1
|
Falcao RM, de Souza JES, Gonzalez-Molina J, Mathieson W, Carlson JW, Petta TB. Deep multi-omics integration approach reveals new molecular features of uterine leiomyosarcoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167632. [PMID: 39708976 DOI: 10.1016/j.bbadis.2024.167632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Uterine leiomyosarcoma (uLMS) is a rare and aggressive cancer representing approximately 25 % of all uterine malignancies. The molecular heterogeneity and pathogenesis of uLMS are not well understood, and translational studies aimed at discovering the vulnerabilities of this tumor type are of high priority. We conducted an innovative comprehensive multi-omics integration study from DNA to protein using freshly frozen tumors. Here, we show that two tumors harbor actionable therapeutic targets, IDH1_p.Arg132Cys and KRAS_p.Gly12Cys, and homologous recombination deficiency (HRD) is the most predominant genomic signature. Additionally, 80 % of the samples presented a chromothripsis signature, reinforcing the aneuploidy phenotype of these tumors. Tumors with a high proliferation score and high Ki67 expression was associated with worse overall survival (OS). We observed a high frequency of balanced fusion events involving EEF1A1 with enrichment of the EGFR pathway. For the first time, uLMS proteomics analysis showed the enrichment of pathways associated with suppression of the innate immune system and ECM organization. Finally, our comprehensive multi-omics integration analysis identified amplification of the CTHRC1 gene from the matrisome, with a negative impact on OS. Interestingly, the expression of Ki67 and CTHRC1 exhibits a strong negative correlation, underscoring two distinct and mutually exclusive biological profiles in uLMS: (i) highly proliferative tumors, characterized by elevated Ki67 expression, and (ii) tumors driven by ECM remodeling, marked by high CTHRC1 levels. Taken together, this deep functional multi-omics approach contributes to the detection of new molecular features of uLMS and suggests that patients could benefit from precision oncology in clinical practice.
Collapse
Affiliation(s)
- Raul Maia Falcao
- Universidade Federal do Rio Grande do Norte, IMD, Ppg-Bioinformatica, Natal, Brazil.
| | | | - Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - William Mathieson
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg.
| | | | - Tirzah Braz Petta
- Universidade Federal do Rio Grande do Norte, IMD, Ppg-Bioinformatica, Natal, Brazil; University of Southern California, Keck School of Medicine, Department of Translational Genomics, 1450 Biggy St., Los Angeles, CA 90089, United States of America.
| |
Collapse
|
2
|
Davidson B, Skeie-Jensen T, Holth A, Hausladen S. Stathmin is an Independent Prognostic Marker of Poor Outcome in Uterine Leiomyosarcoma. Int J Gynecol Pathol 2025; 44:56-66. [PMID: 38847524 DOI: 10.1097/pgp.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The objective of this study was to analyze the expression and prognostic role of cancer-associated proteins in uterine leiomyosarcoma (uLMS). p53, DAXX, ATRX, HMGA2, IMP3, Stathmin, and phospho-Stathmin (p-Stathmin) protein expression by immunohistochemistry was analyzed in tissue microarrays from 244 uLMS. Expression was assessed for association with clinicopathologic parameters in 173 patients with available data. Tissue microarrays were informative in 230 cases. p53 was aberrant in 44% of tumors. DAXX, ATRX, HMGA2, IMP3, and Stathmin were expressed in 90%, 55%, 40%, 33%, and 97% uLMS, respectively. Cytoplasmic and nuclear p-Stathmin staining was seen in 77% and 68% of tumors, respectively. Stathmin expression was significantly related to higher mitotic count ( P < 0.001), a higher degree of atypia ( P = 0.006), and vascular invasion ( P = 0.016), whereas p-Stathmin expression was significantly related to advanced stage ( P < 0.001), higher mitotic count ( P < 0.001), and vascular invasion ( P = 0.001). In univariate survival analysis for 165 patients with informative tissue microarrays, aberrant p53 ( P = 0.026) and higher IMP3 ( P = 0.024), Stathmin ( P < 0.001), cytoplasmic p-Stathmin ( P < 0.001), and nuclear p-Stathmin ( P < 0.001) expression was associated with poor disease-specific survival. Clinicopathologic parameters significantly related to poor disease-specific survival were older age ( P = 0.006), extrauterine disease at diagnosis (International Federation of Gynecology and Obstetrics (FIGO) stage ≥2; P < 0.001), high mitotic count ( P = 0.02), and grade 2 to 3 atypia ( P = 0.017). In multivariate analysis, age ( P = 0.002), FIGO stage ( P < 0.001), and Stathmin expression ( P < 0.001) were independent prognosticators. Stathmin was the only prognosticator in a multivariate analysis limited to patients with FIGO stage I disease ( P = 0.013). In conclusion, Stathmin expression is strongly associated with poor survival in uLMS and may be a new prognostic marker in this malignancy.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Norway
- Faculty of Medicine, University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Tone Skeie-Jensen
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Norway
| | - Silke Hausladen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Norway
| |
Collapse
|
3
|
Arfan S, Thway K, Jones RL, Huang PH. Molecular Heterogeneity in Leiomyosarcoma and Implications for Personalised Medicine. Curr Treat Options Oncol 2024; 25:644-658. [PMID: 38656686 DOI: 10.1007/s11864-024-01204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
OPINION STATEMENT Leiomyosarcoma (LMS) is one of the more common subtypes of soft tissue sarcomas (STS), accounting for about 20% of cases. Differences in anatomical location, risk of recurrence and histomorphological variants contribute to the substantial clinical heterogeneity in survival outcomes and therapy responses observed in patients. There is therefore a need to move away from the current one-size-fits-all treatment approach towards a personalised strategy tailored for individual patients. Over the past decade, tissue profiling studies have revealed key genomic features and an additional layer of molecular heterogeneity among patients, with potential utility for optimal risk stratification and biomarker-matched therapies. Furthermore, recent studies investigating intratumour heterogeneity and tumour evolution patterns in LMS suggest some key features that may need to be taken into consideration when designing treatment strategies and clinical trials. Moving forward, national and international collaborative efforts to aggregate expertise, data, resources and tools are needed to achieve a step change in improving patient survival outcomes in this disease of unmet need.
Collapse
Affiliation(s)
- Sara Arfan
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Robin L Jones
- The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.
| |
Collapse
|
4
|
Khanal P, Khanal P, Paudel S, Pokhrel A, Chapagain S. Paraneoplastic movement disorder due to suspected metastatic Leiomyosarcoma of tongue: A case report. Clin Case Rep 2024; 12:e8648. [PMID: 38464567 PMCID: PMC10920308 DOI: 10.1002/ccr3.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Paraneoplastic movement disorders, though rare, can be the initial symptoms of malignancies like leiomyosarcoma, as in our case. Clinicians should keep malignancies in their differential diagnosis in cases of unexplained movement abnormalities.
