels are associated with increased TGF-β activity to aggravate Epithelial Mesenchymal transition (EM) and osteo-tropism of prostate cancer. Thus, designing novel targets of these major variables can minimize the incidence of prostate cancer patients.
Collapse
Affiliation(s)
- Muhammad A B Ashraf
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Shazia Ashraf
- Department of Pathology, Independent Medical College, Faisalabad, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Saima Iqbal
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| |
Collapse
|
15
|
Sonn I, Nakamura M, Renault-Mihara F, Okano H. Polarization of Reactive Astrocytes in Response to Spinal Cord Injury is Enhanced by M2 Macrophage-Mediated Activation of Wnt/β-Catenin Pathway. Mol Neurobiol 2019; 57:1847-1862. [PMID: 31845093 DOI: 10.1007/s12035-019-01851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Understanding the mechanisms of glial scar formation by reactive astrocytes is crucial for elaborating a therapeutic strategy to brain and spinal cord injury. However, the extrinsic mechanisms that drive the polarization of reactive astrocytes, the first step in glial scar formation, remain poorly understood. Here, using an in vitro chemotaxis assay as an experimental model for polarization, we observed that Il4-M2 macrophages are stronger inducers of reactive astrocytes' polarization, compared to naive or M1 macrophages. Then, we showed that both β1-integrin and Wnt/β-catenin pathways in astrocytes are required for this polarization in vitro and in vivo after spinal cord crush injury in mice. These findings provide molecular targets for manipulating the polarization of reactive astrocytes in order to potentially enhance the healing of SCI lesions.
Collapse
Affiliation(s)
- Iki Sonn
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Francois Renault-Mihara
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
16
|
Kim Y, Lee YS, Kang SW, Kim S, Kim TY, Lee SH, Hwang SW, Kim J, Kim EN, Ju JS, Park YY, Kweon MN. Loss of PKM2 in Lgr5 + intestinal stem cells promotes colitis-associated colorectal cancer. Sci Rep 2019; 9:6212. [PMID: 30996297 PMCID: PMC6470145 DOI: 10.1038/s41598-019-42707-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/03/2019] [Indexed: 01/15/2023] Open
Abstract
The regulatory properties of pyruvate kinase M2 isoform (PKM2), the key glycolytic enzyme, influence altered energy metabolism including glycolysis in cancer. In this study, we found that PKM2 was highly expressed in patients with ulcerative colitis or colorectal cancer (CRC). We then investigated the effectiveness of conditionally ablating PKM2 in Lgr5+ intestinal stem cells (ISC) using a mouse model of colitis-associated CRC (AOM plus DSS). Tamoxifen-inducible Lgr5-driven deletion of PKM2 in ISC (PKM2ΔLgr5-Tx) significantly promoted tumor incidence and size in the colon and lower body weight compared with findings in vehicle-treated mice (PKM2ΔLgr5-Veh). Histopathologic analysis revealed considerable high-grade dysplasia and adenocarcinoma in the colon of PKM2ΔLgr5-Tx mice while PKM2ΔLgr5-Veh mice had low- and high-grade dysplasia. Loss of PKM2 was associated with dominant expression of PKM1 in Lgr5+ ISC and their progeny cells. Further, the organoid-forming efficiency of whole cancer cells or Lgr5+ cells obtained from colon polyps of PKM2ΔLgr5-Tx mice was significantly increased when compared with PKM2ΔLgr5-Veh mice. Cancer organoids from PKM2ΔLgr5-Tx mice exhibited increased mitochondrial oxygen consumption and a shift of metabolites involved in energy metabolism. These findings suggest that loss of PKM2 function in ISC promotes colitis-associated CRC.
Collapse
Affiliation(s)
- Yeji Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sung Wan Kang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Pathology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Eun Na Kim
- Department of Pathology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Sung Ju
- Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yun-Yong Park
- Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Lee J, Lee S, Synytsya A, Capek P, Lee CW, Choi JW, Cho S, Kim WJ, Park YI. Low Molecular Weight Mannogalactofucans Derived from Undaria pinnatifida Induce Apoptotic Death of Human Prostate Cancer Cells In Vitro and In Vivo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:813-828. [PMID: 30159630 DOI: 10.1007/s10126-018-9851-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Low molecular weight mannogalactofucans (LMMGFs) prepared by enzymatic degradation of high molecular weight Undaria galactofucan (MF) were evaluated for their anti-cancer effects against human prostate cancer. Correlation NMR and linkage analyses confirmed that LMMGFs consist mainly of α-fucose and β-galactose units: α-fucose units are 1,3-linked; β-galactose units are terminal, 1,3- and/or 1,6-linked; both sugars are partially sulphated, fucose at positions O-2 and/or O-4 and galactose at O-3. Mannose residue, as a minor sugar, presents as the 1,4-linked terminal units. LMMGFs more significantly induced cell cycle arrest at the G0/G1 phase and cell death via suppression of the Akt/GSK-3β/β-catenin pathway than MF in human PC-3 prostate cancer cells. LMMGFs upregulated mRNA expression of death receptor-5 (DR-5), the ratio of Bax to Bcl-2, the cleavage of caspases and PARP, the depolarisation of mitochondrial membrane potential, and ROS generation. LMMGFs (200-400 mg/kg) effectively reduced both tumour volume and size in a xenografted mouse model. These results demonstrated that LMMGFs attenuate the growth of human prostate cancer cells both in vitro and in vivo, suggesting that LMMGFs can be used as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat androgen-independent human prostate cancer. Graphical Abstract.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Seul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Andriy Synytsya
- Department of Carbohydrate Chemistry and Technology, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Chang Won Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Ji Won Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Sarang Cho
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator (GBSA), Suwon, Gyeonggi-do, 16229, South Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.
