1
|
Peck M, Connelly P, Lucas-Herald AK. Cardiometabolic outcomes of early onset hypogonadism in males. Best Pract Res Clin Endocrinol Metab 2025:102004. [PMID: 40399185 DOI: 10.1016/j.beem.2025.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Testosterone is an important vascular hormone, with multiple effects reported on the vasculature. As such, boys and men with early onset hypogonadism may have altered cardiovascular function, with the potential to result in adverse cardiometabolic outcomes in adulthood. Given the fact that cardiovascular changes in the young can affect future cardiovascular health, there is a need to better understand the influence of androgens on the vasculature in those with conditions such as 46, XY Disorders of Sex Development and Klinefelter Syndrome. This review summarises what is known about hypogonadism and the effects of testosterone supplementation in adults with hypogonadism, as well as what is currently understood in those with early onset hypogonadism specifically. A number of research gaps persist in this area and there is a need for international collaborative studies to address these for future generations of affected individuals.
Collapse
Affiliation(s)
- Mariska Peck
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, 1345 Govan Road, Glasgow G51 4TF, UK.
| | - Paul Connelly
- Department of Endocrinology, Queen Elizabeth University Hospital, Govan Road, 1345 Govan Road, Glasgow G51 4TF, UK.
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, 1345 Govan Road, Glasgow G51 4TF, UK.
| |
Collapse
|
2
|
Adams ZH, Berbrier DE, Schwende BK, Huckins W, Richards CT, Rees DA, Usselman CW, Lord RN. The impact of androgens on cardiovascular control mechanisms in polycystic ovary syndrome: Recent advances and translational approaches. J Physiol 2025; 603:2937-2957. [PMID: 40321041 DOI: 10.1113/jp287288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 06/02/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in premenopausal females. The condition is associated with an increased prevalence of cardiovascular risk factors, including hypertension. Observational studies report that some blood pressure control mechanisms are altered in PCOS compared to controls (sympathetic nervous system activity, endothelial and vasodilator function, renin angiotensin aldosterone system activation), and that these impairments correlate with androgen hormone levels, which are chronically elevated in the condition. As such, hyperandrogenism is the proposed locus of origin for the link between PCOS and cardiovascular dysfunction, yet the underlying mechanisms remain poorly understood. Preclinical work has provided some insight into how androgens modulate blood pressure control in PCOS. However there are marked discrepancies between the effects of androgens in cellular and tissue studies versus in vivo animal and human PCOS studies. This may be related to the heterogeneity of the preclinical models and samples used in this research and whether preclinical work is modelling hyperandrogenism in physiologically relevant terms for PCOS. This review collates preclinical and clinical evidence to summarise what is known and what remains unknown about cardiovascular control mechanisms in PCOS. We examine aspects of blood pressure regulation that are altered in other hypertensive cohorts, presenting current evidence for a mechanistic role of androgens on these systems, while acknowledging the diverse experimental models and participant cohorts from which the results are derived.
Collapse
Affiliation(s)
- Zoe H Adams
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Danielle E Berbrier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Brittany K Schwende
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Will Huckins
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Cory T Richards
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - D Aled Rees
- Cardiff and Vale University Health Board, Cardiff, UK
- Neuroscience and Mental Health Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Charlotte W Usselman
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
3
|
Fu D, Miao H, Wang Z, Yang C. Gynecomastia and its potential progression to male breast cancer: Mechanisms, genetic factors, and hormonal interactions. Crit Rev Oncol Hematol 2025; 208:104651. [PMID: 39909181 DOI: 10.1016/j.critrevonc.2025.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Gynecomastia is the most common breast condition in men, while male breast cancer remains relatively rare. This review explores the potential relationship between gynecomastia and male breast cancer, with a focus on the roles of hormonal imbalances, genetic factors, and molecular mechanisms in the progression of these conditions. While it remains controversial whether gynecomastia is a precancerous lesion for male breast cancer, this review summarizes the roles of estrogen and androgen receptors, the regulation of aromatase expression, and mutations in key genes such as BRCA1/2. These insights point to possible pathways by which gynecomastia could transition into male breast cancer. Additionally, hormones such as prolactin, insulin-like growth factor-1, and leptin may play significant roles in this progression. We provide an overview of the current understanding and identify key areas for further research, emphasizing the need for large-scale prospective studies to determine the causal relationship between gynecomastia and male breast cancer.
Collapse
Affiliation(s)
- Dingyi Fu
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Nanjing Medical University, Nanjing 211166, China
| | - Haoquan Miao
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Nanjing Medical University, Nanjing 211166, China
| | - Zhonglin Wang
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang 222006, China
| | - Chuang Yang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The Role of Androgens and Estrogens in Social Interactions and Social Cognition. Neuroscience 2025; 568:476-502. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, Canada; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
5
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
6
|
Pfaus JG, García-Juárez M, Ordóñez RD, Tecamachaltzi-Silvarán MB, Lucio RA, González-Flores O. Cellular and molecular mechanisms of action of ovarian steroid hormones II: Regulation of sexual behavior in female rodents. Neurosci Biobehav Rev 2025; 168:105946. [PMID: 39571668 DOI: 10.1016/j.neubiorev.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T). The classical model of steroid hormone action through intracellular receptor binding has been complemented by an alternative scenario wherein the steroid functions as a transcription factor after binding the receptor protein to DNA. Another possible mechanism occurs through the activation of second messenger systems (cyclic AMP, cyclic GMP, calcium), which subsequently initiate phosphorylation events via diverse kinase systems (protein kinases A, G, or C). These kinases target the progesterone receptor (PR) or associated effector proteins that connect the PR to the trans-activation machinery. This may also happen to the androgen receptor (AR). In addition, other cellular mechanisms could be involved since the chemical structure of these non-steroidal agents causes a change in their lipophobicity that prevents them from penetrating the cell and exerting direct transcriptional effects; however, they can exert effects on different components of the cell membrane activating a cross-talk between the cell membrane and the regulation of the transcriptional mechanisms.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany 25067, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague 18200, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez Ordóñez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
7
|
Santos BM, de Souza JPA, Goulart LRDP, Petrine JCP, Alves FHF, Del Bianco-Borges B. Impacts of Anabolic-androgenic steroid supplementation on female health and offspring: Mechanisms, side effects, and medical perspectives. Saudi Pharm J 2024; 32:102205. [PMID: 39697477 PMCID: PMC11653648 DOI: 10.1016/j.jsps.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The increasing prevalence of Anabolic-androgenic steroids (AAS) among women, driven by the pursuit of improved body aesthetics, characterized by higher lean mass and reduced adipose tissue, raises significant health concerns, particularly due to the limited knowledge regarding their effects on the female organism. Prolonged use and/or high doses of AAS are linked to various harmful side effects, including mood changes, psychiatric disorders, voice deepening, clitoromegaly, menstrual irregularities, and cardiovascular complications, prompting medical societies to discourage their widespread use due to insufficient evidence supporting their safety and efficacy. Studies in female rodents have shown that AAS can lead to increased aggression, inflammation, reduced neuronal density, and negative impacts on the myocardium and blood vessels. Additionally, maternal administration of androgens during pregnancy can adversely affect offspring's reproductive, neuronal, and metabolic health, resulting in long-term impairments. The complexity of the mechanisms underlying AAS effects, and their potential genotoxicity remains poorly understood. This review aims to elucidate the various ways in which AAS can impact female physiology and that of their offspring, highlight commonly used anabolic substances, and discuss the positions of medical societies regarding AAS use.
