1
|
Tekin E, Kaya AK, Küçük A, Arslan M, Özer A, Demirtaş H, Sezen ŞC, Kip G. Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:451. [PMID: 40142262 PMCID: PMC11943544 DOI: 10.3390/medicina61030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Hind limb ischemia-reperfusion (I/R) injury is a serious clinical condition that requires urgent treatment and develops as a result of a sudden decrease in blood flow in the extremity. Antioxidant combinations are frequently used in diseases today. This study aimed to investigate and compare the effectiveness of ellagic acid (EA) and berberine (BER), which are important antioxidants, and the combination on hind limb I/R injury to evaluate their therapeutic power. Materials and Methods: Thirty-five male Sprague Dawley rats were randomly divided into five groups: sham, I/R, EA+I/R, BER+I/R, and EA/BER+I/R. In the I/R procedure, the infrarenal abdominal aorta was clamped and reperfused for 2 h. EA (100 mg/kg, ip) and BER (200 mg/kg, ip) were administered in the 75th minute of ischemia. Oxidative stress markers (MDA, GSH, SOD, and CAT) and TNF-α were measured. Apoptosis (Bax, Bcl-2, and Cleaved caspase-3) and pyroptosis (Nrf2, NLRP3, and Gasdermin D) pathways were evaluated via Western blot. Muscle tissue was examined histopathologically by hematoxylin eosin staining. One-way ANOVA and post hoc LSD tests were applied for statistical analyses (p < 0.05). Results: Bax levels increased in the ischemia group and decreased with EA and BER (p < 0.05). Bcl-2 levels decreased in the ischemia group but increased with EA and BER (p < 0.05). The highest level of the Bax/Bcl-2 ratio was in the I/R group (p < 0.05). Cleaved caspase 3 was higher in the other groups compared to the sham group (p < 0.05). While Nrf2 decreased in the I/R group, NLRP3 and Gasdermin D increased; EA and BER normalized these levels (p < 0.05). In the histopathological analysis, a combination of EA and BER reduced damage (p < 0.05). TNF-α levels were similar between groups (p > 0.05). MDA levels were reduced by EA and BER, but GSH, SOD, and CAT levels were increased (p < 0.05). Conclusions: It was concluded that TNF-α levels depend on the degree and duration of inflammation and that no difference was found in relation to duration in this study. As a result, EA, BER, and their combination could be potential treatment agents on hind limb I/R injury with these positive effects.
Collapse
Affiliation(s)
- Esra Tekin
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey; (E.T.); (A.K.K.); (A.K.)
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey; (E.T.); (A.K.K.); (A.K.)
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey; (E.T.); (A.K.K.); (A.K.)
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
| | - Abdullah Özer
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06500, Turkey; (A.Ö.); (H.D.)
| | - Hüseyin Demirtaş
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06500, Turkey; (A.Ö.); (H.D.)
| | - Şaban Cem Sezen
- Department of Histology and Embryology, Faculty of Medicine, Kırıkkale University, Kırıkkale 71450, Turkey;
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
| |
Collapse
|
2
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:607-630. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine. Impact statement This article reviews the combination of bioactive herbal compounds with biomaterials in the promotion of skin, cartilage, bone, neural, and heart regeneration, due to the anti-inflammatory, antibacterial, antioxidative, and proangiogenic effects of the herbal compounds, but also their effects on the improvement of mechanic strength and stability of biomaterial scaffolds. This review provides a promising direction for the next generation of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Wang YD, Meng X, Guan YC, Zhao ZL, Tao LT, Gong JS, Liu XL, Zhao Y, Shan XF. The effects of dietary supplementation of ginseng stem and leaf saponins on the antioxidant capacity, immune response, and disease resistance of crucian carp, Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1915-1930. [PMID: 36414818 DOI: 10.1007/s10695-022-01142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
This is the first study to explore the positive effects of ginseng stem and leaf saponins (GSLS) on antioxidant capability, immunity, and disease resistance of crucian carp. Seven hundred fifty crucian carps (initial body weight: 25 ± 0.15 g (mean ± SE)) were randomly allocated into five groups with three replicates each; five diets supplemented with the final concentration of 0, 1, 2, 4, and 8 g/kg GSLS were fed to crucian carp for 5 weeks. The results demonstrated that, at a concentration of 8 g/kg, the contents of IgM, C4, SOD, GSH-Px, and the activity of AKP in serum of crucian carp gradually increased at 7, 14, 21, 28, and 35 days, and the expression of immune-relative cytokine genes (TNF-α, IL-10, IFN-γ) in the liver, spleen, and the intestinal tract also had a significant up-regulation (P < 0.05), and which were significant difference compared with control (P < 0.05). The above results demonstrated that dietary GSLS showed enhancement effects on the antioxidant and anti-inflammatory capability, and innate immune response of crucian carp. The feed of 8 g/kg GSLS for 1 week could improve the survival rate 44% more than the control group when crucian carp infected Aeromonas hydrophila (A. hydrophila). In conclusion, the addition of GSLS at a concentration of 8 g/kg in the diet improve immune-related enzyme activity better, immune-relative cytokine expression, and disease resistance.
