1
|
Zhang R, Ren Y, Ju Y, Zhang Y, Zhang Y, Wang Y. FAM20C: A key protein kinase in multiple diseases. Genes Dis 2025; 12:101179. [PMID: 39790934 PMCID: PMC11714710 DOI: 10.1016/j.gendis.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2025] Open
Abstract
Family with sequence similarity 20 C (FAM20C) is a Golgi protein kinase that phosphorylates the serine residue in the S-x-E/pS motif of target proteins. FAM20C phosphorylates most secreted proteins, which play important roles in multiple biological processes, including cancer progression, biomineralization, and lipid homeostasis. Numerous studies have documented the potential contribution of FAM20C to the growth, invasion, and metastasis of glioma, breast cancer, and other cancers, as well as to the mineralization process of teeth and bone. In addition, FAM20C has been found to be associated with the occurrence and development of certain cardiovascular diseases and endocrine metabolism disorders. It raises hopes that understanding the disease-specific mechanisms of FAM20C may hold the key to developing new strategies for these diseases. This review comprehensively covers the existing literature to provide a summary of the structure and biological functions of FAM20C, with a particular focus on its roles in the disease context.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanming Ren
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Ju
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuekang Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Odiase P, Ma J, Ranganathan S, Ogunkua O, Turner WB, Marshall D, Ochieng J. The Role of Fetuin-A in Tumor Cell Growth, Prognosis, and Dissemination. Int J Mol Sci 2024; 25:12918. [PMID: 39684629 DOI: 10.3390/ijms252312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Fetuin-A, also known as alpha-2-Heremans-Schmid-glycoprotein (Ahsg), is a multifunctional molecule with diverse roles in biological processes such as mineralization, tumor growth, and inflammation. This review explores the involvement of Ahsg in various cancers, including liver, breast, prostate, colorectal, brain, osteosarcoma, and lung cancers. In many cancer types, Ahsg promotes tumor growth, invasion, and metastasis through various mechanisms, including cellular adhesion, spreading, chemotaxis, and modulation of cell-growth signaling pathways. Additionally, Ahsg has been implicated in the regulation of inflammatory cytokine production, making it a potential marker of inflammation in cancer. The complex interplay between Ahsg and cancer progression highlights its potential as a diagnostic biomarker and therapeutic target in various cancers. However, further research is needed to fully elucidate the mechanisms of action of Ahsg in cancer and to explore its clinical implications in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Peace Odiase
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Jonathan Ma
- College of Arts and Science, Vanderbilt University, Nashville, TN 37203, USA
| | | | - Olugbemiga Ogunkua
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Winston B Turner
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Dana Marshall
- Department of Pathology, Meharry Medical College, Nashville, TN 37208, USA
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Biomedical Science, School of Graduate Studies Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
3
|
Xiang H, Bao C, Chen Q, Gao Q, Wang N, Gao Q, Mao L. Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B 2024; 25:633-655. [PMID: 39155778 PMCID: PMC11337091 DOI: 10.1631/jzus.b2300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 08/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
Collapse
Affiliation(s)
- Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Nan Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China.
| |
Collapse
|
4
|
Li R, Li Y, Bai Y, Yi P, Sun C, Shi S, Gong YK. Achieving superior anticoagulation of endothelial membrane mimetic coating by heparin grafting at zwitterionic biocompatible interfaces. Int J Biol Macromol 2024; 257:128574. [PMID: 38052281 DOI: 10.1016/j.ijbiomac.2023.128574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Thrombosis and bleeding are common complications of blood-contacting medical device therapies. In this work, an endothelium membrane mimetic coating (PMPCC/Hep) has been created to address these challenges. The coating is fabricated by multi-point anchoring of a phosphorylcholine copolymer (poly-MPC-co-MSA, PMPCC) with carboxylic side chains and end-group grafting of unfractionated heparin (Hep) onto polydopamine precoated blood-contacting material surfaces. The PMPCC coating forms an ultrathin cell outer membrane mimetic layer to resist protein adsorption and platelet adhesion. The tiny defects/pores of the PMPCC layer provide entrances for heparin end-group to be inserted and grafted onto the sub-layer amino groups. The combination of the PMPCC cell membrane mimetic anti-fouling nature with the grafted heparin bioactivity further enhances the anticoagulation performance of the formed endothelium membrane mimetic PMPCC/Hep coating. Compared to conventional Hep coating, the PMPCC/Hep coating further decreases protein adsorption and platelet adhesion by 50 % and 90 %, respectively. More significantly, the PMPCC/Hep coating shows a superior anticoagulation activity, even significantly higher than that of an end-point-attached heparin coating. Furthermore, the blood coagulation function is well preserved in the PMPCC/Hep coating anticoagulation strategy. All the results support that the PMPCC/Hep coating strategy has great potential in developing more efficient and safer blood-contacting medical devices.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yunjie Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Panpan Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Chenwei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China.