Collapse
Affiliation(s)
- Beatriz Menegate Santos
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jessica Peres Alves de Souza
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Luísa Rodrigues de Paula Goulart
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jéssica Castro Pereira Petrine
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Fernando Henrique Ferrari Alves
- Institute of Science, Technology and Innovation – Federal University of Lavras, Jardim Califórnia Garden 37950-000, São Sebastião do Paraíso, Minas Gerais, Brazil
| | - Bruno Del Bianco-Borges
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| |
Collapse
|
8
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 PMCID: PMC12032588 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
9
|
Kumar S, Song R, Mishra JS. Elevated gestational testosterone impacts vascular and uteroplacental function. Placenta 2024; 157:14-20. [PMID: 37977936 PMCID: PMC11087376 DOI: 10.1016/j.placenta.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Maternal vascular adaptations to establish an adequate blood supply to the uterus and placenta are essential for optimal nutrient and oxygen delivery to the developing fetus in eutherian mammals, including humans. Numerous factors contribute to maintaining appropriate hemodynamics and placental vascular development throughout pregnancy. Failure to achieve or sustain these pregnancy-associated changes in women is strongly associated with an increased risk of antenatal complications, such as preeclampsia, a hypertensive disorder of pregnancy. The precise etiology of preeclampsia is unknown, but emerging evidence points to a potential role for androgens. The association between androgens and maternal cardiovascular and placental function merits particular attention due to the notable 2- to 3-fold elevated plasma testosterone (T) levels observed in preeclampsia. T levels in preeclamptic women positively correlate with vascular dysfunction, and preeclampsia is associated with increased androgen receptor (AR) levels in placental tissues. Moreover, animal studies replicating the pattern and magnitude of T increase observed in preeclamptic pregnancies have reproduced key features of preeclampsia, including gestational hypertension, endothelial dysfunction, heightened vasoconstriction to angiotensin II, impaired spiral artery remodeling, placental hypoxia, reduced nutrient transport, and fetal growth restriction. Collectively, these findings suggest that AR-mediated activity plays a significant role in the clinical presentation of preeclampsia. This review critically evaluates this hypothesis, considering both clinical and preclinical evidence.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Dussenne M, Alward BA. Expression of novel androgen receptors in three GnRH neuron subtypes in the cichlid brain. J Neuroendocrinol 2024; 36:e13429. [PMID: 38986626 PMCID: PMC11563876 DOI: 10.1111/jne.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
In teleosts, GnRH1 neurons stand at the apex of the Hypothalamo-Pituitary-Gonadal (HPG) axis, which is responsible for the production of sex steroids by the gonads (notably, androgens). To exert their actions, androgens need to bind to their specific receptors, called androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARβ) that are encoded by two different genes, ar1 and ar2, respectively. In A. burtoni, males stratify along dominance hierarchies, in which an individuals' social status determines its physiology and behavior. GnRH1 neurons have been strongly linked with dominance and circulating androgen levels. Similarly, GnRH3 neurons are implicated in the display of male specific behaviors. Some studies have shown that these GnRH neurons are responsive to fluctuations in circulating androgens levels, suggesting a link between GnRH neurons and ARs. While female A. burtoni do not naturally form a social hierarchy, their reproductive state is positively correlated to androgen levels and GnRH1 neuron size. Although there are reports related to the expression of ar genes in GnRH neurons in cichlid species, the expression of each ar gene remains inconclusive due to technical limitations. Here, we used immunohistochemistry, in situ hybridization chain reaction (HCR), and spatial transcriptomics to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.
Collapse
Affiliation(s)
- Mélanie Dussenne
- University of Houston, Department of Psychology, United States of America
| | - Beau A. Alward
- University of Houston, Department of Psychology, United States of America
- University of Houston, Department of Biology and Biochemistry, United States of America
| |
Collapse
|
11
|
Lengyel K, Rudra M, Berghof TVL, Leitão A, Frankl-Vilches C, Dittrich F, Duda D, Klinger R, Schleibinger S, Sid H, Trost L, Vikkula H, Schusser B, Gahr M. Unveiling the critical role of androgen receptor signaling in avian sexual development. Nat Commun 2024; 15:8970. [PMID: 39419984 PMCID: PMC11487053 DOI: 10.1038/s41467-024-52989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Gonadal hormone activities mediated by androgen and estrogen receptors, along with cell-autonomous mechanisms arising from the absence of sex-chromosome dosage compensation, are key factors in avian sexual development. In this study, we generate androgen receptor (AR) knockout chickens (AR-/-) to explore the role of androgen signaling in avian sexual development. Despite developing sex-typical gonads and gonadal hormone production, AR-/- males and females are infertile. While few somatic sex-specific traits persist (body size, spurs, and tail feathers), crucial sexual attributes such as comb, wattles and sexual behaviors remain underdeveloped in both sexes. Testosterone treatment of young AR-/- males fails to induce crow behavior, comb development, or regression of the bursa of Fabricius, which are testosterone-dependent phenotypes. These findings highlight the significance of androgen receptor mechanisms in fertility and sex-specific traits in chickens, challenging the concept of a default sex in birds and emphasizing the dominance of androgen signaling in avian sexual development.
Collapse
Affiliation(s)
- Kamila Lengyel
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mekhla Rudra
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Tom V L Berghof
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Denise Duda
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Romina Klinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sabrina Schleibinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Trost
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Hanna Vikkula
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
12
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
13
|
Li D, Yao H, Cao X, Han X, Song T, Zeng X. Testosterone regulates thymic remodeling by activating glucocorticoid receptor signaling pathway to accelerate thymocyte apoptosis in male rats. J Reprod Immunol 2024; 164:104288. [PMID: 38924811 DOI: 10.1016/j.jri.2024.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Thymic atrophy affects T cell generation and migration to the periphery, thereby affecting T cell pool diversity. However, the mechanisms underlying thymic atrophy have not been fully elucidated. Here, gonadotropin-releasing hormone (GnRH) immunization and surgical castration did not affect thymocyte proliferation, but significantly reduced the apoptosis and increased the survival rate of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes. Following testosterone supplementation in rats subjected to GnRH immunization and surgical castration, thymocyte proliferation remained unchange, but the apoptosis of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes significantly increased. Transcriptome analyses of the thymus after GnRH immunization and surgical castration showed a significant reduction in the thymus's response to corticosterone. Cholesterol metabolism and the synthesis and secretion of corticosterone were significantly reduced. Analysis of the enzyme levels involved in the corticosterone synthesis pathway revealed that corticosterone synthesis in thymocytes was significantly reduced after GnRH immunization and surgical castration, whereas exogenous testosterone supplementation relieved this process. Testosterone promoted thymocyte apoptosis in a concentration-dependent manner, and induced corticosterone secretion in vitro. Blocking the intracellular androgen receptor (AR) signaling pathway did not significantly affect thymocyte apoptosis, but blocking the glucocorticoid receptor (GR) signaling pathway significantly reduced it. Our findings indicate that testosterone regulates thymus remodeling by affecting corticosterone synthesis in thymocytes, which activates GR signal transduction and promotes thymocyte apoptosis.
Collapse
Affiliation(s)
- Dong Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Huan Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Tianzeng Song
- Institute of animal science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, PR China.
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| |
Collapse
|
14
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
15
|
Shukla N, Shah K, Rathore D, Soni K, Shah J, Vora H, Dave H. Androgen receptor: Structure, signaling, function and potential drug discovery biomarker in different breast cancer subtypes. Life Sci 2024; 348:122697. [PMID: 38710280 DOI: 10.1016/j.lfs.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kanisha Shah
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Deepshikha Rathore
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kinal Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Hemangini Vora
- The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat 380016, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
16
|
Bailey ML, Nixon C, Rusch DB, Buechlein A, Rosvall KA, Bentz AB. Maternal social environment shapes yolk testosterone allocation and embryonic neural gene expression in tree swallows. Horm Behav 2024; 163:105561. [PMID: 38759417 DOI: 10.1016/j.yhbeh.2024.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Offspring from females breeding in competitive social environments are often exposed to more testosterone (T) during embryonic development, which can affect traits from growth to behavior in potentially adaptive ways. Despite the important role of maternally derived steroids in shaping offspring development, the molecular mechanisms driving these processes are currently unclear. Here, we use tree swallows (Tachycineta bicolor) to explore the effects of the maternal social environment on yolk T concentrations and genome-wide patterns of neural gene expression in embryos. We measured aggressive interactions among females breeding at variable densities and collected their eggs at two timepoints, including the day laid to measure yolk T concentrations and on embryonic day 11 to measure gene expression in whole brain samples. We found that females breeding in high-density sites experienced elevated rates of physical aggression and their eggs had higher yolk T concentrations. A differential gene expression and weighted gene co-expression network analysis indicated that embryos from high-density sites experienced an upregulation of genes involved in hormone, circulatory, and immune processes, and these gene expression patterns were correlated with yolk T levels and aggression. Genes implicated in neural development were additionally downregulated in embryos from high-density sites. These data highlight how early neurogenomic processes may be affected by the maternal social environment, giving rise to phenotypic plasticity in offspring.