Collapse
Affiliation(s)
- Pradeep Khanal
- Department of Internal MedicineTrinity Health Ann Arbor HospitalYpsilantiMichiganUSA
| | | | - Sandip Paudel
- Institute of MedicineTribhuvan UniversityKathmanduNepal
| | - Ashbita Pokhrel
- Department of Anatomic and Clinical PathologyWilliam Beaumont HospitalRoyal OakMichiganUSA
| | | |
Collapse
|
5
|
Denu RA, Dann AM, Keung EZ, Nakazawa MS, Nassif Haddad EF. The Future of Targeted Therapy for Leiomyosarcoma. Cancers (Basel) 2024; 16:938. [PMID: 38473300 PMCID: PMC10930698 DOI: 10.3390/cancers16050938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Leiomyosarcoma (LMS) is an aggressive subtype of soft tissue sarcoma that arises from smooth muscle cells, most commonly in the uterus and retroperitoneum. LMS is a heterogeneous disease with diverse clinical and molecular characteristics that have yet to be fully understood. Molecular profiling has uncovered possible targets amenable to treatment, though this has yet to translate into approved targeted therapies in LMS. This review will explore historic and recent findings from molecular profiling, highlight promising avenues of current investigation, and suggest possible future strategies to move toward the goal of molecularly matched treatment of LMS. We focus on targeting the DNA damage response, the macrophage-rich micro-environment, the PI3K/mTOR pathway, epigenetic regulators, and telomere biology.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amanda M. Dann
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Trecourt A, Azmani R, Hostein I, Blanchard L, Le Loarer F, Bourdon A, Alame M, Nadaud B, Mayer L, Rebier F, Larmonier C, Moura MS, Soubeyran I, Hartog C, Ray-Coquard I, Treilleux I, Devouassoux-Shisheboran M, Croce S. The KAT6B::KANSL1 Fusion Defines a New Uterine Sarcoma With Hybrid Endometrial Stromal Tumor and Smooth Muscle Tumor Features. Mod Pathol 2023; 36:100243. [PMID: 37307879 DOI: 10.1016/j.modpat.2023.100243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Neoplasms harboring a KAT6B/A::KANSL1 fusion were initially reported as benign (leiomyomas) and malignant (leiomyosarcomas, low-grade endometrial stromal sarcomas [LG-ESSs]) uterine neoplasms. However, they may represent an emerging entity characterized by clinical aggressiveness contrasting with a rather reassuring microscopic appearance. Here, we aimed to confirm that this neoplasm is a distinct clinicopathologic and molecular sarcoma and identify criteria that should alert pathologists and lead to KAT6B/A::KANSL1 fusion testing in routine practice. Therefore, we conducted a comprehensive clinical, histopathologic, immunohistochemical, and molecular study, including array comparative genomic hybridization, whole RNA-sequencing, unsupervised clustering, and cDNA mutational profile analyses of 16 tumors with KAT6B::KANSL1 fusion from 12 patients. At presentation, patients were peri-menopausal (median, 47.5 years), and the primary tumors were located in the uterine corpus (12/12, 100%), with an additional prevesical location in 1 (8.3%) of 12 cases. The relapse rate was 33.3% (3/9). All tumors (16/16, 100%) showed morphologic and immunohistochemical features overlapping between leiomyoma and endometrial stromal tumors. A whirling recurrent architecture (resembling fibromyxoid-ESS/fibrosarcoma) was found in 13 (81.3%) of 16 tumors. All tumors (16/16, 100%) exhibited numerous arterioliform vessels, and 13 (81.3%) of 18 had large hyalinized central vessels and collagen deposits. Estrogen and progesterone receptors were expressed in 16 (100%) of 16 and 14 (87.5%) of 16 tumors, respectively. Array comparative genomic hybridization performed on 10 tumors classified these neoplasms as simple genomic sarcomas. Whole RNA-sequencing on 16 samples and clustering analysis on primary tumors found that the KAT6B::KANSL1 fusion always occurred between exons 3 of KAT6B and 11 of KANSL1; no pathogenic variant was identified on cDNA, all neoplasms clustered together, close to LG-ESS, and pathway enrichment analysis showed cell proliferation and immune infiltrate recruitment pathway involvement. These results confirm that the sarcomas harboring a KAT6B/A::KANSL1 fusion represent a distinct clinicopathologic entity, close to LG-ESS but different, with clinical aggressiveness despite a reassuring morphology, for which the KAT6B/A::KANSL1 fusion is the molecular driver alteration.
Collapse
Affiliation(s)
- Alexis Trecourt
- Multi-Site Department of Pathology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Claude Bernard University Lyon 1, Faculty of Medicine Lyon-Sud-Charles, UR 3738 CICLY, Lyon, France
| | - Rihab Azmani
- Institute Bergonié, Bioinformatics, Data and Digital Health Department, Comprehensive Cancer Center, Bordeaux, France
| | - Isabelle Hostein
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Larry Blanchard
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - François Le Loarer
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France; INSERM Unit 1312, Bordeaux, France; University of Bordeaux, Talence, France
| | - Aurelien Bourdon
- Institute Bergonié, Bioinformatics, Data and Digital Health Department, Comprehensive Cancer Center, Bordeaux, France
| | - Melissa Alame
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Béatrice Nadaud
- Multi-Site Department of Pathology, Hospices Civils de Lyon, Lyon Est Hospital, Bron, France
| | - Laetitia Mayer
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Flora Rebier
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Claire Larmonier
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Madalena Souto Moura
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Isabelle Soubeyran
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Cécile Hartog
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France
| | - Isabelle Ray-Coquard
- Claude Bernard University Lyon 1, Faculty of Medicine Lyon-Sud-Charles, UR 3738 CICLY, Lyon, France; Centre Léon Bérard, Department of Medical Oncology, Lyon, France
| | | | - Mojgan Devouassoux-Shisheboran
- Multi-Site Department of Pathology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Claude Bernard University Lyon 1, Faculty of Medicine Lyon-Sud-Charles, UR 3738 CICLY, Lyon, France
| | - Sabrina Croce
- Institute Bergonié, Department of Biopathology, Comprehensive Cancer Center, Bordeaux, France; INSERM Unit 1312, Bordeaux, France.
| |
Collapse
|
7
|
Koyama M, Yamaguchi K, Chigusa Y, Yamanoi K, Taki M, Sunada M, Horie A, Hamanishi J, Minamiguchi S, Mandai M. ATM mutation in aggressive uterine adenosarcoma in which systemic chemotherapies had remarkable effects. Int Cancer Conf J 2023; 12:120-125. [PMID: 36896195 PMCID: PMC9989063 DOI: 10.1007/s13691-022-00591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Uterine adenosarcoma is a rare gynecologic malignancy, and 10-25% of the cases exhibit clinically aggressive behaviors. Although TP53 mutations are frequently identified in high-grade adenosarcomas of the uterus, definitive gene alterations have not been identified in uterine adenosarcomas. Specifically, no reports have described mutations in homologous recombination deficiency-related genes in uterine adenosarcomas. This study presents a case of uterine adenosarcoma without sarcomatous overgrowth but with TP53 mutation that exhibited clinically aggressive behaviors. The patient had an ATM mutation, which is a gene associated with homologous recombination deficiency, and exhibited a good response against platinum-based chemotherapy and possible therapeutic target by poly(ADP-ribose) polymerase inhibitors.
Collapse
Affiliation(s)
- Misaki Koyama
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Masumi Sunada
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| | | | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507 Japan
| |
Collapse
|
8
|
Genomic Characterization of Rare Primary Cardiac Sarcoma Entities. Diagnostics (Basel) 2023; 13:diagnostics13020214. [PMID: 36673024 PMCID: PMC9858520 DOI: 10.3390/diagnostics13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Primary cardiac sarcomas are considered rare malignant entities associated with poor prognosis. In fact, knowledge regarding their gene signature and possible treatments is still limited. In our study, whole-transcriptome sequencing on formalin-fixed paraffin-embedded (FFPE) samples from one cardiac osteosarcoma and one cardiac leiomyosarcoma was performed, to investigate their mutational profiles and to highlight differences and/or similarities to other cardiac histotypes. Both cases have been deeply detailed from a pathological point of view. The osteosarcoma sample presented mutations involving ATRX, ERCC5, and COL1A1, while the leiomyosarcoma case showed EXT2, DNM2, and PSIP1 alterations. Altered genes, along with the most differentially expressed genes in the leiomyosarcoma or osteosarcoma sample versus the cardiac angiosarcomas and intimal sarcomas (e.g., YAF2, PAK5, and CRABP1), appeared to be associated with cell growth, proliferation, apoptosis, and the repair of DNA damage, which are key mechanisms involved in tumorigenesis. Moreover, a distinct gene expression profile was detected in the osteosarcoma sample when compared to other cardiac sarcomas. For instance, WIF1, a marker of osteoblastic differentiation, was upregulated in our bone tumor. These findings pave the way for further studies on these entities, in order to identify targeted therapies and, therefore, improve patients' prognoses.