| |
Collapse
|
5
|
Sharma A. Mitochondrial cargo export in exosomes: Possible pathways and implication in disease biology. J Cell Physiol 2023; 238:687-697. [PMID: 36745675 DOI: 10.1002/jcp.30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Exosome biogenesis occurs parallel to multiple endocytic traffic routes. These coexisting routes drive cargo loading in exosomes via overlapping of exosome biogenesis with endosomal pathways. One such pathway is autophagy which captures damaged intracellular organelles or their components in an autophagosome vesicle and route them for lysosomal degradation. However, in case of a noncanonical fusion event between autophagosome and maturing multivesicular body (MVB)-a site for exosome biogenesis, the autophagic cargo is putatively loaded in exosomes and subsequent released out of the cell via formation of an "amphisome" like structure. Similarly, during "mitophagy" or mitochondrial (mt) autophagy, amphisome formation routes mitophagy cargo to exosomes. These mt-cargo enriched exosomes or mt-enREXO are often positive for LC3 protein-an autophagic flux marker, and potent regulators of paracrine signaling with both homeostatic and pathological roles. Here, I review this emerging concept and discuss how intracellular autophagic routes helps in generation of mt-enREXO and utility of these vesicles in paracrine cellular signaling and diagnostic areas.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Ltd, Pune, India
| |
Collapse
|
6
|
Abstract
BACKGROUD Lung adenocarcinoma (LUAD) is 1 of the common malignancy with a poor prognosis. MATERIALS AND METHODS Based on bioinformatics, the fatty acid metabolism model of LUAD was developed. We downloaded LUAD transcriptome data from the cancer genome atlas and gene expression omnibus databases. We used bioinformatics methods to construct a fatty acid metabolism-related predictive risk model to predict the prognosis of LUAD. We further explored the relationship between prognostic models and survival and immunity. RESULTS We identified 17 prognosis-related fatty acid-associated genes and constructed prognostic models. In the the cancer genome atlas cohort, the prognosis was worse in the high-risk score group compared to the low-risk score group. The ROC curve confirmed its accuracy. Subsequently, we used the gene expression omnibus database to confirm the above findings. There were differences in immune infiltrating cell abundance and immune function between the high-risk score group and low-risk score group. The immune dysfunction and exclusion (TIDE) based algorithm showed that the low-risk score group was more suitable for the immune treatment. CONCLUSION Fatty acid metabolic patterns can deepen the understanding of the immune microenvironment of LUAD and be used to guide the formulation of immunotherapy protocols.
Collapse
Affiliation(s)
- Wei Ye
- Department of Medical Respiratory, Wenzhou Municipal Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang Province, China
- * Correspondence: Wei Ye, Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang Province 325000, China (e-mail: )
| | - Xingxing Li
- Department of Oncology, Linping District First People’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Tsering T, Li M, Chen Y, Nadeau A, Laskaris A, Abdouh M, Bustamante P, Burnier JV. EV-ADD, a database for EV-associated DNA in human liquid biopsy samples. J Extracell Vesicles 2022; 11:e12270. [PMID: 36271888 PMCID: PMC9587709 DOI: 10.1002/jev2.12270] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in cellular communication both in physiological conditions and in pathologies such as cancer. Emerging evidence has shown that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and a powerful source of biomarkers and targets. While recent studies on EV‐associated DNA (EV‐DNA) in human biofluids have generated a large amount of data, there is currently no database that catalogues information on EV‐DNA. To fill this gap, we have manually curated a database of EV‐DNA data derived from human biofluids (liquid biopsy) and in‐vitro studies, called the Extracellular Vesicle‐Associated DNA Database (EV‐ADD). This database contains validated experimental details and data extracted from peer‐reviewed published literature. It can be easily queried to search for EV isolation methods and characterization, EV‐DNA isolation techniques, quality validation, DNA fragment size, volume of starting material, gene names and disease context. Currently, our database contains samples representing 23 diseases, with 13 different types of EV isolation techniques applied on eight different human biofluids (e.g. blood, saliva). In addition, EV‐ADD encompasses EV‐DNA data both representing the whole genome and specifically including oncogenes, such as KRAS, EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV‐ADD data metric system was also integrated to assign a compliancy score to the MISEV guidelines based on experimental parameters reported in each study. While currently available databases document the presence of proteins, lipids, RNA and metabolites in EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV‐TRACK), to the best of our knowledge, EV‐ADD is the first of its kind to compile all available EV‐DNA datasets derived from human biofluid samples. We believe that this database provides an important reference resource on EV‐DNA‐based liquid biopsy research, serving as a learning tool and to showcase the latest developments in the EV‐DNA field. EV‐ADD will be updated yearly as newly published EV‐DNA data becomes available and it is freely available at www.evdnadatabase.com.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mingyang Li
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Yunxi Chen
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Amélie Nadeau
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alexander Laskaris
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mohamed Abdouh
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Prisca Bustamante
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Julia V. Burnier
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
- Experimental Pathology UnitDepartment of PathologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Luparello C, Branni R, Abruscato G, Lazzara V, Drahos L, Arizza V, Mauro M, Di Stefano V, Vazzana M. Cytotoxic capability and the associated proteomic profile of cell-free coelomic fluid extracts from the edible sea cucumber Holothuria tubulosa on HepG2 liver cancer cells. EXCLI JOURNAL 2022; 21:722-743. [PMID: 35721581 PMCID: PMC9203982 DOI: 10.17179/excli2022-4825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer histotype and one of the most common types of cancer worldwide. The identification of compounds that might intervene to restrain neoplastic cell growth appears imperative due to its elevated overall mortality. The marine environment represents a reservoir rich in bioactive compounds in terms of primary and secondary metabolites produced by aquatic animals, mainly invertebrates. In the present study, we determined whether the water-soluble cell-free extract of the coelomic fluid (CFE) of the edible sea cucumber Holothuria tubulosa could play an anti-HCC role in vitro by analyzing the viability and locomotory behavior, cell cycle distribution, apoptosis and autophagy modulation, mitochondrial function and cell redox state of HepG2 HCC cells. We showed that CFE causes an early block in the cell cycle at the G2/M phase, which is coupled to oxidative stress promotion, autophagosome depletion and mitochondrial dysfunction ultimately leading to apoptotic death. We also performed a proteomic analysis of CFE identifying a number of proteins that are seemingly responsible for anti-cancer effects. In conclusion, H. tubulosa's CFE merits further investigation to develop novel promising anti-HCC prevention and/or treatment agents and also beneficial supplements for formulation of functional foods and food packaging material.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Rossella Branni
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Laszlo Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
9
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
10
|
Proteomic Profiling and Functional Analysis of B Cell-Derived Exosomes upon Pneumocystis Infection. J Immunol Res 2022; 2022:5187166. [PMID: 35465354 PMCID: PMC9023222 DOI: 10.1155/2022/5187166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022] Open
Abstract
Pneumocystis is a life-threatening fungal pathogen that frequently causes fatal pneumonia (PCP) in immunocompromised individuals. Recently, B cells have been reported to play a crucial role in the pathogenesis of PCP through producing antibodies and activating CD4+ T cell response. Exosomes are nanoscale small extracellular vesicles abundant with protein cargo and can mediate immune response during infectious disease. In this study, using tandem mass tag-based quantitative proteomics coupled with bioinformatic analysis, we attempted to characterize exosomes derived from B lymphocytes in response to PCP. Several proteins were verified by parallel reaction monitoring (PRM) analysis. Also, the effects of B cell exosomes on CD4+ T cell response and phagocytic function of macrophages were clarified. Briefly, 1701 proteins were identified from B cell exosomes, and the majority of them were reported in Vesiclepedia. A total of 51 differentially expressed proteins of B cell exosomes were found in response to PCP. They were mainly associated with immune response and transcription regulation. PRM analysis confirmed the significantly changed levels of histone H1.3, vimentin, and tyrosine-protein phosphatase nonreceptor type 6 (PTPN6). Moreover, a functional study revealed the proinflammatory profile of B cell exosomes on CD4+ T cell response in PCP. Taken together, our results suggest the involvement of exosomes derived from B cells in cell-to-cell communication, providing new information on the function of B cells in response to PCP.