Collapse
Affiliation(s)
- M Leigh Bailey
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Cameron Nixon
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Alexandra B Bentz
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
17
|
Lopez MS, Alward BA. Androgen receptor alpha deficiency impacts aromatase expression in the female cichlid brain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240608. [PMID: 39076364 PMCID: PMC11285847 DOI: 10.1098/rsos.240608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
Steroid hormones bind to specific receptors that act as transcription factors to modify gene expression in the brain to regulate physiological and behavioural processes. The specific genes controlled by steroid hormones in the brain are not fully known. Identifying these genes is integral to establishing a comprehensive understanding of how hormones impact physiology and behaviour. A popular organism for answering this question is the cichlid fish Astatotilapia burtoni. Recently, CRISPR/Cas9 was used to engineer A. burtoni that lack functional androgen receptor (AR) genes encoding ARα. ARα mutant male A. burtoni produced fewer aggressive displays and possessed reduced expression of the gene encoding brain-specific aromatase, cyp19a1, in the ventromedial hypothalamus (VMH), an aggression locus. As a follow-up, we investigated whether ARα deficiency affected cyp19a1 expression in female A. burtoni using the same genetic line. We find that female A. burtoni possessing one or two non-functional ARα alleles had much higher expression of cyp19a1 in the preoptic area (POA), while females with one non-functional ARα allele possessed lower expression of cyp19a1 in the putative fish homologue of the bed nucleus of the stria terminalis (BNST). Thus, ARα may have a sex-specific role in modifying cyp19a1 expression in the teleost POA and BNST, regions that underlie sex differences across vertebrates.
Collapse
Affiliation(s)
- Mariana S. Lopez
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Beau A. Alward
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
18
|
Stevenson R, Bishop DG, Rodseth RN. A review of the role of testosterone in the care of the critically ill patient. SOUTHERN AFRICAN JOURNAL OF CRITICAL CARE 2024; 40:e1303. [PMID: 38989478 PMCID: PMC11232568 DOI: 10.7196/sajcc.2024.v40i1.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 07/12/2024] Open
Abstract
Background Testosterone is an anabolic and androgenic steroid hormone therapeutically used to produce male sex characteristics. It has also been shown to have a modulating effect on proinflammatory biomarkers. Critical illness is characterised by a proinflammatory and catabolic state and is accompanied by altered testosterone production, which may persist into the recovery phase. Testosterone may, therefore be a potential therapeutic option in critical illness. This paper reviews normal testosterone physiology, and the changes seen during critical illness and systematically reviews testosterone therapy during both the acute and chronic phases of critical illness. Contribution of the study This article explains the pathophysiology of testosterone during critical illness and explores the therapeutic value of testosterone in the management of critically ill patients.
Collapse
Affiliation(s)
- R Stevenson
- Department of Anaesthesia, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - D G Bishop
- Department of Anaesthesia and Critical Care, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - R N Rodseth
- Department of Anaesthesia and Critical Care, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Netcare Ltd, Johannesburg, South Africa
| |
Collapse
|
19
|
Valiño G, Dunlap K, Quintana L. Androgen receptors rapidly modulate non-breeding aggression in male and female weakly electric fish (Gymnotus omarorum). Horm Behav 2024; 159:105475. [PMID: 38154435 DOI: 10.1016/j.yhbeh.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads. We then recorded the agonistic behavior which encompasses both locomotor displays and emission of social electric signals. We found that CPA had no discernible impact on the levels of aggression or the motivation to engage in aggressive behavior for either sex. However, CPA specifically decreased the expression of social electric signals in both males and female dyads. The effect was status-dependent as it only affected subordinate electrocommunication behavior, the emission of brief interruptions in their electric signaling ("offs"). This study is the first demonstration of a direct and rapid androgen effect mediated via androgen receptors on non-breeding aggression. Elucidating the mechanisms involved in non-breeding aggression in this teleost model allows us to better understand potentially conserved or convergent neuroendocrine mechanisms underlying aggression in vertebrates.
Collapse
Affiliation(s)
- Guillermo Valiño
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Kent Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Laura Quintana
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.
| |
Collapse
|
20
|
Fernandes LM, Lorigo M, Cairrao E. Relationship between Androgens and Vascular and Placental Function during Pre-eclampsia. Curr Issues Mol Biol 2024; 46:1668-1693. [PMID: 38534724 DOI: 10.3390/cimb46030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) represent a substantial risk to maternal and fetal health. Emerging evidence suggests an association between testosterone and pre-eclampsia (PE), potentially mediated through androgen receptors (AR). Nevertheless, the mechanism driving this association is yet to be elucidated. On the other hand, reports of transgender men's pregnancies offer a limited and insightful opportunity to understand the role of high androgen levels in the development of HDP. In this sense, a literature review was performed from a little over 2 decades (1998-2022) to address the association of testosterone levels with the development of HDP. Furthermore, this review addresses the case of transgender men for the first time. The main in vitro outcomes reveal placenta samples with greater AR mRNA expression. Moreover, ex vivo studies show that testosterone-induced vasorelaxation impairment promotes hypertension. Epidemiological data point to greater testosterone levels in blood samples during PE. Studies with transgender men allow us to infer that exogenous testosterone administration can be considered a risk factor for PE and that the administration of testosterone does not affect fetal development. Overall, all studies analyzed suggested that high testosterone levels are associated with PE.
Collapse
Affiliation(s)
- Lara M Fernandes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
21
|
Dussenne M, Alward BA. Expression of novel androgen receptors in three GnRH neuron subtypes in the cichlid brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578641. [PMID: 38352335 PMCID: PMC10862814 DOI: 10.1101/2024.02.02.578641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Within a social hierarchy, an individuals' social status determines its physiology and behavior. In A. burtoni, subordinate males can rise in rank to become dominant, which is accompanied by the upregulation of the entire HPG axis, including activation of GnRH1 neurons, a rise in circulating androgen levels and the display of specific aggressive and reproductive behaviors. Cichlids possess two other GnRH subtypes, GnRH2 and GnRH3, the latter being implicated in the display of male specific behaviors. Interestingly, some studies showed that these GnRH neurons are responsive to fluctuations in circulating androgen levels, suggesting a link between GnRH neurons and androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARβ) that are encoded by two different genes, ar1 and ar2, respectively. Even though social status has been strongly linked to androgens, whether ARα and/or ARβ are present in GnRH neurons remains unclear. Here, we used immunohistochemistry and in situ hybridization chain reaction (HCR) to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.
