1
|
Wang X, Gu Z, Huang Y, Wang J, Tang S, Yang X, Wang J. MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway. Eur J Med Res 2024; 29:631. [PMID: 39732711 DOI: 10.1186/s40001-024-02248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis. METHODS C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups. Based on transfection and drug intervention, HK-2 cells were divided into blank control, TGF-β1, TGF-β1 + fenofibrate (PPARα agonist), mimics-NC, miR-668, mimics-NC + TGF-β1, miR-668 + TGF-β1, miR-668 + TGF-β1 + fenofibrate, miR-668 + TGF-β1 + GW6471 (PPARα inhibitor), mimics-NC + TGF-β1 + fenofibrate, and mimics-NC + TGF-β1 + GW6471 groups. The pathological changes in the renal tissues were observed by hematoxylin-eosin (HE) and Masson staining. The expression of PPARα, PGC-1α, miR-668, E-cadherin, Collagen III (Col III), and α-SMA in the renal tissues or HK-2 cells was detected by western blot, immunohistochemical analyses or real-time quantitative polymerase chain reaction. The regulatory effect of miR-668 on PPARα was verified by dual-luciferase reporter assay. RESULTS The expression of PPARα and PGC-1α decreased in UUO mice and TGF-β1-induced HK-2 cells, which was improved by fenofibrate. Compared to the non-transfected group, in TGF-β1-stimulated HK-2 cells, the expression of E-cadherin, PPARα and PGC-1α increased and the expression of Col III and α-SMA decreased in the miR-668-transfected group. The dual-luciferase reporter assay indicated the regulatory effect of hsa-mir-668-3p on PPARα. CONCLUSION MiR-668 can target PPARα and positively regulate the PPARα/PGC-1α pathway to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Zhoupeng Gu
- The Public Hospital Management Office, Zhuzhou, China
| | - Yan Huang
- Department of Rheumatology and Immunology, The Xiangya Changde Hospital, Central South University, Changde, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shiqi Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xinyu Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.
- The Critical Kidney Disease Research Center of Central South University, Changsha, China.
| |
Collapse
|
2
|
Wang P, Yang J, Dai S, Gao P, Qi Y, Zhao X, Liu J, Wang Y, Gao Y. miRNA-193a-mediated WT1 suppression triggers podocyte injury through activation of the EZH2/β-catenin/NLRP3 pathway in children with diabetic nephropathy. Exp Cell Res 2024; 442:114238. [PMID: 39251057 DOI: 10.1016/j.yexcr.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/β-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, β-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/β-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/β-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.
Collapse
Affiliation(s)
- Peng Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Jing Yang
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Shasha Dai
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Pinli Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Ying Qi
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Xiaowei Zhao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Juan Liu
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yingying Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yang Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China.
| |
Collapse
|
3
|
Zahari Sham SY, Ng CT, Azwar S, Yip WK, Abdullah M, Thevandran K, Osman M, Seow HF. Circulating miRNAs in Type 2 Diabetic Patients with and without Albuminuria in Malaysia. Kidney Blood Press Res 2022; 47:81-93. [PMID: 35158353 DOI: 10.1159/000518866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease. Dysregulation of circulating miRNAs has been reported, suggesting their pathological roles in DKD. This study aimed to investigate differentially expressed miRNAs in the sera of type 2 diabetes mellitus (T2DM) patients with and without albuminuria in a selected Malaysian population. METHOD Forty-one T2DM patients on follow-up at a community clinic were divided into normo-(NA), micro-(MIC), and macroalbuminuria (MAC) groups. Differential levels of miRNAs in 12 samples were determined using the pathway-focused (human fibrosis) miScript miRNA qPCR array and was validated in 33 samples, using the miScript custom qPCR array (CMIHS02742) (Qiagen GmbH, Hilden, Germany). RESULTS Trends of upregulation of 3 miRNAs in the serum, namely, miR-874-3p, miR-101-3p, and miR-145-5p of T2DM patients with MAC compared to those with NA. Statistically significant upregulation of miR-874-3p (p = 0.04) and miR-101-3p (p = 0.01) was seen in validation cohort. Significant negative correlations between the estimated glomerular filtration rate (eGFR) and miR-874-3p (p = 0.05), miR-101-3p (p = 0.03), and miR-145-5p (p = 0.05) as well as positive correlation between miR-874-3p and age (p = 0.03) were shown by Pearson's correlation coefficient analysis. CONCLUSION Upregulation of previously known miRNA, namely, miR-145-5p, and possibly novel ones, namely, miR-874-3p and miR-101-3p in the serum of T2DM patients, was found in this study. There was a significant correlation between the eGFR and these miRNAs. The findings of this study have provided encouraging evidence to further investigate the putative roles of these differentially expressed miRNAs in DKD.
Collapse
Affiliation(s)
- Siti Yazmin Zahari Sham
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chin Tat Ng
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kalaiselvam Thevandran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malina Osman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Liang L, Li S, Liu H, Mao Y, Liu L, Zhang X, Peng W, Xiao Y, Zhang F, Shi M, Wang Y, Guo B. Blood glucose control contributes to protein stability of Ski-related novel protein N in a rat model of diabetes. Exp Ther Med 2021; 22:1341. [PMID: 34630695 DOI: 10.3892/etm.2021.10776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 06/30/2021] [Indexed: 11/05/2022] Open
Abstract
Ski-related novel protein N (SnoN) negatively regulates the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway and is present at a low level during diabetic nephropathy (DN), but its underlying regulatory mechanism is currently unknown. The present study aimed to assess the effects of insulin-controlled blood glucose on renal SnoN expression and fibrosis in rats with diabetes mellitus (DM). Streptozotocin-induced DM rats were treated with insulin glargine (INS group) following successful model establishment. Blood samples were collected and centrifuged for biochemical indexes and the kidneys were collected for morphological analysis. In vitro, rat renal proximal tubular epithelial cells were treated with high-glucose medium for 24 h and transferred to normal glucose medium for 24 h. The expression levels of TGF-β1, SnoN, Smad ubiquitin regulatory factor 2 (Smurf2), Arkadia, Smads, E-cadherin, α-smooth muscle actin and collagen III were assessed by western blotting and immunohistochemistry. The ubiquitylation of SnoN was detected by immunoprecipitation, and the expression levels of SnoN mRNA were evaluated by reverse transcription-quantitative PCR. The biochemical parameters and morphology indicated that renal fibrosis was notable in the DM group and mitigated in the INS group. Compared with the control group, TGF-β1, phosphor (p)-Smad2, p-Smad3, Smurf2 and Arkadia levels were enhanced in the DM group, and the levels of SnoN protein were decreased, whereas the levels of SnoN mRNA and ubiquitylation were increased in renal tissues. Notably, treatment with insulin reversed this trend. Furthermore, changing the glucose levels in the medium from high to normal glucose suppressed the epithelial-mesenchymal transition of NRK-52E cells by restoring the SnoN protein levels, and this phenomenon was impaired by the knockout of SnoN. SnoN protein levels were likely reduced through a mechanism enhanced by the ubiquitin proteasome system, which reversed the transcriptional activation of SnoN during DN progression. In addition, controlling blood glucose may delay DN fibrosis by rescuing the protein stability of SnoN.