Collapse
|
9
|
Sparić R, Andjić M, Babović I, Nejković L, Mitrović M, Štulić J, Pupovac M, Tinelli A. Molecular Insights in Uterine Leiomyosarcoma: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179728. [PMID: 36077127 PMCID: PMC9456512 DOI: 10.3390/ijms23179728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of female genital diseases, unlike uterine leiomyosarcoma (LMS), a rare and aggressive uterine cancer. This narrative review aims to discuss the biology and diagnosis of LMS and, at the same time, their differential diagnosis, in order to distinguish the biological and molecular origins. The authors performed a Medline and PubMed search for the years 1990–2022 using a combination of keywords on the topics to highlight the many genes and proteins involved in the pathogenesis of LMS. The mutation of these genes, in addition to the altered expression and functions of their enzymes, are potentially biomarkers of uterine LMS. Thus, the use of this molecular and protein information could favor differential diagnosis and personalized therapy based on the molecular characteristics of LMS tissue, leading to timely diagnoses and potential better outcomes for patients.
Collapse
Affiliation(s)
- Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Correspondence: (M.A.); (A.T.)
| | - Ivana Babović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Nejković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Milena Mitrović
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Štulić
- Clinic of Gynecology and Obstetrics Narodni Front, 11000 Belgrade, Serbia
| | - Miljan Pupovac
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, and CERICSAL (CEntro di Ricerca Clinico SALentino), “Verisdelli Ponti Hospital”, Via Giuseppina Delli Ponti, 73020 Scorrano, LE, Italy
- Correspondence: (M.A.); (A.T.)
| |
Collapse
|
10
|
Baldi GG, Gronchi A, Tazzari M, Stacchiotti S. Immunotherapy in soft tissue sarcoma: current evidence and future perspectives in a variegated family of different tumour. Expert Rev Anticancer Ther 2022; 22:491-503. [PMID: 35412415 DOI: 10.1080/14737140.2022.2065986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In the last few years steps forward in the knowledge of the biology of soft tissue sarcomas (STS) has led to the development of new therapeutic strategies, including immunotherapy. AREAS COVERED This review outlines the recent findings on immunological features and provides a synopsis of the results of clinical trials with different immunotherapy approaches in STS, discussing criticisms and how the efficacy of immunotherapy could be improved. EXPERT OPINION The heterogeneity of STS has limited generalized approaches of immunotherapy in the disease. Clinical decisions should encompass a comprehensive characterization of the tumour microenvironment (TME), marked by intra-histotype diversity. Profiling of immune cells, checkpoint molecules and antigen target/HLA expression is deemed to re-shape the classical histotype classification for a selection of the most appropriate immune-based treatment. In a synergistic view, tumour-directed treatments, designed on the genetic and epigenetic histotype make-up, should be monitored for their immunomodulant effect and applied to ensure or amplify immunotherapy response. In light of the dynamic nature of the TME, this immunomonitoring should be conducted at baseline and during treatment, for improved therapeutic decisions and rational sequence of treatment combination, pursuing an immunological marker approach by histotype guidance.
Collapse
Affiliation(s)
- Giacomo G Baldi
- Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella Tazzari
- Immunotherapy, Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
11
|
Roulleaux Dugage M, Nassif EF, Italiano A, Bahleda R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front Immunol 2021; 12:775761. [PMID: 34925348 PMCID: PMC8678134 DOI: 10.3389/fimmu.2021.775761] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Elise F. Nassif
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antoine Italiano
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
- Département d’Oncologie Médicale, Institut Bergonié, Bordeaux, France
| | - Rastislav Bahleda
- Département d’Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| |
Collapse
|
12
|
Wozniak A, Boeckx B, Modave E, Weaver A, Lambrechts D, Littlefield BA, Schöffski P. Molecular Biomarkers of Response to Eribulin in Patients with Leiomyosarcoma. Clin Cancer Res 2021; 27:3106-3115. [PMID: 33795257 DOI: 10.1158/1078-0432.ccr-20-4315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/08/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE A randomized phase III study evaluated the efficacy of eribulin versus dacarbazine in patients with advanced liposarcoma and leiomyosarcoma. Improved overall survival (OS) led to approval of eribulin for liposarcoma, but not for leiomyosarcoma. EXPERIMENTAL DESIGN We explored the molecular profile of 77 archival leiomyosarcoma samples from this trial to identify potential predictive biomarkers, utilizing low-coverage whole-genome and whole-exome sequencing. Tumor molecular profiles were correlated with clinical data, and disease control was defined as complete/partial response or stable disease (RECIST v1.1). RESULTS Overall, 111 focal copy-number alterations were observed in leiomyosarcoma. Gain of chromosome 17q12 was the most common event, present in 43 of 77 cases (56%). In the eribulin-treated group, gains of 4q26, 20p12.2, 13q13.3, 8q22.2, and 8q13.2 and loss of 1q44 had a negative impact on progression-free survival (PFS), while loss of 2p12 correlated with better prognosis. Gains of 4q22.1 and losses of 3q14.2, 2q14.1, and 11q25 had a negative impact on OS in patients with leiomyosarcoma receiving eribulin. The most commonly mutated genes were TP53 (38%), MUC16 (32%), and ATRX (17%). The presence of ATRX mutations had a negative impact on PFS in both treatment arms; however, the correlation with worse OS was observed only in the eribulin-treated patients. TP53 mutations were associated with longer PFS on eribulin. CONCLUSIONS Leiomyosarcoma has a complex genetic background, with multiple copy-number alterations and mutations affecting genes implicated in tumorigenesis. We identified several molecular changes with potential impact on survival of patients with leiomyosarcoma when treated with eribulin.
Collapse
Affiliation(s)
- Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Bram Boeckx
- Laboratory of Translational Genetics, KU Leuven and VIB Center for Cancer Biology, Leuven, Belgium
| | - Elodie Modave
- Laboratory of Translational Genetics, KU Leuven and VIB Center for Cancer Biology, Leuven, Belgium
| | - Amy Weaver
- Global Oncology, Eisai Inc., Cambridge, Massachusetts
| | - Diether Lambrechts
- Laboratory of Translational Genetics, KU Leuven and VIB Center for Cancer Biology, Leuven, Belgium
| | | | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Darmusey L, Pérot G, Thébault N, Le Guellec S, Desplat N, Gaston L, Delespaul L, Lesluyes T, Darbo E, Gomez-Brouchet A, Richard E, Baud J, Leroy L, Coindre JM, Blay JY, Chibon F. ATRX Alteration Contributes to Tumor Growth and Immune Escape in Pleomorphic Sarcomas. Cancers (Basel) 2021; 13:2151. [PMID: 33946962 PMCID: PMC8124877 DOI: 10.3390/cancers13092151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Whole genome and transcriptome sequencing of a cohort of 67 leiomyosarcomas has been revealed ATRX to be one of the most frequently mutated genes in leiomyosarcomas after TP53 and RB1. While its function is well described in the alternative lengthening of telomeres mechanism, we wondered whether its alteration could have complementary effects on sarcoma oncogenesis. ATRX alteration is associated with the down-expression of genes linked to differentiation in leiomyosarcomas, and to immunity in an additional cohort of 60 poorly differentiated pleomorphic sarcomas. In vitro and in vivo models showed that ATRX down-expression increases tumor growth rate and immune escape by decreasing the immunity load of active mast cells in sarcoma tumors. These data indicate that an alternative to unsuccessful targeting of the adaptive immune system in sarcoma could target the innate system. This might lead to a better outcome for sarcoma patients in terms of ATRX status.