Collapse
Affiliation(s)
- Mélanie Dussenne
- University of Houston, Department of Psychology, United States of America
| | - Beau A. Alward
- University of Houston, Department of Psychology, United States of America
- University of Houston, Department of Biology and Biochemistry, United States of America
| |
Collapse
|
22
|
Ågmo A. Androgen receptors and sociosexual behaviors in mammals: The limits of generalization. Neurosci Biobehav Rev 2024; 157:105530. [PMID: 38176634 DOI: 10.1016/j.neubiorev.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Circulating testosterone is easily aromatized to estradiol and reduced to dihydrotestosterone in target tissues and elsewhere in the body. Thus, the actions of testosterone can be mediated either by the estrogen receptors, the androgen receptor or by simultaneous action at both receptors. To determine the role of androgens acting at the androgen receptor, we need to eliminate actions at the estrogen receptors. Alternatively, actions at the androgen receptor itself can be eliminated. In the present review, I will analyze the specific role of androgen receptors in male and female sexual behavior as well as in aggression. Some comments about androgen receptors and social recognition are also made. It will be shown that there are important differences between species, even between strains within a species, concerning the actions of the androgen receptor on the behaviors mentioned. This fact makes generalizations from one species to another or from one strain to another very risky. The existence of important species differences is often ignored, leading to many misunderstandings and much confusion.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
23
|
Rodríguez F, Godoy MJ, Ortiz E, Benítez-Filselcker A, López MT, Cassorla F, Castro A. CAG and GGN repeat polymorphisms in the androgen receptor gene of a Chilean pediatric cohort with idiopathic inguinal cryptorchidism. Andrology 2024; 12:289-296. [PMID: 37377277 DOI: 10.1111/andr.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Cryptorchidism is one of the most common congenital disorders in boys and it is associated with a higher risk of sub-fertility and testicular cancer. Testicular descent occurs during embryo-fetal development in two phases, transabdominal and inguino-scrotal. In the latter process, androgens play a leading role. The androgen receptor has in its N-terminal domain, two aminoacidic repeats encoded by polymorphic nucleotide repetitions: (CAG)nCAA and GGN. The number of repetitions of these trinucleotides has been associated with different transactivation capacities and sensitivities of the androgen receptor response. OBJECTIVE To determine whether pediatric Chilean individuals with idiopathic inguinal cryptorchidism have a different number of CAG and/or GGN repeats polymorphisms compared with controls. MATERIALS AND METHODS A total of 109 cases with idiopathic inguinal cryptorchidism (26 bilateral and 83 unilateral) were studied by polymerase chain reaction amplification from DNA extracted from peripheral blood, followed by fragment size analysis by capillary electrophoresis, which were compared with 140 controls. RESULTS The CAG26 repeats allele was increased in the total cases (8.3% vs. 1.4%; p = 0.012; odds ratio = 6.21, 95% confidence interval 1.31-29.4), and in bilateral cases compared to controls (11.5% vs. 1.4%; p = 0.028; odds ratio = 9 CI 95% 1.43-56.8). Similarly, CAG > 22 alleles were increased in the total cases (62.4% vs. 49.3%, p = 0.041), and more significantly in bilateral cases (73.1% vs. 49.3%; p = 0.032; odds ratio = 2.79, 95% confidence interval 1.1-7.1). In addition, CAG < 18 alleles were not observed among cases, but were present in 5.7% of controls (p = 0.01). Regarding the GGN repeats, no differences were observed between cases and controls either when analyzing separately unilateral and bilateral cryptorchidism. The joint analysis of the distribution of CAG and GGN alleles showed that the CAG26 allele was present with GGN23, hence the combination CAG26/GGN23 alleles was equally increased in bilateral cases compared with controls (11.5% vs. 1.4%). In contrast, CAG < 18 was preferably observed in the combination CAG < 18/GGN≠23 and was absent in the total cases (4.3% vs. 0%; p = 0.037). DISCUSSION These results suggest that greater lengths of CAG alleles may contribute to a diminished androgen receptor function. The CAG26 allele alone or in combination with GGN23 was associated with a higher risk of bilateral cryptorchidism. On the other hand, CAG < 18 and the CAG < 18/GGN≠23 allele combination may reduce the probability of cryptorchidism.
Collapse
Affiliation(s)
- Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, University of Chile Santiago, Santiago, Chile
| | - María José Godoy
- Institute of Maternal and Child Research, School of Medicine, University of Chile Santiago, Santiago, Chile
| | - Eliana Ortiz
- Institute of Maternal and Child Research, School of Medicine, University of Chile Santiago, Santiago, Chile
| | - Andrés Benítez-Filselcker
- Institute of Maternal and Child Research, School of Medicine, University of Chile Santiago, Santiago, Chile
| | - María Teresa López
- Pediatric Urology Department, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Fernando Cassorla
- Institute of Maternal and Child Research, School of Medicine, University of Chile Santiago, Santiago, Chile
| | - Andrea Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile Santiago, Santiago, Chile
| |
Collapse
|
24
|
Di Donato M, Moretti A, Sorrentino C, Toro G, Gentile G, Iolascon G, Castoria G, Migliaccio A. Filamin A cooperates with the androgen receptor in preventing skeletal muscle senescence. Cell Death Discov 2023; 9:437. [PMID: 38040692 PMCID: PMC10692324 DOI: 10.1038/s41420-023-01737-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Aging induces a slow and progressive decrease in muscle mass and function, causing sarcopenia. Androgens control muscle trophism and exert important anabolic functions through the binding to the androgen receptor. Therefore, analysis of the androgen receptor-mediated actions in skeletal muscle might provide new hints for a better understanding of sarcopenia pathogenesis. In this study, we report that expression of the androgen receptor in skeletal muscle biopsies from 20 subjects is higher in young, as compared with old subjects. Co-immunoprecipitation experiments reveal that the androgen receptor is complexed with filamin A mainly in young, that in old subjects. Therefore, we have in depth analyzed the role of such complex using C2C12 myoblasts that express a significant amount of the androgen receptor. In these cells, hormone stimulation rapidly triggers the assembly of the androgen receptor/filamin A complex. Such complex prevents the senescence induced by oxidative stress in C2C12 cells, as disruption of the androgen receptor/filamin A complex by Rh-2025u stapled peptide re-establishes the senescent phenotype in C2C12 cells. Simultaneously, androgen stimulation of C2C12 cells rapidly triggers the activation of various signaling effectors, including Rac1, focal adhesion kinase, and mitogen-activated kinases. Androgen receptor blockade by bicalutamide or perturbation of androgen receptor/filamin A complex by Rh-2025u stapled peptide both reverse the hormone activation of signaling effectors. These findings further reinforce the role of the androgen receptor and its extranuclear partners in the rapid hormone signaling that controls the functions of C2C12 cells. Further investigations are needed to promote clinical interventions that might ameliorate muscle cell function as well the clinical outcome of age-related frailty.
Collapse
Affiliation(s)
- Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Antimo Moretti
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Carmela Sorrentino
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giuseppe Toro
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Giulia Gentile
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| | - Giovanni Iolascon
- Dipartimento Multidisciplinare di Specialità Medico- Chirurgiche e Odontoiatriche, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 6-80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy.
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania 'L. Vanvitelli'- Via L. De Crecchio, 7-80138, Naples, Italy
| |
Collapse
|
25
|
Sekhavat H, Ford P, Lepage A, Nateghi A, Yehuda SB, Bourgeois M. TH07 - A New Novel Topical Treatment for Androgenic Alopecia. Int J Trichology 2023; 15:241-247. [PMID: 39600423 PMCID: PMC11588191 DOI: 10.4103/ijt.ijt_145_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/15/2023] [Indexed: 11/29/2024] Open
Abstract
Objectives Androgenic alopecia (AGA) is common among men. Currently, topical minoxidil and oral finasteride are approved by the FDA for the treatment of AGA. Unfortunately, neither of them is completely effective and systemic adverse events have been reported after finasteride administration. Triple Hair Inc. has developed a new topical treatment regimen using a combination of finasteride, latanoprost and minoxidil - TH07. Each of the compounds was effective and safe as a topical treatment in animal models and clinical studies of AGA. The aim of this proof-of-concept study was to evaluate the effectiveness of the TH07 in comparison to the 3 drugs as monotherapy on hair growth in men with AGA. Methods Patients with light to moderate AGA were randomized to be treated topically, once daily, for 6 months with TH07, 0.1% finasteride, 0.03% latanoprost, or 5% minoxidil. Data of investigators' assessment based on pictures, as well as patients' self-assessment and satisfaction, were collected. Results A moderate hair re-growth in the majority of the participant treated with TH07 in comparison to the retreatment with its active components administered as monotherapy was reported by the investigators. Most of the patients treated with TH07 were satisfied with their hair appearance in comparison to the other treatments. No systemic adverse events were reported and the TH07 was well tolerated. Conclusions The data of the current study demonstrated that the topical administration of TH07 resulted in an improved efficacy in the treatment of the AGA compared to treatment with each of the ingredients administered separately.