Collapse
Affiliation(s)
- Luqun Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Shuang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Huiming Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yanwen Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Lingling Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaohuan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Wei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Ying Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yuanyuan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
5
|
Monjezi A, Khedri A, Zakerkish M, Mohammadzadeh G. Resistin, TNF-α, and microRNA 124-3p expressions in peripheral blood mononuclear cells are associated with diabetic nephropathy. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Shihana F, Barron ML, Mohamed F, Seth D, Buckley NA. MicroRNAs in toxic acute kidney injury: Systematic scoping review of the current status. Pharmacol Res Perspect 2021; 9:e00695. [PMID: 33600084 PMCID: PMC7891060 DOI: 10.1002/prp2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/14/2022] Open
Abstract
Acute kidney injury induced by nephrotoxic agents is common, increasing in incidence and associated with considerable morbidity and mortality in developing countries. MicroRNAs are stable biomarkers that can be detected in extracellular fluids. This systematic scoping review aims to describe published research on urinary and circulating microRNAs in toxic acute kidney injury in both animal and human studies. We conducted a literature search, using EMBASE and Medline, for articles on urinary and circulating microRNA in nephrotoxic injuries to February 2020. A total of 21 publications studied acute kidney injury from 12 different toxic agents. Cisplatin was the most common nephrotoxic agent (n = 10), followed by antibiotics (n = 4). There were no randomized controlled trials. An increase in urinary miR-218 predicted acute kidney injury in six different studies, suggesting it is a promising biomarker for nephrotoxin-induced acute kidney injury. There were many factors that prevented a more comprehensive synthesis of microRNA performance including highly variable models, no consistent protocols for RNA isolation, cDNA synthesis and PCR amplification, and variability in normalization methods using reference controls. In conclusion, while microRNAs are promising biomarkers to study nephrotoxic acute kidney injury, the replication of most positive findings is not assessable due to deficient reporting of negative outcomes. A very narrow range of poisons have been studied, and more human data are required. In particular, further studies are needed on the most important causes of nephrotoxic injury, such as pesticides, chemicals, snake envenoming, and medicines other than aminoglycosides and cisplatin.
Collapse
Affiliation(s)
- Fathima Shihana
- Clinical Pharmacology and Toxicology Research GroupDiscipline of PharmacologyFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- South Asian Clinical Toxicology of Research CollaborationFaculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Melissa L. Barron
- Department of PharmacyFaculty of Allied Health SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Fahim Mohamed
- Clinical Pharmacology and Toxicology Research GroupDiscipline of PharmacologyFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- South Asian Clinical Toxicology of Research CollaborationFaculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
- Department of PharmacyFaculty of Allied Health SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Devanshi Seth
- Discipline of Clinical Medicine & Addiction MedicineFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Drug Health ServicesRoyal Prince Alfred HospitalCamperdownNSWAustralia
- The Centenary Institute of Cancer Medicine & Cell BiologyThe University of SydneySydneyNSWAustralia
| | - Nicholas A. Buckley
- Clinical Pharmacology and Toxicology Research GroupDiscipline of PharmacologyFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- South Asian Clinical Toxicology of Research CollaborationFaculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
| |
Collapse
|
7
|
Helal HG, Rashed MH, Abdullah OA, Salem TI, Daifalla A. MicroRNAs (−146a, −21 and −34a) are diagnostic and prognostic biomarkers for diabetic retinopathy. Biomed J 2020; 44:S242-S251. [PMID: 35304162 PMCID: PMC9068559 DOI: 10.1016/j.bj.2020.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
Background Diabetic retinopathy (DR) is implicated in blindness of diabetic patients. Early diagnosis of DR is very essential to ensure good prognosis. The role of microRNAs (miRs) as biomarker diagnostic tools in DR is not fully investigated. The present study aimed to find the relation between serum relative expression of microRNAs (miR-146a, miR-21 and miR-34a) and severity of DR and to what extent their expression pattern can be used as either diagnostic or prognostic. Methods Eighty type 2 diabetic patients were classified according to severity of DR into normal, mild, moderate, severe non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). Serum relative expressions of miRNAs were evaluated by qPCR and statistically analysed in each stage using Analysis of Variance (ANOVA) followed by Tuckey-Kramer post-test. Results Serum relative expressions of miR-146a and miR-21 were increased with increased severity of DR. miR-34a decreased with the severity of DR. The expression pattern in each group in relation to normal fundus group could be diagnostic and prognostic where miR-146a was only increased in mild group and continued with the severity. In moderate group miR-21 start to increase along with slight decrease in miR-34a. In severe NPDR group along with highly increased levels of both miR-146a and miR-21, a marked decrease in miR-34a. In PDR group miR-34a was almost diminished along with very high levels of both miR-146a and miR-21. Conclusions miRs (−146a,-21 and-34a) are promising biomarkers in DR and can help to avoid disease progression.
Collapse
Affiliation(s)
- Hend Gouda Helal
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Mohammed H Rashed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Omnia Alsaied Abdullah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer Ibrahim Salem
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed Daifalla
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
8
|
Abdelsalam M, Wahab AM, El Sayed Zaki M, Motawea M. MicroRNA-451 as an Early Predictor of Chronic Kidney Disease in Diabetic Nephropathy. Int J Nephrol 2020; 2020:8075376. [PMID: 32855824 PMCID: PMC7443237 DOI: 10.1155/2020/8075376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Diabetes mellitus is the leading cause of end-stage renal disease worldwide. Microalbuminuria is the cornerstone for the diagnosis of diabetic nephropathy. However, it is an inadequate marker for early diagnosis. MicroRNAs are not only new and promising markers for early diagnosis but also, but they may also play a role in the prevention of disease progression. METHODS This study included ninety patients with type 2 DM in addition to 30 control subjects. MicroRNA-451 expression in blood and plasma using real-time PCR was evaluated in addition to the classic diabetic nephropathy markers (serum creatinine, urinary albumin, and eGFR). RESULTS There was a significant difference between the studied groups versus control regarding serum creatinine, eGFR, urinary, and plasma microRNA-451 with p=0.0001. Patients with eGFR 60 ml/min/1.73 m2 showed a significantly higher plasma microRNA-451 (29.6 ± 1.6) and significantly lower urinary microRNA-451 (21 ± 0.9) in comparison to patients with eGFR >60 ml/min/1.73 m2 and p=0.0001. eGFR showed a positive correlation with urinary microRNA-451 and negative correlation with both plasma microRNA-451 and urinary albumin. Both plasma and urinary microRNA-451 are highly sensitive and specific markers for chronicity in diabetic nephropathy patients with sensitivity of 90.9% and 95.5% and specificity of 67.6% and 95.6%, respectively. CONCLUSION MicroRNA-451 is a promising early biomarker for chronic kidney disease in diabetic nephropathy with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - A. M. Wahab
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamad Motawea
- Endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Baker MA, Wang F, Liu Y, Kriegel AJ, Geurts AM, Usa K, Xue H, Wang D, Kong Y, Liang M. MiR-192-5p in the Kidney Protects Against the Development of Hypertension. Hypertension 2019; 73:399-406. [PMID: 30595117 DOI: 10.1161/hypertensionaha.118.11875] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNA miR-192-5p is one of the most abundant microRNAs in the kidney and targets the mRNA for ATP1B1 (β1 subunit of Na+/K+-ATPase). Na+/K+-ATPase drives renal tubular reabsorption. We hypothesized that miR-192-5p in the kidney would protect against the development of hypertension. We found miR-192-5p levels were significantly lower in kidney biopsy specimens from patients with hypertension (n=8) or hypertensive nephrosclerosis (n=32) compared with levels in controls (n=10). Similarly, Dahl salt-sensitive (SS) rats showed a reduced abundance of miR-192-5p in the renal cortex compared with congenic SS.13BN26 rats that had reduced salt sensitivity (n=9; P<0.05). Treatment with anti-miR-192-5p delivered through renal artery injection in uninephrectomized SS.13BN26 rats exacerbated hypertension significantly. Mean arterial pressure on a 4% NaCl high-salt diet at day 14 post anti-miR-192-5p treatment was 16 mm Hg higher than in rats treated with scrambled anti-miR (n=8 and 6; P<0.05). Similarly, Mir192 knockout mice on the high-salt diet treated with Ang II (angiotensin II) for 14 days exhibited a mean arterial pressure 22 mm Hg higher than wild-type mice (n=9 and 5; P<0.05). Furthermore, protein levels of ATP1B1 were higher in Dahl SS rats than in SS.13BN26 rats. Na+/K+-ATPase activity increased in the renal cortex of SS.13BN26 rats 9 days posttreatment with anti-miR-192-5p compared with that of control anti-miR treated rats. Intrarenal knockdown of ATP1B1 attenuated hypertension in SS.13BN26 rats with intrarenal knockdown of miR-192-5p. In conclusion, miR-192-5p in the kidney protects against the development of hypertension, which is mediated, at least in part, by targeting Atp1b1.
