1
|
Sentoku M, Endo M, Takei M, Hanamoto W, Yasuda K. Geometrical constraint change determines organized collective migration of follower cells. Sci Rep 2025; 15:8199. [PMID: 40065059 PMCID: PMC11894221 DOI: 10.1038/s41598-025-93283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Spatial confinement plays a critical role in shaping collective cell migration, particularly in regulating interactions between leader and follower cells and among follower cells themselves. However, how changes in confinement geometry influence migration dynamics and cell-to-cell interactions remains poorly understood. This study leverages a novel microchannel design to systematically dissect the interplay between spatial confinement and collective cell behavior in endothelial-like cells (MILE SVEN 1). In a single-cell-wide T-shaped branching structure, rear cells selected alternate pathways, avoiding direct alignment with preceding cells. This highlights how spatial geometry mediates follower-follower interactions by encouraging dynamic rearrangements within the cell train. Ladder-like branching structures with consistent total pathway widths showed that dividing and reassembling cell trains had minimal impact on migration velocity, provided no compression or expansion occurred. Wide-narrow-wide patterns demonstrated distinct effects: stepwise transitions accelerated cells in narrow sections, increasing directional alignment driven by spatial restriction, followed by decreased alignment in wider regions. Gradual transitions maintained stable alignment and minimized disruptions, emphasizing the importance of smooth geometrical transitions in preserving robust collective behavior. These findings reveal how spatial confinement integrates follower-follower interactions and dynamic realignment. By linking geometric transitions to collective cell dynamics, our study advances the understanding of physical guidance mechanisms and offers a platform for investigating spatial influences on migrating cellular systems.
Collapse
Affiliation(s)
- Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Masaharu Endo
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Miki Takei
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Wataru Hanamoto
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
2
|
Tran SK, Lichtenberg JY, Leonard CE, Williamson JR, Sterling HR, Panek GK, Pearson AH, Lopez S, Lemmon CA, Conway DE, Hwang PY. P-cadherin-dependent adhesions are required for single lumen formation and HGF-mediated cell protrusions during epithelial morphogenesis. iScience 2025; 28:111844. [PMID: 39981519 PMCID: PMC11840494 DOI: 10.1016/j.isci.2025.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/09/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
During epithelial morphogenesis, in vivo, epithelial cells form cysts enclosing a single, hollow lumen and extend protrusions as a precursor for tubulogenesis. Cell-cell adhesions (e.g., cadherins) contribute to successful execution of these processes; while there are many different cadherins, one less studied cadherin in epithelial morphogenesis is P-cadherin (CDH3). Here, we investigated the role of CDH3 on successful lumen formation and cell protrusions, using three-dimensional cultures of Madin-Darby canine kidney (MDCK) and CDH3 knockout cell lines. We show that depletion of CDH3 leads to perturbations of hollow lumen formation associated with defects in cell protrusions and tubulogenesis, mediated by Rho/ROCK pathway. CDH3 knockout cells exert lower forces on the surrounding environment compared to wild-type cells, suggesting CDH3 acts as a mechanosensor for stable cell protrusion establishment. Together, our data suggest that CDH3 has an essential function during epithelial morphogenesis by contributing to lumen formation and cell protrusions.
Collapse
Affiliation(s)
- Sydnie K. Tran
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Jessanne Y. Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Corinne E. Leonard
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Jessica R. Williamson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Hazel R. Sterling
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Grace K. Panek
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Amanda H. Pearson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Santiago Lopez
- Department of Biomedical Engineering, Rice University, Houston, TX 77251, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Priscilla Y. Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
4
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
6
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. J Cell Biol 2024; 223:e202401057. [PMID: 38477830 PMCID: PMC10937189 DOI: 10.1083/jcb.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that intercellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James M. Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jonathan A. Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
7
|
Sebbagh M, Schwartz MA. Afadin-nectin forces its way to the front. J Cell Biol 2024; 223:e202403177. [PMID: 38563860 PMCID: PMC10988649 DOI: 10.1083/jcb.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Force transmission at cell-cell junctions critically regulates embryogenesis, tissue homeostasis, and diseases including cancer. The cadherin-catenin linkage has been considered the keystone of junctional force transmission, but new findings challenge this paradigm, arguing instead that the nectin-afadin linkage plays the more important role in mature junctions in the intestinal epithelium.