Collapse
Affiliation(s)
- Ying-da Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Meng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yong-Chao Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Luo-Tao Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Shuo Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin-Lan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, Jilin, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
4
|
Song Y, Chen C, Li W. Ginsenoside Rb 1 in cardiovascular and cerebrovascular diseases: A review of therapeutic potentials and molecular mechanisms. CHINESE HERBAL MEDICINES 2024; 16:489-504. [PMID: 39606264 PMCID: PMC11589305 DOI: 10.1016/j.chmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 11/29/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs), which are circulatory system diseases caused by heart defects and vascular diseases, are the major noncommunicable diseases affecting global public health. With the improvement of economic level and the change of human lifestyle, the prevalence of CCVDs continues to increase. Ginseng (Panax ginseng C. A. Mey.) was widely used in traditional diseases due to its supposed tonic properties. Ginsenoside Rb1 (G-Rb1) is the most abundant active ingredient with multiple pharmacological effects extracted from ginseng, which has been shown to have potential benefits on the cardiovascular system through a variety of mechanisms, including anti-oxidation, anti-inflammatory, regulation of vasodilation, reduction of platelet adhesion, influence of calcium ion channels, improvement of lipid distribution, involving in glucose metabolism and controlling blood sugar. This review reviewed the protective effects of G-Rb1 on CCVDs and its potential mechanisms, such as atherosclerosis (AS), hypertension, coronary heart disease (CHD), ischemic stroke (IS) and periocular microvascular retinopathy. Finally, we reviewed and reported the results of in vivo and in vitro experiments using G-Rb1 to improve CCVDs, highlighted its efficacy, safety, and limitations.
Collapse
Affiliation(s)
- Yueqin Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| |
Collapse
|
5
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
6
|
Wu X, Zhou Y, Xu H, Zhang X, Yao L, Li J, Li X. PRMT6-FOXO3A ATTENUATES APOPTOSIS BY UPREGULATING PARKIN EXPRESSION IN INTESTINAL ISCHEMIA-REPERFUSION INJURY. Shock 2024; 61:791-800. [PMID: 38323918 DOI: 10.1097/shk.0000000000002333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ABSTRACT Intestinal ischemia-reperfusion injury (IIRI) is a serious disease with high morbidity and mortality. This study aims to investigate the potential regulatory mechanisms involving protein arginine methyltransferase 6 (PRMT6), Forkhead box O3a (FoxO3a), and Parkin in IIRI and elucidate their roles in mediating cell apoptosis. The IIRI animal model was established and confirmed using hematoxylin and eosin staining. Oxygen-glucose deprivation and reperfusion (OGD/R) cell model was established to mimic ischemic injury in vitro . Transient transfection was used to overexpress or knock down genes. Cell death or apoptosis was assessed by propidium iodide staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and flow cytometry. The expression of proteins was detected by western blot. The histopathology observed by hematoxylin and eosin staining suggested that the IIRI animal model was successfully established. Our findings revealed that IIRI resulted in increased Bax and decreased Bcl-2 levels. In vitro experiments showed that overexpression of Parkin decreased OGD/R injury and suppressed elevation of Bax/Bcl-2. PRMT6 regulated the methylation level of FoxO3a. Moreover, FoxO3a directly binds to Parkin, and FoxO3a overexpression reduced OGD/R-induced cell death and regulation of Parkin. Overexpression of PRMT6 can attenuate the downregulation of Parkin and elevation of Bax/Bcl-2 caused by OGD/R. Knockdown of PRMT6 promoted apoptosis in intestinal epithelial cells of OGD/R group, while PRMT6 overexpression exhibited the opposite effect. Notably, the levels of PRMT6, FoxO3a, and Parkin were decreased in IIRI mouse intestinal tissue. Knocking out PRMT6 causes a significant decrease in the lifespan of mice. Altogether, our results demonstrated that PRMT6 upregulated the expression of Parkin by regulating FoxO3a methylation level, attenuating the apoptosis induced by IIRI.
Collapse
Affiliation(s)
- Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Ling G, Zhang M, Chen C, Wang Y, Gao Q, Li J, Yuan H, Jin W, Lin W, Yang L. Progress of Ginsenoside Rb1 in neurological disorders. Front Pharmacol 2024; 15:1280792. [PMID: 38327982 PMCID: PMC10847293 DOI: 10.3389/fphar.2024.1280792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Ginseng is frequently used in traditional Chinese medicine to treat neurological disorders. The primary active component of ginseng is ginsenoside, which has been classified into more than 110 types based on their chemical structures. Ginsenoside Rb1 (GsRb1)-a protopanaxadiol saponin and a typical ginseng component-exhibits anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-autophagy properties in the nervous system. Neurological disorders remain a leading cause of death and disability globally. GsRb1 effectively treats neurological disorders. To contribute novel insights to the understanding and treatment of neurological disorders, we present a comprehensive review of the pharmacokinetics, actions, mechanisms, and research development of GsRb1 in neurological disorders.
Collapse
Affiliation(s)
- Gongxia Ling
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Pingyang County Traditional Chinese Medicine Hospital, Meizhou, Zhejiang, China
| | - Yan Wang
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingrong Yang
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Ding LLQ, Hu SF, He XW, Zhang P, Zhao FF, Cheng LH, Huang BL, Liu TP, Zhang Q, He F, Hu SS, Zhang YJ, Yu Y, Xiong P, Wang CK. Warm acupuncture therapy alleviates neuronal apoptosis after spinal cord injury via inhibition of the ERK signaling pathway. J Spinal Cord Med 2023; 46:798-806. [PMID: 35792817 PMCID: PMC10446778 DOI: 10.1080/10790268.2022.2088498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE Warm acupuncture (WA) therapy has been applied to treat spinal cord injury (SCI), but the underlying mechanism is unclear. The current study attempted to explore the WA therapy on neuronal apoptosis of SCI and the relationship with the extracellular signal-regulated kinase (ERK) signaling pathway. METHODS The rat SCI models were established by the impact method. SCI rat models were subjected to WA treatment at Dazhui (GV14) and Jiaji points (T10), Yaoyangguan (GV3), Zusanli (ST36), and Ciliao (BL32). The rat SCI models were established by the impact method. WA and U0126 treatments were performed on the SCI rats. Motor function and neuronal apoptosis were detected. The relative mRNA of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), the phosphorylation level of ERK 1/2 and levels of B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and caspase-3 in spinal cord tissue were tested. RESULTS After WA treatment, the Basso, Beattie & Bresnahan locomotor rating scale (BBB scale) of SCI rats in the WA treatment was significantly raised from 7 to 14 days after SCI. WA and U0126 treatment significantly diminished apoptotic cells and preserved the neurons in the injured spinal cord. WA and U0126 treatment alleviated the production of inflammatory cytokines in the spinal cord. The distinct increase of p-ERK 1/2 induced by SCI was reversed in WA and U0126 treatment groups. WA and U0126 treatment augmented the level of Bcl-2 and reversed the elevated cleaved caspase-3 protein level after SCI. CONCLUSION Our study demonstrated that WA might be associated with the downregulation of the ERK signaling pathway. In summary, our findings indicated that WA promotes the recovery of SCI via the protection of nerve cells and the prevention of apoptosis. Meanwhile, the anti-apoptotic effect of WA might be associated with the downregulation of the ERK signaling pathway, which could be one of the mechanisms of WA in the treatment of SCI.
