1
|
Desmond LW, Dawud LM, Kessler LR, Akonom T, Hunter EAH, Holbrook EM, Andersen ND, Sterrett JD, Boateng DA, Stuart BJ, Guerrero L, Gebert MJ, Tsai PS, Langgartner D, Reber SO, Frank MG, Lowry CA. Protective effects of Mycobacterium vaccae ATCC 15483 against "Western"-style diet-induced weight gain and visceral adiposity in adolescent male mice. Brain Behav Immun 2025; 125:249-267. [PMID: 39709061 DOI: 10.1016/j.bbi.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties. This study aimed to assess whether weekly subcutaneous administrations of a whole-cell, heat-killed preparation of M. vaccae ATCC 15483 (eleven injections initiated one week before the onset of the diet intervention), relative to vehicle injections, in adolescent male C57BL/6N mice can mitigate inflammation associated with Western-style diet-induced obesity, which is considered a risk factor for a number of metabolic and inflammatory diseases. Our results show that treatment with M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations. The Western-style diet, relative to a control diet condition, decreased alpha diversity and altered the community composition of the gut microbiome, increasing the Bacillota to Bacteroidota ratio (formerly referred to as the Firmicutes to Bacteroidetes ratio). Despite the finding that M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations, it had no effect on the diversity or community composition of the gut microbiome, suggesting that it acts downstream of the gut microbiome to alter immunometabolic signaling. M. vaccae ATCC 15483 reduced baseline levels of biomarkers of hippocampal neuroinflammation and microglial priming, such as Nfkbia and Nlrp3, and notably decreased anxiety-like defensive behavioral responses. The current findings provide compelling evidence supporting the potential for M. vaccae ATCC 15483 as a promising intervention for prevention or treatment of adverse immunometabolic outcomes linked to the consumption of a Western-style diet and the associated dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Luke W Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lyanna R Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tyler Akonom
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth A H Hunter
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Evan M Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Nathan D Andersen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dennis A Boateng
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Barbara J Stuart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lucas Guerrero
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, D-89081, Ulm, Germany.
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, D-89081, Ulm, Germany.
| | - Matthew G Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Bansal AS, Seton KA, Brooks JCW, Carding SR. Cognitive Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Aetiology and Potential Treatments. Int J Mol Sci 2025; 26:1896. [PMID: 40076522 PMCID: PMC11899462 DOI: 10.3390/ijms26051896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Systemic infection and inflammation impair mental function through a combination of altered attention and cognition. Here, we comprehensively review the relevant literature and report personal clinical observations to discuss the relationship between infection, peripheral inflammation, and cerebral and cognitive dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Cognitive dysfunction in ME/CFS could result from low-grade persistent inflammation associated with raised pro-inflammatory cytokines. This may be caused by both infectious and non-infectious stimuli and lead to altered regional cerebral blood flow accompanied by disturbed neuronal function. Immune dysregulation that manifests as a subtle immunodeficiency or the autoimmunity targeting of one or more neuronal receptors may also be a contributing factor. Efforts to reduce low-grade systemic inflammation and viral reactivation and to improve mitochondrial energy generation in ME/CFS have the potential to improve cognitive dysfunction in this highly disabling condition.
Collapse
Affiliation(s)
| | - Katharine A. Seton
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK;
| | | | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK;
- Norwich Medical School, University East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
3
|
Mukhtar I. Unravelling the critical role of neuroinflammation in epilepsy-associated neuropsychiatric comorbidities: A review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111135. [PMID: 39237022 DOI: 10.1016/j.pnpbp.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Epilepsy is a complex neurological disorder characterized not only by seizures but also by significant neuropsychiatric comorbidities, affecting approximately one-third of those diagnosed. This review explores the intricate relationship between epilepsy and its associated psychiatric and cognitive disturbances, with a focus on the role of inflammation. Recent definitions of epilepsy emphasize its multifaceted nature, linking it to neurobiological, psychiatric, cognitive, and social deficits. Inflammation has emerged as a critical factor influencing both seizure activity and neuropsychiatric outcomes in epilepsy patients. This paper critically examines how dysregulated inflammatory pathways disrupt neurotransmitter transmission and contribute to depression, mood disorders, and anxiety prevalent among individuals with epilepsy. It also evaluates current therapeutic approaches and underscores the potential of anti-inflammatory therapies in managing epilepsy and related neuropsychiatric conditions. Additionally, the review highlights the importance of the anti-inflammatory effects of anti-seizure medications, antidepressants, and antipsychotics and their therapeutic implications for mood disorders. Also, the role of ketogenic diet in managing epilepsy and its psychiatric comorbidities is briefly presented. Furthermore, it briefly discusses the role of the gut-brain axis in maintaining neurological health and how its dysregulation is associated with epilepsy. The review concludes that inflammation plays a pivotal role in linking epilepsy with its neuropsychiatric comorbidities, suggesting that targeted anti-inflammatory interventions may offer promising therapeutic strategies. Future research should focus on longitudinal studies comparing outcomes between epileptic patients with and without neuropsychiatric comorbidities, the development of diagnostic tools, and the exploration of novel anti-inflammatory treatments to better manage these complex interactions.
Collapse
Affiliation(s)
- Iqra Mukhtar
- Faculty of Pharmacy, Iqra University, Karachi, Pakistan.
| |
Collapse
|
4
|
Fontana BD, Alnassar N, Norton WHJ, Parker MO. Social isolation intensifies adgrl3.1-related externalizing and internalizing behaviors in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111193. [PMID: 39542203 DOI: 10.1016/j.pnpbp.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Externalizing disorders (EDs) are characterized by outward-directed behaviors such as aggression and hyperactivity. They are influenced by gene-environment interactions, yet our understanding of the genetic predispositions and environmental contexts that give rise to them is incomplete. Additionally, people with EDs often exhibit comorbid internalizing symptoms, which can complicate the clinical presentation and treatment strategies. Following on from our previous studies, we examined genes x environment interaction as a risk factor for EDs by looking at internalizing and externalizing behaviors after social isolation. Specifically, we subjected adgrl3.1 knockout zebrafish - characterized by hyperactivity and impulsivity - to a 2-week social isolation protocol. We subsequently assessed the impact on anxiety-like behavior, abnormal repetitive behaviors, working memory, and social interactions. Genotype-specific additive effects emerged, with socially isolated adgrl3.1 knockout fish exhibiting intensified comorbid phenotypes, including increased anxiety, abnormal repetitive behaviors, reduced working memory, and altered shoaling, when compared to WT fish. The findings demonstrate that genetic predispositions interact with environmental stressors, such as social isolation, to exacerbate both externalizing and internalizing symptoms. This underlines the necessity for comprehensive diagnostic and intervention strategies.
Collapse
Affiliation(s)
- Barbara D Fontana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Brazil.
| | - Nancy Alnassar
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - William H J Norton
- Department of Genetics, Genomics and Cancer Science, University of Leicester, Leicester LE1 7RH, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
5
|
Müller L, Di Benedetto S, Müller V. From Homeostasis to Neuroinflammation: Insights into Cellular and Molecular Interactions and Network Dynamics. Cells 2025; 14:54. [PMID: 39791755 PMCID: PMC11720143 DOI: 10.3390/cells14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors. Under homeostatic conditions, these elements promote cellular cooperation and stability, whereas in neuroinflammatory states, they drive adaptive responses that may become pathological if dysregulated. We examine how neuroimmune interactions, mediated through these cellular actors and signaling pathways, create complex networks that regulate CNS functionality and respond to injury or inflammation. To further elucidate these dynamics, we provide insights using a multilayer network (MLN) approach, highlighting the interconnected nature of neuroimmune interactions under both inflammatory and homeostatic conditions. This perspective aims to enhance our understanding of neuroimmune communication and the mechanisms underlying shifts from homeostasis to neuroinflammation. Applying an MLN approach offers a more integrative view of CNS resilience and adaptability, helping to clarify inflammatory processes and identify novel intervention points within the layered landscape of neuroinflammatory responses.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany (V.M.)