Collapse
|
11
|
Ochieng J, Korolkova OY, Li G, Jin R, Chen Z, Matusik RJ, Adunyah S, Sakwe AM, Ogunkua O. Fetuin-A Promotes 3-Dimensional Growth in LNCaP Prostate Cancer Cells by Sequestering Extracellular Vesicles to Their Surfaces to Act as Signaling Platforms. Int J Mol Sci 2022; 23:ijms23074031. [PMID: 35409390 PMCID: PMC8999611 DOI: 10.3390/ijms23074031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/10/2022] Open
Abstract
The present studies were conducted to evaluate key serum proteins and other components that mediate anchorage-independent growth (3-D growth) of LNCaP prostate cancer cells as spheroids. The cells were cultured on ultra-low attachment plates in the absence and presence of fetuin-A and with or without extracellular vesicles. The data show that fetuin-A (alpha 2HS glycoprotein) is the serum protein that mediates 3-D growth in these cells. It does so by sequestering extracellular vesicles of various sizes on the surfaces of rounded cells that grow as spheroids. These vesicles in turn transmit growth signals such as the activation of AKT and MAP kinases in a pattern that differs from the activation of these key growth signaling pathways in adherent and spread cells growing in 2-D. In the process of orchestrating the movement and disposition of extracellular vesicles on these cells, fetuin-A is readily internalized in adhered and spread cells but remains on the surfaces of non-adherent cells. Taken together, our studies suggest the presence of distinct signaling domains or scaffolding platforms on the surfaces of prostate tumor cells growing in 3-D compared to 2-D.
Collapse
Affiliation(s)
- Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
- Correspondence: ; Tel.: +1-615-327-6119
| | - Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
| | - Renjie Jin
- Department of Urology and Vanderbilt –Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37209, USA; (R.J.); (R.J.M.)
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
| | - Robert J. Matusik
- Department of Urology and Vanderbilt –Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37209, USA; (R.J.); (R.J.M.)
| | - Samuel Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
| | - Olugbemiga Ogunkua
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (G.L.); (Z.C.); (S.A.); (A.M.S.); (O.O.)
| |
Collapse
|
12
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|
13
|
Amino Acid Transport and Metabolism Regulate Early Embryo Development: Species Differences, Clinical Significance, and Evolutionary Implications. Cells 2021; 10:cells10113154. [PMID: 34831375 PMCID: PMC8618253 DOI: 10.3390/cells10113154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this review we discuss the beneficial effects of amino acid transport and metabolism on pre- and peri-implantation embryo development, and we consider how disturbances in these processes lead to undesirable health outcomes in adults. Proline, glutamine, glycine, and methionine transport each foster cleavage-stage development, whereas leucine uptake by blastocysts via transport system B0,+ promotes the development of trophoblast motility and the penetration of the uterine epithelium in mammalian species exhibiting invasive implantation. (Amino acid transport systems and transporters, such as B0,+, are often oddly named. The reader is urged to focus on the transporters’ functions, not their names.) B0,+ also accumulates leucine and other amino acids in oocytes of species with noninvasive implantation, thus helping them to produce proteins to support later development. This difference in the timing of the expression of system B0,+ is termed heterochrony—a process employed in evolution. Disturbances in leucine uptake via system B0,+ in blastocysts appear to alter the subsequent development of embryos, fetuses, and placentae, with undesirable consequences for offspring. These consequences may include greater adiposity, cardiovascular dysfunction, hypertension, neural abnormalities, and altered bone growth in adults. Similarly, alterations in amino acid transport and metabolism in pluripotent cells in the blastocyst inner cell mass likely lead to epigenetic DNA and histone modifications that produce unwanted transgenerational health outcomes. Such outcomes might be avoided if we learn more about the mechanisms of these effects.
Collapse
|
14
|
Zhang S, Guo M, Guo T, Yang M, Cheng J, Cui C, Kang J, Wang J, Nian Y, Ma W, Weng H, Weng H. DAL-1/4.1B promotes the uptake of exosomes in lung cancer cells via Heparan Sulfate Proteoglycan 2 (HSPG2). Mol Cell Biochem 2021; 477:241-254. [PMID: 34657240 DOI: 10.1007/s11010-021-04268-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
DAL-1/4.1B is frequently absent in lung cancer tissues, which is significantly related to the occurrence and development of lung cancer. In this research, we found that DAL-1/4.1B affected the uptake of exosomes by lung cancer cells. When the expression of DAL-1/4.1B increased and decreased, the ability of exosome uptake enhanced and attenuated correspondingly. And we found that when cells were treated with different vesicles uptake inhibitors (chlorpromazine, methyl-β-cyclodextrin (MβCD), cytochalasin D, chloroquine and heparin) and heparinase (HSPE), only heparin and HSPE counteracted the uptake enhancement effect caused by DAL-1/4.1B. Therefore, we speculated that DAL-1/4.1B might promote the uptake of exosomes through the heparan sulfate proteoglycans (HSPGs) pathway. After screening the expression of HSPGs and HSPE in H292 cells, the expression of heparan sulfate proteoglycan 2 (HSPG2) increased with overexpression of DAL-1/4.1B and decreased with knockdown of DAL-1/4.1B. Meanwhile, exosome uptake decreased with HSPG2 knockdown in H292 and DAL-1/4.1B-overexpressing H292 cells. Moreover, knockdown of DAL-1/4.1B and HSPG2 in lung cancer A549 cells resulted in a similar decrease in exosome uptake, and the expression of HSPG2 was also decreased with DAL-1/4.1B knockdown. These results indicated that HSPG2 directly affected the uptake of exosomes, while DAL-1/4.1B positively affected the expression of HSPG2. Therefore, DAL-1/4.1B may promote cellular adhesion and inhibit migration in cancer cells.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Min Guo
- Key Laboratory of Prenatal Diagnostic Medicine of Jiaozuo Municipal Health Commission, Genetic and Prenatal Diagnosis Center, Maternal and Child Health Hospital of Jiaozuo, Jiaozuo, 454000, Henan, China
| | - Tingting Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mingyan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiaqi Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jie Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiajia Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuanru Nian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenjie Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Haibin Weng
- Liaocheng People's Hospital Emergency Department, Liaocheng, 252000, Shandong, China.