Collapse
Affiliation(s)
- Maria Angeles Baker
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Feng Wang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.)
| | - Yong Liu
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Alison J Kriegel
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Aron M Geurts
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Kristie Usa
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Hong Xue
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Dandan Wang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Yiwei Kong
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.)
| | - Mingyu Liang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| |
Collapse
|
10
|
Saadi G, El Meligi A, El-Ansary M, Alkemary A, Ahmed G. Evaluation of microRNA-192 in patients with diabetic nephropathy. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_89_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Li X, Pan X, Fu X, Yang Y, Chen J, Lin W. MicroRNA-26a: An Emerging Regulator of Renal Biology and Disease. Kidney Blood Press Res 2019; 44:287-297. [PMID: 31163420 DOI: 10.1159/000499646] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that modulate many key biological processes by simultaneously suppressing multiple target genes. Among them, miR-26a, a conserved miRNA among vertebrates, is highly expressed in various tissues. Accumulating evidence demonstrates that miR-26a plays pivotal roles in cellular differentiation, cell growth, apoptosis, and metastasis, thereby participating in the initiation and development of various human diseases, such as metabolic disease and cancer. More recently, miR-26a was found as a versatile regulator of renal biology and disease. miR-26a is intensively involved in the maintenance of podocyte homeostasis and the actin cytoskeleton. It is also able to modulate the homeostasis and function of mesangial cells. In addition, miR-26a affects the expansion of regulatory T cells in the context of ischemia-reperfusion injury and autoimmune diabetes and thus protects the renal system from immune attack. These available data strongly suggest that renal miR-26a possesses critical pathological functions and represents a potential target for renal disease therapies. This review summarizes current knowledge of miR-26a in renal biology and disease, laying the foundation for exploring its previously unknown functions and mechanisms in the renal system.
Collapse
Affiliation(s)
- Xiaoyan Li
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Pan
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
12
|
Huang C, Zheng Y, Chen Y, Cheng Y, Jiang Y, Cai M, Song D. miR-216a-5p promotes mesangial cell proliferation by targeting FoxO1 in diabetic nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:344-355. [PMID: 31933751 PMCID: PMC6944002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a leading cause of end-stage renal disease worldwide. microRNAs (miRNAs) have been reported to play essential roles in DN progression. However, the mechanism of miR-216a-5p on DN progression is still unclear. METHODS A DN model was established in human mesangial cells (HMC) by high glucose treatment. Cell proliferation was investigated using the cell counting kit-8 (CCK-8) assay. The cell cycle was measured through a propidium iodide (PI) cell cycle kit with flow cytometry. The interaction between miR-216a-5p and forkhead boxO1 (FoxO1) was probed by a bioinformatics analysis and luciferase activity assay. The expression of miR-216a-5p was detected using a quantitative real-time polymerase chain reaction (qRT-PCR). The abundances of FoxO1 and cell cycle-related cyclinD1, cyclin-dependent kinase 4 (CDK4), CDK6 and p27 were examined by qRT-PCR and Western blots (WB). RESULTS miR-216a-5p was up-regulated while FoxO1 was down-regulated in DN tissues. Moreover, miR-216a-5p promoted cell proliferation by regulating the cell cycle in high glucose-treated HMC cells. Notably, FoxO1 was a direct target and negatively correlated with miR-216a-5p. In addition, miR-216a induced cyclinD1, CDK4 and CDK6 but inhibited p27 expressions at the mRNA and protein levels. Furthermore, FoxO1 restoration reversed the regulatory effect of miR-216a on the cell cycle by regulating cyclinD1, CDK4, CDK6 and p27 abundances at the mRNA and protein levels. CONCLUSION miR-216a-5p is ectopic in DN and it promotes cell proliferation through regulating the cell cycle by targeting FoxO1 in high glucose-stimulated HMC cells, indicating it may serve as a novel biomarker for DN treatment.
Collapse
Affiliation(s)
- Cong Huang
- Department of Nephrology, Shenzhen Guangming New District People’s HospitalShenzhen, China
| | - Yi Zheng
- Central Laboratory, Shenzhen Guangming New District People’s HospitalShenzhen, China
| | - Yuanzhen Chen
- Department of Nephrology, Shenzhen Guangming New District People’s HospitalShenzhen, China
| | - Yuchang Cheng
- Department of Nephrology, Shenzhen Guangming New District People’s HospitalShenzhen, China
| | - Ying Jiang
- Department of Nephrology, Shenzhen Guangming New District People’s HospitalShenzhen, China
| | - Miaoyan Cai
- Department of Nephrology, Shenzhen Guangming New District People’s HospitalShenzhen, China
| | - Dan Song
- Department of Nephrology, Shenzhen Guangming New District People’s HospitalShenzhen, China
| |
Collapse
|
13
|
Zheng Z, Ma T, Lian X, Gao J, Wang W, Weng W, Lu X, Sun W, Cheng Y, Fu Y, Rane MJ, Gozal E, Cai L. Clopidogrel Reduces Fibronectin Accumulation and Improves Diabetes-Induced Renal Fibrosis. Int J Biol Sci 2019; 15:239-252. [PMID: 30662363 PMCID: PMC6329922 DOI: 10.7150/ijbs.29063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia-induced renal fibrosis causes end-stage renal disease. Clopidogrel, a platelet inhibitor, is often administered to decrease cardiovascular events in diabetic patients. We investigated whether clopidogrel can reduce diabetes-induced renal fibrosis in a streptozotocin-induced type 1 diabetes murine model and fibronectin involvement in this protective response. Diabetic and age-matched controls were sacrificed three months after the onset of diabetes, and additional controls and diabetic animals were further treated with clopidogrel or vehicle for three months. Diabetes induced renal morphological changes and fibrosis after three months. Clopidogrel, administered during the last three months, significantly decreased blood glucose, collagen and fibronectin expression compared to vehicle-treated diabetic mice. Diabetes increased TGF-β expression, inducing fibrosis via Smad-independent pathways, MAP kinases, and Akt activation at three months but returned to baseline at six months, whereas the expression of fibronectin and collagen remained elevated. Our results suggest that activation of TGF-β, CTGF, and MAP kinases are early profibrotic signaling events, resulting in significant fibronectin accumulation at the early time point and returning to baseline at a later time point. Akt activation at the three-month time point may serve as an adaptive response in T1D. Mechanisms of clopidogrel therapeutic effect on the diabetic kidney remain to be investigated as this clinically approved compound could provide novel approaches to prevent diabetes-induced renal disease, therefore improving patients' survival.