Collapse
Affiliation(s)
- Michael Sebbagh
- Aix-Marseille University, Inserm, DyNaMo, Turing Centre of Living Systems, Marseille, France
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
9
|
Szymański M, Bonowicz K, Antosik P, Jerka D, Głowacka M, Soroka M, Steinbrink K, Kleszczyński K, Gagat M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers (Basel) 2024; 16:836. [PMID: 38398227 PMCID: PMC10886501 DOI: 10.3390/cancers16040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Endometriosis is a gynecological condition where endometrium-like tissue grows outside the uterus, posing challenges in understanding and treatment. This article delves into the deep cellular and molecular processes underlying endometriosis, with a focus on the crucial roles played by cyclins and cytoskeletal proteins in its pathogenesis, particularly in the context of Epithelial-Mesenchymal Transition (EMT). The investigation begins by examining the activities of cyclins, elucidating their diverse biological roles such as cell cycle control, proliferation, evasion of apoptosis, and angiogenesis among ectopic endometrial cells. A comprehensive analysis of cytoskeletal proteins follows, emphasizing their fundamental biological roles and their specific significance to endometriotic cell features. This review sheds light on the interconnected pathways through which cyclins and cytoskeletal proteins converge, contributing to the genesis and progression of endometriosis. Understanding these molecular complexities not only provides insight into the underlying causes of the disease but also holds promise for the development of specific therapeutic approaches, ushering in a new era in the management of this devastating disorder.
Collapse
Affiliation(s)
- Marcin Szymański
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland;
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Mariola Głowacka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Małgorzata Soroka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| |
Collapse
|
10
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.04.535599. [PMID: 38260559 PMCID: PMC10802396 DOI: 10.1101/2023.04.04.535599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
11
|
Sleeboom JJF, van Tienderen GS, Schenke-Layland K, van der Laan LJW, Khalil AA, Verstegen MMA. The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci Transl Med 2024; 16:eadg3840. [PMID: 38170791 DOI: 10.1126/scitranslmed.adg3840] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
The extracellular matrix (ECM) is essential for cell support during homeostasis and plays a critical role in cancer. Although research often concentrates on the tumor's cellular aspect, attention is growing for the importance of the cancer-associated ECM. Biochemical and physical ECM signals affect tumor formation, invasion, metastasis, and therapy resistance. Examining the tumor microenvironment uncovers intricate ECM dysregulation and interactions with cancer and stromal cells. Anticancer therapies targeting ECM sensors and remodelers, including integrins and matrix metalloproteinases, and ECM-remodeling cells, have seen limited success. This review explores the ECM's role in cancer and discusses potential therapeutic strategies for cell-ECM interactions.
Collapse
Affiliation(s)
- Jelle J F Sleeboom
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, Netherlands
| | - Gilles S van Tienderen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
| | - Antoine A Khalil
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Postbox 2040, 3000CA Rotterdam, Netherlands
| |
Collapse
|
12
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562601. [PMID: 37904937 PMCID: PMC10614848 DOI: 10.1101/2023.10.16.562601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce an agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the relative contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism to increase migratory speed of the tissue. Summary Statement We present a novel Cellular-Potts model of collective cell migration to investigate the relative roles of cohesotaxis, tissue geometry, and cell intercalation on migration velocity of Xenopus mesendoderm.
Collapse
|
13
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
14
|
Markey MW, Pena CD, Venkatesh T, Cai L, Vazquez M. Retinal Progenitor Cells Exhibit Cadherin-Dependent Chemotaxis across Transplantable Extracellular Matrix of In Vitro Developmental and Adult Models. J Tissue Eng Regen Med 2023; 2023:1381620. [PMID: 40226407 PMCID: PMC11919238 DOI: 10.1155/2023/1381620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 04/15/2025]
Abstract
Retinal degeneration is an escalating public health challenge, as diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa cause irreversible vision loss in millions of adults each year. Regenerative medicine has pioneered the development of stem cell replacement therapies, which treat degeneration by replacing damaged retinal neurons with transplanted stem-like cells (SCs). While the collective migration of SCs plays critical roles during retinal development, our understanding of collective SC behaviors within biomaterials transplanted into adult tissue remains understudied. This project examines the potential therapeutic impacts of collective SC migration during transplantation by correlating the expression of cadherin, cell-cell cohesion molecules that maintain intercellular communication during development, with receptor proteins of chemoattractant molecules prevalent in degenerated adult tissue. Experiments examine these well-conserved biomechanisms by using two different model organisms: Drosophila melanogaster, a seminal model for retinal development, and Mus, an important preclinical model for transplantation. Results indicate that SCs from both animal models significantly upregulate cadherin expression to achieve more directed collective migration towards species-specific chemoattractants and exhibit longer distance motility upon different extracellular matrix substrates.