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
15
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
16
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
18
|
Thomas PL, Nangami G, Rana T, Evans A, Williams SD, Crowell D, Shanker A, Sakwe AM, Ochieng J. The rapid endocytic uptake of fetuin-A by adherent tumor cells is mediated by Toll-like receptor 4 (TLR4). FEBS Open Bio 2020; 10:2722-2732. [PMID: 33073533 PMCID: PMC7714080 DOI: 10.1002/2211-5463.13008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Fetuin‐A is a serum glycoprotein synthesized and secreted into blood by the liver and whose main physiological function is the inhibition of ectopic calcification. However, a number of studies have demonstrated that it is a multifunctional protein. For example, endocytic uptake of fetuin‐A by tumor cells resulting in rapid cellular adhesion and spreading has been reported. The precise uptake mechanism, however, has been elusive. The present studies were done to determine whether Toll‐like receptor‐4 (TLR4), which has been previously shown to be a receptor for fetuin‐A and is commonly expressed in immune cells, could take part in the rapid uptake (< 3 min) of fetuin‐A by tumor cells. Rapid uptake of fetuin‐A was inhibited by the specific TLR4 inhibitor CLI‐095 and also attenuated in TLR4 knockdown prostate tumor cells. Inhibition of TLR4 by CLI‐095 also attenuated the rapid adhesion of tumor cells as well as invasion through a bed of Matrigel. The data suggest mechanisms by which TLR4 modulates the adhesion and growth of tumor cells.
Collapse
Affiliation(s)
- Portia L Thomas
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, USA.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Gladys Nangami
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | - Tanu Rana
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | - Adam Evans
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | - Stephen D Williams
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, USA.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Dylan Crowell
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, USA.,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | - Amos M Sakwe
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.,Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
19
|
Jabbari N, Akbariazar E, Feqhhi M, Rahbarghazi R, Rezaie J. Breast cancer-derived exosomes: Tumor progression and therapeutic agents. J Cell Physiol 2020; 235:6345-6356. [PMID: 32216070 DOI: 10.1002/jcp.29668] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Tumor cells secrete extracellular vesicles (EVs) for intercellular communication. EVs by transporting different proteins, nucleic acids, and lipids contribute to affect target cell function and fate. EVs which originate directly from multivesicular bodies so-called exosomes have dramatically fascinated the attention of researchers owing to their pivotal roles in the tumorigenesis. Breast cancer, arising from milk-producing cells, is the most identified cancer among women and has become the leading cause of cancer-related death in women globally. Although different therapies are applied to eliminate breast tumor cells, however, the efficient therapy and survival rate of patients remain challenges. Growing evidence shows exosomes from breast cancer cells contribute to proliferation, metastasis, angiogenesis, chemoresistance, and also radioresistance and, thus carcinogenesis. Additionally, these exosomes may serve as a cancer treatment tool because they are a good candidate for cancer diagnosis (as biomarker) and therapy (as drug-carrier). Despite recent development in the biology of tumor-derived exosomes, the detailed mechanism of tumorigenesis, and exosome-based cancer-therapy remain still indefinable. Here, we discuss the key function of breast cancer-derived exosomes in tumorgenesis and shed light on the possible clinical application of these exosomes in breast cancer treatment.
Collapse
Affiliation(s)
- Nasrollah Jabbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Elinaz Akbariazar
- Department of Genetic, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Feqhhi
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Papiewska-Pająk I, Krzyżanowski D, Katela M, Rivet R, Michlewska S, Przygodzka P, Kowalska MA, Brézillon S. Glypican-1 Level Is Elevated in Extracellular Vesicles Released from MC38 Colon Adenocarcinoma Cells Overexpressing Snail. Cells 2020; 9:cells9071585. [PMID: 32629890 PMCID: PMC7408449 DOI: 10.3390/cells9071585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer cells with invasive properties during tumor progression. Extracellular vesicles (EVs) released from cancer cells at various stages of cancer progression are known to influence the tumor pre-metastatic niche and metastatic potential. The aim of this study was to analyze the effect of Snail on murine colon adenocarcinoma cells (MC38 line) and on the characteristics of their EVs. Stable clones of Snail-overexpressing MC38 cells were investigated in vitro versus Mock cells. Increased expression of matrix metalloproteinase MMP-14 and augmented activity of MMP-9 and -14 were observed in Snail-MC38 cells. There was no change in the transcriptomic profile of proteoglycans in Snail-MC38 cells; however, the protein level of Glypican-1 (GPC1) was enhanced in EVs released from those cells. Our finding that GPC1 protein level was enhanced in EVs released from MC38 cells that overexpressed Snail and were in an early EMT stage might explain the specificity of the GPC1 biomarker in colon cancer diagnosis. Further, our data suggest that Snail, by changing the level of GPC1 on EVs released by colon cancer cells, may affect the generation of a distant premetastatic niche and metastatic organotropism in colon adenocarcinoma.