Collapse
Affiliation(s)
- Lucie Darmusey
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
- University of Toulouse 3, Paul Sabatier, 31000 Toulouse, France
| | - Gaëlle Pérot
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31000 Toulouse, France
| | - Noémie Thébault
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
| | - Sophie Le Guellec
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
| | - Nelly Desplat
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| | - Laëtitia Gaston
- CHU de Bordeaux, Department of Medical Genetics, 33000 Bordeaux, France;
| | - Lucile Delespaul
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- University of Bordeaux, 33000 Bordeaux, France
| | - Tom Lesluyes
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- University of Bordeaux, 33000 Bordeaux, France
| | - Elodie Darbo
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
- University of Bordeaux, 33000 Bordeaux, France
- CNRS UMR5800, LaBRI, 33400 Talence, France
| | - Anne Gomez-Brouchet
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
- Centre Hospitalier Universitaire (CHU) de Toulouse, IUCT-Oncopole, 31000 Toulouse, France
| | - Elodie Richard
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| | - Jessica Baud
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| | - Laura Leroy
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
| | - Jean-Michel Coindre
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
- Institut Bergonie, Department of Pathology, 33000 Bordeaux, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Department of Medical Oncology, 69000 Lyon, France;
- Inserm U1052, CNRS 5286, Cancer Research Center of Lyon, University Claude Bernard Lyon 1, 69000 Lyon, France
| | - Frédéric Chibon
- INSERM U1037, Cancer Research Center in Toulouse (CRCT), OncoSarc, 31000 Toulouse, France; (L.D.); (G.P.); (N.T.); (S.L.G.); (L.D.); (T.L.); (A.G.-B.); (L.L.)
- IUCT-Oncopole, Institut Claudius Régaud, Department of Pathology, 31000 Toulouse, France
- Inserm UMR1218, Action, Institut Bergonié, 33000 Bordeaux, France; (N.D.); (E.D.); (E.R.); (J.B.); (J.-M.C.)
| |
Collapse
|
14
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
15
|
Kasper B, Achee A, Schuster K, Wilson R, van Oortmerssen G, Gladdy RA, Hemming ML, Huang P, Ingham M, Jones RL, Pollack SM, Reinke D, Sanfilippo R, Schuetze SM, Somaiah N, Van Tine BA, Wilky B, Okuno S, Trent J. Unmet Medical Needs and Future Perspectives for Leiomyosarcoma Patients-A Position Paper from the National LeioMyoSarcoma Foundation (NLMSF) and Sarcoma Patients EuroNet (SPAEN). Cancers (Basel) 2021; 13:886. [PMID: 33672607 PMCID: PMC7924026 DOI: 10.3390/cancers13040886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
As leiomyosarcoma patients are challenged by the development of metastatic disease, effective systemic therapies are the cornerstone of outcome. However, the overall activity of the currently available conventional systemic treatments and the prognosis of patients with advanced or metastatic disease are still poor, making the treatment of this patient group challenging. Therefore, in a joint effort together with patient networks and organizations, namely Sarcoma Patients EuroNet (SPAEN), the international network of sarcoma patients organizations, and the National LeioMyoSarcoma Foundation (NLMSF) in the United States, we aim to summarize state-of-the-art treatments for leiomyosarcoma patients in order to identify knowledge gaps and current unmet needs, thereby guiding the community to design innovative clinical trials and basic research and close these research gaps. This position paper arose from a leiomyosarcoma research meeting in October 2020 hosted by the NLMSF and SPAEN.
Collapse
Affiliation(s)
- Bernd Kasper
- Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany
| | - Annie Achee
- National LeioMyoSarcoma Foundation (NLMSF), Denver, CO 80222, USA;
| | - Kathrin Schuster
- Sarcoma Patients EuroNet, SPAEN, 61200 Wölfersheim, Germany; (K.S.); (R.W.); (G.v.O.)
| | - Roger Wilson
- Sarcoma Patients EuroNet, SPAEN, 61200 Wölfersheim, Germany; (K.S.); (R.W.); (G.v.O.)
| | | | - Rebecca A. Gladdy
- Department of Surgery, Mount Sinai Hospital, Toronto, ON M5G 1XS, Canada;
| | | | - Paul Huang
- Institute of Cancer Research, London SM2 5NG, UK; (P.H.); (R.L.J.)
| | - Matthew Ingham
- Department of Medicine, Columbia University School of Medicine, New York, NY 10032, USA;
| | - Robin L. Jones
- Institute of Cancer Research, London SM2 5NG, UK; (P.H.); (R.L.J.)
- Royal Marsden Hospital, London SW3 6JJ, UK
| | - Seth M. Pollack
- Northwestern Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Denise Reinke
- Sarcoma Alliance for Research through Collaboration (SARC), Ann Arbor, MI 48105, USA;
| | | | - Scott M. Schuetze
- Michigan Medicine Sarcoma Clinic, Rogel Cancer Center, Ann Arbor, MI 48109, USA;
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Care Center, Houston, TX 77030, USA;
| | - Brian A. Van Tine
- Barnes and Jewish Hospital, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Breelyn Wilky
- Department of Sarcoma Medical Oncology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Scott Okuno
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jonathan Trent
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
16
|
FANCA Polymorphism Is Associated with the Rate of Proliferation in Uterine Leiomyoma in Korea. J Pers Med 2020; 10:jpm10040228. [PMID: 33202820 PMCID: PMC7712130 DOI: 10.3390/jpm10040228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Uterine leiomyomas are the most common benign gynecologic tumors. This study was aimed to identify single nucleotide polymorphism of Fanconi anemia complementation group A (FANCA), associated with the rate of proliferation in uterine leiomyomas. In vitro study of patient-derived primary-cultured leiomyoma cells and direct sequencing of fresh frozen leiomyoma from each subject was conducted. Leiomyomas obtained from 44 patients who had underwent surgery were both primary-cultured and freshly frozen. Primary-cultured leiomyoma cells were divided into, according to the rate of proliferation, fast and slow groups. Single nucleotide polymorphism (SNP) of FANCA were determined from fresh frozen tissues of each patient using direct sequencing. Direct sequencing revealed a yet unidentified role of FANCA, a caretaker in the DNA damage-response pathway, as a possible biomarker molecule for the prediction of uterine leiomyoma proliferation. We identified that rs2239359 polymorphism, which causes a missense mutation in FANCA, is associated with the rate of proliferation in uterine leiomyomas. The frequency of C allele in the fast group was 35.29% while that in slow group was 11.11% (odds ratio (OR) 4.036 (1.176–13.855), p = 0.0266). We also found that the TC + CC genotype was more frequently observed in the fast group compared with that in the slow group (OR 6.44 (1.90–31.96), p = 0.0227). Taken together, the results in the current study suggested that a FANCA missense mutation may play an important regulatory role in the proliferation of uterine leiomyoma and thus may serve as a prognostic marker.
Collapse
|
17
|
Anoshkin KI, Karandasheva KO, Goryacheva KM, Pyankov DV, Koshkin PA, Pavlova TV, Bobin AN, Shpot EV, Chernov YN, Vinarov AZ, Zaletaev DV, Kutsev SI, Strelnikov VV. Multiple Chromoanasynthesis in a Rare Case of Sporadic Renal Leiomyosarcoma: A Case Report. Front Oncol 2020; 10:1653. [PMID: 32974204 PMCID: PMC7466669 DOI: 10.3389/fonc.2020.01653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023] Open
Abstract
We present the genetic profile of kidney giant leiomyosarcoma characterized by sequencing of 409 cancer related genes and chromosomal microarray analysis. Renal leiomyosarcomas are extremely rare neoplasms with aggressive behavior and poor survival prognosis. Most frequent somatic events in leiomyosarcomas are mutations in the TP53, RB1, ATRX, and PTEN genes, chromosomal instability (CIN) and chromoanagenesis. 67-year-old woman presented with a right kidney completely replaced by tumor. Immunohistochemical reaction on surgical material was positive to desmin and smooth muscle actin. Molecular genetic analysis revealed that tumor harbored monosomy of chromosomes 3 and 11, gain of Xp (ATRX) arm and three chromoanasynthesis regions (6q21-q27, 7p22.3-p12.1, and 12q13.11-q21.2), with MDM2 and CDK4 oncogenes copy number gains, whereas no copy number variations (CNVs) or tumor specific single nucleotide variants (SNVs) in TP53, RB1, and PTEN genes were present. We hypothesize that chromoanasynthesis in 12q13.11-q21.2 could be a trigger of observed CIN in this tumor.