Collapse
Affiliation(s)
- Miles W. Markey
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Caroline D. Pena
- Department of Biology, The City College of New York, 140 and Convent Ave, New York, NY 10032, USA
| | - Tadmiri Venkatesh
- Department of Biology, The City College of New York, 140 and Convent Ave, New York, NY 10032, USA
| | - Li Cai
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
16
|
Hwang PY, Mathur J, Cao Y, Almeida J, Ye J, Morikis V, Cornish D, Clarke M, Stewart SA, Pathak A, Longmore GD. A Cdh3-β-catenin-laminin signaling axis in a subset of breast tumor leader cells control leader cell polarization and directional collective migration. Dev Cell 2023; 58:34-50.e9. [PMID: 36626870 PMCID: PMC10010282 DOI: 10.1016/j.devcel.2022.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/10/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jairaj Mathur
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Yanyang Cao
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jose Almeida
- Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Jiayu Ye
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Vasilios Morikis
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Daphne Cornish
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Maria Clarke
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Amit Pathak
- Departments of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Gregory D Longmore
- Departments of Medicine (Oncology), Washington University in St. Louis, St Louis, MO 63110, USA; Departments of Cell Biology and Physiology, Washington University in St. Louis, St Louis, MO 63110, USA; ICCE Institute, Washington University in St. Louis, St Louis, MO 63110, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
17
|
Wojtowicz K, Wojciechowski P. Synchronous Control of a Group of Flying Robots Following a Leader UAV in an Unfamiliar Environment. SENSORS (BASEL, SWITZERLAND) 2023; 23:740. [PMID: 36679536 PMCID: PMC9867249 DOI: 10.3390/s23020740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
An increasing number of professional drone flights require situational awareness of aerial vehicles. Vehicles in a group of drones must be aware of their surroundings and the other group members. The amount of data to be exchanged and the total cost are skyrocketing. This paper presents an implementation and assessment of an organized drone group comprising a fully aware leader and much less expensive followers. The solution achieved a significant cost reduction by decreasing the number of sensors onboard followers and improving the organization and manageability of the group in the system. In this project, a group of quadrotor drones was evaluated. An automatically flying leader was followed by drones equipped with low-end cameras only. The followers were tasked with following ArUco markers mounted on a preceding drone. Several test tasks were designed and conducted. Finally, the presented system proved appropriate for slowly moving groups of drones.
Collapse
|
18
|
Moissoglu K, Lockett SJ, Mili S. Visualizing and Quantifying mRNA Localization at the Invasive Front of 3D Cancer Spheroids. Methods Mol Biol 2023; 2608:263-280. [PMID: 36653713 PMCID: PMC10411857 DOI: 10.1007/978-1-0716-2887-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Localization of mRNAs at the front of migrating cells is a widely used mechanism that functionally supports efficient cell movement. It is observed in single cells on two-dimensional surfaces, as well as in multicellular three-dimensional (3D) structures and in tissue in vivo. 3D multicellular cultures can reveal how the topology of the extracellular matrix and cell-cell contacts influence subcellular mRNA distributions. Here we describe a method for mRNA imaging in an inducible system of collective cancer cell invasion. MDA-MB-231 cancer cell spheroids are embedded in Matrigel, induced to invade, and processed to image mRNAs with single-molecule sensitivity. An analysis algorithm is used to quantify and compare mRNA distributions at the front of invasive leader cells. The approach can be easily adapted and applied to analyze RNA distributions in additional settings where cells polarize along a linear axis.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, NIH, Frederick, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
19
|
Campanale JP, Mondo JA, Montell DJ. A Scribble/Cdep/Rac pathway controls follower-cell crawling and cluster cohesion during collective border-cell migration. Dev Cell 2022; 57:2483-2496.e4. [PMID: 36347240 PMCID: PMC9725179 DOI: 10.1016/j.devcel.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Collective cell movements drive normal development and metastasis. Drosophila border cells move as a cluster of 6-10 cells, where the role of the Rac GTPase in migration was first established. In border cells, as in most migratory cells, Rac stimulates leading-edge protrusion. Upstream Rac regulators in leaders have been identified; however, the regulation and function of Rac in follower border cells is unknown. Here, we show that all border cells require Rac, which promotes follower-cell motility and is important for cluster compactness and movement. We identify a Rac guanine nucleotide exchange factor, Cdep, which also regulates follower-cell movement and cluster cohesion. Scribble, Discs large, and Lethal giant larvae localize Cdep basolaterally and share phenotypes with Cdep. Relocalization of Cdep::GFP partially rescues Scribble knockdown, suggesting that Cdep is a major downstream effector of basolateral proteins. Thus, a Scrib/Cdep/Rac pathway promotes cell crawling and coordinated, collective migration in vivo.