| |
Collapse
|
18
|
Zhang Y, Fang J, Zhao H, Yu Y, Cao X, Zhang B. Retracted
: Downregulation of microRNA‐1469 promotes the development of breast cancer via targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β‐catenin pathways. J Cell Biochem 2018; 120:5097-5107. [DOI: 10.1002/jcb.27786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Yonghui Zhang
- Department of Breast Surgery Peking University International Hospital, Peking University Beijing China
| | - Jing Fang
- Department of Head and Neck Surgery Anhui Provincial Cancer Hospital, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China Hefei Anhui China
| | - Hongmeng Zhao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Yue Yu
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Xuchen Cao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Bin Zhang
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| |
Collapse
|
19
|
Zhang W, Cui Y, Gao J, Li R, Jiang X, Tian Y, Wang K, Cui J. Recombinant Osteopontin Improves Neurological Functional Recovery and Protects Against Apoptosis via PI3K/Akt/GSK-3β Pathway Following Intracerebral Hemorrhage. Med Sci Monit 2018; 24:1588-1596. [PMID: 29550832 PMCID: PMC5870133 DOI: 10.12659/msm.905700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study aimed to investigate the potential neuroprotective effect of recombinant osteopontin (r-OPN) on apoptotic changes via modulating phosphoinositide-3-kinase/Akt/glycogen synthase kinase 3 beta (PI3K/Akt/GSK-3β) signaling in a rat model of intracerebral hemorrhage (ICH). MATERIAL AND METHODS We subjected 10-12-week-old Sprague-Dawley male rats (n=120) to injection of autologous blood into the right basal ganglia to induce ICH or sham surgery. ICH animals received vehicle administration, r-OPN (4 μL/pup), or r-OPN combined with phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (86 ng/pup) at 30 min after injury. Neurological scores and rotarod latencies were evaluated on days 1-5 post-ICH. Brain water content was evaluated on days 1-3 post-ICH. The number of apoptotic cells changes were evaluated by terminal deoxynucleotidyl transferase-mediated 2-deoxyuridine 5-triphosphate-biotin nick-end labeling (TUNEL) and hematoxylin staining. Apoptosis-related proteins Bcl-2, Bax, and cleaved caspase-3 (CC3), and the phosphorylation levels of Akt and GSK-3b were assayed by Western blot. RESULTS Neurological deficits, rotarod latencies, and brain water content following ICH were reduced in the r-OPN group compared to the vehicle group. r-OPN also attenuated cell death in ICH. Furthermore, treatment with r-OPN significantly increased p-Akt expression and decreased p-GSK-3β. These effects were associated with a decrease in the Bax/Bcl-2 ratio and the suppression of CC3 at 24 h after ICH. Importantly, all the beneficial effects of r-OPN in ICH were abrogated by the PI3K inhibitor wortmannin. CONCLUSIONS r-OPN may provide a wide range of neuroprotection by suppressing apoptosis through the PI3K/Akt/GSK-3β signaling pathway after ICH.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ying Cui
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei, China (mainland)
| | - Junling Gao
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Ran Li
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Xiaohua Jiang
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Yanxia Tian
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, Tangshan, Hebei, China (mainland)
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei, China (mainland)
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei, China (mainland)
| |
Collapse
|
20
|
Li J, Jiang S, Chen Y, Ma R, Chen J, Qian S, Shi Y, Han Y, Zhang S, Yu K. Benzene metabolite hydroquinone induces apoptosis of bone marrow mononuclear cells through inhibition of β-catenin signaling. Toxicol In Vitro 2018; 46:361-369. [DOI: 10.1016/j.tiv.2017.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/27/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
|
21
|
Osteopontin plays a unique role in resistance of CD34+/CD123+ human leukemia cell lines KG1a to parthenolide. Life Sci 2017; 189:89-95. [PMID: 28935249 DOI: 10.1016/j.lfs.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To determine if parthenolide (PTL) is cytotoxic for leukemia-like KG1a cells and if it involves in certain molecular-mediated resistance, especially osteopontin (OPN). METHODS PTL/daunorubicin (DNR)-treated KG1a cells were examined for viability using MTT and colony-formation assay, and stained for apoptosis using AV/PI. The gene and protein expression were evaluated by qReal-time PCR and Western blotting analysis, respectively. OPN gene was inhibited by OPN siRNA. The cells were stained for various fractions using PE anti-CD34, FITC anti-CD38 and PerCP anti-CD123. RESULTS Cell viability and proliferation assay exhibited KG1a cells are relatively refractory to used concentrations of PTL. OPN mRNA and protein levels increased in response to PTL. Suppression of OPN with siRNA increased the cytotoxic effects of PTL on KG1a cells. PTL treatment and OPN siRNA suppression in KG1a cells resulted in a decrease of mRNA expression of AKT, mTOR, β-catenin, and Phosphatase and tensin homolog (PTEN). The sub-population cells of CD34+ and CD123+ from KG1a cells are enriched by PTL treatment. CONCLUSION Parthenolide in spite of the reduction in gene expression of AKT, mTOR or beta-catenin, stimulates the OPN expression in KG1a cells. The OPN expression pattern in KG1a cells could be compatible with CD34+/CD123+ subtype enrichment by PTL which in turn implies OPN's unique role in resistance of cell populations characterized by CD34+/CD123+ phenotype.
Collapse
|
22
|
Mirzaei A, Ghaffari SH, Nikbakht M, Kamranzadeh Foumani H, Vaezi M, Mohammadi S, Alimoghaddam K, Ghavamzadeh A. OPN b and c Isoforms Doubtless Veto Anti-angiogenesis Effects of Curcumin in Combination with Conventional AML Regiment. Asian Pac J Cancer Prev 2017; 18:2591-2599. [PMID: 28952709 PMCID: PMC5720671 DOI: 10.22034/apjcp.2017.18.9.2591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteopontin (OPN) is an extracellular structural protein that is secreted by osteoblasts and hematopoietic cells. It suppresses the proliferation of hematopoietic stem and also plays an important role in promoting survival and drug resistance in leukemic stem cells (LSCs). Since the role of OPN isoforms in AML angiogenesis are remaining controversial, in the present study, we aimed to evaluate whether curcumin (CUR), as a known natural component with anti-angiogenesis effects, in a combination of AML conventional regiment has the potency to preclude induced anti-angiogenesis effects of OPN isoforms or not? Leukemia cells were treated with different concentration of CUR and AML conventional drugs alone and/or in combination with together to find effective doses and IC50 values. Percentages of apoptotic cells were evaluated by Annexin/PI staining and mRNA levels of OPN isoforms and AKT/ VEGF-A and VEGF-C/ STAT3/ β-catenin/ CXCR4/ IL-6/ KDR gene expression were investigated by Real Time-PCR method. Moreover, to confirm OPN gene expression data, we investigated the effect of simvastatin and OPN siRNA as an OPN inhibitor on the cell proliferation and induction of apoptosis in the indicated cell lines. Our data display that Ara-c (2μM and 1μM in KG-1 and U937 cell lines respectively), CUR (40μM in both cell lines), and also their combination significantly increased the percentage of apoptotic cells. Moreover, the mRNA level of OPN isoforms were down regulated in the KG-1and U937 cell lines treated with Ara-c while, upregulated in KG-1and U937 cell lines treated with CUR and its combination. Our results suggest that despite anti-angiogenesis effects of CUR, AML cells probably evade from anti-angiogenesis effects of CUR via induction of OPN b and c isoform and related molecular pathways.
Collapse
Affiliation(s)
- Akram Mirzaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jin F, Jiang K, Ji S, Wang L, Ni Z, Huang F, Li C, Chen R, Zhang H, Hu Z, Zha X. Deficient TSC1/TSC2-complex suppression of SOX9-osteopontin-AKT signalling cascade constrains tumour growth in tuberous sclerosis complex. Hum Mol Genet 2017; 26:407-419. [PMID: 28013293 DOI: 10.1093/hmg/ddw397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder featured with multi-organ benign tumours. Disruption of TSC1/TSC2 complex suppression on mammalian/mechanistic target of rapamycin (mTOR) signalling causes TSC. Hyperactive mTOR-mediated negative feedback regulation of AKT partially contributes to the benign nature of TSC-associated tumours. In this study, we demonstrated that osteopontin (OPN) was dramatically reduced by loss of TSC1/TSC2 complex in Tsc2-null mouse embryonic fibroblasts (MEFs), rat uterine leiomyoma-derived Tsc2-deficient cells, genetically modified mouse TSC models, and clinical samples. TSC1/TSC2 complex upregulation of OPN expression is mediated by transcription factor SOX9 in an mTOR-independent manner. Moreover, ablation of OPN by deficient TSC1/TSC2 complex contributed to inactivation of AKT in TSC cells. Lastly, the abundance of OPN dictated the potency of cell proliferation and tumour development. Therefore, loss of TSC1/TSC2 complex led to mTOR-independent inhibition of AKT at least partially through downregulation of the SOX9-OPN signalling cascade. We suggest that the decreased SOX9-OPN-AKT signalling pathway safeguard against the development of malignant tumours in TSC patients.