| | | | | |
Collapse
|
6
|
Wu X, Guo CX, Wang SF, Gong TT, Yao JW, Hu L, Deng ZY, Tang L, Xie P, Zhang Z, Chen Y. Knowledgebase-Driven Exploration and Experimental Verification of Simvastatin's Inhibitory Impact on P2X7/NLRP3 Inflammasome Pathway. Chem Biol Drug Des 2025; 105:e70048. [PMID: 39834043 DOI: 10.1111/cbdd.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Depression is a mental health disorder and is the fourth most prevalent disease. Previous studies have suggested that statins are involved in the reduction of neuroinflammation. However, the potential mechanism for this relationship is unclear. The current study aimed to elucidate this by examining the effects of simvastatin on the P2X7/NLRP3 pathway in rats exposed to chronic mild stress (CMS). To achieve this goal, a depression database was first constructed, and simvastatin was used as an input to predict potential targets using machine/deep learning methods. Interestingly, the P2X7/NLRP3 pathway was predicted as a potential target for simvastatin. Subsequently, a depression rat model was established by inducing CMS for 4 weeks. Behavioral changes were detected via a sucrose preference test and forced swim test. The depression rats were then treated with simvastatin (10 mg/kg/day) for 14 days. Following treatment, changes in behavior and the activation of the NLRP3/ASC/caspase-1 inflammasome pathway in the depression model rats were observed. The P2X7 agonist (ATP) and selective P2X7 antagonist brilliant blue G (BBG) were also used for in vivo intervention. Data from the experiment showed that treatment with simvastatin and BBG significantly reduced the depressive-like behaviors in depression model rats, as well as the protein and mRNA expression levels of P2X7 and NLRP3 inflammasome. The protein and mRNA levels of the pro-inflammatory cytokine interleukin-1β significantly increased. These results demonstrate that simvastatin exerted an antidepressant-like effect in the CMS model of rats, and this effect was dependent on the inhibition of the P2X7/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xinhai Wu
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Chen-Xin Guo
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Sheng-Feng Wang
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ting-Ting Gong
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jing-Wei Yao
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lin Hu
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zu-Yue Deng
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lan Tang
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Peng Xie
- Guangxi Institute for Food and Drug Control, Nanning, People's Republic of China
| | - Zan Zhang
- Guangxi Institute for Food and Drug Control, Nanning, People's Republic of China
| | - Yan Chen
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Bai Z, Li P, Gao X, Zu G, Jiang A, Wu K, Mechawar N, Turecki G, Lehnert K, Snell RG, Zhou J, Hu J, Yan B, Chen L, Li W, Chen Y, Liu S, Zhu Y, You L. Exploring PDE5A upregulation in bipolar disorder: insights from single-nucleus RNA sequencing of human basal ganglia. Transl Psychiatry 2024; 14:494. [PMID: 39695100 DOI: 10.1038/s41398-024-03202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Basal ganglia is proposed to mediate symptoms underlying bipolar disorder (BD). To understand the cell type-specific gene expression and network changes of BD basal ganglia, we performed single-nucleus RNA sequencing of 30,752 nuclei from caudate, putamen, globus pallidus, and substantia nigra of control human postmortem brain and 24,672 nuclei from BD brain. Differential expression analysis revealed major difference lying in caudate, with BD medium spiny neurons (MSNs) expressing significantly higher PDE5A, a cGMP-specific phosphodiesterase. Gene co-expression analysis (WGCNA) showed a strong correlation of caudate MSNs and gene module green, with a PDE5A-containing hub gene network. Gene regulatory network analysis (SCENIC) indicated key regulons among different cell types and basal ganglia regions, with downstream targets of key transcriptional factors showing overlapping genes such as PDEs. Upregulation of PDE5A was further validated in 7 pairs of control and BD caudate sections. Overexpression of PDE5A in primary cultured lateral ganglion eminence-derived striatal neurons led to decreased dendrite complexity, increased apoptosis, and enhanced neuronal excitability and membrane resistance. This effect could be rescued by PDE5 specific inhibitor, tadalafil. Overexpression of PDE5A in mouse striatum by stereotaxic injection caused a decreased cGMP level, an increased gene expression profile of neuroinflammation, and BD-like behaviors. Collectively, our findings provided cell type-specific gene expression profile, and indicated a causative role of PDE5A upregulation in BD basal ganglia. This study provides a single-nucleus transcriptomic profile of human control and bipolar disorder (BD) basal ganglia. Differential expression, gene co-expression, and gene regulatory network analyses collectively indicated upregulation of PDE5A in BD caudate medium spiny neurons (MSNs), which was further validated in another cohort of BD brains. The causative role of PDE5A upregulation in BD etiology is supported by the effects of PDE5A overexpression in cultured mouse MSNs in vitro and in adult mouse striatum in vivo. The former led to reduced dendrite complexity, increased apoptosis, and neuronal hyper-excitability, which could be rescued by PDE5 specific inhibitor tadalafil. The latter caused lower cGMP levels, upregulated genes associated with neuroinflammation, and BD-like behaviors.
Collapse
Affiliation(s)
- Zhixin Bai
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Gao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Andrew Jiang
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Keting Wu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Russell G Snell
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Jin Zhou
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jia Hu
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Bingbing Yan
- Neo-Biotechnology Limited Company, Shanghai, China
| | - Liang Chen
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wensheng Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - You Chen
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China.
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Besedovsky H, Del Rey A. A Glucocorticoid-Mediated Immunoregulatory Circuit Integrated at Brain Levels: Our Early Studies and a Present View. Neuroimmunomodulation 2024; 31:230-245. [PMID: 39504948 DOI: 10.1159/000542401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND It was known since the 1940s that pharmacological administration of glucocorticoids can inhibit inflammatory and immune processes, and these hormones are still today among the most widely used therapeutic tools to treat diseases with immune components. However, it became clear later that endogenous glucocorticoids can either support or restrain immune processes. SUMMARY Early studies showed that (a) endogenous levels of glucocorticoids can modulate immune cell activity; (b) the immune response itself can stimulate the hypothalamus-pituitary-adrenal (HPA) axis to release glucocorticoids to levels that can exert immunoregulatory effects; (c) immune products, later identified as cytokines, mediate this effect. On these bases, the existence of a glucocorticoid-mediated immunoregulatory circuit was proposed. It was also shown that increased levels of endogenous glucocorticoids exert protective effects during infections and other diseases with immune components. However, it was found in animal models and in humans that these effects can be blunted in several immune-linked diseases by defects at several levels, for example, by glucocorticoid resistance or by adrenal insufficiency. Evidence was later provided that the glucocorticoid-mediated immunoregulatory circuit can also be activated by cytokines produced not only as consequence of immune stimulation but also following psycho/sensorial and physical stimuli. Thus, this circuit can be integrated at brain levels and, besides stimulating the HPA axis, cytokines can also affect synaptic plasticity, most likely via a tripartite synapse, with astrocytes as neuro-immune cells acting as the third component. KEY MESSAGES It is now well established that the glucocorticoid-mediated immunoregulatory circuit plays a central role in maintaining health. However, several variables can condition the efficacy of the effect of endogenous glucocorticoids. Furthermore, since cytokines and other immune products have many other neuroendocrine and metabolic effects, other neuroendocrine-immune circuits could simultaneously operate or become predominant during different pathologies. The consideration of these aspects might help to implement strategies to eventually decrease therapeutic doses of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Hugo Besedovsky
- Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
9
|
Arrigo F, Aragona F, Faggio C, Giudice E, Giannetto C, Piccione G, Rizzo M, Arfuso F. Monitoring the physiological inflammatory alertness in horse after road transport. Vet Res Commun 2024; 48:3331-3338. [PMID: 38965174 DOI: 10.1007/s11259-024-10459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The aim of this study was to assess the changes of pro-inflammatory interleukins in 10 horses subjected to road transport practices (distance of 150 km) from the training site (Messina, Sicily) to the competition centre in Syracuse (Sicily). Blood sampling and interleukins analysis were performed during a round trip transportation (transport 1 and transport 2). In particular, blood samples were collected before the transport took place (Pre), five minutes later (Post) and one hour later (Post 1 h), for each transport, in order to assess the serum concentration of IL-1α, IL-1β, IL-2 and IL-6. The results showed that the serum concentration of IL-1α decreased at Post and Post 1 h compared to the values obtained at rest condition (P < 0.05). The other interleukins analysed (i.e. IL-1β, IL-2 and IL-6) showed increased levels at Post than Rest and Post 1 h in transport 1 (P < 0.05). In transport 2 the analysed parameters showed no change throughout the analysed time points (P > 0.05); however, higher levels of IL-1α at Pre and higher IL-1β, IL-2 and IL-6 values at Post were found in transport 1 than transport 2 (P < 0.05). The increase in pro-inflammatory cytokines after transport 1 suggests the triggering of the inflammatory event and this may show that, although horses are animals accustomed to transport, this is a stressful event that could activate the well-orchestrated inflammation cascade, albeit physiological and temporary, as highlighted by the lower serum concentrations of the investigated interleukins found in transport 1 than transport 2 and by the lack of significant differences in the serum concentrations of the investigated interleukins among the time points of transport 2. It must be taken into account that enrolled animals are well-trained and healthy athletic horses participating to a jumper competition, thus, such inflammation did not occur thanks to a good balance between pro-inflammatory and anti-inflammatory cytokines which allowed a prompt restoration of homeostasis eventually impaired by the stressful event.