Collapse
Affiliation(s)
- Li-Li-Qiang Ding
- Department of Cardiovascular Medicine, Department of Hypertension, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Song-Feng Hu
- Department of Acupuncture, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Xing-Wei He
- Department of Acupuncture, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Peng Zhang
- Department of Acupuncture, The Second Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Fen-Fen Zhao
- Department of Acupuncture, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Li-Hong Cheng
- Department of Acupuncture, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Bing-Lin Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Ting-Ping Liu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Qin Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Fan He
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Sha-Sha Hu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Ya-Jing Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Ying Yu
- Department of Rehabilitation, The Second Affiliated Hospital of Nanchang University, NanchangPeople’s Republic of China
| | - Peng Xiong
- Department of Acupuncture, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Chang-Kang Wang
- Department of Acupuncture, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| |
Collapse
|
9
|
Ginsenoside Rb1 Improves Post-Cardiac Arrest Myocardial Stunning and Cerebral Outcomes by Regulating the Keap1/Nrf2 Pathway. Int J Mol Sci 2023; 24:ijms24055059. [PMID: 36902487 PMCID: PMC10003120 DOI: 10.3390/ijms24055059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
The prognosis of cardiac arrest (CA) is dismal despite the ongoing progress in cardiopulmonary resuscitation (CPR). ginsenoside Rb1 (Gn-Rb1) has been verified to be cardioprotective in cardiac remodeling and cardiac ischemia/reperfusion (I/R) injury, but its role is less known in CA. After 15 min of potassium chloride-induced CA, male C57BL/6 mice were resuscitated. Gn-Rb1 was blindly randomized to mice after 20 s of CPR. We assessed the cardiac systolic function before CA and 3 h after CPR. Mortality rates, neurological outcome, mitochondrial homeostasis, and the levels of oxidative stress were evaluated. We found that Gn-Rb1 improved the long-term survival during the post-resuscitation period but did not affect the ROSC rate. Further mechanistic investigations revealed that Gn-Rb1 ameliorated CA/CPR-induced mitochondrial destabilization and oxidative stress, partially via the activation of Keap1/Nrf2 axis. Gn-Rb1 improved the neurological outcome after resuscitation partially by balancing the oxidative stress and suppressing apoptosis. In sum, Gn-Rb1 protects against post-CA myocardial stunning and cerebral outcomes via the induction of the Nrf2 signaling pathway, which may offer a new insight into therapeutic strategies for CA.
Collapse
|
10
|
Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q. Hypolipidemic effect and molecular mechanism of ginsenosides: a review based on oxidative stress. Front Pharmacol 2023; 14:1166898. [PMID: 37188264 PMCID: PMC10175615 DOI: 10.3389/fphar.2023.1166898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperlipidemia is considered a risk factor for cardiovascular and endocrine diseases. However, effective approaches for treating this common metabolic disorder remain limited. Ginseng has traditionally been used as a natural medicine for invigorating energy or "Qi" and has been demonstrated to possess antioxidative, anti-apoptotic, and anti-inflammatory properties. A large number of studies have shown that ginsenosides, the main active ingredient of ginseng, have lipid-lowering effects. However, there remains a lack of systematic reviews detailing the molecular mechanisms by which ginsenosides reduce blood lipid levels, especially in relation to oxidative stress. For this article, research studies detailing the molecular mechanisms through which ginsenosides regulate oxidative stress and lower blood lipids in the treatment of hyperlipidemia and its related diseases (diabetes, nonalcoholic fatty liver disease, and atherosclerosis) were comprehensively reviewed. The relevant papers were search on seven literature databases. According to the studies reviewed, ginsenosides Rb1, Rb2, Rb3, Re, Rg1, Rg3, Rh2, Rh4, and F2 inhibit oxidative stress by increasing the activity of antioxidant enzymes, promoting fatty acid β-oxidation and autophagy, and regulating the intestinal flora to alleviate high blood pressure and improve the body's lipid status. These effects are related to the regulation of various signaling pathways, such as those of PPARα, Nrf2, mitogen-activated protein kinases, SIRT3/FOXO3/SOD, and AMPK/SIRT1. These findings suggest that ginseng is a natural medicine with lipid-lowering effects.