Collapse
|
18
|
A genomic survey of sarcomas on sun-exposed skin reveals distinctive candidate drivers and potentially targetable mutations. Hum Pathol 2020; 102:60-69. [PMID: 32540221 DOI: 10.1016/j.humpath.2020.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Sarcomas on photodamaged skin vary in prognosis and management, but can display overlapping microscopic and immunophenotypic features. Improved understanding of molecular alterations in these tumors may provide diagnostic and therapeutic insights. We characterized 111 cutaneous sarcomatoid malignancies and their counterparts, including primary cutaneous angiosarcoma (n = 7), atypical fibroxanthoma (AFX) (n = 21), pleomorphic dermal sarcoma (PDS) (n = 17), extracutaneous undifferentiated pleomorphic sarcoma (n = 8), cutaneous leiomyosarcoma (LMS) (n = 5), extracutaneous LMS (n = 9), sarcomatoid squamous cell carcinoma (spindle cell squamous cell carcinoma) (S-SCC) (n = 24), and conventional cutaneous squamous cell carcinoma (SCC) (n = 20), by next-generation sequencing (NGS) using the StrataNGS panel for copy number variations, mutations, and/or fusions in more than 60 cancer-related genes. TP53 mutations were highly recurrent in most groups. Angiosarcoma displayed previously reported MYC amplifications, as well as CCND1 gains. RB1 mutations were relatively restricted to cutaneous LMS. As previously reported, PIK3CA mutations occurred in AFX, whereas RAS activation was more frequent in PDS. CDKN2A mutations were recurrent in AFX and S-SCC, whereas PDS displayed frequent CDKN2A deletion. S-SCC displayed mutational similarity to conventional SCC. BRCA1/2 mutations were specific to tumors with disease progression. In a subset, we detected potential driver events novel to these tumor types: activating mutations in IDH2 (PDS), MAP2K1 (angiosarcoma, PDS), and JAK1 (S-SCC) and copy gains in FGFR1 (angiosarcoma, S-SCC), KIT (AFX), MET (PDS), and PDGFRA (PDS). Our findings confirm and expand the spectrum of known genomic aberrations, including potential targetable drivers, in cutaneous sarcomatoid malignancies. In addition, certain events are relatively specific to particular tumors within this differential diagnosis and hence might be diagnostically informative.
Collapse
|
19
|
Xu LB, Zhao ZG, Xu SF, Zhang XX, Liu T, Jing CY, Zhang SG, Yu SJ. The landscape of gene mutations and clinical significance of tumor mutation burden in patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy. Int J Biol Markers 2020; 35:14-22. [PMID: 32520634 DOI: 10.1177/1724600820925095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the landscape of gene mutations and the clinical significance of tumor mutation burden (TMB) in patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy. METHODS A total of 68 patients with soft tissue sarcoma were included. Postoperative tumor tissue specimens from the patients were collected for DNA extraction. Targeted next-generation sequencing of cancer-relevant genes was performed for the detection of gene mutations and the analysis of TMB. Univariate analysis between TMB status and prognosis was carried out using the Kaplan-Meier survival analysis, and multivariate analysis was adjusted by the Cox regression model. RESULTS No specific genetic mutations associated with soft tissue sarcoma were found. The mutation frequency of TP53, PIK3C2G, NCOR1, and KRAS of the 68 patients with soft tissue sarcoma were observed in 19 cases (27.94%), 15 cases (22.06%), 14 cases (20.59%), and 14 cases (20.59%), respectively. With regard to the analysis of TMB, the overall TMB of the 68 patients with soft tissue sarcoma was relatively low (median: 2.05 per Mb (range: 0∼15.5 per Mb)). Subsequently, TMB status was divided into TMB-Low and TMB-Middle according to the median TMB. Patients with TMB-Low and TMB-Middle were 37 cases (54.41%) and 31 cases (45.59%), respectively. Overall survival analysis indicated that the median overall survival of patients with TMB-Low and TMB-Middle was not reached, and 4.5 years, respectively (P=0.015). CONCLUSION This study characterizes the genetic background of patients with STS soft tissue sarcoma. The TMB was of clinical significance for patients with soft tissue sarcoma who underwent surgical resection and received conventional adjuvant therapy.
Collapse
Affiliation(s)
- Li-Bin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen-Guo Zhao
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Feng Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Xin Zhang
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-You Jing
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Guang Zhang
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Ji Yu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Arshad J, Barreto-Coelho P, Jonczak E, Espejo A, D'Amato G, Trent JC. Identification of Genetic Alterations by Circulating Tumor DNA in Leiomyosarcoma: A Molecular Analysis of 73 Patients. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:64-68. [PMID: 36751526 PMCID: PMC9179395 DOI: 10.36401/jipo-20-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/20/2023]
Abstract
Background Leiomyosarcoma is a malignant mesenchymal tumor of cells of smooth muscle lineage arising commonly in retroperitoneum, uterus, large veins, and the limbs. The genetics of leiomyosarcomas are complex and there is very limited understanding of common driver mutations. Circulating tumor DNA (ctDNA) offers a rapid and noninvasive method of next-generation sequencing (NGS) that could be used for diagnosis, therapy, and detection of recurrence. Methods ctDNA testing was performed using Guardant360, which detects single nucleotide variants, amplifications, fusions, and specific insertion/deletion mutations in 73 genes using NGS. Results Of 73 patients, 59 were found to have one or more cancer-associated genomic alteration. Forty-five (76%) were female with a median age of 63 (range, 38-87) years. All samples were designated metastatic. The most common alterations were detected in Tp53 (65%), BRAF (13%), CCNE (13%), EGFR (12%), PIK3CA (12%), FGFR1 (10%), RB1(10%), KIT (8%), and PDGFRA (8%). Some of the other alterations included RAF1, ERBB2, MET, PTEN TERT, APC, and NOTCH1. Potentially targetable mutations, by Food and Drug Administration-approved or clinical trials, were found in 24 (40%) of the 73 patients. Four patients (5%) were found to have incidental germline TP53 mutations. Conclusion NGS of ctDNA allows identification of genomic alterations in plasma from patients with leiomyosarcoma. Unfortunately, there is limited activity of current targeted agents in leiomyosarcomas. These results suggest opportunities to develop therapy against TP53, cell cycle, and kinase signaling pathways. Further validation and prospective evaluation is warranted to investigate the clinical utility of ctDNA for patients with leiomyosarcoma.
Collapse
Affiliation(s)
- Junaid Arshad
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, Jackson Memorial Hospital/University of Miami, Miami, FL, USA
| | - Priscila Barreto-Coelho
- Department of Medicine, Division of Internal Medicine, Miller School of Medicine, Jackson Memorial Hospital/University of Miami, Miami, FL, USA
| | - Emily Jonczak
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, Jackson Memorial Hospital/University of Miami, Miami, FL, USA
| | - Andrea Espejo
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, Jackson Memorial Hospital/University of Miami, Miami, FL, USA
| | - Gina D'Amato
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, Jackson Memorial Hospital/University of Miami, Miami, FL, USA
,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jonathan C. Trent
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, Jackson Memorial Hospital/University of Miami, Miami, FL, USA
,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
21
|
Urbini M, Astolfi A, Indio V, Nannini M, Pizzi C, Paolisso P, Tarantino G, Pantaleo MA, Saponara M. Genetic aberrations and molecular biology of cardiac sarcoma. Ther Adv Med Oncol 2020; 12:1758835920918492. [PMID: 32489430 PMCID: PMC7238448 DOI: 10.1177/1758835920918492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac tumors are rare and complex entities. Early assessment and differentiation between non-neoplastic and neoplastic masses, be they benign or malignant, is essential for guiding diagnosis, determining prognosis, and planning therapy. Cardiac sarcomas represent the most frequent primary malignant histotype. They could have manifold presentations so that the diagnosis is often belated. Moreover, considering their rarity and the limitation due to the cardiac location itself, the optimal multimodal management of patients affected by primary cardiac sarcomas still remains highly difficult and outcome dismal. Therefore, there is an urgent need to improve these results mainly focusing on more adequate tools for prompt diagnosis and exploring new and more effective therapies. Knowledge about the molecular landscape and pathogenesis of cardiac sarcoma is even more limited due to the rarity of this disease. In this sense, the molecular characterization of heart tumors could unfold potentially novel, druggable targets. In this review, we focused on genetic aberrations and molecular biology of cardiac sarcomas, collecting the scarce information available and resuming all the molecular findings discovered in each tumor subtype, with the aim to get further insights on mechanisms involved in tumor growth and to possibly highlight specific molecular profiles that can be used as diagnostic tests and unveil new clinically actionable targets in this tricky and challenging disease.