Collapse
Affiliation(s)
| | - Peter Ford
- Ford’s Family Pharmacy and Wellness Centre, Canada
| | | | | | | | | |
Collapse
|
26
|
Finn DA. Stress and gonadal steroid influences on alcohol drinking and withdrawal, with focus on animal models in females. Front Neuroendocrinol 2023; 71:101094. [PMID: 37558184 PMCID: PMC10840953 DOI: 10.1016/j.yfrne.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Department of Research, VA Portland Health Care System, Portland, OR, United States.
| |
Collapse
|
27
|
Wells KV, Krackeler ML, Jathal MK, Parikh M, Ghosh PM, Leach JK, Genetos DC. Prostate cancer and bone: clinical presentation and molecular mechanisms. Endocr Relat Cancer 2023; 30:e220360. [PMID: 37226936 PMCID: PMC10696925 DOI: 10.1530/erc-22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Maitreyee K Jathal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
- Veterans Affairs-Northern California Health System, Mather, California, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health System, Mather, California, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
28
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
29
|
Wu Y, Wu Y, Chu L, Yang H, Wang W, Deng H. The Optimal Time-lag for Testosterone Challenge Research Based on Salivary Profiles Following Different Doses of Transdermal Testosterone Administrations. J Mol Neurosci 2023; 73:297-306. [PMID: 37093539 DOI: 10.1007/s12031-023-02118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
In recent decades, testosterone challenge research examining the effects of testosterone on human neuropsychological behaviors has rapidly grown with the development of a single-dose transdermal testosterone administration paradigm. However, the optimal time-lag between testosterone administration and behavioral measurement is not unified, partly hindering causal understanding of the "testosterone effect". The present study aimed to investigate the optimal time-lag through LC-MS/MS-based salivary profiles of ten biomarkers among healthy males following administration of different doses of transdermal testosterone (i.e., 450- and 150-mg [Androgel®]). Results revealed that testosterone administration significantly increased salivary testosterone levels, reaching maximum levels 2 hours after 450-mg testosterone administration and 1 hour after 150-mg testosterone administration, respectively. Salivary androstenedione and DHEA increased synchronously with testosterone following administration. Moreover, the ratios of testosterone to androstenedione, DHEA, estradiol, and of androstenedione to estrone significantly elevated 1 hour after testosterone administration. In contrast, salivary cortisol and cortisone were decreased over time due to circadian rhythm rather than testosterone administration. Consistent with previous serum studies, the present salivary findings recommended 1-hour post testosterone administration as the optimal time-lag to measure the effects of testosterone on human behaviors in transdermal testosterone challenge research.
Collapse
Affiliation(s)
- Yan Wu
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, China
- Institute of Child Development and Education, Southeast University, Nanjing, 210096, China
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, 210000, China
| | - Yin Wu
- Department of Applied Social Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liuxi Chu
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, China
- Institute of Child Development and Education, Southeast University, Nanjing, 210096, China
| | - Haoran Yang
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, China
- Institute of Child Development and Education, Southeast University, Nanjing, 210096, China
| | - Wei Wang
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, China
- Institute of Child Development and Education, Southeast University, Nanjing, 210096, China
| | - Huihua Deng
- Department of Brain and Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, China.
- Institute of Child Development and Education, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
30
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
31
|
Gu X, Heinrich A, Li SY, DeFalco T. Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions. Nat Commun 2023; 14:1439. [PMID: 36922518 PMCID: PMC10017703 DOI: 10.1038/s41467-023-37199-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
A growing body of evidence demonstrates that fetal-derived tissue-resident macrophages have developmental functions. It has been proposed that macrophages promote testicular functions, but which macrophage populations are involved is unclear. Previous studies showed that macrophages play critical roles in fetal testis morphogenesis and described two adult testicular macrophage populations, interstitial and peritubular. There has been debate regarding the hematopoietic origins of testicular macrophages and whether distinct macrophage populations promote specific testicular functions. Here our hematopoietic lineage-tracing studies in mice show that yolk-sac-derived macrophages comprise the earliest testicular macrophages, while fetal hematopoietic stem cells (HSCs) generate monocytes that colonize the gonad during a narrow time window in a Sertoli-cell-dependent manner and differentiate into adult testicular macrophages. Finally, we show that yolk-sac-derived versus HSC-derived macrophages have distinct functions during testis morphogenesis, while interstitial macrophages specifically promote adult Leydig cell steroidogenesis. Our findings provide insight into testicular macrophage origins and their tissue-specific roles.
Collapse
Affiliation(s)
- Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Anna Heinrich
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
32
|
Willson C. Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity. TOXICS 2023; 11:258. [PMID: 36977023 PMCID: PMC10057866 DOI: 10.3390/toxics11030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Testosterone is the predominant androgen in men and has important physiological functions. Due to declining testosterone levels from a variety of causes, testosterone replacement therapy (TRT) is increasingly utilized, while testosterone is also abused for aesthetic and performance-enhancing purposes. It has been increasingly speculated that aside from more well-established side effects, testosterone may cause neurological damage. However, the in vitro data utilized to support such claims is limited due to the high concentrations used, lack of consideration of tissue distribution, and species differences in sensitivity to testosterone. In most cases, the concentrations studied in vitro are unlikely to be reached in the human brain. Observational data in humans concerning the potential for deleterious changes in brain structure and function are limited by their inherent design as well as significant potential confounders. More research is needed as the currently available data are limited; however, what is available provides rather weak evidence to suggest that testosterone use or abuse has neurotoxic potential in humans.
Collapse
Affiliation(s)
- Cyril Willson
- EuSci LLC, 1309 S 204th St, #293, Elkhorn, NE 68022, USA
| |
Collapse
|
33
|
Wang Y, Riedstra B, Hulst R, Noordhuis R, Groothuis T. Early conversion of maternal androgens affects the embryo already in the first week of development. Biol Lett 2023; 19:20220593. [PMID: 36855858 PMCID: PMC9975654 DOI: 10.1098/rsbl.2022.0593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Maternal androgen exposure has potent effects on offspring development. As substantial levels of maternal androgens are deposited in avian egg yolks, avian eggs are frequently used to study maternal effects, with a strong focus on post-natal development. However, the underlying pathways are largely unknown. Since the hormones are taken up during the embryonic phase, and these are rapidly metabolized by avian embryos into metabolites such as etiocholanolone, we studied the effects of yolk androgens (testosterone and androstenedione) and their metabolite etiocholanolone during the first few days of embryonic development. As embryonic heart rate is often used as an indicator of embryonic development, we measured the heart rate from day 3 to day 6 of incubation by using a shell-less culture technique in rock pigeon eggs (Columba livia). Increased androgen exposure increased heart rate, and increased etiocholanolone mimicked this effect, albeit in a small sample size. This indicates that exposure to maternal androgens increases embryonic overall metabolism which may account for the developmental outcomes found in previous studies such as increased growth. Moreover, etiocholanolone is likely to be an important metabolite in a non-genomic pathway underlying the androgen-mediated maternal effect.
Collapse
Affiliation(s)
- Yuqi Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Bernd Riedstra
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ronja Hulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Roy Noordhuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ton Groothuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Stallone JN, Oloyo AK. Cardiovascular and metabolic actions of the androgens: Is testosterone a Janus-faced molecule? Biochem Pharmacol 2023; 208:115347. [PMID: 36395900 DOI: 10.1016/j.bcp.2022.115347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide and in the Western world, one-third of all deaths are attributed to CVD. A conspicuous characteristic of this healthcare epidemic is that most CVD is higher in men than in age-matched premenopausal women, yet reasons for these obvious sex differences remain poorly understood. Driven by clinical case and epidemiological studies and supported by animal experiments, a strong dogma emerged early on that testosterone (TES) exerts deleterious effects on cardiovascular health and exacerbates development of CVD and metabolic dysfunctions in men. In this review, earlier and more recent clinical and experimental animal evidence of cardiovascular and metabolic effects of androgens are discussed. The more recent evidence overwhelmingly suggests that it is progressive, age-dependent declines in TES levels in men that exacerbate CVD and metabolic dysfunctions, while TES exerts beneficial systemic hypotensive effects and protects against metabolic syndrome (MetS) and type2 diabetes mellitus (T2DM). Recent findings reveal existence of bi-directional modulation of glucose and fat homeostasis by TES in females vs males, such that age-dependent declines in TES levels in males and abnormal increases in normally low TES levels in females both result in similar dysfunction in glucose and fat homeostasis, resulting in development of MetS and T2DM, central risk factors for development of CVD, in men as well as women. These findings suggest that the long-held view that TES is detrimental to male health should be discarded in favor of the view that, at least in men, TES is beneficial to cardiovascular and metabolic health.