Collapse
Affiliation(s)
- Federica Arrigo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, Messina, 98168, Italy
| |
Collapse
|
10
|
Alkanat M, Alkanat HÖ. D-Limonene reduces depression-like behaviour and enhances learning and memory through an anti-neuroinflammatory mechanism in male rats subjected to chronic restraint stress. Eur J Neurosci 2024; 60:4491-4502. [PMID: 38932560 DOI: 10.1111/ejn.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
D-limonene is a widely used flavouring additive in foods, beverages and fragrances due to its pleasant lemon-like odour. This study aimed to investigate the effects of D-limonene on the central nervous system when subjected to chronic restraint stress in rats for 21 days. Forty rats were randomly divided into five groups: i) control, ii) D-limonene, iii) restraint stress, iv) restraint stress+D-limonene and v) restraint stress+fluoxetine. Following the induction of restraint stress, the sucrose preference test, the open field test, the novel object recognition test and the forced swimming test were performed. The levels of BDNF, IL-1β, IL-6 and caspase-1 were measured from hippocampal tissue using the ELISA method. Sucrose preference test results showed an increase in consumption rate in the stress+D-limonene and a decrease in the stress group. The stress+D-limonene group reversed the increased defensive behaviour observed in the open-field test compared to the stress group. In the novel object recognition test, the discrimination index of the stress+D-limonene group increased compared to the stress group. BDNF levels increased in the stress+limonene group compared to the stress group. In contrast, IL-1β and caspase-1 levels increased in the stress group compared to the control and decreased in the stress+limonene group compared to the stress group. In this study, D-limonene has been found to have antidepressant-like properties, reducing anhedonic and defensive behaviours and the impairing effects of stress on learning and memory tests. It was observed that D-limonene showed these effects by alleviating neuroinflammation induced by chronic restraint stress in rats.
Collapse
Affiliation(s)
- Mehmet Alkanat
- Department of Physiology, Giresun University, Medical School, Giresun, Turkey
| | - Hafize Özdemir Alkanat
- Faculty of Health Science, Department of Internal Medicine Nursing, Giresun University, Giresun, Turkey
| |
Collapse
|
11
|
Choi K, Lee J, Kim G, Lim Y, Kang HJ. Recovery of synaptic loss and depressive-like behavior induced by GATA1 through blocking of the neuroinflammatory response. Front Cell Neurosci 2024; 18:1369951. [PMID: 38784708 PMCID: PMC11112091 DOI: 10.3389/fncel.2024.1369951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
GATA1, a member of the GATA transcription factor family, is a critical factor in hematopoietic system development. In a previous study, we demonstrated the increased expression of GATA1 in the dorsolateral prefrontal cortex (dlPFC) of patients suffering from depression and described its role as a transcriptional repressor of synapse-related genes. In this study, we investigated how GATA1 globally altered gene expression using multi-omics approaches. Through the combined analyses of ChIPseq, mRNAseq, and small RNAseq, we profiled genes that are potentially affected by GATA1 in cultured cortical neurons, and Gene Ontology (GO) analysis revealed that GATA1 might be associated with immune-related functions. We hypothesized that GATA1 induces immune activation, which has detrimental effects including synapse loss and depressive-like behavior. To test this hypothesis, we first performed a microglial morphometric analysis of a brain having overexpression of GATA1 because microglia are the resident immune cells of the central nervous system. Fractal analysis showed that the ramification and process length of microglia decreased in brains having GATA1 overexpression compared to the control, suggesting that GATA1 overexpression increases the activation of microglia. Through flow cytometry and immunohistochemical analysis, we found that activated microglia showed pro-inflammatory phenotypes characterized by the expression of CD86 and CD68. Finally, we demonstrated that the effects of GATA1 overexpression including synapse loss and depressive-like behavior could be blocked by inhibiting microglial activation using minocycline. These results will elucidate the regulatory mechanisms of GATA1 that affect pathophysiological conditions such as depression and provide a potential target for the treatment of depression.
Collapse
Affiliation(s)
| | | | | | | | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Frank MG, Baratta MV. Use of an immunocapture device to detect cytokine release in discrete brain regions. Neural Regen Res 2024; 19:703-704. [PMID: 37843193 PMCID: PMC10664115 DOI: 10.4103/1673-5374.382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
13
|
Lauten TH, Natour T, Case AJ. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci 2024; 252:103159. [PMID: 38428324 PMCID: PMC11494466 DOI: 10.1016/j.autneu.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
14
|
Kang Y, Shin D, Kim A, You SH, Kim B, Han KM, Ham BJ. The effect of inflammation markers on cortical thinning in major depressive disorder: A possible mediator of depression and cortical changes. J Affect Disord 2024; 348:229-237. [PMID: 38160887 DOI: 10.1016/j.jad.2023.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent mental health condition with significant societal impact. Owing to the intricate biological diversity of MDD, treatment efficacy remains limited. Immune biomarkers have emerged as potential predictors of treatment response, underscoring the interaction between the immune system and the brain. This study investigated the relationship between cytokine levels and cortical thickness in patients with MDD, focusing on the corticolimbic circuit, to elucidate the influence of neuroinflammation on structural brain changes and contribute to a deeper understanding of the pathophysiology of MDD. METHOD A total of 114 patients with MDD and 101 healthy controls (HC) matched for age, sex, and body mass index (BMI) were recruited. All participants were assessed for depression severity using the Hamilton Depression Rating Scale (HDRS), and 3.0 T T1 weighted brain MRI data were acquired. Additionally, cytokine levels were measured using a highly sensitive bead-based multiplex immunosorbent assay. RESULTS Patients diagnosed with MDD exhibited notably elevated levels of interleukin-6 (p = 0.005) and interleukin-8 (p = 0.005), alongside significant cortical thinning in the left anterior cingulate gyrus and left superior frontal gyrus, with these findings maintaining significance even after applying Bonferroni correction. Furthermore, increased interleukin-6 and interleukin-8 levels in patients with MDD are associated with alterations in the left frontomarginal gyrus and right anterior cingulate cortex (ACC). CONCLUSIONS This suggests a potential influence of neuroinflammation on right ACC function in MDD patients, warranting longitudinal research to explore interleukin-6 and interleukin-8 mediated neurotoxicity in MDD vulnerability and brain morphology changes.
Collapse
Affiliation(s)
- Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye You
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byungjun Kim
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Lalrinawma TSK, Sangma JT, Renthlei Z, Trivedi AK. Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice. Mol Biol Rep 2024; 51:278. [PMID: 38319482 DOI: 10.1007/s11033-024-09224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region. METHODS This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)-control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3β (Gsk3β), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied. RESULTS Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3β and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain's cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents. CONCLUSIONS The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.
Collapse
Affiliation(s)
| | - James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
16
|
Lu P, Zhang Q, Yin Z, Guo G, Zhang S, Yao C, He P, Qin Y, Fang M. Acupressure bladder meridian alleviates anxiety disorder via HMGB1. Int Immunopharmacol 2024; 127:111415. [PMID: 38141407 DOI: 10.1016/j.intimp.2023.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
The aim of this study was to investigate the effects of acupressure bladder meridian (ABM) on anxiety in rats with chronic stress. METHODS The sugar water preference (SPF), tail suspension time (TST) and forced swimming time (FST) of rats were measured. The levels of reactive oxygen species (ROS), myeloperoxidase (MPO) in hippocampus tissue, oxidative stress parameters and inflammatory cytokines were detected. Underlying mechanisms of ABM on anxiety were detected. lipopolysaccharide (LPS) stimulated PC12 cells were adopted in vitro. HMGB1 knockdown were used in PC12 cells, and related signaling was further detected. RESULTS ABM significantly increased SPF, decreased TST and FST. ABM decreased ROS, MPO levels, decreased the levels of inflammatory cytokines. Furthermore, ABM decreased the levels of oxidative stress index. ABM reduced the expression of inflammation-related proteins mediated by HMGB1, increased nuclear factor erythroid2-related factor 2 (Nrf-2) and hemeoxygenase-1 (HO-1). In vitro PC12 cells, Rat serum (RS-ABM) treated with ABM significantly decreased LPS induced inflammation-related proteins and increased Nrf-2/HO-1 pathway. HMGB1 knockdown inhibited LPS-induced PC12 cell inflammatory signaling pathway and increased Nrf-2/HO-1 pathway. CONCLUSION Our results demonstrated that ROS-dependent HMGB1 plays an important role in anxiety, and ABM exhibits inhibited inflammation in anxiety.