Collapse
Affiliation(s)
- Zongyu Zheng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Tianjiao Ma
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Rheumatology and Immunology, China-Japan Union Hospital of the Jilin University, Changchun 130033, China
| | - Xin Lian
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jialin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weigang Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Wenya Weng
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- The Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Xuemian Lu
- The Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaowen Fu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Madhavi J. Rane
- Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Evelyne Gozal
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
14
|
Type 1 diabetes mellitus induces structural changes and molecular remodelling in the rat kidney. Mol Cell Biochem 2018; 449:9-25. [DOI: 10.1007/s11010-018-3338-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
|
15
|
Tabatabaeifar M, Wlodkowski T, Simic I, Denc H, Mollet G, Weber S, Moyers JJ, Brühl B, Randles MJ, Lennon R, Antignac C, Schaefer F. An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS One 2017; 12:e0186574. [PMID: 29049388 PMCID: PMC5648285 DOI: 10.1371/journal.pone.0186574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4–5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11–13) weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12–16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria, glomerulosclerosis and progressive renal failure.
Collapse
Affiliation(s)
- Mansoureh Tabatabaeifar
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanja Wlodkowski
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ivana Simic
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Helga Denc
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Geraldine Mollet
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Stefanie Weber
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Philipps-University Marburg, Marburg, Germany
| | | | - Barbara Brühl
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Michael Joseph Randles
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Corinne Antignac
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Department of Genetics, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
16
|
Lee HW, Khan SQ, Khaliqdina S, Altintas MM, Grahammer F, Zhao JL, Koh KH, Tardi NJ, Faridi MH, Geraghty T, Cimbaluk DJ, Susztak K, Moita LF, Baltimore D, Tharaux PL, Huber TB, Kretzler M, Bitzer M, Reiser J, Gupta V. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem 2016; 292:732-747. [PMID: 27913625 DOI: 10.1074/jbc.m116.753822] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
Podocyte injury is an early event in diabetic kidney disease and is a hallmark of glomerulopathy. MicroRNA-146a (miR-146a) is highly expressed in many cell types under homeostatic conditions, and plays an important anti-inflammatory role in myeloid cells. However, its role in podocytes is unclear. Here, we show that miR-146a expression levels decrease in the glomeruli of patients with type 2 diabetes (T2D), which correlates with increased albuminuria and glomerular damage. miR-146a levels are also significantly reduced in the glomeruli of albuminuric BTBR ob/ob mice, indicating its significant role in maintaining podocyte health. miR-146a-deficient mice (miR-146a-/-) showed accelerated development of glomerulopathy and albuminuria upon streptozotocin (STZ)-induced hyperglycemia. The miR-146a targets, Notch-1 and ErbB4, were also significantly up-regulated in the glomeruli of diabetic patients and mice, suggesting induction of the downstream TGFβ signaling. Treatment with a pan-ErbB kinase inhibitor erlotinib with nanomolar activity against ErbB4 significantly suppressed diabetic glomerular injury and albuminuria in both WT and miR-146a-/- animals. Treatment of podocytes in vitro with TGF-β1 resulted in increased expression of Notch-1, ErbB4, pErbB4, and pEGFR, the heterodimerization partner of ErbB4, suggesting increased ErbB4/EGFR signaling. TGF-β1 also increased levels of inflammatory cytokine monocyte chemoattractant protein-1 (MCP-1) and MCP-1 induced protein-1 (MCPIP1), a suppressor of miR-146a, suggesting an autocrine loop. Inhibition of ErbB4/EGFR with erlotinib co-treatment of podocytes suppressed this signaling. Our findings suggest a novel role for miR-146a in protecting against diabetic glomerulopathy and podocyte injury. They also point to ErbB4/EGFR as a novel, druggable target for therapeutic intervention, especially because several pan-ErbB inhibitors are clinically available.
Collapse
Affiliation(s)
- Ha Won Lee
- From the Departments of Internal Medicine and
| | | | | | | | - Florian Grahammer
- the Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jimmy L Zhao
- the Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, New York 10065.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Kwi Hye Koh
- From the Departments of Internal Medicine and
| | | | | | | | - David J Cimbaluk
- Pathology, Rush University Medical Center, Chicago, Illinois 60612
| | - Katalin Susztak
- the Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Luis F Moita
- the Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - David Baltimore
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Pierre-Louis Tharaux
- the Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France and the Université Paris Descartes, Sorbonne Paris Cité, 75270 Paris, France
| | - Tobias B Huber
- the Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,the BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,the FRIAS, Freiburg Institute for Advanced Studies and ZBSA-Center for Systems Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany, and
| | - Matthias Kretzler
- the Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109
| | - Markus Bitzer
- the Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
17
|
Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges. Toxicol Appl Pharmacol 2016; 312:34-41. [DOI: 10.1016/j.taap.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
|
18
|
Wang M, Yao D, Wang S, Yan Q, Lu W. Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy. Endocrine 2016; 54:81-92. [PMID: 27083175 DOI: 10.1007/s12020-016-0950-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
Diabetic nephropathy as the primary cause of end-stage renal disease reveals an increased incidence in patients with kidney disease as the continuous rising of type 2 diabetes. Long non-coding RNAs (lncRNAs) are involved in the development of many diseases including diabetes; however, the role of lncRNAs in diabetic nephropathy is still unclear. In the present study, lncRNA microarray analysis was used to identify abnormally expressed lncRNAs and nearby mRNAs in renal cortical tissues dissected from kidney of db/db and db/m mice. After verifying the data from microarray analysis by quantitative RT-PCR, downregulated ENSMUST00000147869 associated with Cyp4a12a was selected for overexpression in mouse mesangial cells among differentially expressed lncRNAs. Cell Counting Kit-8, Western blotting, and quantitative RT-PCR showed that proliferation and fibrosis indexes were reversed in mesangial cells with ENSMUST00000147869 overexpression. Our data suggested the potential role of ENSMUST00000147869 in proliferation and fibrosis of mesangial cells, which provided a molecular biomarker and therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China
| | - Di Yao
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China
| | - Suyu Wang
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China
| | - Qin Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, P. R. China.
- Department of Microbiology, Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Weiping Lu
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China.
| |
Collapse
|
19
|
Abstract
Diabetes and diabetic kidney diseases have continually exerted a great burden on our society. Although the recent advances in medical research have led to a much better understanding of diabetic kidney diseases, there is still no successful strategy for effective treatments for diabetic kidney diseases. Recently, treatment of diabetic kidney diseases relies either on drugs that reduce the progression of renal injury or on renal replacement therapies, such as dialysis and kidney transplantation. On the other hand, searching for biomarkers for early diagnosis and effective therapy is also urgent. Discovery of microRNAs has opened to a novel field for posttranscriptional regulation of gene expression. Results from cell culture experiments, experimental animal models, and patients under diabetic conditions reveal the critical role of microRNAs during the progression of diabetic kidney diseases. Functional studies demonstrate not only the capability of microRNAs to regulate expression of target genes, but also their therapeutic potential to diabetic kidney diseases. The existence of microRNAs in plasma, serum, and urine suggests their possibility to be biomarkers in diabetic kidney diseases. Thus, identification of the functional role of microRNAs provides an essentially clinical impact in terms of prevention and treatment of progression in diabetic kidney diseases as it enables us to develop novel, specific therapies and diagnostic tools for diabetic kidney diseases.