Collapse
Affiliation(s)
- John N Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, United States.
| | - Ahmed K Oloyo
- Department of Physiology, College of Medicine, University of Lagos, Idi-Araba, Lagos 23401, Nigeria
| |
Collapse
|
35
|
Sher L. Testosterone and Suicidal Behavior in Bipolar Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2502. [PMID: 36767867 PMCID: PMC9915214 DOI: 10.3390/ijerph20032502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Bipolar disorder is associated with suicidal behavior. The risk of suicide for individuals with bipolar disorder is up to 20-30 times larger than that of the general population. Considerable evidence suggests that testosterone may play a role in the pathophysiology of suicidal behavior in both men and women with bipolar disorder and other psychiatric conditions. Testosterone has complex effects on psychological traits. It affects mood and behavior, including interactions with other people. Testosterone regulates pro-active and re-active aspects of aggression. Probably, both high and low levels of testosterone may contribute to the neurobiology of suicide in various patient populations. The effects of endogenous and exogenous testosterone on suicidality in patients with bipolar disorder need further investigation. The aim of this commentary article is to provide a commentary on the author's work on the topic, summarize the literature on testosterone, bipolar disorder, and suicide, and encourage future research on this poorly studied topic.
Collapse
Affiliation(s)
- Leo Sher
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; ; Tel.: +1-718-584-9000
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
36
|
Androgens and NGF Mediate the Neurite-Outgrowth through Inactivation of RhoA. Cells 2023; 12:cells12030373. [PMID: 36766714 PMCID: PMC9913450 DOI: 10.3390/cells12030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Steroid hormones and growth factors control neuritogenesis through their cognate receptors under physiological and pathological conditions. We have already shown that nerve growth factor and androgens induce neurite outgrowth of PC12 cells through a reciprocal crosstalk between the NGF receptor, TrkA and the androgen receptor. Here, we report that androgens or NGF induce neuritogenesis in PC12 cells through inactivation of RhoA. Ectopic expression of the dominant negative RhoA N19 promotes, indeed, the neurite-elongation of unchallenged and androgen- or NGF-challenged PC12 cells and the increase in the expression levels of βIII tubulin, a specific neuronal marker. Pharmacological inhibition of the Ser/Thr kinase ROCK, an RhoA effector, induces neuritogenesis in unchallenged PC12 cells, and potentiates the effect of androgens and NGF, confirming the role of RhoA/ROCK axis in the neuritogenesis induced by androgen and NGF, through the phosphorylation of Akt. These findings suggest that therapies based on new selective androgen receptor modulators and/or RhoA/ROCK inhibitors might exert beneficial effects in the treatment of neuro-disorders, neurological diseases and ageing-related processes.
Collapse
|
37
|
Bond P, Smit DL, de Ronde W. Anabolic-androgenic steroids: How do they work and what are the risks? Front Endocrinol (Lausanne) 2022; 13:1059473. [PMID: 36644692 PMCID: PMC9837614 DOI: 10.3389/fendo.2022.1059473] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are a class of hormones that are widely abused for their muscle-building and strength-increasing properties in high, nontherapeutic, dosages. This review provides an up-to-date and comprehensive overview on how these hormones work and what side effects they might elicit. We discuss how AAS are absorbed into the circulation after intramuscular injection or oral ingestion and how they are subsequently transported to the tissues, where they will move into the extravascular compartment and diffuse into their target cells. Inside these cells, AAS can biotransform into different metabolites or bind to their cognate receptor: the androgen receptor. AAS and their metabolites can cause side effects such as acne vulgaris, hypertension, hepatotoxicity, dyslipidemia, testosterone deficiency, erectile dysfunction, gynecomastia, and cardiomyopathy. Where applicable, we mention treatment options and self-medication practices of AAS users to counteract these side effects. Clinicians may use this review as a guide for understanding how AAS use can impact health and to assist in patient education and, in some cases, the management of side effects.
Collapse
Affiliation(s)
| | - Diederik L. Smit
- Department of Internal Medicine, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - Willem de Ronde
- Department of Internal Medicine, Spaarne Gasthuis, Haarlem, Netherlands
| |
Collapse
|
38
|
Hauger RL, Saelzler UG, Pagadala MS, Panizzon MS. The role of testosterone, the androgen receptor, and hypothalamic-pituitary-gonadal axis in depression in ageing Men. Rev Endocr Metab Disord 2022; 23:1259-1273. [PMID: 36418656 PMCID: PMC9789012 DOI: 10.1007/s11154-022-09767-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
Abstract
Considerable research has shown that testosterone regulates many physiological systems, modulates clinical disorders, and contributes to health outcome. However, studies on the interaction of testosterone levels with depression and the antidepressant effect of testosterone replacement therapy in hypogonadal men with depression have been inconclusive. Current findings indicate that low circulating levels of total testosterone meeting stringent clinical criteria for hypogonadism and testosterone deficiency induced by androgen deprivation therapy are associated with increased risk for depression and current depressive symptoms. The benefits of testosterone replacement therapy in men with major depressive disorder and low testosterone levels in the clinically defined hypogonadal range remain uncertain and require further investigation. Important considerations going forward are that major depressive disorder is a heterogeneous phenotype with depressed individuals differing in inherited polygenic determinants, onset and clinical course, symptom complexes, and comorbidities that contribute to potential multifactorial differences in pathophysiology. Furthermore, polygenic mechanisms are likely to be critical to the biological heterogeneity that influences testosterone-depression interactions. A genetically informed precision medicine approach using genes regulating testosterone levels and androgen receptor sensitivity will likely be essential in gaining critical insight into the role of testosterone in depression.
Collapse
Affiliation(s)
- Richard L Hauger
- Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Behavior Genetics of Aging, Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Ursula G Saelzler
- Center for Behavior Genetics of Aging, Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Meghana S Pagadala
- Medical Scientist Training Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Science Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Matthew S Panizzon
- Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
- Center for Behavior Genetics of Aging, Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Lucas-Herald AK, Touyz RM. Androgens and Androgen Receptors as Determinants of Vascular Sex Differences Across the Lifespan. Can J Cardiol 2022; 38:1854-1864. [PMID: 36156286 DOI: 10.1016/j.cjca.2022.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022] Open
Abstract
Androgens, including testosterone and its more potent metabolite dihydrotestosterone, exert multiple actions in the body. Physiologically, they play a critical role in male sex development. In addition, they influence vascular function, including arterial vasodilation and mediation of myogenic tone. Androgens are produced from 9 weeks' gestation in the human fetal testis, as well as in small amounts by the adrenal glands. Serum concentrations vary according to age and sex. The vasculature is a target for direct actions of androgens, which bind to various sex hormone receptors expressed in endothelial and vascular smooth muscle cells. Androgens exert both vasoprotective and vasoinjurious effects, depending on multiple factors including sex-specific effects of androgens, heterogeneity of the vascular endothelium, differential expression of androgen and sex hormone receptors in endothelial and vascular smooth muscle cells, and the chronicity of androgen administration. Long-term administration of androgens induces vasoconstriction and influences endothelial permeability, whereas acute administration may have opposite effects. At the cellular level, androgens stimulate endothelial cell production of nitric oxide and inhibit proinflammatory signalling pathways, inducing vasorelaxation and vasoprotection. However, androgens also activate endothelial production of vasoconstrictors and stimulate recruitment of endothelial progenitor cells. In humans, both androgen deficiency and androgen excess are associated with increased cardiovascular morbidity and mortality. This review discusses how androgens modulate vascular sex differences across the lifespan by considering the actions and production of androgens in both sexes and describes how cardiovascular risk is altered as levels of androgens change with aging.