Collapse
Affiliation(s)
- Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Keguo Jiang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China.,Department of Nephrology, The Third Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Shuang Ji
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China.,Department of Respiratory Medicine, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Li Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Zhaofei Ni
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Fuqiang Huang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China and
| | - Chunjia Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China and
| | - Rongrong Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China and
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China and
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, People's Republic of China.,Institute of Dermatology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
24
|
Mirzaei A, Mohammadi S, Ghaffari SH, Nikbakht M, Bashash D, Alimoghaddam K, Ghavamzadeh A. Osteopontin b and c isoforms: Molecular Candidates Associated with Leukemic Stem Cell Chemoresistance in Acute Myeloid
Leukemia. Asian Pac J Cancer Prev 2017; 18:1707-1715. [PMID: 28670893 PMCID: PMC6373801 DOI: 10.22034/apjcp.2017.18.6.1707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite impressive advances in therapeutic approaches, long-term survival with acute myeloid leukemia (AML) is
low as a result of treatment resistance and frequent relapse. Among multitude oncogenic proteins involved in acquisition
of a chemo-resistanr phenotype, osteopontin (OPN) recently has attracted marked attention. In spite of the well-defined
association between OPN expression and cure rate with solid tumors, there is a scarcity of information on any role of this
protein in AML cases. Based on the critical role of OPN in cell survival, it seems reasonable to hypothesize that isoform
expression levels may impact on regulation of apoptosis in AML cells in response to conventional chemotherapeutic
drugs and its relation to relapse. To investigate associations between induction of apoptosis and OPN isoform expression,
two distinct AML cell lines (KG-1 as a leukemic stem cell model and U937) were treated with chemotherapy drugs,
and cell viability and apoptosis were evaluated by MTT and Annexin/PI assay. After determination of appropriate drug
doses, mRNA expression levels of OPN isoforms and OPN-related genes were investigated. Our results demonstrated
for the first time that acquired up-regulation of OPN-b and c isoforms might prevent conventional chemotherapy
regimen-induced apoptosis in AML cells. Moreover, upregulation of OPN-b and c in AML cells appears concurrent
with upregulation of AKT/VEGF/CXCR4/STAT3/ IL-6 gene expression. To sum up, this study suggests that OPN-b
and c isoforms could be considered as unique beneficial molecular biomarkers associated with leukemic stem cell
chemoresistance. Hence, they have potential as molecular candidates for detection of minimal residual disease (MRD)
and determination of remission in AML patients. Further evaluation with quantative real time PCR on patient samples
for confirmation appears warranted.
Collapse
Affiliation(s)
- Akram Mirzaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. ,
| | | | | | | | | | | | | |
Collapse
|
25
|
Gustafsson A, Fritz HK, Dahlbäck B. Gas6-Axl signaling in presence of Sunitinib is enhanced, diversified and sustained in renal tumor cells, resulting in tumor-progressive advantages. Exp Cell Res 2017; 355:47-56. [DOI: 10.1016/j.yexcr.2017.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/26/2017] [Accepted: 03/18/2017] [Indexed: 12/01/2022]
|
26
|
Zahed Panah M, Nikbakht M, Sajjadi SM, Rostami S, Norooznezhad AH, Kamranzadeh Fumani H, Ghavamzadeh A, Mohammadi S. Anti-Apoptotic Effects of Osteopontin via the Up-Regulation of AKT/mTOR/β-Catenin Loop in Acute Myeloid Leukemia Cells. Int J Hematol Oncol Stem Cell Res 2017; 11:148-157. [PMID: 28875010 PMCID: PMC5574411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: The conventional chemotherapeutic regimens which applied for treatment of acute myeloid leukemia (AML) mostly target tumor bulk but not leukemic stem cells (LSCs). Aberrant expression or activation of mediators such as osteopontin (OPN) or PI3K/PTEN/Akt/mTOR pathway plays a key role in making prone to develop leukemia. Preventing or treating cancer by curcumin (CUR) has been suggested recently. CUR induces apoptosis and growth inhibition through various mechanisms in leukemic cells. In present study, we tried to measure the toxic response in vitro to CUR for evaluation ofchangesin cell viability, survival and molecular-mediated resistance in primary AML cells. Materials and Methods: Isolated primary CD34+/CD38- bone marrow derived AML cells were treated with CUR, Daunorubicin (DNR) and/or their combination by MTT assay, Annexin V/PI staining, and colony-formation. The mRNA expression of OPN/AKT/mTOR/PTEN/β-catenin genes was measured by Real-Time PCR. The siRNA against OPN was applied for CUR- treated cells. Results: Growth inhibition effect of DNR increased in combination with CUR on primary CD34+/CD38- AML cells. Suppression of OPN with siRNA increased the cytotoxic effects of CUR. Likewise, OPN gene expression increased in response to CUR treatment in AML cells. AKT, mTOR, β-catenin or PTEN gene expression increased by CUR, but OPN siRNA decreased the level of mRNA expression of mentioned molecular pathway. Conclusion: The chemo-resistance of AML cells against therapy might be relevant to increasing of OPN mRNA expression and activity of other mediators including AKT, mTOR, PTEN, and β-catenin. In this context, targeting of OPN might be more impact on CD34+ AML cells.
Collapse
Affiliation(s)
- Mahdi Zahed Panah
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahrbano Rostami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hosein Kamranzadeh Fumani
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Osteopontin facilitates tumor metastasis by regulating epithelial-mesenchymal plasticity. Cell Death Dis 2016; 7:e2564. [PMID: 28032860 PMCID: PMC5261026 DOI: 10.1038/cddis.2016.422] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Tumor metastasis leads to high mortality; therefore, understanding the mechanisms that underlie tumor metastasis is crucial. Generally seen as a secretory protein, osteopontin (OPN) is involved in multifarious pathophysiological events. Here, we present a novel pro-metastatic role of OPN during metastatic colonization. Unlike secretory OPN (sOPN), which triggers the epithelial–mesenchymal transition (EMT) to initiate cancer metastasis, intracellular/nuclear OPN (iOPN) induces the mesenchymal–epithelial transition (MET) to facilitate the formation of metastases. Nuclear OPN is found to interact with HIF2α and impact the subsequent AKT1/miR-429/ZEB cascade. In vivo assays confirm that the progression of metastatic colonization is accompanied by the nuclear accumulation of OPN and the MET process. Furthermore, evidence of nuclear OPN in the lung metastases is exhibited in clinical specimens. Finally, VEGF in the microenvironment was shown to induce the translocation of OPN into the nucleus through a KDR/PLCγ/PKC-dependent pathway. Taken together, our results describe the pleiotropic roles of OPN in the tumor metastasis cascade, which indicate its potential as an effective target for both early and advanced tumors.