Collapse
Affiliation(s)
- Joseph P Campanale
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
20
|
Basta MD, Menko AS, Walker JL. PI3K Isoform-Specific Regulation of Leader and Follower Cell Function for Collective Migration and Proliferation in Response to Injury. Cells 2022; 11:3515. [PMID: 36359913 PMCID: PMC9658457 DOI: 10.3390/cells11213515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
To ensure proper wound healing it is important to elucidate the signaling cues that coordinate leader and follower cell behavior to promote collective migration and proliferation for wound healing in response to injury. Using an ex vivo post-cataract surgery wound healing model we investigated the role of class I phosphatidylinositol-3-kinase (PI3K) isoforms in this process. Our findings revealed a specific role for p110α signaling independent of Akt for promoting the collective migration and proliferation of the epithelium for wound closure. In addition, we found an important role for p110α signaling in orchestrating proper polarized cytoskeletal organization within both leader and wounded epithelial follower cells to coordinate their function for wound healing. p110α was necessary to signal the formation and persistence of vimentin rich-lamellipodia extensions by leader cells and the reorganization of actomyosin into stress fibers along the basal domains of the wounded lens epithelial follower cells for movement. Together, our study reveals a critical role for p110α in the collective migration of an epithelium in response to wounding.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Time-Series Clustering of Single-Cell Trajectories in Collective Cell Migration. Cancers (Basel) 2022; 14:cancers14194587. [PMID: 36230509 PMCID: PMC9559181 DOI: 10.3390/cancers14194587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this study, we normalized trajectories containing both mesenchymal and epithelial cells to remove the effect of cell location on clustering, and performed a dimensionality reduction on the time series data before clustering. When the clustering results were superimposed on the trajectories prior to normalization, the results still showed similarities in location, indicating that this method can find cells with similar migration patterns. These data highlight the reliability of this method in identifying consistent migration patterns in collective cell migration. Abstract Collective invasion drives multicellular cancer cells to spread to surrounding normal tissues. To fully comprehend metastasis, the methodology of analysis of individual cell migration in tissue should be well developed. Extracting and classifying cells with similar migratory characteristics in a colony would facilitate an understanding of complex cell migration patterns. Here, we used electrospun fibers as the extracellular matrix for the in vitro modeling of collective cell migration, clustering of mesenchymal and epithelial cells based on trajectories, and analysis of collective migration patterns based on trajectory similarity. We normalized the trajectories to eliminate the effect of cell location on clustering and used uniform manifold approximation and projection to perform dimensionality reduction on the time-series data before clustering. When the clustering results were superimposed on the trajectories before normalization, the results still exhibited positional similarity, thereby demonstrating that this method can identify cells with similar migration patterns. The same cluster contained both mesenchymal and epithelial cells, and this result was related to cell location and cell division. These data highlight the reliability of this method in identifying consistent migration patterns during collective cell migration. This provides new insights into the epithelial–mesenchymal interactions that affect migration patterns.
Collapse
|
22
|
Rayat Pisheh H, Ansari M, Eslami H. How is mechanobiology involved in bone regenerative medicine? Tissue Cell 2022; 76:101821. [DOI: 10.1016/j.tice.2022.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
23
|
Xue J, Wu T, Qiu J, Xia Y. Accelerating Cell Migration along Radially Aligned Nanofibers through the Addition of Electrosprayed Nanoparticles in a Radial Density Gradient. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100280. [PMID: 36091327 PMCID: PMC9455824 DOI: 10.1002/ppsc.202100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scaffolds capable of promoting cell migration from the periphery towards the center along the radial direction hold promises for tissue regeneration. Here we report a simple and general method based on masked electrospray for the fabrication of such scaffolds by depositing collagen nanoparticles on radially-aligned nanofibers in a radial density gradient. Placed between the metallic needle and the collector, an aperture with tunable opening sizes serves as the mask. By increasing the size of the opening at a fixed speed, the electrosprayed particles take a radial density gradient that decreases from the center to the periphery. When deposited on a glass slide, the radial density gradient of collagen nanoparticles promotes the migration of fibroblasts from the periphery towards the center. By replacing the glass slide with a scaffold comprised of radially-aligned nanofibers, a synergetic effect arises to further accelerate cell migration along the radial direction. The synergistic effect can be attributed to a unique combination of the topographic cue arising from the aligned nanofibers and the haptotactic cue enabled by the graded nanoparticles. This work demonstrates a method to maximize cell migration from the periphery towards the center through a combination of topographic and haptotactic cues.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
25
|
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021; 21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Collective cancer invasion with leader-follower organization is increasingly recognized as a predominant mechanism in the metastatic cascade. Leader cells support cancer invasion by creating invasion tracks, sensing environmental cues and coordinating with follower cells biochemically and biomechanically. With the latest developments in experimental and computational models and analysis techniques, the range of specific traits and features of leader cells reported in the literature is rapidly expanding. Yet, despite their importance, there is no consensus on how leader cells arise or their essential characteristics. In this Perspective, we propose a framework for defining the essential aspects of leader cells and provide a unifying perspective on the varying cellular and molecular programmes that are adopted by each leader cell subtype to accomplish their functions. This Perspective can lead to more effective strategies to interdict a major contributor to metastatic capability.