Collapse
Affiliation(s)
- Ping Lu
- Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Zhang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhiyang Yin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Guangxin Guo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuaipan Zhang
- Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China
| | - Chongjie Yao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Institute of Tuina, Shanghai Institute of Traditional Chinese Medicine, Shanghai, PR China
| | - Pei He
- Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yuan Qin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Min Fang
- Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|
17
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
18
|
Weickert TW, Jacomb I, Lenroot R, Lappin J, Weinberg D, Brooks WS, Brown D, Pellen D, Kindler J, Mohan A, Wakefield D, Lloyd AR, Stanton C, O'Donnell M, Liu D, Galletly C, Shannon Weickert C. Adjunctive canakinumab reduces peripheral inflammation markers and improves positive symptoms in people with schizophrenia and inflammation: A randomized control trial. Brain Behav Immun 2024; 115:191-200. [PMID: 37848096 DOI: 10.1016/j.bbi.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Clinical trials of anti-inflammatories in schizophrenia do not show clear and replicable benefits, possibly because patients were not recruited based on elevated inflammation status. Interleukin 1-beta (IL-1β) mRNA and protein levels are increased in serum, plasma, cerebrospinal fluid, and brain of some chronically ill patients with schizophrenia, first episode psychosis, and clinical high-risk individuals. Canakinumab, an approved anti-IL-1β monoclonal antibody, interferes with the bioactivity of IL-1β and interrupts downstream signaling. However, the extent to which canakinumab reduces peripheral inflammation markers, such as, high sensitivity C-reactive protein (hsCRP) and symptom severity in schizophrenia patients with inflammation is unknown. TRIAL DESIGN We conducted a randomized, placebo-controlled, double-blind, parallel groups, 8-week trial of canakinumab in chronically ill patients with schizophrenia who had elevated peripheral inflammation. METHODS Twenty-seven patients with schizophrenia or schizoaffective disorder and elevated peripheral inflammation markers (IL-1β, IL-6, hsCRP and/or neutrophil to lymphocyte ratio: NLR) were randomized to a one-time, subcutaneous injection of canakinumab (150 mg) or placebo (normal saline) as an adjunctive antipsychotic treatment. Peripheral blood hsCRP, NLR, IL-1β, IL-6, IL-8 levels were measured at baseline (pre injection) and at 1-, 4- and 8-weeks post injection. Symptom severity was assessed at baseline and 4- and 8-weeks post injection. RESULTS Canakinumab significantly reduced peripheral hsCRP over time, F(3, 75) = 5.16, p = 0.003. Significant hsCRP reductions relative to baseline were detected only in the canakinumab group at weeks 1, 4 and 8 (p's = 0.0003, 0.000002, and 0.004, respectively). There were no significant hsCRP changes in the placebo group. Positive symptom severity scores were significantly reduced at week 8 (p = 0.02) in the canakinumab group and week 4 (p = 0.02) in the placebo group. The change in CRP between week 8 and baseline (b = 1.9, p = 0.0002) and between week 4 and baseline (b = 6.0, p = 0.001) were highly significant predictors of week 8 change in PANSS Positive Symptom severity scores. There were no significant changes in negative symptoms, general psychopathology or cognition in either group. Canakinumab was well tolerated and only 7 % discontinued. CONCLUSIONS Canakinumab quickly reduces peripheral hsCRP serum levels in patients with schizophrenia and inflammation; after 8 weeks of canakinumab treatment, the reductions in hsCRP are related to reduced positive symptom severity. Future studies should consider increased doses or longer-term treatment to confirm the potential benefits of adjunctive canakinumab in schizophrenia. Australian and New Zealand Clinical Trials Registry number: ACTRN12615000635561.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia.
| | - Isabella Jacomb
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Julia Lappin
- School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - David Brown
- NSW Health Pathology-ICPMR, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Pellen
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Jochen Kindler
- Neuroscience Research Australia, Sydney, New South Wales, Australia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Adith Mohan
- School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Denis Wakefield
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive Stanton
- Neuroscience Research Australia, Sydney, New South Wales, Australia; Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Maryanne O'Donnell
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia; Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Locah Health Network, Adelaide, South Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Locah Health Network, Adelaide, South Australia, Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Majhi SS, Singh SK, Biswas P, Debbarma R, Parhi J, Khatei A, Mangang YA, Waikhom G, Patel AB. Stocking density affects immune and stress-related gene expression of Butter catfish ( Ompok bimaculatus) fry in biofloc landscapes. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100112. [PMID: 37529203 PMCID: PMC10388171 DOI: 10.1016/j.fsirep.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Scientific research into fish wellness is critical, and the concerns about crowding-related stress due to increased stocking density are inevitable. Taking this into consideration, the study defines the physiological signature of Ompok bimaculatus (Butter catfish) in a biofloc system when subjected to varying levels of stocking density. Fish (mean weight = 1.21 g ± 0.08, n = 600) were randomly stocked in 40-L glass aquaria at stocking densities of 0.5 g/L (T1), 1 g/L (T2), 1.5 g/L (T3), and 2 g/L (T4) and fed a 35% protein diet. After the 90-day trial, the physio-biochemical, molecular, and tissue-level changes were assessed. An integrated biomarker response (IBR) analysis for the key stress indicators aided us in better understanding them. There was a significant difference in blood count between T1 and T4 (total erythrocyte count, hemoglobin, and packed cell volume). T1 had higher levels of globulin and total plasma protein, but T2 had higher levels of albumin. Only in T1 did the respiratory burst and lysozyme activity appear to be higher (p < 0.05). Increased stocking densities had a significant impact on the liver function enzymes, GOT and GPT (p < 0.05). In comparison to lower densities (T1 & T2), higher stocking density (T3 & T4) was found to raise glucose and cortisol levels (p < 0.05). Antioxidant enzymes such as catalase, glutathione-S-transferase, and malondialdehyde were found to be more pronounced in lower density tissues (T1). Furthermore, the IBR plots show that lower densities have better health than higher densities. At higher stocking densities, mRNA expression of HSP70, IL-1, and IL-20 increased (p < 0.05) in kidney and liver tissues. The Nrf-2 and Tlr-9 genes were also upregulated. Also, when stocking density was increased, tissue-level histo-architectural changes were more pronounced than when stocking density was kept low. The findings of this study show that the welfare of Butter catfish cultured at high density in biofloc systems suffers from severe stress, and therefore draw more attention to the development of a species-specific standard rearing methodology in the pursuit of a profitable aqua-farming enterprise.