Collapse
|
28
|
Thakur R, Mishra DP. Matrix reloaded: CCN, tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities. Pharmacol Ther 2016; 168:61-74. [DOI: 10.1016/j.pharmthera.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Mohammadi S, Ghaffari SH, Shaiegan M, Nikogoftar Zarif M, Nikbakht M, Alimoghaddam K, Ghavamzadeh A. Curcumin Veto the Effects of Osteopontin (OPN) Specific Inhibitor on Leukemic Stem Cell Colony Forming Potential via Promotion of OPN Overexpression. Int J Hematol Oncol Stem Cell Res 2016; 10:120-9. [PMID: 27489587 PMCID: PMC4969556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an immunophenotypically heterogeneous malignant disease, in which CD34 positivity is associated with poor prognosis. Osteopontin (OPN) plays different roles in physiologic and pathologic conditions like: survival, metastasis and cell protection from cytotoxic and apoptotic stimuli. Due to anti-apoptotic effect of OPN in normal and malignant cells, silencing of OPN leads to elevation of sensitivity towards chemotherapeutic agents and attenuates cancer cells migration and invasion. Therefore, the aim of this study was to evaluate OPN roles in modulating curcumin-mediated growth inhibitory on leukemic stem cells (LSCs) colony forming potential and survival in AML cell lines and primary CD34+/CD38- bone marrow-derived AML cells. MATERIALS AND METHODS Primary human CD34+/CD38- cells were isolated from bone marrow mononuclear cells of 10 AML patients at initial state of diagnosis, using a CD34 Multi sort kit. The growth inhibitory effects of curcumin (CUR) were evaluated by MTT and colony-formation assays. Apoptosis was analyzed by 7AAD assay in CD34+ KG-1, U937 cell lines and primary isolated cells. Short interfering RNA (siRNA) against OPN was used for OPN silencing in both cell lines and primary AML cells. Then, transfected cells were incubated with/without curcumin. The change in OPN gene expression was examined by Real-time PCR. RESULTS CUR inhibited proliferation and induced apoptosis in both KG-1 and U937 cells and also primary isolated AML cells. OPN silencing by siRNA increased the susceptibility of KG-1, U937 and primary CD34+/CD38- AML cells to apoptosis. Moreover, soft agar colony assays revealed that silencing of OPN with siRNA significantly decreased colony numbers in LSCs compared with the non-targeting group. Furthermore, CD34+/CD38- populations as a main LSCs compartment through OPN overexpression towards CUR treatment might be nullified the inhibitory effects of OPN siRNA on their survival and colony forming potential. CONCLUSION Taken together, our results suggested that knockdown of OPN using OPN specific siRNA significantly decreased colony numbers in LSCs and this effect might be vetoed by LSCs via induction of OPN overexpressionin combination of CUR and siRNA.
Collapse
Affiliation(s)
- Saeed Mohammadi
- Iranian Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran,Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H. Ghaffari
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Shaiegan
- Iranian Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikogoftar Zarif
- Iranian Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Mohammadi S, Ghaffari SH, Shaiegan M, Zarif MN, Nikbakht M, Akbari Birgani S, Alimoghadam K, Ghavamzadeh A. Acquired expression of osteopontin selectively promotes enrichment of leukemia stem cells through AKT/mTOR/PTEN/β-catenin pathways in AML cells. Life Sci 2016; 152:190-8. [DOI: 10.1016/j.lfs.2016.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/11/2023]
|
31
|
Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB, Li GF, Huang ZL, Zhou YC, Feng L, Wei MM, Qu LW, Cao Y, Zhou GB. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 2015; 4:e09419. [PMID: 26565418 PMCID: PMC4764582 DOI: 10.7554/elife.09419] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
More than 90% of lung cancers are caused by cigarette smoke and air pollution, with polycyclic aromatic hydrocarbons (PAHs) as key carcinogens. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China, attributed to smoky coal combustion-generated PAH pollution. Here, we screened for abnormal inflammatory factors in non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used, and found that a chemokine CXCL13 was overexpressed in 63/70 (90%) of Xuanwei NSCLCs and 44/71 (62%) of smoker and 27/60 (45%) of non-smoker CR patients. CXCL13 overexpression was associated with the region Xuanwei and cigarette smoke. The key carcinogen benzo(a)pyrene (BaP) induced CXCL13 production in lung epithelial cells and in mice prior to development of detectable lung cancer. Deficiency in Cxcl13 or its receptor, Cxcr5, significantly attenuated BaP-induced lung cancer in mice, demonstrating CXCL13's critical role in PAH-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao-Bin Chen
- Department of Pathology, The First People’s Hospital of Qu Jing City, Qu Jing, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi-Liang Huang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Feng
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Ming-Ming Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Wei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Lee SH, Park JW, Go DM, Kim HK, Kwon HJ, Han SU, Kim DY. Ablation of osteopontin suppresses N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric cancer development in mice. Carcinogenesis 2015; 36:1550-60. [PMID: 26438603 DOI: 10.1093/carcin/bgv144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/27/2015] [Indexed: 12/14/2022] Open
Abstract
Several clinical studies have reported increased expression of osteopontin (OPN) in various types of human cancer, including gastric cancer. However, the precise mechanisms underlying tumor development remain unclear. In the present study, we investigated the pathogenic roles of OPN in Helicobacter pylori-induced gastric cancer development. Wild-type (WT) and OPN knockout (KO) mice were treated with N-methyl-N-nitrosourea (MNU) and infected with H.pylori. Mice were killed 50 weeks after treatment, and stomach tissues were assessed by histopathological examination, immunohistochemistry, quantitative real-time RT-PCR and western blotting. To clarify the carcinogenic effects of OPN, we also conducted an in vitro study using AGS human gastric cancer cell line and THP-1 human monocytic cell line. The overall incidence of gastric tumors was significantly decreased in OPN KO mice compared with WT mice. Apoptotic cell death was significantly enhanced in OPN KO mice and was accompanied by upregulation of signal transducer and activator of transcription 1 (STAT1) and inducible nitric oxide synthase (iNOS). In vitro study, OPN suppression also caused STAT1 upregulation and iNOS overexpression in AGS and THP-1 cells, which resulted in apoptosis of AGS cells. In addition, a negative correlation was clearly identified between expression of OPN and iNOS in human gastric cancer tissues. Our data demonstrate that loss of OPN decreases H.pylori-induced gastric carcinogenesis by suppressing proinflammatory immune response and augmenting STAT1 and iNOS-mediated apoptosis of gastric epithelial cells. An important implication of these findings is that OPN actually contributes to the development of gastric cancer.