Collapse
Affiliation(s)
- Angela K Lucas-Herald
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom.
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montréal, Québec, Canada.
| |
Collapse
|
40
|
Rosato E, Sciarra F, Anastasiadou E, Lenzi A, Venneri MA. Revisiting the physiological role of androgens in women. Expert Rev Endocrinol Metab 2022; 17:547-561. [PMID: 36352537 DOI: 10.1080/17446651.2022.2144834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
41
|
Roy S, Abudu A, Salinas I, Sinha N, Cline-Fedewa H, Yaw AM, Qi W, Lydic TA, Takahashi DL, Hennebold JD, Hoffmann HM, Wang J, Sen A. Androgen-mediated Perturbation of the Hepatic Circadian System Through Epigenetic Modulation Promotes NAFLD in PCOS Mice. Endocrinology 2022; 163:bqac127. [PMID: 35933634 PMCID: PMC9419696 DOI: 10.1210/endocr/bqac127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/19/2022]
Abstract
In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Aierken Abudu
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Irving Salinas
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Alexandra M Yaw
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd A Lydic
- Collaborative Mass Spectrometry Core, Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Hanne M Hoffmann
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
42
|
Yao Q, Zou X, Liu S, Wu H, Shen Q, Kang J. Oxidative Stress as a Contributor to Insulin Resistance in the Skeletal Muscles of Mice with Polycystic Ovary Syndrome. Int J Mol Sci 2022; 23:ijms231911384. [PMID: 36232686 PMCID: PMC9569700 DOI: 10.3390/ijms231911384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a reproductive, endocrine, and metabolic disorder. Circulating markers of oxidative stress are abnormal in women with PCOS. There is a close relationship between oxidative stress and insulin resistance (IR). However, little information is available about oxidative stress in the skeletal muscles of those affected by PCOS. In this study, PCOS was induced in prepubertal C57BL/6J mice by injection with dehydroepiandrosterone. Oxidative stress biomarkers were then measured in both serum and skeletal muscles. The underlying mechanisms were investigated in C2C12 myotubes treated with testosterone (T). We discovered increased oxidative biomarkers, increased ROS production, and damaged insulin sensitivity in the skeletal muscles of mice with PCOS. High levels of T caused mitochondrial dysfunction and increased ROS levels through the androgen receptor (AR)-nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) signaling pathway in C2C12 cells. Treatment of C2C12 cells with an antioxidant N-acetylcysteine (NAC) decreased T-induced ROS production, improved mitochondrial function, and reversed IR. Administration of NAC to mice with PCOS improved insulin sensitivity in the skeletal muscles of the animals. Hyperandrogenism caused mitochondrial dysfunction and redox imbalance in the skeletal muscles of mice with PCOS. We discovered that oxidative stress contributed to skeletal muscle IR in PCOS. Reducing ROS levels may improve the insulin sensitivity of skeletal muscles in patients with PCOS.
Collapse
|
43
|
Perusquía M. Androgens and Non-Genomic vascular responses in hypertension. Biochem Pharmacol 2022; 203:115200. [PMID: 35926652 DOI: 10.1016/j.bcp.2022.115200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
Arterial hypertension is a global public health concern. In the last few years, the interest in androgen deficiency has been growing, and the association between androgens and high blood pressure (BP) is still controversial. One purpose of this review was to summarize the available findings in order to clarify whether male sex steroid hormones have beneficial or harmful effect on BP. The second purpose was to enhance the recognition of the acute non-genomic sex-independent vasorelaxing effect of androgens. Remarkably, BP variation is expected to be a consequence of the androgen-induced vasorelaxation which reduces systemic BP; hence the in vivo vasodepressor, hypotensive, and antihypertensive responses of androgens were also analyzed. This article reviews the current understanding of the physiological regulation of vascular smooth muscle contractility by androgens. Additionally, it summarizes older and more recent data on androgens, and some of the possible underlying mechanisms of relaxation, structural-functional differences in the androgen molecules, and their designing ability to induce vasorelaxation. The clinical relevance of these findings in terms of designing future therapeutics mainly the 5-reduced metabolite of testosterone, 5β-dihydrotestosterone, is also highlighted. Literature collected through a PubMed database search, as well as our experimental work, was used for the present review.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
44
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
45
|
Chen H, Qiao D, Si Y, He Z, Zhang B, Wang C, Zhang Y, Wang X, Shi Y, Cui C, Cui H, Li S. Effects of membrane androgen receptor binding on synaptic plasticity in primary hippocampal neurons. Mol Cell Endocrinol 2022; 554:111711. [PMID: 35803447 DOI: 10.1016/j.mce.2022.111711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Androgens play an important role in the regulation of hippocampal synaptic plasticity. While the classical molecular mechanism of androgen's genomic activity is their binding to intracellular androgen receptors (iARs), they can also induce rapid non-genomic effects through specific membrane androgen receptors (mARs). In this study, we aimed to localize and characterize these mARs in primary rat hippocampal neurons. Specific punctate fluorescent signals on the cell surface, observed by testosterone-fetal bovine serum albumin conjugated fluorescein isothiocyanate (T-BSA-FITC), indicated the presence of mARs in hippocampal neurons. T-BSA-FITC binding to the cell membrane was incompletely blocked by the iAR-antagonist flutamide, and mAR binding site was competitively bound by free testosterone (T). Most neurons expressing androgen membrane binding sites are glutamatergic (excitatory), although several are γ-aminobutyric acid (GABA)ergic (inhibitory). Confocal microscopy and live-cell imaging techniques were used to observe the real-time rapid effects of androgens on hippocampal dendritic spine morphology. Immunofluorescence cell staining was used to observe their effects on the postsynaptic density protein 95 (PSD95) and synapsin (SYN) synaptic markers. While androgens did not cause a short-term increase in dendritic spine density of rat primary hippocampal neurons, they promoted the transformation of dendritic spines from thin to mushroom, promoted dendritic spine maturation, increased dendritic spine surface area, and rapidly increased PSD95 and SYN expression in the primary hippocampal neurons. Hippocampal synaptosomes were prepared using the Optiprep and Percoll density gradient two-step centrifuge methods, and the gene expression profiles of the synaptosomes and hippocampus were compared using a gene chip; PSD95 mRNA expression was detected by reverse transcription-polymerase chain reaction. Several mRNAs were detected at the synaptic site, including PSD95. Finally, the Venus-PSD95 plasmid was constructed and transfected into HT22 cells, which is a mouse hippocampal neuronal cell line. The real-time effect of androgen on synaptic protein PSD95 was observed by fluorescence recovery after photobleaching experiments, which involved the translation process of PSD95 mRNA. In conclusion, our findings increased our understanding of how androgens exert the neuroprotective mechanisms on synaptic plasticity.
Collapse
Affiliation(s)
- Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yao Si
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhen He
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China
| | - Xuelin Wang
- Grade 2018, 5+3 Integrated Clinical Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yichun Shi
- Grade 2019, Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Chengran Cui
- Grade 2019, Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China.