Collapse
|
20
|
Jing B, Chen D, Dai H, Liu J, Chen C, Dai M, Hu J, Lu Z, Wang J. Association between neutrophil-to-lymphocyte ratio and postoperative fatigue in elderly patients with hip fracture. Heliyon 2023; 9:e22314. [PMID: 38144319 PMCID: PMC10746395 DOI: 10.1016/j.heliyon.2023.e22314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Background and purpose: Postoperative fatigue (POF) is a common and distressing post-operative symptom. This study aimed to explore the relationship between neutrophil-to-lymphocyte ratio (NLR) and POF in elderly patients with hip fracture. Method Elderly patients (age ≥65 years) with acute hip fracture admitted to the Department of Orthopedics of Anqing Municipal Hospital from June 2018 to June 2020 were included. Fatigue was assessed using the Fatigue Severity Scale at the 3-month follow-up postoperatively. Univariate and multivariate analyses were performed to explore the associations between NLR and POF. The diagnostic performance of NLR was analysed using Receiver Operating Characteristic (ROC) curve analysis and the Delong test. Result A total of 321 elderly patients with hip fractures were included; 120 (37.4 %) of them were diagnosed with POF. Univariate analysis indicated significant differences in NLR, platelet-to-lymphocyte ratio (PLR), education, neutrophil count, lymphocyte count, Hamilton Depression Scale (HAMD) and Insomnia Severity Index (ISI) scores (P < 0.05). Multivariate analysis indicated neutrophil count (odds ratio [OR], 1.46; 95 % confidence interval [CI] 1.27-1.67), lymphocyte count (OR 0.32, 95 % CI 0.19-0.53), NLR (OR1.81, 95 % CI 1.50-2.17) and PLR (OR 1.005, 95 % CI 1.001-1.009) were significantly associated with POF. The areas under the ROC curves (AUCs) of neutrophil count, lymphocyte count, NLR and PLR were 0.712, 0.667, 0.775 and 0.605, respectively. The Delong test indicated that NLR had the best diagnostic performance (p < 0.05). Conclusion NLR independently predicts POF in elderly patients with acute hip fracture.
Collapse
Affiliation(s)
- Baosheng Jing
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| | - Dangui Chen
- Department of Hematology, AnQing Municipal Hospitals, Anqing, China
| | - Huming Dai
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| | - Jingrui Liu
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| | - Cheng Chen
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| | - Mingjun Dai
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| | - Jing Hu
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| | - Zhengfeng Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjun Wang
- Department of Orthopedics, AnQing Municipal Hospitals, Anqing, China
| |
Collapse
|
21
|
Walker SL, Sud N, Beyene R, Palin N, Glasper ER. Paternal deprivation induces vigilance-avoidant behavior and accompanies sex-specific alterations in stress reactivity and central proinflammatory cytokine response in California mice (Peromyscus californicus). Psychopharmacology (Berl) 2023; 240:2317-2334. [PMID: 36988696 PMCID: PMC10599166 DOI: 10.1007/s00213-023-06354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
RATIONALE Early-life stress (ELS) can increase anxiety, reduce prosocial behaviors, and impair brain regions that facilitate emotional and social development. This knowledge greatly stems from assessing disrupted mother-child relationships, while studies investigating the long-term effects of father-child relationships on behavioral development in children are scarce. However, available evidence suggests that fathers may uniquely influence a child's behavioral development in a sex-specific manner. Rodent models examining mother-offspring interaction demonstrate relationships among ELS, neuroinflammatory mediators, and behavioral development; yet, the role paternal care may play in neuroimmune functioning remains unreported. OBJECTIVES Using the biparental California mouse (Peromyscus californicus), we examined to what extent paternal deprivation impairs social and anxiety-like behaviors, augments peripheral corticosterone (CORT) response, and alters central proinflammatory cytokine production following an acute stressor in adulthood. METHODS Biparentally reared and paternally deprived (permanent removal of the sire 24 h post-birth) adult mice were assessed for sociability, preference for social novelty, social vigilance, and social avoidance behaviors, followed by novelty-suppressed feeding (NSF) testing for general anxiety-like behavior. Following an acute stressor, circulating CORT concentrations and region-specific proinflammatory cytokine concentrations were determined via radioimmunoassay and Luminex multianalyte analysis, respectively. RESULTS In response to a novel same-sex conspecific, social vigilance behavior was associated with reduced sociability and increased avoidance in paternally deprived mice-an effect not observed in biparentally reared counterparts. Yet, in response to a familiar same-sex conspecific, social vigilance persisted but only in paternally deprived females. The latency to consume during NSF testing was not significantly altered by paternal deprivation. In response to an acute physical stressor, lower circulating CORT concentrations were observed in paternally deprived females. Compared to control-reared males, paternal deprivation increased hypothalamic interleukin-1β, but decreased hippocampal IL-6 protein concentration. CONCLUSION Greater social vigilance behavior was demonstrated in paternally deprived mice while they avoided social interaction with a novel same-sex conspecific; however, in response to a familiar same-sex conspecific, paternal deprivation increased social vigilance behavior but only in females. It is possible that different neurobiological mechanisms underlie these observed behavioral outcomes as sex-specific central proinflammatory cytokine and stress responsivity were observed in paternally deprived offspring.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA
| | - Neilesh Sud
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Rita Beyene
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Palin
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, USA.
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA.
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
22
|
Zeng Y, Sun B, Zhang F, Hu Z, Li W, Lan X, Ning Y, Zhou Y. The core inflammatory factors in patients with major depressive disorder: a network analysis. Front Psychiatry 2023; 14:1216583. [PMID: 37692303 PMCID: PMC10491022 DOI: 10.3389/fpsyt.2023.1216583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The symptoms of major depressive disorder (MDD) vary widely. Psycho-neuro-inflammation has shown that MDD's inflammatory factors can accelerate or slow disease progression. This network analysis study examined the complex interactions between depressed symptoms and inflammatory factors in MDD prevention and treatment. Measures We gathered participants' inflammatory factor levels, used the Hamilton Depression Scale (HAMD-17), and network analysis was used to analyzed the data. Network analysis revealed the core inflammatory (nodes) and their interactions (edges). Stability and accuracy tests assessed these centrality measures' network robustness. Cluster analysis was used to group persons with similar dimension depressive symptoms and examine their networks. Results Interleukin-1β (IL-1β) is the core inflammatory factor in the overall sample, and IL-1β-interleukin-4 (IL-4) is the strongest correlation. Network precision and stability passed. Network analysis showed significant differences between Cluster 1 (with more severe anxiety/somatization and sleep disruption) and Cluster 3 (with more severe retardation and cognitive disorders), as well as between Cluster 2 (with more severe anxiety/somatization, sleep disruption and body weight) and Cluster 3. IL-1β is the core inflammatory factor in Cluster 1 and Cluster 2, while tumor necrosis factor alpha (TNF-α) in Cluster 3. Conclusion IL-1β is the central inflammatory factor in the network, and there is heterogeneity in the core inflammatory factor of MDD with specific depressive dimension symptoms as the main manifestation. In conclusion, inflammatory factors and their links should be prioritized in future theoretical models of MDD and may provide new research targets for MDD intervention and treatment.
Collapse
Affiliation(s)
- Yexian Zeng
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Bin Sun
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Zhibo Hu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Weicheng Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Psychology,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Chen Y, Wu X, Liu X, Lai J, Gong Q. Comparative transcriptome analysis provides insights into the TDG supersaturation stress response of Schizothorax davidi. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109618. [PMID: 37004899 DOI: 10.1016/j.cbpc.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In the dam discharge season, the supersaturation of total dissolved gas (TDG) in the downstream channel can seriously affect the survival of aquatic organisms. However, few studies have revealed the mechanism by which TDG supersaturation affects the physiology of fish thus far. The present study was conducted to study the mechanism of the effect of TDG supersaturation on Schizothorax davidi, a species that is very sensitive to gas bubble disease. S. davidi was exposed to 116 % TDG supersaturation stress for 24 h. Serum biochemical tests showed that the aspartate aminotransferase and alanine aminotransferase levels after TDG supersaturation exposure were significantly decreased compared to those in the control group, while superoxide dismutase activity was significantly increased. RNA-Seq of gill tissues identified 1890 differentially expressed genes (DEGs), which consisted of 862 upregulated genes and 1028 downregulated genes, in the TDG supersaturation group vs. the control group. Pathway enrichment analysis revealed that the cell cycle, apoptosis and immune signaling pathways were affected by TDG stress. The results of this study may contribute to our understanding of the underlying molecular mechanism of environmental stress in fish.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
24
|
Fülöp B, Hunyady Á, Bencze N, Kormos V, Szentes N, Dénes Á, Lénárt N, Borbély É, Helyes Z. IL-1 Mediates Chronic Stress-Induced Hyperalgesia Accompanied by Microglia and Astroglia Morphological Changes in Pain-Related Brain Regions in Mice. Int J Mol Sci 2023; 24:ijms24065479. [PMID: 36982563 PMCID: PMC10052634 DOI: 10.3390/ijms24065479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αβ-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15–20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.