Collapse
Affiliation(s)
| | - Jun-Won Park
- Biomolecular Function Research Branch, National Cancer Center, Goyang, Gyeonggi 410-769, South Korea
| | | | - Hark Kyun Kim
- Biomolecular Function Research Branch, National Cancer Center, Goyang, Gyeonggi 410-769, South Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, South Korea and
| | - Sang-Uk Han
- Department of Surgery, Ajou University Medical Center, Ajou University School of Medicine, Suwon 443-749, South Korea
| | | |
Collapse
|
33
|
Zheng K, Wang G, Li C, Shan X, Liu H. Knockdown of ILK inhibits glioma development via upregulation of E-cadherin and downregulation of cyclin D1. Oncol Rep 2015; 34:272-8. [PMID: 25998224 DOI: 10.3892/or.2015.3983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK) is a highly conserved serine-threonine protein kinase that interacts with cytoplasmic domains of integrin subunits in tumor tissues. However, the relationship between gliomas and ILK is elusive. The present study aimed to investigate the role of ILK in a human glioma cell line (U251). ILK stable expressing vector, U251ILK-PGFP-V-RS-shRNA, was established and named as U251-si. The empty-PGFP-V-RS-shRNA (U251-N) was employed as the control. Quantitative real-time PCR and western blot analysis were used to detect ILK and E-cadherin mRNA and protein expression, respectively. Cell cycle analysis was employed to examine the cell cycle distribution. Cell migration was detected using a wound healing assay, and cell invasion was detected using a Transwell invasion assay. Tumor size and weight were also examined. The results indicated that ILK was expressed at a lower level at both the mRNA and protein levels in the U251-si group compared with the U251-N group (p<0.01). ILK knockdown suppressed cell proliferation of the glioma cells. Knockdown of ILK reduced the migratory and invasive potentials of the glioma cells. Inhibition of ILK expression upregulated E-cadherin and downregulated cyclin D1 in the glioma cells compared to the U251-N group (p<0.05). Knockdown of ILK in the U251 cells attenuated the ability of U251 cells to form tumors in nude mice and impaired glioma cell in vivo tumorigenicity. In conclusion, knockdown of ILK inhibits glioma cell migration, invasion and proliferation through upregulation of E-cadherin and downregulation of cyclin D1. Our results suggest that ILK may serve as a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Guangyi Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaosong Shan
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Haipeng Liu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
34
|
Osteopontin-induced brown adipogenesis from white preadipocytes through a PI3K-AKT dependent signaling. Biochem Biophys Res Commun 2015; 459:553-9. [PMID: 25749339 DOI: 10.1016/j.bbrc.2015.02.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/25/2015] [Indexed: 11/20/2022]
Abstract
Recent studies have shown that OPN (osteopontin) plays critical roles in cell survival, differentiation, bio-mineralization, cancer and cardiovascular remodeling. However, its roles in the differentiation of brown adipocytes and the underlying mechanisms remain unclear. Therefore, the aim of this study was to investigate the roles of OPN in the brown adipogenesis and the underlying mechanisms. It was shown that the OPN successfully induced the differentiation of 3T3-L1 white preadipocytes into the PRDM16(+) (PRD1-BF1-RIZ1 homologous domain containing 16) and UCP-1(+) (uncoupling protein-1) brown adipocytes in a concentration and time-dependent manner. Also, activation of PI3K (phosphatidylinositol 3-kinase)-AKT pathway was required for the OPN-induced brown adipogenesis. The findings suggest OPN plays an important role in promoting the differentiation of the brown adipocytes and might provide a potential novel therapeutic approach for the treatment of obesity and related disorders.
Collapse
|
35
|
Wu XL, Lin KJ, Bai AP, Wang WX, Meng XK, Su XL, Hou MX, Dong PD, Zhang JJ, Wang ZY, Shi L. Osteopontin knockdown suppresses the growth and angiogenesis of colon cancer cells. World J Gastroenterol 2014; 20:10440-10448. [PMID: 25132760 PMCID: PMC4130851 DOI: 10.3748/wjg.v20.i30.10440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/28/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of osteopontin (OPN) gene expression knockdown on colon cancer Lovo cells in vitro.
METHODS: Four candidate small interfering RNA (siRNA) constructs targeting the OPN gene and a scrambled control sequence (NC-siRNA) were synthesized and inserted into a pGPU6/GFP/Neo expression vector. After confirmation by restriction enzyme digestion and DNA sequencing, the recombinant plasmids were subsequently transfected into a human colon cancer cell line (Lovo) using a liposome transfection method. Stably transfected cells were maintained with G418 selection and referred to as Lovo-OPN-1, -2, -3, -4, and Lovo-NC cells. Knockdown efficiency of each of the four siRNA constructs was determined by real-time reverse transcription polymerase chain reaction assays and western blotting, and the construct with the most effective silencing was used for subsequent experiments. Cell proliferation, adhesion, and Matrigel invasion assays were performed to analyze the effects of OPN knockdown in stably transfected Lovo cells. The levels of four angiogenic factors, namely vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator were detected by enzyme-linked immunosorbent assays (ELISA).
RESULTS: Recombinant vectors containing OPN-specific and scrambled siRNA sequences were successfully constructed and stably transfected into Lovo cells. Compared with the control Lovo and Lovo-NC cells, the levels of OPN mRNA and protein expression in Lovo-OPN-1, -2, -3, and -4 were significantly reduced (all P < 0.05), with the most efficient reduction observed in Lovo-OPN-4 cells (P < 0.05). Relative to untransfected Lovo cells, OPN mRNA expression levels in Lovo-NC and Lovo-OPN-4 cells were 1.008 ± 0.067 and 0.160 ± 0.023, respectively. The relative OPN protein expression levels in Lovo, Lovo-NC, and Lovo-OPN-4 cells were 3.024 ± 0.211, 2.974 ± 0.630, and 0.121 ± 0.008, respectively. Moreover, transfection with the scrambled sequence had no effect on the expression of OPN. After 24, 48, 72, and 96 h of cultivation, absorption values at 450 nm to assess proliferation of Lovo-OPN-4 cells were 0.210 ± 0.017, 0.247 ± 0.024, 0.314 ± 0.037, and 0.359 ± 0.043, respectively, which were significantly lower than those of Lovo (0.244 ± 0.031, 0.313 ± 0.024, 0.513 ± 0.048 and 0.783 ± 0.051) and Lovo-NC cells (0.241 ± 0.029, 0.309 ± 0.022, 0.563 ± 0.023, and 0.735 ± 0.067) (all P < 0.05). The absorption values at 595 nm, which were measured in a cell adhesion assay, showed that adhesion of Lovo-OPN-4 cells (0.215 ± 0.036) was significantly decreased compared to Lovo (0.490 ± 0.037) and Lovo-NC cells (0.462 ± 0.043) (P < 0.05). The number of invasive Lovo-OPN-4 cells (16.1 ± 1.9) was also significantly decreased compared to Lovo (49.9 ± 5.4) and Lovo-NC cells (48.8 ± 4.5) (P < 0.05). ELISA assays showed significant reductions in Lovo-OPN-4 cells compared to Lovo and Lovo-NC cells with regard to the expression of VEGF (1687.85 ± 167.84 ng/L vs 2348.54 ± 143.80 ng/L and 2284.39 ± 138.62 ng/L, respectively), MMP-2 (2966.07 ± 177.36 μg/L vs 4084.74 ± 349.54 μg/L and 4011.41 ± 424.48 μg/L, respectively), MMP-9 (3782.89 ± 300.64 μg/L vs 5062.90 ± 303.02 μg/L and 4986.38 ± 300.75 μg/L, respectively) and uPA (1152.69 ± 120.79 μg/L vs 1380.90 ± 147.25 μg/L and 1449.80 ± 189.92 μg/L, respectively) (all P < 0.05).