Collapse
Affiliation(s)
- Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shihui Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shiyi Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Weiwei Hou
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
11
|
Lin S, Qin HZ, Li ZY, Zhu H, Long L, Xu LB. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front Pharmacol 2022; 13:1049117. [PMID: 36523491 PMCID: PMC9744937 DOI: 10.3389/fphar.2022.1049117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 11/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a severe threat to women's health because of its aggressive nature, early age of onset, and high recurrence rate. Therefore, in this study, we aimed to evaluate the anti-tumor effects of Gallic acid (GA) on the TNBC HCC1806 cells in vitro. The cell proliferation was detected by MTT and plate clone formation assays, cell apoptosis, cell cycle, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry and Hoechst 33258 staining assays, and the intracellular reactive oxygen species (ROS) accumulation were also investigated. Real-Time PCR and western blot were examined to explore the mechanism of action. The results indicated that GA suppressed HCC1806 cells proliferation and promoted HCC1806 cells apoptosis. Meanwhile, GA treatment changed the morphology of the HCC1806 cells. In addition, GA blocked the HCC1806 cells cycle in the S phase, and it induced cells apoptosis accompanied by ROS accumulation and MMP depolarization. Real-Time PCR results suggested that GA increased Bax, Caspase-3, Caspase-9, P53, JINK and P38 mRNA expression, and decreased Bcl-2, PI3K, AKT and EGFR mRNA expression. Western blotting results suggested that GA increased Bax, cleaved-Caspase-3, cleaved-Caspase-9, P53, P-ERK1/2, P-JNK, P-P38 proteins expression, and decreased Bcl-2, P-PI3K, P-AKT, P-EGFR proteins expression. Furthermore, molecular docking suggested that GA has the high affinity for PI3K, AKT, EGFR, ERK1/2, JNK, and P38. In conclusion, GA could suppress HCC1806 cells proliferation and promote HCC1806 cells apoptosis through the mitochondrial apoptosis pathway and induces ROS generation which further inhibits PI3K/AKT/EGFR and activates MAPK signaling pathways. Our study will provide some new references for using GA in the treatment of TNBC.
Collapse
Affiliation(s)
- Si Lin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hui-Zhen Qin
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ze-Yu Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Li Long
- Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Li-Ba Xu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
12
|
Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, Zhang Y. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16:969056. [PMID: 36081662 PMCID: PMC9445311 DOI: 10.3389/fnins.2022.969056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder of the central nervous system (CNS). It is mainly caused by trauma and reduces the quality of life of the affected individual. Ginsenosides are safe and effective traditional Chinese medicines (TCMs), and their efficacy against SCI is being increasingly researched in many countries, especially in China and Korea. This systematic review evaluated the neuroprotective effects of ginsenosides in SCI and elucidated their properties.
Collapse
|
13
|
Gong L, Yin J, Zhang Y, Huang R, Lou Y, Jiang H, Sun L, Jia J, Zeng X. Neuroprotective Mechanisms of Ginsenoside Rb1 in Central Nervous System Diseases. Front Pharmacol 2022; 13:914352. [PMID: 35721176 PMCID: PMC9201244 DOI: 10.3389/fphar.2022.914352] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Panax ginseng and Panax notoginseng, two well-known herbs with enormous medical value in Asian countries, have a long usage history in China for the therapy of some diseases, such as stroke. Ginsenoside Rb1 is one of most important active ingredients in Panax ginseng and Panax notoginseng. In the last two decades, more attention has focused on ginsenoside Rb1 as an antioxidative, anti-apoptotic and anti-inflammatory agent that can protect the nervous system. In the review, we summarize the neuroprotective roles of ginsenoside Rb1 and its potential mechanisms in central nervous system diseases (CNSDs), including neurodegenerative diseases, cerebral ischemia injury, depression and spinal cord injury. In conclusion, ginsenoside Rb1 has a potential neuroprotection due to its inhibition of oxidative stress, apoptosis, neuroinflammation and autophagy in CNSDs and may be a promising candidate agent for clinical therapy of CNSDs in the future.
Collapse
Affiliation(s)
- Liang Gong
- Jiaxing University Medical College, Jiaxing, China
| | - Jiayi Yin
- Jiaxing University Medical College, Jiaxing, China
| | - Yu Zhang
- Jiaxing University Medical College, Jiaxing, China
| | - Ren Huang
- Jiaxing University Medical College, Jiaxing, China
| | - Yuxuan Lou
- Jiaxing University Medical College, Jiaxing, China
| | - Haojie Jiang
- Jiaxing University Medical College, Jiaxing, China
| | - Liyan Sun
- Department of Clinical Medicine, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
14
|
Gong L, Yin J, Zhang Y, Huang R, Lou Y, Jiang H, Sun L, Jia J, Zeng X. Neuroprotective Mechanisms of Ginsenoside Rb1 in Central Nervous System Diseases. Front Pharmacol 2022; 13:914352. [PMID: 35721176 DOI: 10.3389/fphar.2022.914352if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2024] Open
Abstract
Panax ginseng and Panax notoginseng, two well-known herbs with enormous medical value in Asian countries, have a long usage history in China for the therapy of some diseases, such as stroke. Ginsenoside Rb1 is one of most important active ingredients in Panax ginseng and Panax notoginseng. In the last two decades, more attention has focused on ginsenoside Rb1 as an antioxidative, anti-apoptotic and anti-inflammatory agent that can protect the nervous system. In the review, we summarize the neuroprotective roles of ginsenoside Rb1 and its potential mechanisms in central nervous system diseases (CNSDs), including neurodegenerative diseases, cerebral ischemia injury, depression and spinal cord injury. In conclusion, ginsenoside Rb1 has a potential neuroprotection due to its inhibition of oxidative stress, apoptosis, neuroinflammation and autophagy in CNSDs and may be a promising candidate agent for clinical therapy of CNSDs in the future.