Collapse
Affiliation(s)
- Milena Urbini
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Valentina Indio
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and
Diagnostic Medicine, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital,
University of Bologna, Bologna, Italy
| | - Carmine Pizzi
- Department of Specialized, Experimental and
Diagnostic Medicine, Cardiology and Transplantation, Sant’Orsola-Malpighi
Hospital, University of Bologna, Bologna, Italy
| | - Pasquale Paolisso
- Department of Specialized, Experimental and
Diagnostic Medicine, Cardiology and Transplantation, Sant’Orsola-Malpighi
Hospital, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
- Department of Specialized, Experimental and
Diagnostic Medicine, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital,
University of Bologna, Bologna, Italy
| | - Maristella Saponara
- Department of Specialized, Experimental and
Diagnostic Medicine, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital,
University of Bologna, Via Massarenti, 9, Bologna, Bologna 40138,
Italy
| |
Collapse
|
22
|
Wang L, Hu S, Xin F, Zhao H, Li G, Ran W, Xing X, Wang J. MED12 exon 2 mutation is uncommon in intravenous leiomyomatosis: clinicopathologic features and molecular study. Hum Pathol 2020; 99:36-42. [PMID: 32240666 DOI: 10.1016/j.humpath.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022]
Abstract
Intravenous leiomyomatosis (IVL) is a rare neoplasm that is characterized by smooth muscle cell proliferation within venous vessels. The aim of this study is to investigate the clinicopathological features, immunophenotypes, and MED12 gene mutations in IVL. Nine cases of IVL from the Affiliated Hospital of Qingdao University were collected, and the clinicopathological features were reviewed. The immunohistochemical expressions of p16, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), alpha thalassemia/mental retardation syndrome X-linked (ATRX), retinoblastoma 1 (RB1), fumarate hydratase (FH), and p53, were evaluated. The mutation status of MED12 gene exon 2 was detected by Sanger sequencing. All the 9 patients were women ranging from 32 to 58 years, and uterine leiomyomas were identified in 5 patients. Immunohistochemical staining showed that all IVL and leiomyoma samples were positive for estrogen receptor and progesterone receptor, but negative for CD34. IVL displayed similar immunostaining patterns with their uterine counterparts with focal p16 immunostaining. FH, PTEN, ATRX, and RB1 were variably positive, and p53 and Ki-67 positive rates were less than 5% in all cases. Two novel genetic variations at MED12 exon 2, a synonymous mutation c.141C>T (p.Asn47=), and an in-frame deletion mutation c.133_147del15 (p.Phe45_Pro49del) were identified in two IVL cases. One missense mutation c.131G>A (p.Gly44Asp) was identified in one uterine leiomyoma. The remaining 11 tumor samples (7 IVL cases and 4 uterine leiomyomas) showed no mutations at MED12 exon 2. Our results showed two novel MED12 mutations in IVL. The MED12 mutations are different between IVL and uterine leiomyoma. These findings indicate that IVL is a unique entity and different from uterine leiomyoma.
Collapse
Affiliation(s)
- Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Shasha Hu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Fangjie Xin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Wenwen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
23
|
Atzori L, Pilloni L, Zanniello R, Ferreli C, Rongioletti F. Clear-cell variant of superficial cutaneous leiomyosarcoma associated with RB1 mutation: Clinical, dermoscopic, and histopathological characteristics. J Cutan Pathol 2020; 47:571-575. [PMID: 31999365 DOI: 10.1111/cup.13655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Leiomyosarcoma is a relatively rare soft tissue tumor whose clear-cell variant has only been reported in leiomyosarcomas of the uterus. We report here for the first time a primary cutaneous clear-cell leiomyosarcoma in the trunk skin of a 49-year-old man, characterized by a very indolent clinical and dermoscopic presentation, mimicking a dermatofibroma. Genetic analysis of the otherwise healthy patient revealed a germline mutation in the retinoblastoma 1 gene (RB1); the same mutation was found in his son, who had previously developed retinoblastoma. Moreover, the mother of the patient had died of uterine leiomyosarcoma with clear-cell changes. Mutations in the RB1 gene occur commonly in human neoplasms. In this patient, we were able to link his clear-cell variant of cutaneous leiomyosarcoma with the loss of retinoblastoma protein expression, as revealed by immunohistochemical staining analysis.
Collapse
Affiliation(s)
- Laura Atzori
- Dermatology Clinic, Department Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luca Pilloni
- Pathology Unit, Department Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ramona Zanniello
- Dermatology Clinic, Department Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Caterina Ferreli
- Dermatology Clinic, Department Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Franco Rongioletti
- Dermatology Clinic, Department Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
24
|
Rao U, Schoedel KE, Petrosko P, Sakai N, LaFramboise W. Genetic variants and copy number changes in soft tissue leiomyosarcoma detected by targeted amplicon sequencing. J Clin Pathol 2019; 72:810-816. [DOI: 10.1136/jclinpath-2019-205998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
Abstract
AimsLeiomyosarcomas (LMSs) occur in various tissues and harbour potential for metastases. The genomic landscape of LMS is poorly understood. In an effort to improve understanding of the LMS genome, we analysed 11 LMSs of somatic soft tissue including matching tissue of normal phenotype.MethodsDNA derived from microdissected tumour domains and matching normal tissue underwent amplicon sequencing of 409 tumour suppressors and oncogenes using the Ion Torrent Comprehensive Cancer Panel.ResultsGenomic changes were heterogeneous with few recurrent abnormalities detected. Coding variants were identified in genes involved in signal transduction, transcriptional regulation and DNA repair. There were variants in several genes related to angiogenesis and GPR124 variants (TEM5) were confirmed by immunohistochemical analysis of a LMS tissue microarray. Surprisingly, there were shared coding variants in tumour and corresponding normal tissue.ConclusionsLMSs are a very heterogeneous population lacking recurrent somatic abnormalities. The presence of damaging mutations in normal tissue may reflect either a germline predisposition or field effect rather than tissue contamination. Hopeful therapeutic targets appear to be those related to AKT/MTOR pathway.
Collapse
|
25
|
A patient-derived orthotopic xenograft (PDOX) nude-mouse model precisely identifies effective and ineffective therapies for recurrent leiomyosarcoma. Pharmacol Res 2019; 142:169-175. [PMID: 30807865 DOI: 10.1016/j.phrs.2019.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023]
Abstract
Leiomyosarcoma is a rare and recalcitrant disease. Doxorubicin (DOX) is usually considered first-line treatment for this disease, but frequently is ineffective. In order to individualize therapy for this and other cancers, we have developed the patient-derived orthotopic xenograft (PDOX) mouse model. In the present study, we implanted a recurrent leiomyosarcoma from a resected tumor from the patient's thigh into the femoral muscle of nude mice. The following drugs were tested on the leiomyosarcoma PDOX model: DOX, the combination of gemcitabine (GEM) and docetaxel (DOC), trabectedin (TRA), temozolomide (TEM), pazopanib (PAZ) and olaratumab (OLA). Of these agents GEM/DOC, TRA and TEM were highly effective in the leiomyosarcoma PDOX model, the other agents, including first-line therapy DOX, were ineffective. Thus the leiomyosarcoma PDOX model could precisely distinguish effective and ineffective drugs, demonstrating the potential of the PDOX model for leiomyosarcoma treatment.