Collapse
Affiliation(s)
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
26
|
Goldstein Y, Tischenko K, Brill-Karniely Y, Benny O. Enhanced Biomechanically Mediated "Phagocytosis" in Detached Tumor Cells. Biomedicines 2021; 9:947. [PMID: 34440151 PMCID: PMC8391740 DOI: 10.3390/biomedicines9080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Uptake of particles by cells involves various natural mechanisms that are essential for their biological functions. The same mechanisms are used in the engulfment of synthetic colloidal drug carriers, while the extent of the uptake affects the biological performance and selectivity. Thus far, little is known regarding the effect of external biomechanical stimuli on the capacity of the cells to uptake nano and micro carriers. This is relevant for anchorage-dependent cells that have detached from surfaces or for cells that travel in the body such as tumor cells, immune cells and various circulating stem cells. In this study, we hypothesize that cellular deformability is a crucial physical effector for the successful execution of the phagocytosis-like uptake in cancer cells. To test this assumption, we develop a well-controlled tunable method to compare the uptake of inert particles by cancer cells in adherent and non-adherent conditions. We introduce a self-designed 3D-printed apparatus, which enables constant stirring while facilitating a floating environment for cell incubation. We reveal a mechanically mediated phagocytosis-like behavior in various cancer cells, that was dramatically enhance in the detached cell state. Our findings emphasize the importance of including proper biomechanical cues to reliably mimic certain physiological scenarios. Beyond that, we offer a cost-effective accessible research tool to study mixed cultures for both adherent and non-adherent cells.
Collapse
Affiliation(s)
| | | | | | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.G.); (K.T.); (Y.B.-K.)
| |
Collapse
|
27
|
Qin L, Yang D, Yi W, Cao H, Xiao G. Roles of leader and follower cells in collective cell migration. Mol Biol Cell 2021; 32:1267-1272. [PMID: 34184941 PMCID: PMC8351552 DOI: 10.1091/mbc.e20-10-0681] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Collective cell migration is a widely observed phenomenon during animal development, tissue repair, and cancer metastasis. Considering its broad involvement in biological processes, it is essential to understand the basics behind the collective movement. Based on the topology of migrating populations, tissue-scale kinetics, called the “leader–follower” model, has been proposed for persistent directional collective movement. Extensive in vivo and in vitro studies reveal the characteristics of leader cells, as well as the special mechanisms leader cells employ for maintaining their positions in collective migration. However, follower cells have attracted increasing attention recently due to their important contributions to collective movement. In this Perspective, the current understanding of the molecular mechanisms behind the “leader–follower” model is reviewed with a special focus on the force transmission and diverse roles of leaders and followers during collective cell movement.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| |
Collapse
|
28
|
Xu N, Ayers L, Pastukh V, Alexeyev M, Stevens T, Tambe DT. Impact of Na+ permeation on collective migration of pulmonary arterial endothelial cells. PLoS One 2021; 16:e0250095. [PMID: 33891591 PMCID: PMC8064576 DOI: 10.1371/journal.pone.0250095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Collective migration of endothelial cells is important for wound healing and angiogenesis. During such migration, each constituent endothelial cell coordinates its magnitude and direction of migration with its neighbors while retaining intercellular adhesion. Ensuring coordination and cohesion involves a variety of intra- and inter-cellular signaling processes. However, the role of permeation of extracellular Na+ in collective cell migration remains unclear. Here, we examined the effect of Na+ permeation in collective migration of pulmonary artery endothelial cell (PAEC) monolayers triggered by either a scratch injury or a barrier removal over 24 hours. In the scratch assay, PAEC monolayers migrated in two approximately linear phases. In the first phase, wound closure started with fast speed which then rapidly reduced within 5 hours after scratching. In the second phase, wound closure maintained at slow and stable speed from 6 to 24 hours. In the absence of extracellular Na+, the wound closure distance was reduced by >50%. Fewer cells at the leading edge protruded prominent lamellipodia. Beside transient gaps, some sustained interendothelial gaps also formed and progressively increased in size over time, and some fused with adjacent gaps. In the absence of both Na+ and scratch injury, PAEC monolayer migrated even more slowly, and interendothelial gaps obviously increased in size towards the end. Pharmacological inhibition of the epithelial Na+ channel (ENaC) using amiloride reduced wound closure distance by 30%. Inhibition of both the ENaC and the Na+/Ca2+ exchanger (NCX) using benzamil further reduced wound closure distance in the second phase and caused accumulation of floating particles in the media. Surprisingly, pharmacological inhibition of the Ca2+ release-activated Ca2+ (CRAC) channel protein 1 (Orai1) using GSK-7975A, the transient receptor potential channel protein 1 and 4 (TRPC1/4) using Pico145, or both Orai1 and TRPC1/4 using combined GSK-7975A and Pico145 treatment did not affect wound closure distance dramatically. Nevertheless, the combined treatment appeared to cause accumulation of floating particles. Note that GSK-7975A also inhibits small inward Ca2+ currents via Orai2 and Orai3 channels, whereas Pico145 also blocks TRPC4, TRPC5, and TRPC1/5 channels. By contrast, gene silence of Orai1 by shRNAs led to a 25% reduction of wound closure in the first 6 hours but had no effect afterwards. However, in the absence of extracellular Na+ or cellular injury, Orai1 did not affect PAEC collective migration. Overall, the data reveal that Na+ permeation into cells contributes to PAEC monolayer collective migration by increasing lamellipodial formation, reducing accumulation of floating particles, and improving intercellular adhesion.