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
46
|
Mi S, Chen H, Lin P, Kang P, Qiao D, Zhang B, Wang Z, Zhang J, Hu X, Wang C, Cui H, Li S. CaMKII is a modulator in neurodegenerative diseases and mediates the effect of androgen on synaptic protein PSD95. Front Genet 2022; 13:959360. [PMID: 35991539 PMCID: PMC9386121 DOI: 10.3389/fgene.2022.959360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Androgens rapidly regulate synaptic plasticity in hippocampal neurones, but the underlying mechanisms remain unclear. In this study, we carried out a comprehensive bioinformatics analysis of functional similarities between androgen receptor (AR) and the synaptic protein postsynaptic density 95 (PSD95) to evaluate the effect. Using different measurements and thresholds, we obtained consistent results illustrating that the two proteins were significantly involved in similar pathways. We further identified CaMKII plays a critical role in mediating the rapid effect of androgen and promoting the expression of PSD95. We used mouse hippocampal neurone HT22 cells as a cell model to investigate the effect of testosterone (T) on intracellular Ca2+ levels and the mechanism. Calcium imaging experiments showed that intracellular Ca2+ increased to a peak due to calcium influx in the extracellular fluid through L-type and N-type voltage-gated calcium channels when HT22 cells were treated with 100 nM T for 20 min. Subsequently, we investigated whether the Ca2+/CaMKII signaling pathway mediates the rapid effect of T, promoting the expression of the synaptic protein PSD95. Immunofluorescence cytochemical staining and western blotting results showed that T promoted CaMKII phosphorylation by rapidly increasing extracellular Ca2+ influx, thus increasing PSD95 expression. This study demonstrated that CaMKII acts as a mediator assisting androgen which regulates the synaptic protein PSD95Also, it provides evidence for the neuroprotective mechanisms of androgens in synaptic plasticity and reveals the gated and pharmacological mechanisms of the voltage-gated Ca2+ channel family for androgen replacement therapy.
Collapse
Affiliation(s)
- Shixiong Mi
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Peijing Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peiyuan Kang
- Clinical Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- *Correspondence: Sha Li, ; Huixian Cui,
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Sha Li, ; Huixian Cui,
| |
Collapse
|
47
|
Enina TN, Kuznetsov VA, Soldatova AM. [Testosterone and congestive heart failure]. KARDIOLOGIIA 2022; 62:61-67. [PMID: 35989631 DOI: 10.18087/cardio.2022.7.n1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 06/15/2023]
Abstract
This article summarizes current information about the interrelation between testosterone concentrations and chronic heart failure (CHF). The authors described key publications that address the prevalence of testosterone deficiency in patients with CHF, the effect of endogenous and exogenous testosterone on the cardiovascular system, the relationship between testosterone levels and the severity and prognosis of CHF, and the efficacy of interventional treatments for CHF.
Collapse
Affiliation(s)
- T N Enina
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Tomsk
| | - V A Kuznetsov
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Tomsk
| | - A M Soldatova
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Tomsk
| |
Collapse
|
48
|
Babcock MC, DuBose LE, Hildreth KL, Stauffer BL, Cornwell WK, Kohrt WM, Moreau KL. Age-associated reductions in cardiovagal baroreflex sensitivity are exaggerated in middle-aged and older men with low testosterone. J Appl Physiol (1985) 2022; 133:403-415. [PMID: 35771224 PMCID: PMC9359637 DOI: 10.1152/japplphysiol.00245.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with reductions in cardiovagal baroreflex sensitivity (cBRS), which increases cardiovascular disease risk. Preclinical data indicate that low testosterone reduces cBRS. We determined whether low testosterone is associated with reduced cBRS in healthy men. METHODS Twenty-six men categorized as young (N=6; age=31±4 years; testosterone=535±60 ng/dL), middle-aged/older with normal (N=10; aged 56±3 years; testosterone=493±85 ng/dL), or low (N=10; age=57±6 years; testosterone=262±31 ng/dL) testosterone underwent recordings of beat-by-beat blood pressure and R-R interval during rest and two Valsalva maneuvers, and measures of carotid artery compliance. IL-6, CRP, oxidized LDL cholesterol and TAS were measured. RESULTS Middle-aged/older men had lower cBRS compared to young men (17.0±6.5 ms/mmHg; p=0.028); middle-age/older men with low testosterone had lower cBRS (5.5±3.2 ms/mmHg; p=0.039) compared to age-matched men with normal testosterone (10.7±4.0 ms/mmHg). No differences existed among groups during Phase II of the Valsalva maneuver; middle-aged/older men with low testosterone had reduced cBRS (4.7±2.6 ms/mmHg) compared to both young (12.8±2.8ms/mmHg; p<0.001) and middle-aged/older men with normal testosterone (8.6±4.4ms/mmHg; p=0.046) during Phase IV of the Valsalva maneuver. There were no differences in oxidized LDL, (p=0.882) or TAS across groups (p=0.633). IL-6 was significantly higher in middle-aged/older men with low testosterone compared to the other groups (p<0.05 for all) and inversely correlated with cBRS (r=-0.594, p=0.007). Middle-aged/older men had reduced carotid artery compliance compared to young, regardless of testosterone status (p<0.001). CONCLUSIONS These observations indicate that low testosterone in middle-aged/older men may contribute to a reduction in cBRS; increased inflammation may also contribute to a reduction in cBRS.
Collapse
Affiliation(s)
- Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian L Stauffer
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Division of Cardiology, Denver Health Medical Center, Denver, CO, United States
| | - William K Cornwell
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| |
Collapse
|
49
|
Lagunas N, Fernández-García JM, Blanco N, Ballesta A, Carrillo B, Arevalo MA, Collado P, Pinos H, Grassi D. Organizational Effects of Estrogens and Androgens on Estrogen and Androgen Receptor Expression in Pituitary and Adrenal Glands in Adult Male and Female Rats. Front Neuroanat 2022; 16:902218. [PMID: 35815333 PMCID: PMC9261283 DOI: 10.3389/fnana.2022.902218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
Sex steroid hormones, such as androgens and estrogens, are known to exert organizational action at perinatal periods and activational effects during adulthood on the brain and peripheral tissues. These organizational effects are essential for the establishment of biological axes responsible for regulating behaviors, such as reproduction, stress, and emotional responses. Estradiol (E2), testosterone, and their metabolites exert their biological action through genomic and non-genomic mechanisms, bounding to canonical receptors, such as estrogen receptor (ER)α, ERβ, and androgen receptor (AR) or membrane receptors, such as the G protein-coupled estrogen receptor (GPER), respectively. Expression of ERs and AR was found to be different between males and females both in the brain and peripheral tissues, suggesting a sex-dependent regulation of their expression and function. Therefore, studying the ERs and AR distribution and expression levels is key to understand the central and peripheral role of sex steroids in the establishment of sex-specific behaviors in males and females. We investigated the organizational effects of estrogens and androgens in the pituitary and adrenal glands of adult male and female rats. For this, selective blockade of AR with flutamide or 5α-reductase with finasteride or aromatase with letrozole during the first 5 days of life has been performed in male and female pups and then quantification of ERs and AR expression in both glands has been carried out in adulthood. Data show that inhibition of dihydrotestosterone (DHT) and E2 production during the first five postnatal days mainly decreases the ER expression in male to female values and AR expression in female to male levels in the pituitary gland and increases AR expression in female to male levels in the adrenal gland. In contrast, blocking the action of androgens differentially modulates the ERs in males and females and decreases AR in both males and females in both glands. Altogether, the results suggest that neonatal modifications of the androgen and estrogen pathways can potentially lead to permanent modifications of the neuroendocrine functions of the pituitary and adrenal glands in the adulthood of both sexes.
Collapse
Affiliation(s)
- Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Fernández-García
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Universidad Villanueva, Madrid, Spain
| | - Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Faculty of Biomedical Science and Health, European University of Madrid, Madrid, Spain
| | - Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Daniela Grassi
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Daniela Grassi
| |
Collapse
|
50
|
Antinozzi C, Duranti G, Ceci R, Lista M, Sabatini S, Caporossi D, Di Luigi L, Sgrò P, Dimauro I. Hydrogen Peroxide Stimulates Dihydrotestosterone Release in C2C12 Myotubes: A New Perspective for Exercise-Related Muscle Steroidogenesis? Int J Mol Sci 2022; 23:ijms23126566. [PMID: 35743011 PMCID: PMC9223901 DOI: 10.3390/ijms23126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
- Correspondence: (G.D.); (P.S.)
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Marco Lista
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Daniela Caporossi
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
- Correspondence: (G.D.); (P.S.)
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| |
Collapse
|