Collapse
|
26
|
Välimäki N, Kuisma H, Pasanen A, Heikinheimo O, Sjöberg J, Bützow R, Sarvilinna N, Heinonen HR, Tolvanen J, Bramante S, Tanskanen T, Auvinen J, Uimari O, Alkodsi A, Lehtonen R, Kaasinen E, Palin K, Aaltonen LA. Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability. eLife 2018; 7:37110. [PMID: 30226466 PMCID: PMC6203434 DOI: 10.7554/elife.37110] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Uterine leiomyomas (ULs) are benign tumors that are a major burden to women’s health. A genome-wide association study on 15,453 UL cases and 392,628 controls was performed, followed by replication of the genomic risk in six cohorts. Effects of the risk alleles were evaluated in view of molecular and clinical characteristics. 22 loci displayed a genome-wide significant association. The likely predisposition genes could be grouped to two biological processes. Genes involved in genome stability were represented by TERT, TERC, OBFC1 - highlighting the role of telomere maintenance - TP53 and ATM. Genes involved in genitourinary development, WNT4, WT1, SALL1, MED12, ESR1, GREB1, FOXO1, DMRT1 and uterine stem cell marker antigen CD44, formed another strong subgroup. The combined risk contributed by the 22 loci was associated with MED12 mutation-positive tumors. The findings link genes for uterine development and genetic stability to leiomyomagenesis, and in part explain the more frequent occurrence of UL in women of African origin. Fibroids – also known as uterine leiomyomas, or myomas – are a very common form of benign tumor that grows in the muscle wall of the uterus. As many as 70% of women develop fibroids in their lifetime. About a fifth of women report symptoms including severe pain, heavy bleeding during periods and complications in pregnancy. In the United States, the cost of treating fibroids is estimated to be $34 billion each year. Despite the prevalence of fibroids in women, there are few treatments available. Drugs to target them have limited effect and often an invasive procedure such as surgery is needed to remove the tumors. However, a better understanding of the genetics of fibroids could lead to a way to develop better treatment options. Välimäki, Kuisma et al. used a genome-wide association study to seek out DNA variations that are more common in people with fibroids. Using data from the UK Biobank, the genomes of over 15,000 women with fibroids were analyzed against a control population of over 392,000 individuals. The analysis revealed 22 regions of the genome that were associated with fibroids. These regions included genes that may well contribute to fibroid development, such as the gene TP53, which influences the stability of the genome, and ESR1, which codes for a receptor for estrogen – a hormone known to play a role in the growth of fibroids. Variation in a set of genes known to control development of the female reproductive organs was also identified in women with fibroids. The findings are the result of the largest genome-wide association study on fibroids, revealing a set of genes that could influence the development of fibroids. Studying these genes could lead to more effective drug development to treat fibroids. Revealing this group of genes could also help to identify women at high risk of developing fibroids and help to prevent or manage the condition.
Collapse
Affiliation(s)
- Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Heli Kuisma
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jari Sjöberg
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nanna Sarvilinna
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Hanna-Riikka Heinonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jaana Tolvanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Simona Bramante
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Tomas Tanskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Juha Auvinen
- Northern Finland Birth Cohorts' Project Center, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Outi Uimari
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Amjad Alkodsi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Rainer Lehtonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Cohen JE, Eleyan F, Zick A, Peretz T, Katz D. Intratumoral immune-biomarkers and mismatch repair status in leiyomyosarcoma -potential predictive markers for adjuvant treatment: a pilot study. Oncotarget 2018; 9:30847-30854. [PMID: 30112112 PMCID: PMC6089390 DOI: 10.18632/oncotarget.25747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/23/2018] [Indexed: 12/21/2022] Open
Abstract
Leiomyosarcoma is the second most frequent soft-tissue sarcoma. Tumor lymphocytic infiltration (TIL) and programed cell death ligand-1 (PD-L1) have been associated with prognosis in different malignancies while DNA mismatch-repair deficiency (MMR-D) has been associated with response to check-point inhibitors. In this pilot study, we sought to examine TIL, PD-L1 and mismatch-repair (MMR) protein expression in 11 leiomyosarcoma and its association with outcome as potential biomarkers for adjuvant treatment. Eleven primary leiomyosarcoma archived-tissues were analyzed for expression of MMR proteins (MSH2, MLH1, MSH6 and PSM2), PD-L1 expression and PD-1, CD3 or CD8. MMR-D was detected in tumor tissue from 2/11 leiomyosarcoma patients. CD3 T-cells were present in all samples, whereas CD8 staining was positive in all but one. PDL-1 was positive in 4/11 and PD-L1 in 6/11. Interestingly, the three patients with the poorest outcome had strongly positive staining for PD-L1 and CD8 while in the two patients who are alive and recurrence-free, both PD-L1 and CD8 infiltration were lacking. We found an association between tumor infiltrating CD8 cytotoxic lymphocytes, strong PD-L1 staining and survival; suggesting a role as biomarkers for treatment decisions regarding peri-operative chemotherapy. We also identified MMR-D in two patients with leiomyosarcoma comprising 18% of our sample.
Collapse
Affiliation(s)
- Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Feras Eleyan
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Katz
- Institute of Oncology, Assaf Harofeh Medical Center Zrifin, Beer Yaacov, Israel
| |
Collapse
|
28
|
Mikami Y, Fujii S, Kohashi KI, Yamada Y, Moriyama M, Kawano S, Nakamura S, Oda Y, Kiyoshima T. Low-grade myofibroblastic sarcoma arising in the tip of the tongue with intravascular invasion: A case report. Oncol Lett 2018; 16:3889-3894. [PMID: 30128003 DOI: 10.3892/ol.2018.9115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022] Open
Abstract
Low-grade myofibroblastic sarcoma (LGMS) is a rare intermediate tumor, which rarely metastasizes and has myofibroblastic differentiation in various sites. It is particularly associated with the tongue in the head and neck region. The lack of any pathological features means it is difficult to make a conclusive diagnosis of LGMS. The immunohistochemical features and genomic rearrangements, including SS18-SSXs and MYH9-USP6s and the genetic mutations of cancer-associated genes, including APC, CTNNB1, EGFR, KRAS, PIK3CA and p53 were examined in a case of LGMS arising in the tip of the tongue. Immunohistochemically, the tumor cells were positive for alpha-smooth muscle actin and vimentin, as in previous reports. They demonstrated neither genomic rearrangements nor point mutations of cancer-associated genes. Although several tumor cells demonstrated intravascular invasion, the MIB-l labeling index of the cells was the same as the original lesion. To the best of our knowledge, this is the first case report of LGMS arising in the tip of the tongue with intravascular invasion.
Collapse
Affiliation(s)
- Yurie Mikami
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.,Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Moriyama
- Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Kawano
- Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Ren X, Tu C, Tang Z, Ma R, Li Z. Alternative lengthening of telomeres phenotype and loss of ATRX expression in sarcomas. Oncol Lett 2018; 15:7489-7496. [PMID: 29725455 DOI: 10.3892/ol.2018.8318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
Sarcoma is a rare and heterogeneous type of cancer with an early mean onset age and a poor prognosis. However, its genetic basis remains unclear. A series of recent genomic studies in sarcomas have identified the occurrence of mutations in the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene. The ATRX protein belongs to the SWI/SNF family of chromatin remodeling proteins, which are frequently associated with α-thalassemia syndrome. Cancer cells depend on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative programmed mortality. Loss of ATRX is associated with ALT in sarcoma. In the present review, recent whole genome and/or whole exome genomic studies are summarized. In addition ATRX immunohistochemistry and ALT fluorescence in situ hybridization in sarcomas of various subtypes and at diverse sites, including osteosarcoma, leiomyosarcoma, liposarcoma, angiosarcoma and chondrosarcoma are evaluated. The present review involves certain studies associated with the molecular mechanisms underlying the loss of ATRX controlling the activation of ALT in sarcomas. Identification of the loss of ATRX and ALT in sarcomas may provide novel methods for the treatment of aggressive sarcomas.