Collapse
Affiliation(s)
- Ningyong Xu
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Linn Ayers
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Departments of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Departments of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (DTT); (TS)
| | - Dhananjay T. Tambe
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Departments of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Mechanical, Aerospace, and Biomedical Engineering, College of Engineering, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (DTT); (TS)
| |
Collapse
|
29
|
Activated nanoscale actin-binding domain motion in the catenin-cadherin complex revealed by neutron spin echo spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2025012118. [PMID: 33753508 DOI: 10.1073/pnas.2025012118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the core component of the adherens junction in cell-cell adhesion, the cadherin-catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin-catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin-catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin-catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin-catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin-catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin-catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.
Collapse
|
30
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
31
|
Grimsley-Myers CM, Isaacson RH, Cadwell CM, Campos J, Hernandes MS, Myers KR, Seo T, Giang W, Griendling KK, Kowalczyk AP. VE-cadherin endocytosis controls vascular integrity and patterning during development. J Cell Biol 2021; 219:151601. [PMID: 32232465 PMCID: PMC7199849 DOI: 10.1083/jcb.201909081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.
Collapse
Affiliation(s)
| | - Robin H Isaacson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Tadahiko Seo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - William Giang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Department of Dermatology, and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
32
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
33
|
Abstract
Specific RNAs are enriched at protrusive regions of migrating cells. This localization is important for cell migration on 2D surfaces. However, in vivo, tumor cells navigate complex 3D environments often in collective groups. Here, we investigated protrusion-enriched RNAs during collective 3D invasion. We show that specific RNAs exhibit a striking accumulation at the front of invasive leader cells. We provide insights into the mechanism underlying RNA accumulation at the invasive front, and we further demonstrate that it is required for efficient 3D invasion of tumor cells. We additionally observe RNA enrichment at invasive sites of in vivo tumors, supporting the physiological relevance of this mechanism and suggesting a targeting opportunity for perturbing cancer cell invasion. Localization of RNAs at protrusive regions of cells is important for single-cell migration on two-dimensional surfaces. Protrusion-enriched RNAs encode factors linked to cancer progression, such as the RAB13 GTPase and the NET1 guanine nucleotide exchange factor, and are regulated by the tumor-suppressor protein APC. However, tumor cells in vivo often do not move as single cells but rather utilize collective modes of invasion and dissemination. Here, we developed an inducible system of three-dimensional (3D) collective invasion to study the behavior and importance of protrusion-enriched RNAs. We find that, strikingly, both the RAB13 and NET1 RNAs are enriched specifically at the invasive front of leader cells in invasive cell strands. This localization requires microtubules and coincides with sites of high laminin concentration. Indeed, laminin association and integrin engagement are required for RNA accumulation at the invasive front. Importantly, perturbing RNA accumulation reduces collective 3D invasion. Examination of in vivo tumors reveals a similar localization of the RAB13 and NET1 RNAs at potential invasive sites, suggesting that this mechanism could provide a targeting opportunity for interfering with collective cancer cell invasion.
Collapse
|
34
|
Khalil AA, Ilina O, Vasaturo A, Venhuizen JH, Vullings M, Venhuizen V, Bilos A, Figdor CG, Span PN, Friedl P. Collective invasion induced by an autocrine purinergic loop through connexin-43 hemichannels. J Cell Biol 2020; 219:e201911120. [PMID: 32777015 PMCID: PMC7659730 DOI: 10.1083/jcb.201911120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/23/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Progression of epithelial cancers predominantly proceeds by collective invasion of cell groups with coordinated cell-cell junctions and multicellular cytoskeletal activity. Collectively invading breast cancer cells express the gap junction protein connexin-43 (Cx43), yet whether Cx43 regulates collective invasion remains unclear. We here show that Cx43 mediates gap-junctional coupling between collectively invading breast cancer cells and, via hemichannels, adenosine nucleotide/nucleoside release into the extracellular space. Using molecular interference and rescue strategies, we identify that Cx43 hemichannel function, but not intercellular communication, induces leader cell activity and collective migration through the engagement of the adenosine receptor 1 (ADORA1) and AKT signaling. Accordingly, pharmacological inhibition of ADORA1 or AKT signaling caused leader cell collapse and halted collective invasion. ADORA1 inhibition further reduced local invasion of orthotopic mammary tumors in vivo, and joint up-regulation of Cx43 and ADORA1 in breast cancer patients correlated with decreased relapse-free survival. This identifies autocrine purinergic signaling, through Cx43 hemichannels, as a critical pathway in leader cell function and collective invasion.