Collapse
Affiliation(s)
- Liang Gong
- Jiaxing University Medical College, Jiaxing, China
| | - Jiayi Yin
- Jiaxing University Medical College, Jiaxing, China
| | - Yu Zhang
- Jiaxing University Medical College, Jiaxing, China
| | - Ren Huang
- Jiaxing University Medical College, Jiaxing, China
| | - Yuxuan Lou
- Jiaxing University Medical College, Jiaxing, China
| | - Haojie Jiang
- Jiaxing University Medical College, Jiaxing, China
| | - Liyan Sun
- Department of Clinical Medicine, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
15
|
Dietary restriction may attenuate the expression of cell death-related proteins in rats with acute spinal cord injury. World Neurosurg 2022; 162:e475-e483. [PMID: 35304344 DOI: 10.1016/j.wneu.2022.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE There is currently no effective treatment for spinal cord injuries (SCI). Previous studies have shown that every-other-day fasting (EODF), a dietary restriction method, can reduce SCI size and promote motor function recovery, making it a potential novel treatment. However, the mechanism that underlies the positive impact of EODF on SCI remains unclear. Caspase-dependent apoptosis and necroptosis, which involve receptor-interacting protein kinase (RIPK), drive the loss of nerve cells and restrict motor function recovery after SCI. Dietary restriction has a significant inhibitory effect on Caspase and RIPK expression. This study aimed to investigate whether the EODF diet achieves a neuroprotective effect by inhibiting Caspase-dependent apoptosis and RIPK-dependent necroptosis after SCI. METHODS The model rats underwent EODF for 4 weeks before SCI or started EODF diet immediately after SCI. Immunoblotting and immunohistochemical analyses were used to assess the impact of the intervention on protein expression. Apoptosis in the spinal cord was detected by TdT-mediated dUTP nick-end labeling (TUNEL). RESULTS Immunoblotting analysis results revealed that the levels of both RIPK1 and RIPK3 proteins in the injury zone were reduced at 6, 12, and 24 h, and at 3 and 7 days after SCI, respectively. Immunohistochemistry results showed that EODF reduced the expression of Caspase-3 and Bax proteins, while prophylactic EODF decreased the rate of apoptosis detected by TUNEL within 3 days after SCI. CONCLUSIONS These findings indicate that the mechanism by which EODF exerts neuroprotective effects may be related to the simultaneous inhibition of apoptosis and necroptosis in SCI.
Collapse
|
16
|
Lin Z, Xie R, Zhong C, Huang J, Shi P, Yao H. Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb 1, a main active ingredient in Panax ginseng Meyer. J Ginseng Res 2022; 46:39-53. [PMID: 35058726 PMCID: PMC8753521 DOI: 10.1016/j.jgr.2021.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.
Collapse
Affiliation(s)
- Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Rongfang Xie
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianyong Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Xie W, Wang X, Xiao T, Cao Y, Wu Y, Yang D, Zhang S. Protective Effects and Network Analysis of Ginsenoside Rb1 Against Cerebral Ischemia Injury: A Pharmacological Review. Front Pharmacol 2021; 12:604811. [PMID: 34276353 PMCID: PMC8283782 DOI: 10.3389/fphar.2021.604811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, only a limited number of drugs are available for treating ischemic stroke. Hence, studies aiming to explore and develop other potential strategies and agents for preventing and treating ischemic stroke are urgently needed. Ginseng Rb1 (GRb1), a saponin from natural active ingredients derived from traditional Chinese medicine (TCM), exerts neuroprotective effects on the central nervous system (CNS). We conducted this review to explore and summarize the protective effects and mechanisms of GRb1 on cerebral ischemic injury, providing a valuable reference and insights for developing new agents to treat ischemic stroke. Our summarized results indicate that GRb1 exerts significant neuroprotective effects on cerebral ischemic injury both in vivo and in vitro, and these network actions and underlying mechanisms are mediated by antioxidant, anti-inflammatory, and antiapoptotic activities and involve the inhibition of excitotoxicity and Ca2+ influx, preservation of blood–brain barrier (BBB) integrity, and maintenance of energy metabolism. These findings indicate the potential of GRb1 as a candidate drug for treating ischemic stroke. Further studies, in particular clinical trials, will be important to confirm its therapeutic value in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Wang
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianbao Xiao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yibo Cao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yumei Wu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongsheng Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Potential therapeutic mechanism of traditional Chinese medicine monomers on neurological recovery after spinal cord injury. Chin Med J (Engl) 2021; 134:1681-1683. [PMID: 34397594 PMCID: PMC8318647 DOI: 10.1097/cm9.0000000000001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Wang D, Zhao S, Pan J, Wang Z, Li Y, Xu X, Yang J, Zhang X, Wang Y, Liu M. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol 2021; 236:2144-2155. [PMID: 32761843 DOI: 10.1002/jcp.30001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Ginsenoside Rb1 (GRb1), a major ingredient of ginseng, has been found to be a potential protective agent in spinal cord injury (SCI) and in activated microglia-induced neuronal injury. This study discovered that GRb1 could facilitate miR-130b-5p expression in SCI rats and Toll-like receptor 4 (TLR4; a crucial player in inflammation) was a potential target of miR-130b-5p. Hence, we further investigated whether GRb1 could relieve SCI by reducing microglia-mediated inflammatory responses and neuronal injury via miR-130b-5p/TLR4 pathways. The results showed that GRb1 alleviated SCI through inhibiting neuronal apoptosis and proinflammatory factor expression via increasing miR-130b-5p.GRb1 weakened the damage of activated microglia to neurons through upregulating miR-130b-5p. miR-130b-5p attenuated activated microglia-induced neuron injury via targeting TLR4. GRb1 inactivated TLR4/nuclear factor-κB (NF-κB) activation and inhibited proinflammatory cytokine secretion by increasing miR-130b-5p in activated microglia. As a conclusion, GRb1 alleviated SCI through reducing activated microglia-induced neuronal injury via miR-130b-5p/TLR4/NF-κB axis, providing a deep insight into the molecular basis of GRb1 in the treatment of SCI.