CONCLUSION: Knockdown of OPN gene expression suppresses colon cancer cell growth, adherence, invasion, and expression of angiogenic factors.
Collapse
|
36
|
Prager AJ, Peng CR, Lita E, McNally D, Kaushal A, Sproull M, Compton K, Dahut WL, Figg WD, Citrin D, Camphausen KA. Urinary aHGF, IGFBP3 and OPN as diagnostic and prognostic biomarkers for prostate cancer. Biomark Med 2014; 7:831-41. [PMID: 24266816 DOI: 10.2217/bmm.13.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM Serum PSA screening for prostate cancer (PCa) is controversial. Here, we identify three urinary biomarkers - aHGF, IGFBP3 and OPN - for PCa screening and prognostication. METHODS Urinary aHGF, OPN and IGFBP3 from healthy men (n = 19) and men with localized (n = 65) and metastatic (n = 36) PCa were quantified via ELISA. Mann-Whitney nonparametric t-test and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analyses were used to analyze associations. RESULTS Mean aHGF and IGFBP3 levels were significantly elevated in PCa patients versus controls (p = 0.0006 and p = 0.0012, respectively), and the area under the curve of the receiver operating characteristic curve (indicator of diagnostic accuracy) for aHGF and IGFBP3 was 0.75 and 0.74, respectively. OPN levels were significantly higher in metastatic groups (p = 0.0060) versus localized and controls (area under the curve = 0.68). CONCLUSION Urinary aHGF and IGFBP3 exhibit the capacity for diagnostic discrimination for PCa, whereas OPN may indicate presence of metastatic disease.
Collapse
Affiliation(s)
- Alisa J Prager
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hsu KH, Tsai HW, Lin PW, Hsu YS, Lu PJ, Shan YS. Anti-apoptotic effects of osteopontin through the up-regulation of Mcl-1 in gastrointestinal stromal tumors. World J Surg Oncol 2014; 12:189. [PMID: 24947165 PMCID: PMC4080696 DOI: 10.1186/1477-7819-12-189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023] Open
Abstract
Background Osteopontin (OPN) is a secreted phosphoprotein expressed by neoplastic cells involved in the malignant potential and aggressive phenotypes of human malignancies, including gastrointestinal stromal tumors (GISTs). Our previous study showed that OPN can promote tumor cell proliferation in GISTs. In this series, we further aim to investigate the effect of OPN on apoptosis in GISTs. Methods The expression of apoptotic and anti-apoptotic proteins in response to OPN was evaluated. In vitro effects of OPN against apoptosis in GIST were also assessed. GIST specimens were also used for analyzing protein expression of specific apoptosis-related molecules and their clinicopathologic significance. Results Up-regulation of β-catenin and anti-apoptotic proteins Mcl-1 with concomitant suppression of apoptotic proteins in response to OPN was noted. A significant anti-apoptotic effect of OPN on imatinib-induced apoptosis was identified. Furthermore, Mcl-1 overexpression was significantly associated with OPN and β-catenin expression in tumor tissues, as well as worse survival clinically. Conclusions Our study identifies anti-apoptotic effects of OPN that, through β-catenin-mediated Mcl-1 up-regulation, significantly antagonized imatinib-induced apoptosis in GISTs. These results provide a potential rationale for therapeutic strategies targeting both OPN and Mcl-1 of the same anti-apoptotic signaling pathway, which may account for resistance to imatinib in GISTs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan.
| |
Collapse
|
38
|
Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D, Kumar S, Totakura KVS, Roy G, Sharma P, Shetti D, Soundararajan G, Thorat D, Tomar D, Nalukurthi R, Raja R, Mishra R, Yadav AS, Kundu GC. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets 2014; 18:883-95. [DOI: 10.1517/14728222.2014.925447] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Liu YZ, Wu K, Huang J, Liu Y, Wang X, Meng ZJ, Yuan SX, Wang DX, Luo JY, Zuo GW, Yin LJ, Chen L, Deng ZL, Yang JQ, Sun WJ, He BC. The PTEN/PI3K/Akt and Wnt/β-catenin signaling pathways are involved in the inhibitory effect of resveratrol on human colon cancer cell proliferation. Int J Oncol 2014; 45:104-12. [PMID: 24756222 DOI: 10.3892/ijo.2014.2392] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 12/28/2022] Open
Abstract
Colon cancer is one of the most common malignancies and the treatments for colon cancer have been developed substantially in the last decades, but there is still a great clinical need to explore new treatment regimens due to the undesirable prognosis. In this investigation, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol (Res) in human colon cancer cells, and the possible mechanisms underlying these effects. We used crystal violet staining, flow cytometry and western blotting to validate the anti-proliferative and apoptosis-inducing effects of Res on HCT116 cells. A xenograft tumor model was used to confirm the anti-proliferative effects of Res. We employed polymerase chain reaction, western blotting, recombinant adenovirus and luciferase reporter assay to explore the possible mechanism(s) of action. We found that Res inhibits significantly the proliferation and promotes apoptosis in HCT116 cells, as well as inhibits the xenograft tumor growth of colon cancer. Res upregulates the expression of phosphatase and tensin homolog (PTEN) and decreases the phosphorylation of Akt1/2. The exogenous expression of PTEN inhibits the PI3K/Akt signal and promotes the anti-proliferative effects of Res in HCT116 cells, while knockdown of PTEN increases PI3K/Akt signal but reduces the anti-proliferative function of Res. The protein and mRNA expression of β-catenin are all decreased by Res concentration-dependently. Thus, our findings strongly suggest that the anti-proliferative effects of Res in human colon cancer cells may be mediated by regulating separately the PTEN/PI3K/Akt and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Ying-Zi Liu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Ke Wu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Jun Huang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Yang Liu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Xin Wang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Zi-Jun Meng
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Shuang-Xue Yuan
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Dong-Xu Wang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Jin-Yong Luo
- Key Laboratory for Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Guo-Wei Zuo
- Key Laboratory for Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Liang-Jun Yin
- Department of Orthopedic Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liang Chen
- Department of Orthopedic Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Zhong-Liang Deng
- Department of Orthopedic Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Jun-Qin Yang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Wen-Juan Sun
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Bai-Cheng He
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
40
|
Ding L, Zhao Y, Warren CL, Sullivan R, Eliceiri KW, Shull JD. Association of cellular and molecular responses in the rat mammary gland to 17β-estradiol with susceptibility to mammary cancer. BMC Cancer 2013; 13:573. [PMID: 24304664 PMCID: PMC3924185 DOI: 10.1186/1471-2407-13-573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We are using ACI and BN rats, which differ markedly in their susceptibility to 17β-estradiol (E2)-induced mammary cancer, to identify genetic variants and environmental factors that determine mammary cancer susceptibility. The objective of this study was to characterize the cellular and molecular responses to E2 in the mammary glands of ACI and BN rats to identify qualitative and quantitative phenotypes that associate with and/or may confer differences in susceptibility to mammary cancer. METHODS Female ACI and BN rats were treated with E2 for 1, 3 or 12 weeks. Mammary gland morphology and histology were examined by whole mount and hematoxylin and eosin (H&E) staining. Cell proliferation and epithelial density were evaluated by quantitative immunohistochemistry. Apoptosis was evaluated by quantitative western blotting and flow cytometry. Mammary gland differentiation was examined by immunohistochemistry. Gene expression was evaluated by microarray, qRT-PCR and quantitative western blotting assays. Extracellular matrix (ECM) associated collagen was evaluated by Picrosirius Red staining and Second Harmonic Generation (SHG) microscopy. RESULTS The luminal epithelium of ACI rats exhibited a rapid and sustained proliferative response to E2. By contrast, the proliferative response exhibited by the mammary epithelium of BN rats was restrained and transitory. Moreover, the epithelium of BN rats appeared to undergo differentiation in response to E2, as evidenced by production of milk proteins as well as luminal ectasia and associated changes in the ECM. Marked differences in expression of genes that encode proteins with well-defined roles in mammary gland development (Pgr, Wnt4, Tnfsf11, Prlr, Stat5a, Areg, Gata3), differentiation and milk production (Lcn2, Spp1), regulation of extracellular environment (Mmp7, Mmp9), and cell-cell or cell-ECM interactions (Cd44, Cd24, Cd52) were observed. CONCLUSIONS We propose that these cellular and molecular phenotypes are heritable and may underlie, at least in part, the differences in mammary cancer susceptibility exhibited by ACI and BN rats.