Collapse
|
20
|
Majumder S, Advani A. The epigenetic regulation of podocyte function in diabetes. J Diabetes Complications 2015; 29:1337-44. [PMID: 26344726 DOI: 10.1016/j.jdiacomp.2015.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/06/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Chronic hyperglycemia early in the course of diabetes confers a sustained increase in the risk of complications development. In recent years, efforts to understand the molecular basis for this "metabolic memory" have focused on epigenetic mechanisms as a means by which transient high glucose can cause persistent and propagated changes in cell function. For instance, in vascular endothelial cells, smooth muscle cells and peripheral blood cells, temporary exposure to high glucose causes changes in epigenetic marks that promote a shift towards a pro-inflammatory phenotype. However, the influence of epigenetic processes in complications development extends beyond their contribution to metabolic memory. Podocytes, for example, are terminally differentiated cells of the renal glomerulus whose injury is a major contributor to the pathogenesis of nephropathy. Over recent months, several reports have emerged describing the essential actions of histone-modifying enzymes and DNA methylation patterns (the two principal epigenetic mechanisms) in maintaining podocyte integrity, especially under diabetic conditions. Here, we review the known and potential role of epigenetic processes within podocytes, focusing on the evidence linking these processes to oxidative stress, crosstalk with tubule cells, autophagy and slit-pore protein expression. Whether podocytes themselves exhibit a metabolic memory awaits to be seen.
Collapse
MESH Headings
- Acetylation
- Animals
- Autophagy
- DNA Methylation
- Diabetes Complications/genetics
- Diabetes Complications/metabolism
- Diabetes Complications/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epigenesis, Genetic
- Evidence-Based Medicine
- Gene Expression Regulation, Developmental
- Histones/metabolism
- Humans
- Models, Biological
- Oxidative Stress
- Podocytes/metabolism
- Podocytes/pathology
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 2015; 1353:72-88. [PMID: 25877817 PMCID: PMC4607544 DOI: 10.1111/nyas.12758] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by posttranscriptional and epigenetic mechanisms and thereby affect many cellular processes and disease states. Over 2,000 human mature miRNAs have been identified, and at least 60% of all human protein-coding genes are known to be regulated by miRNAs. MicroRNA biogenesis involves classical transcription regulation and processing by key ribonucleases, as well as other protein factors and epigenetic mechanisms. Diabetic nephropathy (DN), a severe microvascular complication frequently associated with diabetes mellitus, is a major cause of renal failure. Although several mechanisms of regulation of key renal genes implicated in DN pathogenesis have been identified, a greater understanding is needed to develop better treatment modalities. Recent studies show that miRNAs induced in renal cells in vivo and in vitro under diabetic conditions can promote the accumulation of extracellular matrix proteins related to fibrosis and glomerular dysfunction. In this review, we highlight the significance of the expression of miRNAs in various stages of DN and emerging approaches to exploit them as biomarkers for early detection or novel therapeutic targets to prevent progression of DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
22
|
Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015; 27:1276-85. [PMID: 25797045 PMCID: PMC4437875 DOI: 10.1016/j.cellsig.2015.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Nandini Ghosh-Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
23
|
Putting the glomerulus back together: per aspera ad astra ("a rough road leads to the stars"). Kidney Int 2015; 85:991-8. [PMID: 24786868 DOI: 10.1038/ki.2014.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Gupta V, Reiser J. MicroRNAs: a macroview into focal segmental glomerulosclerosis. Am J Kidney Dis 2015; 65:206-8. [PMID: 25616630 DOI: 10.1053/j.ajkd.2014.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 10/24/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Vineet Gupta
- Rush University Medical Center, Chicago, Illinois.
| | | |
Collapse
|
25
|
Park JT, Kato M, Lanting L, Castro N, Nam BY, Wang M, Kang SW, Natarajan R. Repression of let-7 by transforming growth factor-β1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am J Physiol Renal Physiol 2014; 307:F1390-403. [PMID: 25354942 DOI: 10.1152/ajprenal.00458.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Accumulation of mesangial extracellular matrix (ECM) proteins such as collagen type 1-α2 (Col1a2) and collagen type 4-α1 (Col4a1) is a key feature of diabetic nephropathy (DN). Transforming growth factor (TGF)-β1 plays important roles in ECM accumulation in DN, and evidence shows a mediatory role for microRNAs. In the present study, we found that microRNA let-7 family members (let-7b/c/d/g/i) were downregulated in TGF-β-treated mouse mesangial cells (MMCs) along with upregulation of Col1a2 and Col4a1. Ectopic expression of let-7b in TGF-β-treated MMCs attenuated Col1a2 and Col4a1 upregulation. Conversely, let-7b inhibitors increased Col1a2 and Col4a1 levels. Cotransfection of MMCs with mouse Col1a2 or Col4a1 3'-untranslated region luciferase constructs and let-7b inhibitors increased luciferase activity. However, constructs with let-7 target site mutations were unresponsive to TGF-β. TGF-β-induced 3'-untranslated region activity was attenuated by let-7b mimics, suggesting that Col1a2 and Col4a1 are direct targets of let-7b. In addition, Lin28b, a negative regulator of let-7 biogenesis, was upregulated in TGF-β-treated MMCs. Luciferase assays showed that the Lin28b promoter containing the Smad-binding element (SBE) responded to TGF-β, which was abolished in constructs without SBE. Chromatin immunoprecipitation assays showed TGF-β-induced enrichment of Smad2/3 at the Lin28b promoter, together suggesting that Lin28b is transcriptionally induced by TGF-β through SBE. Furthermore, let-7b levels were decreased, whereas Lin28b, Col1a2, and Col4a1 levels were increased, in glomeruli of diabetic mice compared with nondiabetic control mice, demonstrating the in vivo relevance of this Lin28/let-7/collagen axis. These results identify Lin28 as a new TGF-β target gene and suggest a novel role for the Lin28/let-7 pathway in controlling TGF-β-induced collagen accumulation in DN.
Collapse
Affiliation(s)
- Jung Tak Park
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea; and Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Mitsuo Kato
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Linda Lanting
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Nancy Castro
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea; and
| | - Mei Wang
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea; and
| | - Rama Natarajan
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
26
|
Moura J, Børsheim E, Carvalho E. The Role of MicroRNAs in Diabetic Complications-Special Emphasis on Wound Healing. Genes (Basel) 2014; 5:926-56. [PMID: 25268390 PMCID: PMC4276920 DOI: 10.3390/genes5040926] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Overweight and obesity are major problems in today’s society, driving the prevalence of diabetes and its related complications. It is important to understand the molecular mechanisms underlying the chronic complications in diabetes in order to develop better therapeutic approaches for these conditions. Some of the most important complications include macrovascular abnormalities, e.g., heart disease and atherosclerosis, and microvascular abnormalities, e.g., retinopathy, nephropathy and neuropathy, in particular diabetic foot ulceration. The highly conserved endogenous small non-coding RNA molecules, the micro RNAs (miRNAs) have in recent years been found to be involved in a number of biological processes, including the pathogenesis of disease. Their main function is to regulate post-transcriptional gene expression by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation, suppression of translation or even gene activation. These molecules are promising therapeutic targets and demonstrate great potential as diagnostic biomarkers for disease. This review aims to describe the most recent findings regarding the important roles of miRNAs in diabetes and its complications, with special attention given to the different phases of diabetic wound healing.