Collapse
Affiliation(s)
- Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
- Correspondence: (I.P.-P.); ; (S.B.); Tel.: +48-42-27-23-633 (I.P.-P.); +33-326-91-37-34 (S.B.)
| | - Damian Krzyżanowski
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
| | - Maria Katela
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France; (M.K.); (R.R.)
| | - Romain Rivet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France; (M.K.); (R.R.)
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
| | - M. Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
- Department of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France; (M.K.); (R.R.)
- Correspondence: (I.P.-P.); ; (S.B.); Tel.: +48-42-27-23-633 (I.P.-P.); +33-326-91-37-34 (S.B.)
| |
Collapse
|
21
|
Weeraphan C, Phongdara A, Chaiyawat P, Diskul-Na-Ayudthaya P, Chokchaichamnankit D, Verathamjamras C, Netsirisawan P, Yingchutrakul Y, Roytrakul S, Champattanachai V, Svasti J, Srisomsap C. Phosphoproteome Profiling of Isogenic Cancer Cell-Derived Exosome Reveals HSP90 as a Potential Marker for Human Cholangiocarcinoma. Proteomics 2019; 19:e1800159. [PMID: 31054213 DOI: 10.1002/pmic.201800159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/18/2019] [Indexed: 12/19/2022]
Abstract
The northeastern region of Thailand is well known to have a high incidence and mortality of cholangiocarcinoma (CCA). Protein phosphorylation status has been reported to reflect a key determinant of cellular physiology, but identification of phosphoproteins can be a problem due to the presence of phosphatase. Exosomes are stable toward circulating proteases and other enzymes in human blood and can be recognized before the onset of cancer progression. Here an in vitro metastatic model of isogenic CCA cells is used to provide insight into the phosphorylation levels of exosomal proteins derived from highly invasive cells. Gel-based and gel-free proteomics approaches are used to reveal the proteins differentially phosphorylated in relation to tumor cell phenotypes. Forty-three phosphoproteins are identified with a significant change in phosphorylation level. Phos-tag western blotting and immunohistochemistry staining are then employed to validate the candidate phosphoproteins. Heat shock protein 90 is successfully confirmed as being differentially phosphorylated in relation to tumor malignancy. Importantly, the aberrant phosphorylation of exosomal proteins might serve as a promising tool for the development of a biomarker for metastatic CCA.
Collapse
Affiliation(s)
- Churat Weeraphan
- Department of Molecular, Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand
| | - Amornrat Phongdara
- Department of Molecular, Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand
| | - Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Chungcheongnam-do, 31151, Republic of Korea
| | | | - Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Yodying Yingchutrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | | | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.,Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| |
Collapse
|
22
|
Ochieng J, Nangami G, Sakwe A, Rana T, Ingram S, Goodwin JS, Moye C, Lammers P, Adunyah SE. Extracellular histones are the ligands for the uptake of exosomes and hydroxyapatite-nanoparticles by tumor cells via syndecan-4. FEBS Lett 2018; 592:3274-3285. [PMID: 30179249 PMCID: PMC6188801 DOI: 10.1002/1873-3468.13236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
Abstract
The mechanisms by which exosomes (nano-vesicular messengers of cells) are taken up by recipient cells are poorly understood. We hypothesized that histones associated with these nanoparticles are the ligands which facilitate their interaction with cell surface syndecan-4 (SDC4) to mediate their uptake. We show that the incubation with fetuin-A (exosome-associated proteins) and histones mediates the uptake of exosomes that are normally not endocytosed. Similarly, hydroxyapatite-nanoparticles incubated with fetuin-A and histones (FNH) are internalized by tumor cells, while nanoparticles incubated with fetuin-A alone (FN) are not. The uptake of exosomes and FNH, both of which move to the perinuclear region of the cell, is attenuated in SDC4-knockdown cells. Data show that FNH can compete with exosomes for uptake and that both use SDC4 as uptake receptors.
Collapse
Affiliation(s)
- Josiah Ochieng
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Corresponding author: Josiah Ochieng, Ph.D. ; phone: 615-327-6119; Fax: 615-327-6442
| | - Gladys Nangami
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208
| | - Amos Sakwe
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208,Graduate School, Meharry Medical College, Nashville, TN 37208
| | - Tanu Rana
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Shalonda Ingram
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - J. Shawn Goodwin
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Cierra Moye
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| | - Philip Lammers
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208
| | - Samuel E. Adunyah
- Departments of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
23
|
Impact of Fetuin-A (AHSG) on Tumor Progression and Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19082211. [PMID: 30060600 PMCID: PMC6121429 DOI: 10.3390/ijms19082211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
Fetuin-A is the protein product of the AHSG gene in humans. It is mainly synthesized by the liver in adult humans and is secreted into the blood where its concentration can vary from a low of ~0.2 mg/mL to a high of ~0.8 mg/mL. Presently, it is considered to be a multifunctional protein that plays important roles in diabetes, kidney disease, and cancer, as well as in inhibition of ectopic calcification. In this review we have focused on work that has been done regarding its potential role(s) in tumor progression and sequelae of diabetes. Recently a number of laboratories have demonstrated that a subset of tumor cells such as pancreatic, prostate and glioblastoma multiform synthesize ectopic fetuin-A, which drives their progression. Fetuin-A that is synthesized, modified, and secreted by tumor cells may be more relevant in understanding the pathophysiological role of this enigmatic protein in tumors, as opposed to the relatively high serum concentrations of the liver derived protein. Lastly, auto-antibodies to fetuin-A frequently appear in the sera of tumor patients that could be useful as biomarkers for early diagnosis. In diabetes, solid experimental evidence shows that fetuin-A binds the β-subunit of the insulin receptor to attenuate insulin signaling, thereby contributing to insulin resistance in type 2 diabetes mellitus (T2DM). Fetuin-A also may, together with free fatty acids, induce apoptotic signals in the beta islets cells of the pancreas, reducing the secretion of insulin and further exacerbating T2DM.