Collapse
Affiliation(s)
- Barbara Fülöp
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- GSK Vaccines Institute for Global Health, I-53100 Siena, Italy
| | - Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Dénes
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Nikolett Lénárt
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Eotvos Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
25
|
Muehlenbein MP, Gassen J, Nowak TJ, Henderson AD, Thum E, Weaver SP, Baker EJ. Exploring links between pathogen avoidance motivation, COVID-19 case counts, and immune function. Am J Hum Biol 2023; 35:e23833. [PMID: 36382790 DOI: 10.1002/ajhb.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The selection pressures exerted by pathogens have played important roles in shaping the biology and behavior of animals, including humans. Immune systems recognize and respond to cues of infection or damage by coordinating cellular, humoral, and metabolic shifts that promote recovery. Moreover, animals also possess a repertoire of behavioral tools to help combat the threat of pathogens, often referred to as the behavioral immune system. Recently, researchers have begun to examine how cognitive, affective, and behavioral disease avoidance mechanisms interact with the biological immune system. METHODS The present study explored relationships among individual differences in behavioral immune system activity (e.g., pathogen disgust), shifts in SARS-CoV-2 infection risk (i.e., 7-day case averages), and immune function in a community cohort from McLennan County, Texas, USA (n = 387). RESULTS Levels of disease concern were not consistently associated with immune markers. However, serum levels of IFN-γ, TNF-α, IL-2, and IL-8, as well as serum killing ability of Escherichia coli, each varied with case counts. Additional analyses found that case counts also predicted changes in stress physiology, but not subjective measures of distress. However, follow-up mediation models did not provide evidence that relationships between case counts and immunological outcomes were mediated through levels of stress. CONCLUSIONS The present project provides initial evidence that markers of immune function may be sensitive to changes in infection risk during the COVID-19 pandemic. This adds to the growing body of research finding relationships among behavioral and biological pathogen management mechanisms.
Collapse
Affiliation(s)
| | - Jeffrey Gassen
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | - Tomasz J Nowak
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | | | - Edward Thum
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | | | - Erich J Baker
- Department of Computer Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
26
|
Farias SDS, Dierings AC, Mufalo VC, Sabei L, Parada Sarmiento M, da Silva AN, Ferraz PA, Pugliesi G, Ribeiro CVDM, Oliveira CADA, Zanella AJ. Asinine milk mitigates stress-mediated immune, cortisol and behavioral responses of piglets to weaning: A study to foster future interventions in humans. Front Immunol 2023; 14:1139249. [PMID: 37122716 PMCID: PMC10140756 DOI: 10.3389/fimmu.2023.1139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The present study assessed whether asinine milk supplementation improved the immune and behavioral responses of piglets during an early life weaning stress event as a model for its future use in humans. Methods For this, 48 piglets from 4 different litters were used. At 20 days of age, piglets were weighed and allocated with their litter and dam into group pens until 28 days of age. Four piglets from each litter were then randomly assigned to either (1) asinine milk supplementation (n = 16) (2), skimmed cow milk supplementation (n = 16) or (3) no supplementation (n = 16; control group). The supplementations were voluntarily administered for 3 days preweaning and 3 days postweaning using a baby bottle. The effects on the weaning stress response were assessed through salivary cortisol measurements; behavioral tests such as the open field, novel object end elevated plus maze tests; and gene expression of HSD11B1, NR3C1 and IL1B in PBMCs, which was determined by RT-qPCR and normalized to GAPDH and UBB. To test the effect of the supplementations on weight, milk intake, gene expression, and behavior, a randomized block design was used with repeated measurements over time by the PROC MIXED procedure. Results and discussion The effects on salivary cortisol were determined using the ratio between the morning and afternoon concentrations, considering the time before and after the weaning event. Principal component analysis (PCA) and Fisher's test were performed to evaluate the behavior test data. When comparing salivary cortisol concentrations between the pre- and postweaning periods, there was a difference (p < 0.05) between the supplementation groups in the afternoon period, suggesting that piglets fed asinine milk had lower afternoon cortisol concentrations postweaning than their counterparts. For the behavioral tests, the supplementations had no measurable effects. No difference was between groups pre- and postweaning for the expression of HSD11B2, which codes for an enzyme that breaks down cortisol. However, the expression of NR3C1, which encodes the glucocorticoid receptor, was significantly upregulated in piglets supplemented with cow milk (mean 1.245; p < 0.05). Conclusion Asinine milk downregulated 1L1B gene expression, which codes for an inflammatory cytokine. In conclusion, these results suggest that supplementation with asinine milk may represent a strategy to diminish the damage associated with an early life event by modulating IL1B expression and reducing salivary cortisol levels in piglets undergoing weaning stress. Further transcriptomic and metabolomic studies may improve our understanding of the molecular pathways that mediate this systemic immune-mediated response.
Collapse
Affiliation(s)
- Sharacely de Souza Farias
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| | - Ana Carolina Dierings
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Vinicius Cardoso Mufalo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marisol Parada Sarmiento
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudio Vaz Di Mambro Ribeiro
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Chiara Albano de Araujo Oliveira
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| |
Collapse
|
27
|
Choudhary K, Prasad SR, Lokhande KB, Murti K, Singh S, Ravichandiran V, Kumar N. 4-Methylesculetin ameliorates LPS-induced depression-like behavior through the inhibition of NLRP3 inflammasome. Front Pharmacol 2023; 14:1120508. [PMID: 36909194 PMCID: PMC9995395 DOI: 10.3389/fphar.2023.1120508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The pathophysiology of depression is heavily dependent on inflammation. Evidence suggests that the etiology of depression is linked with NLRP3 inflammasome-induced inflammation. Therefore, blocking the activated NLRP3 inflammasome may be beneficial for treating depression. Due to the limitations of currently available antidepressants, it is necessary to develop novel, safe, and affordable drugs for the treatment of depression. A natural coumarin derivative named 4-methylesculetin (4-MESC) possesses anti-inflammatory properties. However, the role of 4-MESC as an antidepressant has not been elucidated. Therefore, in this study, we explored the antidepressant-like effects of 4-MESC and its underlying molecular mechanism through the modulation of the NLRP3 inflammasome. The docking and molecular dynamic simulation studies revealed that 4-MESC has a higher affinity for the NLRP3 PYD. Blood-brain barrier permeability was confirmed using the SwissADME pharmacokinetic tool. High doses (50 mg/kg) of 4-MESC significantly reduced the immobility duration in the tail-suspension test (TST) and forced swim test (FST) without changing the overall locomotor activity in the female Swiss albino mice that were subjected to lipopolysaccharide (LPS). LPS-induced pro-inflammatory cytokines such as IL-6 and TNF-α were reduced in serum and brain tissues using 4-MESC. 4-MESC's neuroprotective effects are mediated by increased brain-derived neurotrophic factor (BDNF) and decreased cortisol levels. 4-MESC markedly reduced LPS-induced elevated levels of ROS and lipid peroxidation (malondialdehyde levels) and enhanced the superoxide dismutase (SOD) activity and glutathione levels, which revealed its anti-oxidant potential against oxidative stress. 4-MESC diminished the expression levels of NF-κBp65, IL-6, NLRP3, caspase-1, gasdermin D, and IL-1β in the hippocampus. These findings demonstrated that 4-MESC exhibited antidepressant-like effects by inhibiting the NLRP3 inflammasome. However, other antidepressant mechanisms might also be involved which require further studies.