Collapse
Affiliation(s)
- João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal.
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, AR 72202, USA.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal.
| |
Collapse
|
27
|
Altorok N, Almeshal N, Wang Y, Kahaleh B. Epigenetics, the holy grail in the pathogenesis of systemic sclerosis. Rheumatology (Oxford) 2014; 54:1759-70. [DOI: 10.1093/rheumatology/keu155] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 11/14/2022] Open
|
28
|
MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol 2014; 29:565-74. [PMID: 23996519 PMCID: PMC3944105 DOI: 10.1007/s00467-013-2599-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of childhood chronic kidney disease (CKD). While mutations in several renal development genes have been identified as causes for CAKUT, most cases have not yet been linked to known mutations. Furthermore, the genotype-phenotype correlation is variable, suggesting that there might be additional factors that have an impact on the severity of CAKUT. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level, and are involved in many developmental processes. Although little is known about the function of specific miRNAs in kidney development, several have recently been shown to regulate the expression of, and/or are regulated by, crucial renal development genes present in other organ systems. In this review, we discuss how miRNA regulation of common developmental signaling pathways may be applicable to renal development. We focus on genes that are known to contribute to CAKUT in humans, for which miRNA interactions in other contexts have been identified, with miRNAs that are present in the kidney. We hypothesize that miRNA-mediated processes might play a role in kidney development through similar mechanisms, and speculate that genotypic variations in these small RNAs or their targets could be associated with CAKUT.
Collapse
|
29
|
Mall C, Rocke DM, Durbin-Johnson B, Weiss RH. Stability of miRNA in human urine supports its biomarker potential. Biomark Med 2014; 7:623-31. [PMID: 23905899 DOI: 10.2217/bmm.13.44] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM miRNAs are showing utility as biomarkers in urologic disease, however, a rigorous evaluation of their stability in urine is lacking. Here, we evaluate the stability of miRNAs in urine under clinically relevant storage procedures. MATERIALS & METHODS Eight healthy individuals provided clean catch urine samples that were stored at room temperature or at 4°C for 5 days, or subjected to ten freeze-thaw cycles at -80°C. For each condition, two miRNAs, miR-16 and miR-21, were quantitated by quantitative real-time PCR. RESULTS All conditions demonstrated a surprising degree of stability of miRNAs in the urine: by the end of ten freeze-thaw cycles, 23-37% of the initial amount remained; over the 5-day period of storage at room temperature, 35% of the initial amount remained; and at 4°C, 42-56% of the initial amount remained. Both miRNAs also showed degradation at approximately the same rate. CONCLUSION miRNAs are relatively stable in urine under a variety of storage conditions, which supports their utility as urinary biomarkers.
Collapse
Affiliation(s)
- Christine Mall
- Division of Nephrology, Department of Internal Medicine, Genome & Biomedical Sciences Building, Room 6312, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
30
|
Li R, Chung ACK, Yu X, Lan HY. MicroRNAs in Diabetic Kidney Disease. Int J Endocrinol 2014; 2014:593956. [PMID: 24550986 PMCID: PMC3914440 DOI: 10.1155/2014/593956] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023] Open
Abstract
Rapid growth of diabetes and diabetic kidney disease exerts a great burden on society. Owing to the lack of effective treatments for diabetic kidney disease, treatment relies on drugs that either reduces its progression or involve renal replacement therapies, such as dialysis and kidney transplantation. It is urgent to search for biomarkers for early diagnosis and effective therapy. The discovery of microRNAs had lead to a new era of post-transcriptional regulators of gene expression. Studies from cells, experimental animal models and patients under diabetic conditions demonstrate that expression patterns of microRNAs are altered during the progression of diabetic kidney disease. Functional studies indicate that the ability of microRNAs to bind 3' untranslated region of messenger RNA not only shows their capability to regulate expression of target genes, but also their therapeutic potential to diabetic kidney disease. The presence of microRNAs in plasma, serum, and urine has been shown to be possible biomarkers in diabetic kidney disease. Therefore, identification of the pathogenic role of microRNAs possesses an important clinical impact in terms of prevention and treatment of progression in diabetic kidney disease because it allows us to design novel and specific therapies and diagnostic tools for diabetic kidney disease.
Collapse
Affiliation(s)
- Rong Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong
- Department of Nephrology, The First People's Hospital of Yunnan Province, Yunnan, China
| | - Arthur C. K. Chung
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- *Arthur C. K. Chung:
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Y. Lan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
31
|
Li D, Lu Z, Jia J, Zheng Z, Lin S. MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res 2013; 37:422-31. [PMID: 24247359 DOI: 10.1159/000355721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Podocyte plays a key role in the pathogenesis of DN. Adhesive capacity damage of podocytes is characteristic in DN. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in controlling many cell adhesion molecules thus contribute to normal cell adhesion. The roles of miRNA in podocytic adhesive capacity damage in diabetic conditions remain largely unknown. METHODS Diabetes was induced by tail vein injection of streptozotocin (STZ) into uninephrectomized male Wistar rats. Comparative miRNA expression array and real-time PCR analyses were conducted in sham group at week 0 (W0, n = 3) and STZ-induced uninephrectomized diabetic rats at week 1 (W1, n = 3) and week 2 (W2, n = 3) to demonstrate the greatest increased miRNA in renal cortex. At week 2, STZ-induced uninephrectomized diabetic rats were treated with vehicle (Group U, n = 9), chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-124 (Group O, n = 8), miR-124 mismatch control sequence (Group M, n = 8). Urine specimens were obtained for measurement of urine albumin concentration and urinary podocyte specific protein (nephrin and podocin) quantitation. Expression of integrin α3 were detected by immunohistochemistry and western blotting. RESULTS MiRNAs are differentially regulated in renal cortex of STZ-induced uninephrectomized diabetic rats relative to sham rats. Among the up-regulated miRNAs, miR-124 expression demonstrated the greatest increase. Administration of miR-124 ASO for two weeks significantly reduced urinary podocytic nephrin, podocin and albumin excretion and up-regulate integrin α3 expression. CONCLUSION MiR-124 is related to podocytic adhesive capacity damage and may be implicated in the pathogenesis of DN.