Collapse
Affiliation(s)
- Dan Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixin Zhao
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwei Pan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Li
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxiao Xu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahao Yang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yisheng Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Liu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Lian F, Ye Q, Feng B, Cheng H, Niu S, Fan N, Wang D, Wang Z. rAAV9-UPII-TK-EGFP can precisely transduce a suicide gene and inhibit the growth of bladder tumors. Cancer Biol Ther 2020; 21:1171-1178. [PMID: 33218277 DOI: 10.1080/15384047.2020.1844115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bladder cancer is a common and widespread cancer of the human urinary system, and its incidence is increasing. Gene therapy is a promising treatment of bladder cancer. In our study, a recombinant adeno-associated virus (rAAV9-UPII-TK-EGFP) driven by a UPII promoter was constructed. The efficacy and safety of infection of bladder cells was tested in vivo and in vitro. The ability of rAAV9-UPII-TK-EGFP to penetrate the glycosaminoglycan (GAG) layer on the surface of bladder cells and to transduce the bladder cells in vivo was very high. Additionally, we confirmed that the TK/GCV system has a powerful cytotoxic effect on bladder tumor cells in vitro and in vivo. Thus, our data indicate that rAAV9-UPII-TK-EGFP is a precise gene drug delivery system for the treatment of bladder cancer, and the TK/GCV therapeutic strategy has a powerful antitumor effect. These findings can be widely used in clinical and scientific studies.
Collapse
Affiliation(s)
- Foyan Lian
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Qiang Ye
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Bing Feng
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Hui Cheng
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Shaomin Niu
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Ning Fan
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University , Lanzhou, China
| | - Zhiping Wang
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| |
Collapse
|
21
|
Almoiliqy M, Wen J, Xu B, Sun YC, Lian MQ, Li YL, Qaed E, Al-Azab M, Chen DP, Shopit A, Wang L, Sun PY, Lin Y. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53. Acta Pharmacol Sin 2020; 41:1208-1222. [PMID: 32238887 PMCID: PMC7609352 DOI: 10.1038/s41401-020-0359-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg−1 · d−1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1β, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKβ, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 μmol · L−1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.
Collapse
|
22
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
23
|
Cardioprotective Effect of ( Z)-2-Acetoxy-3-(3,4-Dihydroxyphenyl) Acrylic Acid: Inhibition of Apoptosis in Cardiomyocytes. Cardiovasc Ther 2020; 2020:8584763. [PMID: 32426037 PMCID: PMC7211238 DOI: 10.1155/2020/8584763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/24/2020] [Indexed: 12/03/2022] Open
Abstract
Background Although many studies have been performed to elucidate the molecular mechanisms of heart failure, an effective pharmacological therapy to protect cardiac tissues from severe loss of contractile function associated with heart failure after acute myocardial infarction (MI) has yet to be developed. Methods We examined the cardioprotective effects of (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid, a new compound with potent antioxidant and antiapoptotic activities in a rat model of heart failure. (Z)-2-Acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid was systemically delivered to rats 6 weeks after MI at different doses (15, 30, and 60 mg/kg). Cardiac function was assessed by hemodynamic measurements. The expression of proinflammatory cytokines, apoptosis-related molecules, and markers of adverse ventricular remodeling was measured using RT-PCR and Western blot. Results Treatment with (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid significantly improved cardiac function, in particular by increasing dP/dt. Simultaneously, the expression of the proinflammatory cytokines TNF-α and IL-1β was markedly reduced in the treatment group compared with the MI group. In addition, (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid-treated tissues displayed decreased expression of Bax, caspase-3, and caspase-9 and increased expression of Bcl-2, which was in part due to the promotion of Akt phosphorylation. Conclusion These data demonstrated that (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid possesses potent cardioprotective effects against cardiac injury in a rat model of heart failure, which is mediated, at least in part, by suppression of the inflammatory and cell apoptosis responses.
Collapse
|
24
|
Wang JL, Ren CH, Feng J, Ou CH, Liu L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed Pharmacother 2020; 123:109752. [PMID: 31924596 DOI: 10.1016/j.biopha.2019.109752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is reported as a devastating disease, leading to tissue loss and neurologic dysfunction. However, there is no effective therapeutic strategy for SCI treatment. Oleanolic acid (OA), as a triterpenoid, has anti-oxidant, anti-inflammatory, and anti-apoptotic activities. However, its regulatory effects on SCI have little to be elucidated, as well as the underlying molecular mechanisms. In this study, we attempted to explore the role of OA in SCI progression. Behavior tests suggested that OA treatments markedly alleviated motor function in SCI mice. Evans blue contents up-regulated in spinal cords of SCI mice were significantly reduced by OA in a dose-dependent manner, demonstrating the improved blood-spinal cord barrier. Moreover, we found that OA treatments significantly reduced the apoptotic cell death in spinal cord samples of SCI mice through decreasing the expression of cleaved Caspase-3. In addition, pro-inflammatory response in SCI mice was significantly attenuated by OA treatments. Furthermore, SCI mice exhibited higher activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways, but these effects were clearly blocked in SCI mice with OA treatments, as evidenced by the down-regulated phosphorylation of p38, c-Jun-NH 2 terminal kinase (JNK), IκB kinase α (IKKα), inhibitor of nuclear factor κB-α (IκBα) and NF-κB. The protective effects of OA against SCI were confirmed in lipopolysaccharide (LPS)-stimulated mouse neurons mainly through the suppression of apoptosis and inflammatory response, which were tightly associated with the blockage of p38 and JNK activation. Together, our data demonstrated that OA treatments could dose-dependently ameliorate spinal cord damage through impeding p38- and JNK-regulated apoptosis and inflammation, and therefore OA might be served as an effective therapeutic agent for SCI treatment.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Chang-He Ren
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
25
|
Pang B, Shi LW, Du LJ, Li YC, Zhang MZ, Ni Q. Sheng Mai San protects H9C2 cells against hyperglycemia-induced apoptosis. Altern Ther Health Med 2019; 19:309. [PMID: 31718632 PMCID: PMC6852741 DOI: 10.1186/s12906-019-2694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sheng Mai San (SMS) has been proven to exhibit cardio-protective effects. This study aimed to explore the molecular mechanisms of SMS on hyperglycaemia (HG)-induced apoptosis in H9C2 cells. METHODS HG-induced H9C2 cells were established as the experimental model, and then treated with SMS at 25, 50, and 100 μg/mL. H9C2 cell viability and apoptosis were quantified using MTT and Annexin V-FITC assays, respectively. Furthermore, Bcl-2/Bax signalling pathway protein expression and Fas and FasL gene expression levels were quantified using western blotting and RT-PCR, respectively. RESULTS SMS treatments at 25, 50, 100 μg/mL significantly improved H9C2 cell viability and inhibited H9C2 cell apoptosis (p < 0.05). Compared to the HG group, SMS treatment at 25, 50, and 100 μg/mL significantly downregulated p53 and Bax expression and upregulated Bcl-2 expression (p < 0.05). Moreover, SMS treatment at 100 μg/mL significantly downregulated Fas and FasL expression level (p < 0.05) when compared to the HG group. CONCLUSION SMS protects H9C2 cells from HG-induced apoptosis probably by downregulating p53 expression and upregulating the Bcl-2/Bax ratio. It may also be associated with the inhibition of the Fas/FasL signalling pathway.