Collapse
Affiliation(s)
- Antoine A. Khalil
- Department of Dermatology and Graduate School of Life Science, University of Wuerzburg, Wuerzburg, Germany
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Olga Ilina
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Angela Vasaturo
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manon Vullings
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Victor Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ab Bilos
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Friedl
- Department of Dermatology and Graduate School of Life Science, University of Wuerzburg, Wuerzburg, Germany
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- David H. Koch Center for Genitourinary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
35
|
Kim SK, Jang SD, Kim H, Chung S, Park JK, Kuh HJ. Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model. Cancers (Basel) 2020; 12:cancers12051305. [PMID: 32455681 PMCID: PMC7281339 DOI: 10.3390/cancers12051305] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Invasive cancer cell migration is a key feature of metastatic human pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms remain poorly understood. Here, we investigated modes of cancer cell invasion using two pancreatic cancer cell lines with differential epithelial–mesenchymal status, PANC-1 and BxPC-3, under 3D culture conditions. Multicellular tumor spheroids (TSs) were grown in a collagen matrix co-cultured with pancreatic stellate cells (PSCs) using microchannel chips. PANC-1 cells showed individual migration from TSs via invadopodium formation. BxPC-3 cells showed plasticity between collective and individual migration in either mesenchymal mode, with filopodium-like protrusions, or blebby amoeboid mode. These two cell lines showed significantly different patterns of extracellular matrix (ECM) remodeling, with MMP-dependent degradation in a limited area of ECM around invadopodia for PANC-1 cells, or MMP-independent extensive deformation of ECM for BxPC-3 cells. Cancer cell migration out of the collagen channel significantly increased by PSCs and directional cancer cell migration was mediated by fibronectin deposited by PSCs. Our results highlight the phenotypic heterogeneity and plasticity of PDAC cell migration and ECM remodeling under 3D culture conditions. This 3D co-culture model of pancreatic cancer cells and PSCs offers a useful tool for studying cancer cell migration and ECM remodeling to identify and develop potential molecular targets and anti-cancer agents against human PDAC.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
| | - So Dam Jang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
| | - Hyunho Kim
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.K.); (S.C.)
| | - Seok Chung
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.K.); (S.C.)
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Korea;
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; (S.-K.K.); (S.D.J.)
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
36
|
Diehl MI, Wolf SP, Bindokas VP, Schreiber H. Automated cell cluster analysis provides insight into multi-cell-type interactions between immune cells and their targets. Exp Cell Res 2020; 393:112014. [PMID: 32439494 DOI: 10.1016/j.yexcr.2020.112014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
Abstract
Understanding interactions between immune cells and their targets is an important step on the path to fully characterizing the immune system, and in doing so, learning how it combats disease. Many studies of these interactions have a narrow focus, often looking only at a binary result of whether or not a specific treatment was successful or only focusing on the interactions between two individual cells. Therefore, in an effort to more comprehensively study multicellular interactions among immune cells and their targets, we used in vitro longitudinal time-lapse imaging and developed an automated cell cluster analysis tool, or macro, to investigate the formation of cell clusters. In particular, we investigated the behavior of cancer-specific CD8+ and CD4+ T cells on how they interact around their targets: cancer cells and antigen-presenting cells. The macro that we established allowed us to examine these large-scale clustering behaviors taking place between those four cell types. Thus, we were able to distinguish directed immune cell clustering from random cell movement. Furthermore, this macro can be generalized to be applicable to systems consisting of any number of differently labeled species and can be used to track clustering behaviors and compare them to randomized simulations.