Collapse
Affiliation(s)
- Dong Li
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | | | | | | | | |
Collapse
|
32
|
Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, Bruno G, Cimino D, Taverna D, Deregibus MC, Rastaldi MP, Perin PC, Gruden G. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One 2013; 8:e73798. [PMID: 24223694 PMCID: PMC3817183 DOI: 10.1371/journal.pone.0073798] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/23/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
- * E-mail:
| | - Marinella Tricarico
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Alessandro Corbelli
- Renal Research Laboratory, Fondazione IRCCS, Ospedale Maggiore Policlinico and Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milan, Italy
- MIA Consortium for Image Analysis, Milano Bicocca University, Milan, Italy
| | - Laura Annaratone
- Department of Biomedical Science and Human Oncology, University of Turin, Turin, Italy
| | - Silvia Pinach
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Serena Grimaldi
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Graziella Bruno
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Daniela Cimino
- Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Laboratory of Renal and Vascular Pathophysiology, Department of Medical Science, University of Turin, Turin, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS, Ospedale Maggiore Policlinico and Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Paolo Cavallo Perin
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Alvarez ML, Khosroheidari M, Eddy E, Kiefer J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 2013; 8:e77468. [PMID: 24204837 PMCID: PMC3808414 DOI: 10.1371/journal.pone.0077468] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/02/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy is the most common cause of chronic kidney failure and end-stage renal disease in the Western World. One of the major characteristics of this disease is the excessive accumulation of extracellular matrix (ECM) in the kidney glomeruli. While both environmental and genetic determinants are recognized for their role in the development of diabetic nephropathy, epigenetic factors, such as DNA methylation, long non-coding RNAs, and microRNAs, have also recently been found to underlie some of the biological mechanisms, including ECM accumulation, leading to the disease. We previously found that a long non-coding RNA, the plasmacytoma variant translocation 1 (PVT1), increases plasminogen activator inhibitor 1 (PAI-1) and transforming growth factor beta 1 (TGF-β1) in mesangial cells, the two main contributors to ECM accumulation in the glomeruli under hyperglycemic conditions, as well as fibronectin 1 (FN1), a major ECM component. Here, we report that miR-1207-5p, a PVT1-derived microRNA, is abundantly expressed in kidney cells, and is upregulated by glucose and TGF-β1. We also found that like PVT1, miR-1207-5p increases expression of TGF-β1, PAI-1, and FN1 but in a manner that is independent of its host gene. In addition, regulation of miR-1207-5p expression by glucose and TGFβ1 is independent of PVT1. These results provide evidence supporting important roles for miR-1207-5p and its host gene in the complex pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- M. Lucrecia Alvarez
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| | - Mahdieh Khosroheidari
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Elena Eddy
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jeff Kiefer
- Diabetes, Cardiovascular, and Metabolic Diseases Center, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
34
|
Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64:85-94. [PMID: 23770198 PMCID: PMC3762900 DOI: 10.1016/j.freeradbiomed.2013.06.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
The incidence of diabetes is escalating worldwide and, consequently, this has become a major health care problem. Moreover, both type 1 and type 2 diabetes are associated with significantly accelerated rates of microvascular complications, including retinopathy, nephropathy, and neuropathy, as well as macrovascular complications such as atherosclerotic cardiovascular and hypertensive diseases. Key factors have been implicated in leading to these complications, including hyperglycemia, insulin resistance, dyslipidemia, advanced glycation end products, growth factors, inflammatory cytokines/chemokines, and related increases in cellular oxidant stress (including mitochondrial) and endoplasmic reticulum stress. However, the molecular mechanisms underlying the high incidence of diabetic complications, which often progress despite glycemic control, are still not fully understood. MicroRNAs (miRNAs) are short noncoding RNAs that have elicited immense interest in recent years. They repress target gene expression via posttranscriptional mechanisms and have diverse cellular and biological functions. Herein, we discuss the role of miRNAs in the pathobiology of various diabetic complications, their involvement in oxidant stress, and also the potential use of differentially expressed miRNAs as novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
35
|
Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, Lanting LL, Kato M, Natarajan R. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 2013; 62:3151-62. [PMID: 23649518 PMCID: PMC3749352 DOI: 10.2337/db13-0305] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elevated p53 expression is associated with several kidney diseases including diabetic nephropathy (DN). However, the mechanisms are unclear. We report that expression levels of transforming growth factor-β1 (TGF-β), p53, and microRNA-192 (miR-192) are increased in the renal cortex of diabetic mice, and this is associated with enhanced glomerular expansion and fibrosis relative to nondiabetic mice. Targeting miR-192 with locked nucleic acid-modified inhibitors in vivo decreases expression of p53 in the renal cortex of control and streptozotocin-injected diabetic mice. Furthermore, mice with genetic deletion of miR-192 in vivo display attenuated renal cortical TGF-β and p53 expression when made diabetic, and have reduced renal fibrosis, hypertrophy, proteinuria, and albuminuria relative to diabetic wild-type mice. In vitro promoter regulation studies show that TGF-β induces reciprocal activation of miR-192 and p53, via the miR-192 target Zeb2, leading to augmentation of downstream events related to DN. Inverse correlation between miR-192 and Zeb2 was observed in glomeruli of human subjects with early DN, consistent with the mechanism seen in mice. Our results demonstrate for the first time a TGF-β-induced feedback amplification circuit between p53 and miR-192 related to the pathogenesis of DN, and that miR-192-knockout mice are protected from key features of DN.
Collapse
Affiliation(s)
- Supriya D. Deshpande
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Sumanth Putta
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mei Wang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Jennifer Y. Lai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Markus Bitzer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Linda L. Lanting
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mitsuo Kato
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
- Corresponding authors: Rama Natarajan, , and Mitsuo Kato,
| | - Rama Natarajan
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of the City of Hope, Duarte, California
- Corresponding authors: Rama Natarajan, , and Mitsuo Kato,
| |
Collapse
|
36
|
DiStefano JK, Taila M, Alvarez ML. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. Curr Diab Rep 2013; 13:582-91. [PMID: 23666892 DOI: 10.1007/s11892-013-0386-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the causes of diabetic nephropathy are not yet fully known, emerging evidence suggests a role for epigenetic factors in the development of the disease. In particular, microRNAs (miRNAs) are becoming recognized as important mediators of biological processes relevant to diabetic nephropathy. Until recently, investigations of miRNAs in the development of diabetic nephropathy have remained relatively limited; however, the number of reports identifying potential new candidates and mechanisms of impact is presently expanding at a rapid pace. This review seeks to summarize these recent findings, focusing on new candidates and/or novel mechanisms, including the intersection between genetic variation and miRNA function in modulating disease expression, emerging in the field. We also review the latest advances in the diagnostic and therapeutic potential of miRNAs in the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.