Collapse
|
26
|
Hao J, Wang P, Pei D, Jia B, Hu Q. Rhein lysinate improves motor function in rats with spinal cord injury via inhibiting p38 MAPK pathway. Kaohsiung J Med Sci 2019; 35:765-771. [PMID: 31483087 DOI: 10.1002/kjm2.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jian Hao
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Ping Wang
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Dai‐Ping Pei
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Bin Jia
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| | - Qun‐Sheng Hu
- Department of Orthopedic SurgeryShenzhen Pingle Orthopedic Hospital Shenzhen China
| |
Collapse
|
27
|
Huang P, Guo Y, Feng S, Zhao G, Li B, Liu Q. Efficacy and safety of Shenfu injection for septic shock: A systematic review and meta-analysis of randomized controlled trials. Am J Emerg Med 2019; 37:2197-2204. [PMID: 30981461 DOI: 10.1016/j.ajem.2019.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of Shenfu injection (SFI) combined with standard therapy versus standard therapy for septic shock, three groups of patients with septic shock were analyzed based on the level of mean arterial lactate. They were mean arterial lactate level < 4.5 mmol/L, 4.5 mmol/L ≤ mean arterial lactate level < 7 mmol/L and mean arterial lactate level ≥ 7 mmol/L. METHODS Randomized controlled trials (RCT) from PubMed, Cochrane library, Embase, CENTRAL, SinoMed, Wanfang, CNKI, and Weipu (VIP) databases from the inception to September 2018 were searched. Relative risks (RR), weighted mean difference (WMD), along with 95% confidence interval (95%CI) were used to analyze the main outcomes. Statistical analysis was performed using Rev.Man 5.3. The qualities of the involved studies were accessed by the ROB according to the Cochrane handbook. RESULTS 19 randomized controlled trials with 1505 participants were included. Compared with standard therapy, SFI plus standard therapy cannot decrease the 28-day mortality for all of the three groups. Compared with the other two subgroups (mean arterial lactate level < 4.5 mmol/L and mean arterial lactate level ≥ 7 mmol/L), the 4.5 mmol/L ≤ mean arterial lactate level < 7 mmol/L group has a trend to decrease 28-day mortality (RR: 0.67; 95% CI: 0.38-1.19; P = 0.17). In addition, adding SFI could have further increased mean arterial pressure (MAP) at 6-hours (RR: 7.05; 95% CI: 4.14-9.97) and further normalized heart rate (HR) when compared with standard therapy (RR: -17.48; 95% CI: [-19.39-(-15.57)]. CONCLUSION For septic shock patients with 4.5 mmol/L ≤ mean arterial lactate level < 7 mmol/L, when the Traditional Chinese Medicine syndrome meet Yang-Qi deficiency, clinicians could choose SFI as a supplementary drug. But further high-quality and large-scale RCT should be performed to verify it. PROSPERO REGISTRATION NUMBER CRD42018090320.
Collapse
Affiliation(s)
- Po Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Capital Medical University, Beijing 100010, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Shuo Feng
- Beijing institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Guozhen Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing University of Chinese Medicine, Beijing 100010, China
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing institute of Traditional Chinese Medicine, Beijing 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Capital Medical University, Beijing 100010, China; Beijing institute of Traditional Chinese Medicine, Beijing 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China.