Collapse
Affiliation(s)
| | | | | | | | | | - James D Shull
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin Madison, 1400 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Chen YJ, Lee LY, Chao YK, Chang JT, Lu YC, Li HF, Chiu CC, Li YC, Li YL, Chiou JF, Cheng AJ. DSG3 facilitates cancer cell growth and invasion through the DSG3-plakoglobin-TCF/LEF-Myc/cyclin D1/MMP signaling pathway. PLoS One 2013; 8:e64088. [PMID: 23737966 PMCID: PMC3667790 DOI: 10.1371/journal.pone.0064088] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/10/2013] [Indexed: 02/04/2023] Open
Abstract
Desmoglein 3 (DSG3) is a component of the desmosome, which confers strong cell-cell adhesion. Previously, an oncogenic function of DSG3 has been found in head neck cancer (HNC). Here, we investigated how this molecule contributes to the malignant phenotype. Because DSG3 is associated with plakoglobin, we examined whether these phenotypic alterations were mediated through the plakoglobin molecule. Immunoprecipitation and immunofluorescence staining revealed that DSG3 silencing disrupted its interaction with plakoglobin and induced plakoglobin translocation from the cytoplasm to the nucleus. Knockdown of DSG3 significantly increased the interaction of plakoglobin with the transcriptional factor TCF and suppressed the TCF/LEF transcriptional activity. These effects further conferred to reduced expression of the TCF/LEF downstream target genes, including c-myc, cyclin D1, and MMP-7. Functional analyses showed that DSG3 silencing reduced cell growth and arrested cells at G0/G1 phase. Besides, cell migration and invasion abilities were also decreased. These cellular results were confirmed using tumor xenografts in mice, as DSG3 silencing led to the suppressed tumor growth, plakoglobin translocation and reduced expression of TCF/LEF target genes in tumors. Therefore, our study shows that the desmosomal protein DSG3 additionally functions to regulate malignant phenotypes via nuclear signaling. In conclusion, we found that DSG3 functions as an oncogene and facilitates cancer growth and invasion in HNC cells through the DSG3-plakoglobin-TCF/LEF pathway.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Translational Research Laboratory, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yin-Ka Chao
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Fang Li
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chen Li
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Liang Li
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Translational Research Laboratory, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Jung SJ, Oh S, Lee GT, Chung J, Min K, Yoon J, Kim W, Ryu DS, Kim IY, Kang DI. Clinical Significance of Wnt/β-Catenin Signalling and Androgen Receptor Expression in Prostate Cancer. World J Mens Health 2013; 31:36-46. [PMID: 23658864 PMCID: PMC3640151 DOI: 10.5534/wjmh.2013.31.1.36] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 11/17/2022] Open
Abstract
Purpose To investigate the relationships among the Wnt/β-catenin pathway, androgen receptor (AR), and clinicopathological factors in hormone-naïve prostate cancer. Materials and Methods This study was conducted with132 cases of hormone-naïve prostate cancer treated by prostatectomy and prostate needle biopsy. An immunohistochemical study using antibodies against β-catenin, matrix metalloproteinase-7 (MMP-7), and the AR was performed. For the in vitro study, PC-3, LNCaP, 22Rv1, and DU145 cell lines were used. Results The clinical or pathological stage ware a localized cancer in 36 patients (27.3%), locally advanced cancer in 31 (23.5%), and metastatic cancer in 65 (49.2%). We detected increased β-catenin, AR, and MMP-7 expression with a high Gleason grade, disease progression, and increasing serum prostate-specific antigen (PSA) levels (p<0.01). In Spearman's rank correlations, the expression of cytoplasmic β-catenin, MMP-7, and the AR were found to be significantly positively correlated. In addition, the expression of β-catenin, MMP-7, and the AR were significantly correlated with clinicopathological variables indicative of a poor prognosis. Forty-nine patients with primary androgen deprivation had short response durations from hormone therapy to PSA progression with elevated MMP-7 expression on the Kaplan-Meier curve (p=0.0036). Conclusions These data show that an activated Wnt/β-catenin pathway and AR expression in prostate cancer are correlated with metastasis and aggressiveness. In addition, the expression of MMP-7 protein, a target of the Wnt/β-catenin pathway, is associated with PSA progression in prostate cancer patients undergoing primary hormone therapy.
Collapse
Affiliation(s)
- Soo Jin Jung
- Department of Pathology, Inje University College of Medicine, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Das S, Samant RS, Shevde LA. Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to Smoothened-targeting Hedgehog inhibition. J Biol Chem 2013; 288:11824-33. [PMID: 23508962 DOI: 10.1074/jbc.m112.432302] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hedgehog (Hh) pathway is critical in normal development. However, it has been reported to be up-regulated in numerous cancers and implicated in tumorigenicity and metastasis. Classical activation of Hh signaling initiated by Hh ligands results in activation of Smoothened (SMOH) and culminates in the activation of the GLI transcription factors. Classical Hh signaling is autocrine or paracrine (involving interaction between tumor cells and their stroma/microenvironment). The tumor milieu is rich in inflammatory cytokines that can modulate tumor cell behavior. Here, we show for the first time that the Hh pathway can be nonclassically up-regulated by the inflammatory cytokine, osteopontin (OPN). OPN-initiated Akt-GSK3β signaling mediates the subcellular distribution and activation of GLI1 resulting in the modulation of epithelial mesenchymal plasticity and drug resistance. Interestingly, the SMOH inhibitor cyclopamine was unable to uncouple the effects of OPN on Hh signaling, indicating that OPN nonclassically activates GLI-mediated transcription. Given the fact that OPN is itself transcriptionally activated upon Hh signaling, our current findings highlight the possibility of a feedforward vicious cycle such that the Hh pathway might be turned on nonclassically by stimuli from the tumor milieu. Thus, drugs that target the classical Hh ligand-mediated activation of Hh signaling may be compromised in their ability to interfere with the functioning of the pathway.