Collapse
|
24
|
Lin YH, Franc V, Heck AJR. Similar Albeit Not the Same: In-Depth Analysis of Proteoforms of Human Serum, Bovine Serum, and Recombinant Human Fetuin. J Proteome Res 2018; 17:2861-2869. [PMID: 29966421 PMCID: PMC6079914 DOI: 10.1021/acs.jproteome.8b00318] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fetuin,
also known as alpha-2-Heremans Schmid glycoprotein (AHSG),
belongs to some of the most abundant glycoproteins secreted into the
bloodstream. In blood, fetuins exhibit functions as carriers of metals
and small molecules. Bovine fetuin, which harbors 3 N-glycosylation
sites and a suggested half dozen O-glycosylation sites, has been used
often as a model glycoprotein to test novel analytical workflows in
glycoproteomics. Here we characterize and compare fetuin in depth,
using protein from three different biological sources: human serum,
bovine serum, and recombinant human fetuin expressed in HEK-293 cells,
with the aim to elucidate similarities and differences between these
proteins and the post-translational modifications they harbor. Combining
data from high-resolution native mass spectrometry and glycopeptide
centric LC-MS analysis, we qualitatively and quantitatively gather
information on fetuin protein maturation, N-glycosylation, O-glycosylation,
and phosphorylation. We provide direct experimental evidence that
both the human serum and part of the recombinant proteins are processed
into two chains (A and B) connected by a single interchain disulfide
bridge, whereas bovine fetuin remains a single-chain protein. Although
two N-glycosylation sites, one O-glycosylation site, and a phosphorylation
site are conserved from bovine to human, the stoichiometry of the
modifications and the specific glycoforms they harbor are quite distinct.
Comparing serum and recombinant human fetuin, we observe that the
serum protein harbors a much simpler proteoform profile, indicating
that the recombinant protein is not ideally engineered to mimic human
serum fetuin. Comparing the proteoform profile and post-translational
modifications of human and bovine serum fetuin, we observe that, although
the gene structures of these two proteins are alike, they represent
quite distinct proteins when their glycoproteoform profile is also
taken into consideration.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
25
|
Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, Wang J, Xiong H, Chen C, Xu B, Hu W, Wang L, Zhao W, Zhou J. Exosome: emerging biomarker in breast cancer. Oncotarget 2018; 8:41717-41733. [PMID: 28402944 PMCID: PMC5522217 DOI: 10.18632/oncotarget.16684] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized membrane vesicles released by a variety of cell types, and are thought to play important roles in intercellular communications. In breast cancer, through horizontal transfer of various bioactive molecules, such as proteins and mRNAs, exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information and play an important role on cancer progression. This review outlines the current knowledge and concepts concerning the exosomes involvement in breast cancer pathogenesis (including tumor initiation, invasion and metastasis, angiogenesis, immune system modulation and tumor microenvironment) and cancer therapy resistance. Moreover, the potential use of exosomes as promising diagnostic and therapeutic biomarkers in breast cancer are also discussed.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Xiao Luo
- Department of Radiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qun Wei
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bin Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Peng J, Wang W, Hua S, Liu L. Roles of Extracellular Vesicles in Metastatic Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418767666. [PMID: 29881285 PMCID: PMC5987895 DOI: 10.1177/1178223418767666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2018] [Indexed: 01/29/2023]
Abstract
Cells can secrete extracellular vesicles (EVs) to communicate with neighboring or
distant cells by EVs which are composed of a lipid bilayer containing
transmembrane proteins and enclosing cytosolic proteins, lipids, and nucleic
acids. Breast Cancer is the most frequently diagnosed malignancy with more than
1 million new cases each year and ranks the leading cause of cancer mortality in
women worldwide. In this review, we will discuss recent progresses of the roles
and mechanisms of cancer-derived EVs in metastatic breast cancer, with a special
attention on tumor microenvironment construction, progression, and
chemo/radiotherapy responses. This review also covers EV roles as biomarker and
therapeutic target in clinical application.
Collapse
Affiliation(s)
- Junya Peng
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wenqian Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Surong Hua
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lulu Liu
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep 2017; 7:15297. [PMID: 29127410 PMCID: PMC5681555 DOI: 10.1038/s41598-017-15717-7] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Appropriate isolation methods are essential for unravelling the relative contribution of extracellular vesicles (EVs) and the EV-free secretome to homeostasis and disease. We hypothesized that ultrafiltration followed by size exclusion chromatography (UF-SEC) provides well-matched concentrates of EVs and free secreted molecules for proteomic and functional studies. Conditioned media of BEAS-2B bronchial epithelial cells were concentrated on 10 kDa centrifuge filters, followed by separation of EVs and free protein using sepharose CL-4B SEC. Alternatively, EVs were isolated by ultracentrifugation. EV recovery was estimated by bead-coupled flow cytometry and tuneable resistive pulse sensing. The proteomic composition of EV isolates and SEC protein fractions was characterized by nano LC-MS/MS. UF-SEC EVs tended to have a higher yield and EV-to-protein rate of purity than ultracentrifugation EVs. UF-SEC EVs and ultracentrifugation EVs showed similar fold-enrichments for biological pathways that were distinct from those of UF-SEC protein. Treatment of BEAS-2B cells with UF-SEC protein, but not with either type of EV isolate increased the IL-8 concentration in the media whereas EVs, but not protein induced monocyte adhesion to endothelial cells. Thus, UF-SEC is a useful alternative for ultracentrifugation and allows comparing the proteomic composition and functional effects of EVs and free secreted molecules.
Collapse
Affiliation(s)
- Birke J Benedikter
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Gert Grauls
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands
| | - Paul H Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Van Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| | - Carmen Lopez-Iglesias
- Microscopy Core Lab, M4I Nanoscopy division, FHML, Maastricht University, Universiteitssingel 50, G0.201, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, PO box 616, 6200 MD, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.,Medical clinic I, Department of Respiratory Medicine, Goethe University Hospital, Frankfurt/Main, Germany
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ, Maastricht, The Netherlands.
| |
Collapse
|
28
|
Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep 2017; 7:8202. [PMID: 28811610 PMCID: PMC5557920 DOI: 10.1038/s41598-017-08392-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023] Open
Abstract
Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes.