Collapse
Affiliation(s)
- Markus I Diehl
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Steven P Wolf
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA; Institute of Immunology, Campus Buch, Charité - Universitaetsmedizin Berlin, 13125, Berlin, Germany
| | - Vytas P Bindokas
- Integrated Microscopy Core, The University of Chicago, Chicago, IL, 60637, USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA; Committee on Cancer Biology and Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
37
|
Balcioglu HE, Balasubramaniam L, Stirbat TV, Doss BL, Fardin MA, Mège RM, Ladoux B. A subtle relationship between substrate stiffness and collective migration of cell clusters. SOFT MATTER 2020; 16:1825-1839. [PMID: 31970382 DOI: 10.1039/c9sm01893j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The physical cues from the extracellular environment mediates cell signaling spatially and temporally. Cells respond to physical cues from their environment in a non-monotonic fashion. Despite our understanding of the role of substrate rigidity on single cell migration, how cells respond collectively to increasing extracellular matrix stiffness is not well established. Here we patterned multicellular epithelial Madin-Darby canine kidney (MDCK) islands on polyacrylamide gels of varying stiffness and studied their expansion. Our findings show that the MDCK islands expanded faster with increasing stiffness only up to an optimum stiffness, over which the expansion plateaued. We then focused on the expansion of the front of the assemblies and the formation of leader cells. We observed cell front destabilization only above substrate stiffness of a few kPa. The extension of multicellular finger-like structures at the edges of the colonies for intermediate and high stiffnesses from 6 to 60 kPa responded to higher substrate stiffness by increasing focal adhesion areas and actin cable assembly. Additionally, the number of leader cells at the finger-like protrusions increased with stiffness in correlation with an increase of the area of these multicellular protrusions. Consequently, the force profile along the epithelial fingers in the parallel and transverse directions of migration showed an unexpected relationship leading to a global force decrease with the increase of stiffness. Taken together, our findings show that epithelial cell colonies respond to substrate stiffness but in a non-trivial manner that may be of importance to understand morphogenesis and collective cell invasion during tumour progression.
Collapse
Affiliation(s)
- Hayri E Balcioglu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | | | | | | | | | | |
Collapse
|
38
|
Mishra AK, Campanale JP, Mondo JA, Montell DJ. Cell interactions in collective cell migration. Development 2019; 146:146/23/dev172056. [PMID: 31806626 DOI: 10.1242/dev.172056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collective cell migration is the coordinated movement of a physically connected group of cells and is a prominent driver of development and metastasis. Interactions between cells within migrating collectives, and between migrating cells and other cells in the environment, play key roles in stimulating motility, steering and sometimes promoting cell survival. Similarly, diverse heterotypic interactions and collective behaviors likely contribute to tumor metastasis. Here, we describe a sampling of cells that migrate collectively in vivo, including well-established and newer examples. We focus on the under-appreciated property that many - perhaps most - collectively migrating cells move as cooperating groups of distinct cell types.
Collapse
Affiliation(s)
- Abhinava K Mishra
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
39
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
40
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Wickström SA, Roca-Cusachs P. Special issue on "mechanotransduction in cell fate determination" - From molecular switches to organ-level regulation. Exp Cell Res 2019; 382:111452. [PMID: 31153925 DOI: 10.1016/j.yexcr.2019.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland; Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, Germany.
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028, Barcelona, Spain; Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
42
|
Bui J, Conway DE, Heise RL, Weinberg SH. Mechanochemical Coupling and Junctional Forces during Collective Cell Migration. Biophys J 2019; 117:170-183. [PMID: 31200935 DOI: 10.1016/j.bpj.2019.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cell migration, a fundamental physiological process in which cells sense and move through their surrounding physical environment, plays a critical role in development and tissue formation, as well as pathological processes, such as cancer metastasis and wound healing. During cell migration, dynamics are governed by the bidirectional interplay between cell-generated mechanical forces and the activity of Rho GTPases, a family of small GTP-binding proteins that regulate actin cytoskeleton assembly and cellular contractility. These interactions are inherently more complex during the collective migration of mechanically coupled cells because of the additional regulation of cell-cell junctional forces. In this study, we adapted a recent minimal modeling framework to simulate the interactions between mechanochemical signaling in individual cells and interactions with cell-cell junctional forces during collective cell migration. We find that migration of individual cells depends on the feedback between mechanical tension and Rho GTPase activity in a biphasic manner. During collective cell migration, waves of Rho GTPase activity mediate mechanical contraction/extension and thus synchronization throughout the tissue. Further, cell-cell junctional forces exhibit distinct spatial patterns during collective cell migration, with larger forces near the leading edge. Larger junctional force magnitudes are associated with faster collective cell migration and larger tissue size. Simulations of heterogeneous tissue migration exhibit a complex dependence on the properties of both leading and trailing cells. Computational predictions demonstrate that collective cell migration depends on both the emergent dynamics and interactions between cellular-level Rho GTPase activity and contractility and multicellular-level junctional forces.
Collapse
Affiliation(s)
- Justin Bui
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
43
|
Harryman WL, Warfel NA, Nagle RB, Cress AE. The Tumor Microenvironments of Lethal Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:149-170. [PMID: 31900909 DOI: 10.1007/978-3-030-32656-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.
Collapse
Affiliation(s)
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Anne E Cress
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|