Collapse
Affiliation(s)
- Xiaolei Ren
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhenchu Tang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ruofei Ma
- Department of Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
30
|
Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun 2018; 9:144. [PMID: 29321523 PMCID: PMC5762758 DOI: 10.1038/s41467-017-02602-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Leiomyosarcoma (LMS) is an aggressive mesenchymal malignancy with few therapeutic options. The mechanisms underlying LMS development, including clinically actionable genetic vulnerabilities, are largely unknown. Here we show, using whole-exome and transcriptome sequencing, that LMS tumors are characterized by substantial mutational heterogeneity, near-universal inactivation of TP53 and RB1, widespread DNA copy number alterations including chromothripsis, and frequent whole-genome duplication. Furthermore, we detect alternative telomere lengthening in 78% of cases and identify recurrent alterations in telomere maintenance genes such as ATRX, RBL2, and SP100, providing insight into the genetic basis of this mechanism. Finally, most tumors display hallmarks of "BRCAness", including alterations in homologous recombination DNA repair genes, multiple structural rearrangements, and enrichment of specific mutational signatures, and cultured LMS cells are sensitive towards olaparib and cisplatin. This comprehensive study of LMS genomics has uncovered key biological features that may inform future experimental research and enable the design of novel therapies.
Collapse
|
31
|
Zhang Q, Kanis MJ, Ubago J, Liu D, Scholtens DM, Strohl AE, Lurain JR, Shahabi S, Kong B, Wei JJ. The selected biomarker analysis in 5 types of uterine smooth muscle tumors. Hum Pathol 2017; 76:17-27. [PMID: 29258902 DOI: 10.1016/j.humpath.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/25/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Uterine smooth muscle tumors (USMTs) consist of a group of histologically heterogeneous and clinically diverse diseases ranging from malignant leiomyosarcoma (LMS) to benign leiomyoma (ULM). The genetic alterations in LMS are complex, with some genetic alterations present in both LMS and other atypical histologic variants of USMT. In this study, we reviewed 119 USMTs with a diagnosis of LMS, smooth muscle tumor of uncertain malignant potential, atypical leiomyomas/leiomyoma with bizarre nuclei, and cellular leiomyoma, as well as 46 ULMs and 60 myometrial controls. We selected 17 biomarkers highly relevant to LMS in 4 tumorigenic pathways including steroid hormone receptors (estrogen receptor [ER] and progesterone receptor [PR]), cell cycle/tumor suppressor genes, AKT pathway markers, and associated oncogenes. ER and PR expression was significantly lower in LMS than smooth muscle tumor of uncertain malignant potential, atypical leiomyomas/leiomyoma with bizarre nuclei, cellular leiomyoma, and ULM (P < .01). Sixty-five percent of LMSs showed complete loss of ER, and 75% of LMSs showed complete loss of PR. All cell cycle genes were differentially expressed in different types of tumor, but significant overlap was noted. More than 75% of LMSs had Ki-67 index greater than 33%, and only 5% in all other types of USMT. Expression of the selected oncogenes varied widely among different types of USMT. PR positivity and p53 had a borderline association with progression-free survival (P = .055 for PR and P = .0847 for p53). Furthermore, high PR expression was significantly associated with a longer overall survival (P = .0163, hazard ratio 0.198). Cell proliferative indices (Ki-67) and sex steroid hormone receptors were the most valuable markers in differentiating LMS from other USMT variants.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Margaux Jenna Kanis
- Department of Gynecology and Obstetrics, Northwestern University, Feinberg School of Medicine
| | - Julianne Ubago
- Department of Pathology, Northwestern University, Feinberg School of Medicine
| | - Dachao Liu
- Department of Preventive Medicine, Feinberg School of Medicine
| | | | - Anna E Strohl
- Department of Gynecology and Obstetrics, Northwestern University, Feinberg School of Medicine
| | - John R Lurain
- Department of Gynecology and Obstetrics, Northwestern University, Feinberg School of Medicine
| | - Shohreh Shahabi
- Department of Gynecology and Obstetrics, Northwestern University, Feinberg School of Medicine
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University, Feinberg School of Medicine; Department of Gynecology and Obstetrics, Northwestern University, Feinberg School of Medicine.
| |
Collapse
|
32
|
Cuppens T, Moisse M, Depreeuw J, Annibali D, Colas E, Gil-Moreno A, Huvila J, Carpén O, Zikán M, Matias-Guiu X, Moerman P, Croce S, Lambrechts D, Amant F. Integrated genome analysis of uterine leiomyosarcoma to identify novel driver genes and targetable pathways. Int J Cancer 2017; 142:1230-1243. [DOI: 10.1002/ijc.31129] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Tine Cuppens
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
- VIB Center for Cancer Biology, VIB; Leuven Belgium
| | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Jeroen Depreeuw
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
- VIB Center for Cancer Biology, VIB; Leuven Belgium
- Laboratory for Translational Genetics, Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Daniela Annibali
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC; Barcelona Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERONC; Barcelona Spain
- Gynecological Oncology Department; Vall Hebron University Hospital; Barcelona Spain
| | - Jutta Huvila
- Department of Pathology; University of Turku and Turku University Hospital; Turku Finland
| | - Olli Carpén
- Department of Pathology; University of Turku and Turku University Hospital; Turku Finland
- Department of Pathology and Genome Scale Research Program; University of Helsinki and HUSLAB, Helsinki University Hospital; Helsinki Finland
| | - Michal Zikán
- Department of Obstetrics and Gynecology; Gynecological Oncology Center, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague; Prague Czech Republic
| | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department; Hospital U Arnau de Vilanova, and Hospital U de Bellvitge, IRBLLEIDA and Idibell, University of Lleida, CIBERONC; Lleida Spain
| | - Philippe Moerman
- Department of Pathology; UZ Leuven - KU Leuven (University of Leuven); Leuven B-3000 Belgium
| | - Sabrina Croce
- Department of Biopathology; Institut Bergonié; Bordeaux F-33000 France
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB; Leuven Belgium
- Laboratory for Translational Genetics, Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Frédéric Amant
- Department of Oncology, Gynecologic Oncology; KU Leuven (University of Leuven); Leuven 3000 Belgium
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek - Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
33
|
The Role of Next-Generation Sequencing in Sarcomas: Evolution From Light Microscope to Molecular Microscope. Curr Oncol Rep 2017; 19:78. [DOI: 10.1007/s11912-017-0641-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Oncopig Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas. Sci Rep 2017; 7:2624. [PMID: 28572589 PMCID: PMC5453942 DOI: 10.1038/s41598-017-02912-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Human soft-tissue sarcomas (STS) are rare mesenchymal tumors with a 5-year survival rate of 50%, highlighting the need for further STS research. Research has been hampered by limited human sarcoma cell line availability and the large number of STS subtypes, making development of STS cell lines and animal models representative of the diverse human STS subtypes critical. Pigs represent ideal human disease models due to their similar size, anatomy, metabolism, and genetics compared to humans. The Oncopig encodes inducible KRASG12D and TP53R167H transgenes, allowing for STS modeling in a spatial and temporal manner. This study utilized Oncopig STS cell line (fibroblast) and tumor (leiomyosarcoma) RNA-seq data to compare Oncopig and human STS expression profiles. Altered expression of 3,360 and 7,652 genes was identified in Oncopig STS cell lines and leiomyosarcomas, respectively. Transcriptional hallmarks of human STS were observed in Oncopig STS, including altered TP53 signaling, Wnt signaling activation, and evidence of epigenetic reprogramming. Furthermore, master regulators of Oncopig STS expression were identified, including FOSL1, which was previously identified as a potential human STS therapeutic target. These results demonstrate the Oncopig STS model’s ability to mimic human STS transcriptional profiles, providing a valuable resource for sarcoma research and cell line development.
Collapse
|