Collapse
|
29
|
Vashist SK, Schneider EM, Venkatesh AG, Luong JHT. Emerging Human Fetuin A Assays for Biomedical Diagnostics. Trends Biotechnol 2017; 35:407-421. [PMID: 28094081 DOI: 10.1016/j.tibtech.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
Human fetuin A (HFA) plays a prominent pathophysiological role in numerous diseases and pathophysiological conditions with considerable biomedical significance; one example is the formation of calciprotein particles in osteoporosis and impaired calcium metabolisms. With impressive advances in in vitro diagnostic assays during the last decade, ELISAs have become a workhorse in routine clinical diagnostics. Recent diagnostic formats involve high-sensitivity immunoassay procedures, surface plasmon resonance, rapid immunoassay chemistries, signal enhancement, and smartphone detection. The current trend is toward fully integrated lab-on-chip platforms with smartphone readouts, enabling health-care practitioners and even patients to monitor pathological changes in biomarker levels. This review provides a critical analysis of advances made in HFA assays along with the challenges and future prospects.
Collapse
Affiliation(s)
| | - E Marion Schneider
- Sektion Experimentelle Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - A G Venkatesh
- Roswell Biotechnologies Inc, 11558 Sorrento Valley Road, Suite Number 4, San Diego, CA 92121, USA
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Nangami GN, Sakwe AM, Izban MG, Rana T, Lammers PE, Thomas P, Chen Z, Ochieng J. Fetuin-A (alpha 2HS glycoprotein) modulates growth, motility, invasion, and senescence in high-grade astrocytomas. Cancer Med 2016; 5:3532-3543. [PMID: 27882696 PMCID: PMC5224863 DOI: 10.1002/cam4.940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022] Open
Abstract
Glioblastomas (high-grade astrocytomas) are highly aggressive brain tumors with poor prognosis and limited treatment options. In the present studies, we have defined the role of fetuin-A, a liver-derived multifunctional serum protein, in the growth of an established glioblastoma cell line, LN229. We hereby demonstrate that these cells synthesize ectopic fetuin-A which supports their growth in culture in the absence of serum. We have demonstrated that a panel of tissue microarray (TMA) of glioblastomas also express ectopic fetuin-A. Knocking down fetuin-A using shRNA approach in LN229, significantly reduced their in vitro growth as well as growth and invasion in vivo. The fetuin-A knockdown subclones of LN229 (A and D) also had reduced motility and invasive capacity. Treatment of LN229 cells with asialofetuin (ASF), attenuated their uptake of labeled fetuin-A, and induced senescence in them. Interestingly, the D subclone that had ~90% reduction in ectopic fetuin-A, underwent senescence in serum-free medium which was blunted in the presence of purified fetuin-A. Uptake of labeled exosomes was attenuated in fetuin-A knockdown subclones A and D. Taken together, the studies demonstrate the impact of fetuin-A as significant node of growth, motility, and invasion signaling in glioblastomas that can be targeted for therapy.
Collapse
Affiliation(s)
- Gladys N. Nangami
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Michael G. Izban
- Departments of PathologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Tanu Rana
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Philip E. Lammers
- Department of Internal MedicineMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Portia Thomas
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Zhenbang Chen
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| | - Josiah Ochieng
- Department of Biochemistry and Cancer BiologyMeharry Medical College1005 D.B. Todd Blvd.Nashville37208Tennessee
| |
Collapse
|
31
|
Dismuke WM, Klingeborn M, Stamer WD. Mechanism of Fibronectin Binding to Human Trabecular Meshwork Exosomes and Its Modulation by Dexamethasone. PLoS One 2016; 11:e0165326. [PMID: 27783649 PMCID: PMC5081181 DOI: 10.1371/journal.pone.0165326] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Exosomes are emerging as important mediators of cell-matrix interactions by means of specific adhesion proteins. Changes in the tissue-specific exosomal protein expression may underlie pathological conditions whereby extracellular matrix turnover and homeostasis is disrupted. Ocular hypertension due to extracellular matrix accumulation in the trabecular meshwork is a hallmark of glucocorticoid-induced glaucoma. In the trabecular meshwork, exosomal fibronectin mediates cell matrix interactions at cellular structures called “invadosomes”. Trabecular meshwork cells use invadosomes to turn over their surrounding matrix and maintain passageways for flow of aqueous humor. In this study, we observed that human trabecular meshwork explants treated with dexamethasone released exosomes with significantly reduced amounts of fibronectin bound per exosome. Further, we found that exosome-fibronectin binding is heparan sulfate-dependent, consistent with our observation that trabecular meshwork exosomes are enriched in the heparin/heparan sulfate binding annexins A2 and A6. In this way, dexamethasone-treated explants released exosomes with a significant reduction in annexin A2 and A6 per exosome. Interestingly, we did not detect exosomal matrix metalloproteinases, but we identified abundant dipeptidyl peptidase 4, a serine protease whose activity was reduced on exosomes isolated from dexamethasone-treated explants. Together, our findings demonstrate mechanistically how corticosteroid-induced alterations in exosomal adhesion cargo and properties can account for the pathological matrix accumulation seen in many glaucoma patients.