| | | | | |
Collapse
|
37
|
Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, Natarajan R. FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 2013; 288:22469-80. [PMID: 23788640 DOI: 10.1074/jbc.m113.453043] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glomerular hypertrophy is a hallmark of diabetic nephropathy. Akt kinase activated by transforming growth factor-β1 (TGF-β) plays an important role in glomerular mesangial hypertrophy. However, the mechanisms of Akt activation by TGF-β are not fully understood. Recently, miR-200 and its target FOG2 were reported to regulate the activity of phosphatidylinositol 3-kinase (the upstream activator of Akt) in insulin signaling. Here, we show that TGF-β activates Akt in glomerular mesangial cells by inducing miR-200b and miR-200c, both of which target FOG2, an inhibitor of phosphatidylinositol 3-kinase activation. FOG2 expression was reduced in the glomeruli of diabetic mice as well as TGF-β-treated mouse mesangial cells (MMC). FOG2 knockdown by siRNAs in MMC activated Akt and increased the protein content/cell ratio suggesting hypertrophy. A significant increase of miR-200b/c levels was detected in diabetic mouse glomeruli and TGF-β-treated MMC. Transfection of MMC with miR-200b/c mimics significantly decreased the expression of FOG2. Conversely, miR-200b/c inhibitors attenuated TGF-β-induced decrease in FOG2 expression. Furthermore, miR-200b/c mimics increased the protein content/cell ratio, whereas miR-200b/c inhibitors abrogated the TGF-β-induced increase in protein content/cell. In addition, down-regulation of FOG2 by miR-200b/c could activate not only Akt but also ERK, which was also through PI3K activation. These data suggest a new mechanism for TGF-β-induced Akt activation through FOG2 down-regulation by miR-200b/c, which can lead to glomerular mesangial hypertrophy in the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Tak Park
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kato M, Dang V, Wang M, Park JT, Deshpande S, Kadam S, Mardiros A, Zhan Y, Oettgen P, Putta S, Yuan H, Lanting L, Natarajan R. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal 2013; 6:ra43. [PMID: 23737551 DOI: 10.1126/scisignal.2003389] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs), such as miR-192, mediate the actions of transforming growth factor-β1 (TGF-β) related to the pathogenesis of diabetic kidney diseases. We found that the biphasic induction of miR-192 expression by TGF-β in mouse renal glomerular mesangial cells initially involved the Smad transcription factors, followed by sustained expression that was promoted by acetylation of the transcription factor Ets-1 and of histone H3 by the acetyltransferase p300, which was activated by the serine and threonine kinase Akt. In mesangial cells from Ets-1-deficient mice or in cells in which Ets-1 was knocked down, basal amounts of miR-192 were higher than those in control cells, but sustained induction of miR-192 by TGF-β was attenuated. Furthermore, inhibition of Akt or ectopic expression of dominant-negative histone acetyltransferases decreased p300-mediated acetylation and Ets-1 dissociation from the miR-192 promoter and prevented miR-192 expression in response to TGF-β. Activation of Akt and p300 and acetylation of Ets-1 and histone H3 were increased in glomeruli from diabetic db/db mice compared to nondiabetic db/+ mice, suggesting that this pathway may contribute to diabetic nephropathy. These findings provide insight into the regulation of miRNAs through signaling-mediated changes in transcription factor activity and in epigenetic histone acetylation under normal and disease states.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 2013; 19:481-7. [PMID: 23502960 DOI: 10.1038/nm.3142] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/16/2013] [Indexed: 02/08/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a frequent and severe glomerular disease characterized by destabilization of podocyte foot processes. We report that transgenic expression of the microRNA miR-193a in mice rapidly induces FSGS with extensive podocyte foot process effacement. Mechanistically, miR-193a inhibits the expression of the Wilms' tumor protein (WT1), a transcription factor and master regulator of podocyte differentiation and homeostasis. Decreased expression levels of WT1 lead to downregulation of its target genes PODXL (podocalyxin) and NPHS1 (nephrin), as well as several other genes crucial for the architecture of podocytes, initiating a catastrophic collapse of the entire podocyte-stabilizing system. We found upregulation of miR-193a in isolated glomeruli from individuals with FSGS compared to normal kidneys or individuals with other glomerular diseases. Thus, upregulation of miR-193a provides a new pathogenic mechanism for FSGS and is a potential therapeutic target.
Collapse
|
40
|
Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia 2013; 56:444-56. [PMID: 23135222 DOI: 10.1007/s00125-012-2768-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/09/2012] [Indexed: 12/23/2022]
Abstract
There is no cure for diabetic nephropathy and the molecular mechanisms underlying disease aetiology remain poorly understood. While current paradigms for clinical management of diabetic nephropathy are useful in delaying disease onset and preventing its progression, they do not do so for a significant proportion of diabetic individuals, who eventually end up developing renal failure. Thus, novel therapeutic targets are needed for the treatment and prevention of the disease. MicroRNAs (miRNAs), a class of non-coding RNAs that negatively regulate gene expression, have recently been identified as attractive targets for therapeutic intervention. It is widely recognised that dysregulation of miRNA expression or action contributes to the development of a number of different human diseases, and evidence of a role for miRNAs in the aetiology of diabetic nephropathy is emerging. The discovery that modulation of miRNA expression in vivo is feasible, combined with recent results from successful clinical trials using this technology, opens the way for future novel therapeutic applications. For instance, inhibition of miRNAs that are commonly upregulated in diabetic nephropathy decreases albuminuria and mesangial matrix accumulation in animal models, suggesting that a therapeutic agent against these molecules may help to prevent the development of diabetic nephropathy. Certain challenges, including the development of safe and reliable delivery systems, remain to be overcome before miRNA-based therapeutics become a reality. However, the findings accumulated to date, in conjunction with newly emerging results, are expected to yield novel insights into the complex pathogenesis of diabetic nephropathy, and may eventually lead to the identification of improved therapeutic targets for treatment of this disease.
Collapse
Affiliation(s)
- M L Alvarez
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 North Fifth St, Phoenix, AZ 85004, USA
| | | |
Collapse
|
41
|
Pesce F, Pathan S, Schena FP. From -omics to personalized medicine in nephrology: integration is the key. Nephrol Dial Transplant 2012; 28:24-8. [PMID: 23229923 DOI: 10.1093/ndt/gfs483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Large-scale gene, protein and metabolite measurements ('omics') have driven the resolution of biology to an unprecedented high definition. Passing from reductionism to a system-oriented perspective, medical research will take advantage of these high-throughput technologies unveiling their full potential. Integration is the key to decoding the underlying principles that govern the complex functions of living systems. Extensive computational support and statistical modelling is needed to manage and connect the -omic data sets but this, in turn, is speeding up the hypothesis generation in biology enormously and yielding a deep insight into the pathophysiology. This systems biology approach will transform diagnostic and therapeutic strategies with the discovery of novel biomarkers that will enable a predictive and preventive medicine leading to personalized medicine.
Collapse
Affiliation(s)
- Francesco Pesce
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK.
| | | | | |
Collapse
|
42
|
Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol 2012; 229:274-85. [DOI: 10.1002/path.4119] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 08/31/2012] [Accepted: 09/19/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Timothy Bowen
- Institute of Molecular and Experimental Medicine, School of Medicine; Cardiff University; UK
| | - Robert H Jenkins
- Institute of Molecular and Experimental Medicine, School of Medicine; Cardiff University; UK
| | - Donald J Fraser
- Institute of Molecular and Experimental Medicine, School of Medicine; Cardiff University; UK
| |
Collapse
|
43
|
Natarajan R, Putta S, Kato M. MicroRNAs and diabetic complications. J Cardiovasc Transl Res 2012; 5:413-22. [PMID: 22552970 DOI: 10.1007/s12265-012-9368-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022]
Abstract
Both Type 1 and Type 2 diabetes can lead to debilitating microvascular complications such as retinopathy, nephropathy and neuropathy, as well as macrovascular complications such as cardiovascular diseases including atherosclerosis and hypertension. Diabetic complications have been attributed to several contributing factors such as hyperglycemia, hyperlipidemia, advanced glycation end products, growth factors, and inflammatory cytokines/chemokines. However, current therapies are not fully efficacious and hence there is an imperative need for a better understanding of the molecular mechanisms underlying diabetic complications in order to identify newer therapeutic targets. microRNAs (miRNAs) are short non-coding RNAs that repress target gene expression via post-transcriptional mechanisms. Emerging evidence shows that they have diverse cellular and biological functions and play key roles in several diseases. In this review, we explore the role of miRNAs in the pathology of diabetic complications and also discuss the potential use of miRNAs as novel diagnostic and therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Rama Natarajan
- Department of Diabetes, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|