| |
Collapse
|
28
|
Li DW, Zhou FZ, Sun XC, Li SC, Yang JB, Sun HH, Wang AH. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res 2019; 14:1814-1822. [PMID: 31169200 PMCID: PMC6585553 DOI: 10.4103/1673-5374.257536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease. As such, inhibition of microglial overactivation might be a promising treatment strategy to delay the onset or slow the progression of Parkinson’s disease. Ginsenoside Rb1, the most active ingredient of ginseng, reportedly exerts neuroprotective effects by suppressing inflammation in vitro. The present study aimed to evaluate the neuroprotective and anti-inflammatory effects of ginsenoside Rb1 in a lipopolysaccharide-induced rat Parkinson’s disease model. Rats were divided into four groups. In the control group, sham-operated rats were intraperitoneally administered normal saline for 14 consecutive days. In the ginsenoside Rb1 group, ginsenoside Rb1 (20 mg/kg) was intraperitoneally injected for 14 consecutive days after sham surgery. In the lipopolysaccharide group, a single dose of lipopolysaccharide was unilaterally microinjected into the rat substantial nigra to establish the Parkinson’s disease model. Lipopolysaccharide-injected rats were treated with normal saline for 14 consecutive days. In the ginsenoside Rb1 + lipopolysaccharide group, lipopolysaccharide was unilaterally microinjected into the rat substantial nigra. Subsequently, ginsenoside Rb1 was intraperitoneally injected for 14 consecutive days. To investigate the therapeutic effects of ginsenoside Rb1, behavioral tests were performed on day 15 after lipopolysaccharide injection. We found that ginsenoside Rb1 treatment remarkably reduced apomorphine-induced rotations in lipopolysaccharide-treated rats compared with the lipopolysaccharide group. To investigate the neurotoxicity of lipopolysaccharide and potential protective effect of ginsenoside Rb1, contents of dopamine and its metabolites in the striatum were measured by high-performance liquid chromatography. Compared with the lipopolysaccharide group, ginsenoside Rb1 obviously attenuated the lipopolysaccharide-induced depletion of dopamine and its metabolites in the striatum. To further explore the neuroprotective effect of ginsenoside Rb1 against lipopolysaccharide-induced neurotoxicity, immunohistochemistry and western blot assay of tyrosine hydroxylase were performed to evaluate dopaminergic neuron degeneration in the substantial nigra par compacta. The results showed that lipopolysaccharide injection caused a large loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra and a significant decrease in overall tyrosine hydroxylase expression. However, ginsenoside Rb1 noticeably reversed these changes. To investigate whether the neuroprotective effect of ginsenoside Rb1 was associated with inhibition of lipopolysaccharide-induced microglial activation, we examined expression of the microglia marker Iba-1. Our results confirmed that lipopolysaccharide injection induced a significant increase in Iba-1 expression in the substantia nigra; however, ginsenoside Rb1 effectively suppressed lipopolysaccharide-induced microglial overactivation. To elucidate the inhibitory mechanism of ginsenoside Rb1, we examined expression levels of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase 2) and phosphorylation of nuclear factor kappa B signaling-related proteins (IκB, IKK) in the substantia nigra with enzyme-linked immunosorbent and western blot assays. Our results revealed that compared with the control group, phosphorylation and expression of inflammatory mediators IκB and IKK in the substantia nigra of lipopolysaccharide group rats were significantly increased; whereas, ginsenoside Rb1 obviously reduced lipopolysaccharide-induced changes on the lesioned side of the substantial nigra par compacta. These findings confirm that ginsenoside Rb1 can inhibit inflammation induced by lipopolysaccharide injection into the substantia nigra and protect dopaminergic neurons, which may be related to its inhibition of the nuclear factor kappa B signaling pathway. This study was approved by the Experimental Animal Ethics Committee of Shandong University of China in April 2016 (approval No. KYLL-2016-0148).
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan; Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Fa-Zhan Zhou
- Department of Cardiovascularology, Taian Central Hospital, Taian, Shandong Province, China
| | - Xian-Chang Sun
- Department of Physiology, Taishan Medical University, Taian, Shandong Province, China
| | - Shu-Chen Li
- Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Jin-Bin Yang
- Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Huan-Huan Sun
- Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Ai-Hua Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
29
|
Zhou P, Xie W, Luo Y, Lu S, Dai Z, Wang R, Zhang X, Li G, Sun G, Sun X. Inhibitory Effects of Ginsenoside Rb1 on Early Atherosclerosis in ApoE-/- Mice via Inhibition of Apoptosis and Enhancing Autophagy. Molecules 2018; 23:molecules23112912. [PMID: 30413028 PMCID: PMC6278435 DOI: 10.3390/molecules23112912] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 01/17/2023] Open
Abstract
Inflammation is a major contributing factor to the progression of atherosclerosis. Ginsenoside Rb1 (Rb1), an active saponin of Panax notoginseng, has been found to exert beneficial effects on inflammation and oxidative stress. This study investigated the ability of Rb1 to inhibit the formation of atherosclerotic plaques and the potential mechanisms. In this study, the effects of Rb1 on the development of atherosclerosis were investigated in ApoE-/- deficient mice fed with a western diet. Mice were intragastrically administrated with Rb1 (10 mg/kg) for 8 weeks. This study is that ginsenoside Rb1 exerted an inhibitory effect on early atherosclerosis in ApoE-/- mice via decreasing body weight and food intake daily, upregulating the lipid levels of serum plasma, including those of TC, TG and LDL-C and HDL-C and reducing the atherosclerotic plaque area, suppressing inflammatory cytokines (levels of IL-1β, IL-6 and TNF-α) in the serum of ApoE-/- mice, changing the expression levels of BCL-2, BAX, cleaved caspase-3 and cleaved caspase-9 and weakening apoptosis associated with anti-inflammatory activity. Hence, all these effects against atherosclerosis were tightly associated with regulation of necrosis or apoptosis associated with anti-inflammatory activity. Additionally, the results found that ginsenoside Rb1 increased autophagy flux to inhibit apoptosis via acceleration of autophagy by promoting transformation of LC3 from type I to type II in high-fat diet-induced atherosclerosis in ApoE-/- mice. This finding, along with those of the previous study, provides evidence that Rb1 promotes the process of autophagy to protect against atherosclerosis via regulating BCL-2 family-related apoptosis. These results indicate that Rb1 exhibits therapeutic effects in atherosclerosis by reversing the imbalance between apoptosis and autophagy.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Weijie Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Ziru Dai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Ruiying Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|