Collapse
Affiliation(s)
- W. Michael Dismuke
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Santos GBD, Monteiro KM, da Silva ED, Battistella ME, Ferreira HB, Zaha A. Excretory/secretory products in the Echinococcus granulosus metacestode: is the intermediate host complacent with infection caused by the larval form of the parasite? Int J Parasitol 2016; 46:843-856. [PMID: 27771257 DOI: 10.1016/j.ijpara.2016.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
The genus Echinococcus consists of parasites that have a life cycle with two mammalian hosts. Their larval stage, called the hydatid cyst, develops predominantly in the liver and lungs of intermediate hosts. The hydatid cyst is the causative agent of cystic hydatid disease and the species Echinococcus granulosus, G1 haplotype, is responsible for the vast majority of cases in humans, cattle and sheep. Protein characterization in hydatid cysts is essential for better understanding of the host-parasite relationship and the fertility process of Echinococcus. The aims of this work were the identification and quantitative comparison of proteins found in hydatid fluid from fertile and infertile cysts from E. granulosus, in order to highlight possible mechanisms involved in cyst fertility or infertility. Hydatid fluid samples containing proteins from both E. granulosus and Bos taurus were analysed by LC-MS/MS. Our proteomic analysis of fertile and infertile cysts allowed identification of a total of 498 proteins, of which 153 proteins were exclusively identified in the fertile cyst, 271 in the infertile cyst, and 74 in both. Functional in silico analysis allowed us to highlight some important aspects: (i) clues about the possible existence of an "arms race" involving parasite and host responses in fertile and infertile cysts; (ii) a number of proteins in hydatid fluid without functional annotation or with possible alternative functions; (iii) the presence of extracellular vesicles such as exosomes, which was confirmed by transmission electron microscopy.
Collapse
Affiliation(s)
- Guilherme B Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Caixa Postal 15005, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Karina M Monteiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Caixa Postal 15005, CEP 91501-970 Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Edileuza Danieli da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Caixa Postal 15005, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Maria Eduarda Battistella
- Graduação em Biotecnologia, Universidade Federal do Rio Grande do Sul, Caixa Postal 15005, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Henrique B Ferreira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Caixa Postal 15005, CEP 91501-970 Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Caixa Postal 15005, CEP 91501-970 Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Chaudhary SC, Kuzynski M, Bottini M, Beniash E, Dokland T, Mobley CG, Yadav MC, Poliard A, Kellermann O, Millán JL, Napierala D. Phosphate induces formation of matrix vesicles during odontoblast-initiated mineralization in vitro. Matrix Biol 2016; 52-54:284-300. [PMID: 26883946 PMCID: PMC4875887 DOI: 10.1016/j.matbio.2016.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Mineralization is a process of deposition of calcium phosphate crystals within a fibrous extracellular matrix (ECM). In mineralizing tissues, such as dentin, bone and hypertrophic cartilage, this process is initiated by a specific population of extracellular vesicles (EV), called matrix vesicles (MV). Although it has been proposed that MV are formed by shedding of the plasma membrane, the cellular and molecular mechanisms regulating formation of mineralization-competent MV are not fully elucidated. In these studies, 17IIA11, ST2, and MC3T3-E1 osteogenic cell lines were used to determine how formation of MV is regulated during initiation of the mineralization process. In addition, the molecular composition of MV secreted by 17IIA11 cells and exosomes from blood and B16-F10 melanoma cell line was compared to identify the molecular characteristics distinguishing MV from other EV. Western blot analyses demonstrated that MV released from 17IIA11 cells are characterized by high levels of proteins engaged in calcium and phosphate regulation, but do not express the exosomal markers CD81 and HSP70. Furthermore, we uncovered that the molecular composition of MV released by 17IIA11 cells changes upon exposure to the classical inducers of osteogenic differentiation, namely ascorbic acid and phosphate. Specifically, lysosomal proteins Lamp1 and Lamp2a were only detected in MV secreted by cells stimulated with osteogenic factors. Quantitative nanoparticle tracking analyses of MV secreted by osteogenic cells determined that standard osteogenic factors stimulate MV secretion and that phosphate is the main driver of their secretion. On the molecular level, phosphate-induced MV secretion is mediated through activation of extracellular signal-regulated kinases Erk1/2 and is accompanied by re-organization of filamentous actin. In summary, we determined that mineralization-competent MV are distinct from exosomes, and we identified a new role of phosphate in the process of ECM mineralization. These data provide novel insights into the mechanisms of MV formation during initiation of the mineralization process.
Collapse
Affiliation(s)
- Sandeep C Chaudhary
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria Kuzynski
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Inflammatory and Infectious Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Callie G Mobley
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manisha C Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anne Poliard
- EA2496 UFR d'Odontologie, Université Paris Descartes, Montrouge, France
| | - Odile Kellermann
- INSERM UMR-S 1124, Université René Descartes Paris 5, Centre Universitaire des Saints-Pères, Paris, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dobrawa Napierala
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:634865. [PMID: 26601108 PMCID: PMC4639645 DOI: 10.1155/2015/634865] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022]
Abstract
The study of extracellular vesicles (EVs) in cancer progression is a complex and rapidly evolving field. Whole categories of cellular interactions in cancer which were originally presumed to be due solely to soluble secreted molecules have now evolved to include membrane-enclosed extracellular vesicles (EVs), which include both exosomes and shed microvesicles (MVs), and can contain many of the same molecules as those secreted in soluble form but many different molecules as well. EVs released by cancer cells can transfer mRNA, miRNA, and proteins to different recipient cells within the tumor microenvironment, in both an autocrine and paracrine manner, causing a significant impact on signaling pathways, mRNA transcription, and protein expression. The transfer of EVs to target cells, in turn, supports cancer growth, immunosuppression, and metastasis formation. This review focuses exclusively on breast cancer EVs with an emphasis on breast cancer-derived exosomes, keeping in mind that breast cancer-derived EVs share some common physical properties with EVs of other cancers.
Collapse
|
35
|
Balaj L, Atai NA, Chen W, Mu D, Tannous BA, Breakefield XO, Skog J, Maguire CA. Heparin affinity purification of extracellular vesicles. Sci Rep 2015; 5:10266. [PMID: 25988257 PMCID: PMC4437317 DOI: 10.1038/srep10266] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/02/2015] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity.
Collapse
Affiliation(s)
- Leonora Balaj
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA
| | - Nadia A Atai
- 1] Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA. [2] Department of Cell Biology and Histology, Academic Medical Center (AMC), University of Amsterdam, The Netherlands
| | - Weilin Chen
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA
| | - Dakai Mu
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA
| | - Xandra O Breakefield
- 1] Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA. [2] Departments of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA
| | | | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA
| |
Collapse
|