Collapse
Affiliation(s)
- Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, GBNagar, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India.,Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Hajipur, Hajipur, India
| |
Collapse
|
28
|
Lu H, Gong L, Xu H, Zhou Q, Zhao H, Wu S, Hu R, Li X. Environmental Enrichment Protects Offspring of a Rat Model of Preeclampsia from Cognitive Decline. Cell Mol Neurobiol 2023; 43:381-394. [PMID: 35119541 PMCID: PMC11415177 DOI: 10.1007/s10571-022-01192-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023]
Abstract
Preeclampsia affects 5-7% of all pregnancies and contributes to adverse pregnancy and birth outcomes. In addition to the short-term effects of preeclampsia, preeclampsia can exert long-term adverse effects on offspring. Numerous studies have demonstrated that offspring of preeclamptic women exhibit cognitive deficits from childhood to old age. However, effective ways to improve the cognitive abilities of these offspring remain to be investigated. The aim of this study was to explore whether environmental enrichment in early life could restore the cognitive ability of the offspring of a rat model of preeclampsia and to investigate the cellular and molecular mechanisms by which EE improves cognitive ability. L-NAME was used to establish a rat model of preeclampsia. The spatial learning and memory abilities and recognition memory of 56-day-old offspring were evaluated by the Morris water maze and Novel object recognition (NOR) task. Immunofluorescence was performed to evaluate cell proliferation and apoptosis in the DG region of the hippocampus. qRT-PCR was performed to examine the expression levels of neurogenesis-associated genes, pre- and postsynaptic proteins and inflammatory cytokines. An enzyme-linked immune absorbent assay was performed to evaluate the concentration of vascular endothelial growth factor (VEGF) and inflammatory cytokines in the hippocampus. The administration of L-NAME led to increased systolic blood pressure and urine protein levels in pregnant rats. Offspring in the L-NAME group exhibited impaired spatial learning ability and memory as well as NOR memory. Hippocampal neurogenesis and synaptic plasticity were impaired in offspring from the L-NAME group. Furthermore, cell apoptosis in the hippocampus was increased in the L-NAME group. The hippocampus was skewed to a proinflammatory profile, as shown by increased inflammatory cytokine levels. EE improved the cognitive ability of offspring in the L-NAME group and resulted in increased hippocampal neurogenesis and synaptic protein expression levels and decreased apoptosis and inflammatory cytokine levels. Environmental enrichment resolves cognitive impairment in the offspring of a rat model of preeclampsia by improving hippocampal neurogenesis and synaptic plasticity and normalizing the apoptosis level and the inflammatory balance.
Collapse
Affiliation(s)
- Huiqing Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Lili Gong
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huangfang Xu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Rong Hu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| |
Collapse
|
29
|
Liu Q, Zhang MM, Guo MX, Zhang QP, Li NZ, Cheng J, Wang SL, Xu GH, Li CF, Zhu JX, Yi LT. Inhibition of Microglial NLRP3 with MCC950 Attenuates Microglial Morphology and NLRP3/Caspase-1/IL-1β Signaling In Stress-induced Mice. J Neuroimmune Pharmacol 2022; 17:503-514. [PMID: 34978026 DOI: 10.1007/s11481-021-10037-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/24/2021] [Indexed: 01/13/2023]
Abstract
Major depressive disorder is characterized by the deficiencies of monoamine neurotransmitters, neurotrophic factors and persistent neuroinflammation. Microglial activation has been associated with neuroinflammation-related mental diseases, accompanied by NLR family pyrin domain containing 3 (NLRP3) inflammasome. Here, we investigated the effect of NLRP3 inhibition by its small molecular inhibitor MCC950 on inflammatory activity and depressive-like mice induced by chronic unpredictable mild stress (CUMS), followed by the behavioral tests including sucrose preference test and forced swimming test. NLRP3/caspase-1/IL-1β signaling and microglial morphology in the prefrontal cortex were measured. The results showed that CUMS caused a decrease in sucrose preference and an increase in immobility time, which were reversed by NLRP3 inhibitor MCC950. In addition, NLRP3 inhibition decreased the number of microglia and changed the activated state of microglia to a resting state by morphology 3D reconstruction. Moreover, NLRP3 inhibition inactivated NLRP3/caspase-1/IL-1β signaling in the prefrontal cortex. The results from immunofluorescence demonstrated that NLRP3 and IL-1β expression was decreased in microglia in response to MCC950 treatment. Accordingly, proinflammatory cytokines were also decreased by NLRP3 inhibition. In conclusion, this study demonstrates that microglial NLRP3 inhibition prevents stress-induced neuroinflammation in the prefrontal cortex and suggests that microglial NLRP3 could be one of the potential therapeutic targets for depression treatment.
Collapse
Affiliation(s)
- Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, PR China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, PR China
| | - Min-Xia Guo
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, PR China
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Fujian province, Xiamen, 361009, PR China
| | - Na-Zhi Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, PR China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, PR China
| | - Shi-Le Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Fujian province, Xiamen, 361008, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Fujian province, Xiamen, 361009, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, PR China.
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, PR China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021, PR China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, PR China.
| |
Collapse
|
30
|
Parekh SV, Adams LO, Barkell GA, Lysle DT. MDMA administration attenuates hippocampal IL-β immunoreactivity and subsequent stress-enhanced fear learning: An animal model of PTSD. Brain Behav Immun Health 2022; 26:100542. [DOI: 10.1016/j.bbih.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
|
31
|
Moreira LKDS, Turones LC, Campos HM, Nazareth AM, Thomaz DV, Gil EDS, Ghedini PC, Rocha FFD, Menegatti R, Fajemiroye JO, Costa EA. LQFM212, a piperazine derivative, exhibits potential antioxidant effect as well as ameliorates LPS-induced behavioral, inflammatory and oxidative changes. Life Sci 2022; 312:121199. [PMID: 36402170 DOI: 10.1016/j.lfs.2022.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
AIMS Oxidative stress, impaired antioxidant defense and neuroinflammation are often associated with the onset and progression of neuropsychiatric diseases. Conversely, several piperazine compounds presents beneficial neuropharmacological effects as well as antioxidant activity, and some derivatives combine both activities. LQFM212 (2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol) was synthesized to produce effects on CNS and to have an additional antioxidant effect. Previous preclinical tests have been shown anxiolytic- and antidepressant-like effects of LQFM212 in mice. Herein, the main objective was to verify the possible antioxidant potential and the effects of LQFM212 against behavioral changes, inflammatory and oxidative markers induced by lipopolysaccharide (LPS). MAIN METHODS Initially, antioxidant potential of LQFM212 was evaluated by electrochemical assays. Afterwards, the effects of oral treatment with LQFM212 were evaluated in mice using LPS-induced models of systemic or local inflammation. KEY FINDINGS In LPS-induced neuroinflammation, LQFM212 treatment reverted changes caused by LPS, demonstrated by attenuated anxiogenic- and depressive-like behaviors, reduced pro-inflammatory cytokines (TNF-α and IL-1β) and increased anti-inflammatory cytokines (IL-4 and IL-10) on serum, and also improved oxidative stress-related changes (levels of nitrite, malondialdehyde, glutathione and carbonylated protein, and superoxide dismutase, catalase, myeloperoxidase and cholinesterase activities) on brain cortex and hippocampus. However, LQFM212 treatment did not attenuate the inflammatory changes in LPS-induced pleurisy model. SIGNIFICANCE LQFM212 presents antioxidant activity and ameliorates behavioral, inflammatory and oxidative changes after LPS-induced neuroinflammation model. These effects do not seem to be secondary to a peripheral anti-inflammatory action of LQFM212, since this compound failed to attenuate the inflammatory changes in LPS-induced pleurisy model.
Collapse
Affiliation(s)
- Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Hericles Mesquita Campos
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biological Sciences, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Aline Martins Nazareth
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Douglas Vieira Thomaz
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eric de Souza Gil
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo César Ghedini
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biological Sciences, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Fábio Fagundes da Rocha
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
32
|
Semen Sojae Praeparatum improves anxiety in mice by inhibiting HPA axis hyperactivity and modulating gut microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Chronic multiple mild stress induces sustained adverse psychological states in rats. Neuroreport 2022; 33:669-680. [DOI: 10.1097/wnr.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Minocycline Ameliorates Chronic Unpredictable Mild Stress-Induced Neuroinflammation and Abnormal mPFC-HIPP Oscillations in Mice. Mol Neurobiol 2022; 59:6874-6895. [PMID: 36048340 DOI: 10.1007/s12035-022-03018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Stress-induced neuroinflammation is a hallmark of modern society and has been linked to various emotional disorders, including anxiety. However, how microglia-associated neuroinflammation under chronic unpredictable mild stress (CUMS) alters mitochondrial function and subsequent medial prefrontal cortex-hippocampus (mPFC-HIPP) connectivity remains obscure. We speculated that CUMS might induce neuroinflammation, which involves altered mitochondrial protein levels, blockade of neuroinflammation by a microglial modulator, minocycline, protects against CUMS-induced alterations. Mice were exposed to CUMS for 3 weeks and received minocycline (50 mg/kg) intraperitoneally for 7 consecutive days during the 3rd week of CUMS. Novelty-suppressed feeding test and contextual anxiety test assessed anxiety-like behavior. Western blotting and immunofluorescent staining were employed to evaluate levels of proteins involved in neuroinflammation and mitochondrial function. In vivo dual-site extracellular recordings of local field potential (LFP) were conducted to evaluate the oscillatory activity and brain connectivity in mPFC-HIPP circuitry. We show that CUMS results in excessive microglial activation accompanied by aberrant levels of mitochondrial proteins, such as ATP-5A and the fission protein, Drp-1, increased oxidative stress indicated by elevated levels of nitrotyrosine, and decreased Nrf-2 levels. Furthermore, CUMS causes downregulation of α1 subunit of GABAAR, vesicular GABA transporter (Vgat), and glutamine synthetase (GS), leading to impaired LFP and connectivity of the mPFC-HIPP circuitry. Strikingly, blockage of microglial activation by minocycline ameliorates CUMS-induced aberrant levels of mitochondrial and GABAergic signaling proteins and prevents CUMS-induced anxiety-like behavior in mice. To the end, the study revealed that microglia is critically involved in stress-induced neuroinflammation, which may underlie the molecular mechanism of CUMS-induced anxiety behavior.