Collapse
Affiliation(s)
- Shamik Das
- Department of Pathology, University of Alabama at Birmingham,Birmingham, Alabama 35233, USA
| | | | | |
Collapse
|
44
|
Despeaux M, Chicanne G, Rouer E, De Toni-Costes F, Bertrand J, Mansat-De Mas V, Vergnolle N, Eaves C, Payrastre B, Girault JA, Racaud-Sultan C. Focal adhesion kinase splice variants maintain primitive acute myeloid leukemia cells through altered Wnt signaling. Stem Cells 2013; 30:1597-610. [PMID: 22714993 DOI: 10.1002/stem.1157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) activity contributes to many advanced cancer phenotypes, but little is known about its role in human acute myeloid leukemia (AML). Here, we show that FAK splice variants are abnormally expressed in the primitive leukemic cells of poor prognosis AML patients. In the CD34(+) 38(-) 123(+) long-term culture-initiating cell-enriched leukemic cells of these patients, FAK upregulates expression of Frizzled-4 and phosphorylates Pyk2 to enable the required association of Pyk2 with the Wnt5a/Frizzled-4/LRP5 endocytosis complex and downstream activation of β-catenin, thereby replacing the Wnt3a-controlled canonical pathway used by normal hematopoietic stem cells. Transduction of primitive normal human hematopoietic cells with FAK splice variants induces a marked increase in their clonogenic activity and signaling via the Wnt5a-controlled canonical pathway. Targeting FAK or β-catenin efficiently eradicates primitive leukemic cells in vitro suggesting that FAK could be a useful therapeutic target for improved treatment of poor prognosis AML cases.
Collapse
Affiliation(s)
- Mathieu Despeaux
- Inserm U1043, CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gupta A, Cao W, Sadashivaiah K, Chen W, Schneider A, Chellaiah MA. Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9. ScientificWorldJournal 2013; 2013:493689. [PMID: 23476138 PMCID: PMC3580924 DOI: 10.1155/2013/493689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 02/08/2023] Open
Abstract
Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Wei Cao
- Laboratory of Oral Tumor Biology, Department of Oral and Maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kavitha Sadashivaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Wantao Chen
- Laboratory of Oral Tumor Biology, Department of Oral and Maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
46
|
Deangelis T, Quong A, Morrione A, Baserga R. Growth of v-src-transformed cells in serum-free medium through the induction of growth factors. J Cell Physiol 2012; 228:1482-6. [PMID: 23254450 DOI: 10.1002/jcp.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/09/2022]
Abstract
The v-src oncogene is one of only two oncogenes capable of transforming mouse embryo fibroblasts (MEFs) lacking the IGF-IR gene (R-cells). R-/v-src cells grow robustly in the absence of serum, suggesting the hypothesis that they may produce one or more growth factors that would sustain their ability to proliferate in serum-free condition. Using proteomic approaches on serum-free conditioned media derived from v-src-transformed cells, we have identified two growth promoting factors: ostepontin and proliferin. Subsequent experiments have indicated that osteopontin plays a prevalent role in promoting growth of v-src-transformed cells in serum-deprived condition.
Collapse
Affiliation(s)
- Tiziana Deangelis
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
47
|
The role of osmotic polysorbitol-based transporter in RNAi silencing via caveolae-mediated endocytosis and COX-2 expression. Biomaterials 2012; 33:8868-80. [DOI: 10.1016/j.biomaterials.2012.08.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/22/2012] [Indexed: 12/11/2022]
|
48
|
Srivastava S, Bedi U, Roy P. Synergistic actions of insulin-sensitive and Sirt1-mediated pathways in the differentiation of mouse embryonic stem cells to osteoblast. Mol Cell Endocrinol 2012; 361:153-64. [PMID: 22542761 DOI: 10.1016/j.mce.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
Abstract
Murine embryonic stem cells (mESCs) have the potential to differentiate into almost any type of cell, and hence, represent a useful biological resource for tissue engineering. The differentiation of mESCs into osteoblasts in vitro is usually dampened by simultaneous differentiation of adipocytes. Insulin exerts a profound effect on bone development through increased differentiation of osteoblasts and concurrent formation of adipocytes. Comparatively, Sirt1, which plays a crucial role in osteoblast differentiation, has been reported to down regulate adipocyte formation during osteoblast differentiation. This study analyzed the combined effects of insulin and Sirt1 on the differentiation of osteoblasts. Osteoblast differentiation was quantified by estimating the accumulation of mineralized matrix and expression of osteogenic genes. The present data show that the simultaneous action of the insulin and Sirt1-mediated pathways increased the efficiency of osteoblast differentiation. When the cells were tested for ALP activity and Alizarin red staining, there was a respective increase of ~180% and ~166% (P<0.05) compared to the control. Furthermore, the mRNA expression patterns of osteoprotegerin, osterix, runx2, and osteopontin were increased by 3.6, 2.3, 1.8, and 1.7-fold, respectively, with a concomitant decrease in the mRNA expression levels of adipocyte marker genes. Interestingly, blocking the effects of both Sirt1 and insulin resulted in decreased osteoblastogenesis (60%) and subsequent increased adipocyte differentiation (195%) (P<0.05). Moreover, immunoblotting analysis demonstrated that this activation was via an Akt-dependent pathway. In conclusion, the present data suggests an enhanced process of osteoblast differentiation that can be exploited further to improve mESC differentiation.
Collapse
Affiliation(s)
- Swati Srivastava
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | | | | |
Collapse
|
49
|
Gupta A, Cao W, Chellaiah MA. Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis. Mol Cancer 2012; 11:66. [PMID: 22966907 PMCID: PMC3499378 DOI: 10.1186/1476-4598-11-66] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/14/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL), a protein essential for osteoclast differentiation and activation. However, the mechanism(s) by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells. RESULTS We show here that phosphorylation of Smad 5 by integrin αvβ3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4) detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations. CONCLUSIONS Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvβ3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, 21201, USA
| | - Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People’s hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
50
|
Muñoz-Moreno L, Arenas MI, Schally AV, Fernández-Martínez AB, Zarka E, González-Santander M, Carmena MJ, Vacas E, Prieto JC, Bajo AM. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer. Int J Cancer 2012; 132:755-65. [PMID: 22777643 DOI: 10.1002/ijc.27716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/11/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023]
Abstract
New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|