Collapse
|
35
|
de Mello AJ, Moretti M, Rodrigues ALS. SARS-CoV-2 consequences for mental health: Neuroinflammatory pathways linking COVID-19 to anxiety and depression. World J Psychiatry 2022; 12:874-883. [PMID: 36051596 PMCID: PMC9331446 DOI: 10.5498/wjp.v12.i7.874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been linked to an increased prevalence of mental health disorders, particularly anxiety and depression. Moreover, the COVID-19 pandemic has caused stress in people worldwide due to several factors, including fear of infection; social isolation; difficulty in adapting to new routines; lack of coping methods; high exposure to social media, misinformation, and fake reports; economic impact of the measures implemented to slow the contagion and concerns regarding the disease pathogenesis. COVID-19 patients have elevated levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, and other inflammation-related factors. Furthermore, invasion of the central nervous system by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may potentially contribute to neuroinflammatory alterations in infected individuals. Neuroinflammation, a consequence of psychological stress due to the COVID-19 pandemic, may also play a role in the development of anxiety and depressive symptoms in the general population. Considering that neuroinflammation plays a significant role in the pathophysiology of depression and anxiety, this study investigated the effects of SARS-CoV-2 on mental health and focused on the impact of the COVID-19 pandemic on the neuroinflammatory pathways.
Collapse
Affiliation(s)
- Anna Julie de Mello
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88040-200, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88040-200, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88040-200, Brazil
| |
Collapse
|
36
|
Bordini M, Soglia F, Davoli R, Zappaterra M, Petracci M, Meluzzi A. Molecular Pathways and Key Genes Associated With Breast Width and Protein Content in White Striping and Wooden Breast Chicken Pectoral Muscle. Front Physiol 2022; 13:936768. [PMID: 35874513 PMCID: PMC9304951 DOI: 10.3389/fphys.2022.936768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Growth-related abnormalities affecting modern chickens, known as White Striping (WS) and Wooden Breast (WB), have been deeply investigated in the last decade. Nevertheless, their precise etiology remains unclear. The present study aimed at providing new insights into the molecular mechanisms involved in their onset by identifying clusters of co-expressed genes (i.e., modules) and key loci associated with phenotypes highly related to the occurrence of these muscular disorders. The data obtained by a Weighted Gene Co-expression Network Analysis (WGCNA) were investigated to identify hub genes associated with the parameters breast width (W) and total crude protein content (PC) of Pectoralis major muscles (PM) previously harvested from 12 fast-growing broilers (6 normal vs. 6 affected by WS/WB). W and PC can be considered markers of the high breast yield of modern broilers and the impaired composition of abnormal fillets, respectively. Among the identified modules, the turquoise (r = -0.90, p < 0.0001) and yellow2 (r = 0.91, p < 0.0001) were those most significantly related to PC and W, and therefore respectively named “protein content” and “width” modules. Functional analysis of the width module evidenced genes involved in the ubiquitin-mediated proteolysis and inflammatory response. GTPase activator activity, PI3K-Akt signaling pathway, collagen catabolic process, and blood vessel development have been detected among the most significant functional categories of the protein content module. The most interconnected hub genes detected for the width module encode for proteins implicated in the adaptive responses to oxidative stress (i.e., THRAP3 and PRPF40A), and a member of the inhibitor of apoptosis family (i.e., BIRC2) involved in contrasting apoptotic events related to the endoplasmic reticulum (ER)-stress. The protein content module showed hub genes coding for different types of collagens (such as COL6A3 and COL5A2), along with MMP2 and SPARC, which are implicated in Collagen type IV catabolism and biosynthesis. Taken together, the present findings suggested that an ER stress condition may underly the inflammatory responses and apoptotic events taking place within affected PM muscles. Moreover, these results support the hypothesis of a role of the Collagen type IV in the cascade of events leading to the occurrence of WS/WB and identify novel actors probably involved in their onset.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Beckner ME, Conkright WR, Mi Q, Martin BJ, Sahu A, Flanagan SD, Ledford AK, Wright M, Susmarski A, Ambrosio F, Nindl BC. Neuroendocrine, Inflammatory, and Extracellular Vesicle Responses During the Navy Special Warfare Screener Selection Course. Physiol Genomics 2022; 54:283-295. [PMID: 35695270 PMCID: PMC9291410 DOI: 10.1152/physiolgenomics.00184.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Military operational stress is known to increase adrenal hormones and inflammatory cytokines, while decreasing hormones associated with the anabolic milieu and neuroendocrine system. Less is known about the role of extracellular vesicles (EVs), a form of cell-to-cell communication, in military operational stress and their relationship to circulating hormones. PURPOSE To characterize the neuroendocrine, cytokine, and EV response to an intense, 24-h selection course known as the Naval Special Warfare (NSW) Screener and identify associations between EVs and cytokines. METHODS Blood samples were collected the morning of and following the NSW Screener in 29 men (18 - 26 years). Samples were analyzed for concentrations of cortisol, insulin-like growth factor I (IGF-I), neuropeptide-Y (NPY), brain-derived neurotrophic factor (BDNF), α-klotho, tumor necrosis factor- α (TNFα), and interleukins (IL) -1β, -6, and -10. EVs stained with markers associated with exosomes (CD63), microvesicles (VAMP3), and apoptotic bodies (THSD1) were characterized using imaging flow cytometry and vesicle flow cytometry. RESULTS The selection event induced significant changes in circulating BDNF (-43.2%), IGF-I (-24.56%), TNFα (+17.7%), IL-6 (+13.6%), accompanied by increases in intensities of THSD1+ and VAMP3+ EVs (all p<0.05). Higher concentrations of IL-1β and IL-10 were positively associated with THSD1+ EVs (p<0.05). CONCLUSION Military operational stress altered the EV profile. Surface markers associated with apoptotic bodies were positively correlated with an inflammatory response. Future studies should consider a multi-omics assessment of EV cargo to discern canonical pathways that may be mediated by EVs during military stress.
Collapse
Affiliation(s)
- Meaghan E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R Conkright
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian J Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew K Ledford
- Department of Leadership, Ethics, and Law, U.S. Naval Academy, Annapolis, MD, United States
| | - Martin Wright
- Human Performance Lab, Physical Education Department, U.S. Naval Academy, Annapolis, MD, United States
| | - Adam Susmarski
- Brigade Orthopedics and Sports Medicine, U.S. Navy Academy, Annapolis, MD, United States
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Eskandari F, Salimi M, Hedayati M, Zardooz H. Maternal separation induced resilience to depression and spatial memory deficit despite intensifying hippocampal inflammatory responses to chronic social defeat stress in young adult male rats. Behav Brain Res 2022; 425:113810. [PMID: 35189174 DOI: 10.1016/j.bbr.2022.113810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Early life adversity has been suggested to affect neuroendocrine responses to subsequent stressors and accordingly vulnerability for behavioral disorders. This is the first work to study the effects of maternal separation (MS) stress on the co-occurrence of depression and cognitive impairments along with hippocampal inflammatory response under chronic social defeat stress (CSDS) in young adult male rats. During the first two postnatal weeks, the male pups were either exposed to MS or left undisturbed with their mothers (Std). Subsequently, starting on postnatal day 50, the animals of each group were either left undisturbed in the standard group housing (Con) or underwent CSDS for three weeks. Totally, there were four groups (n = 10/group), namely Std-Con, Ms-Con, Std-CSDS, and MS-CSDS. Pup retrieval test was performed on daily basis from PND1 to PND14. During the last week of the CSDS exposure, in the light phase, the behavioral tests and the retro-orbital blood sampling were performed to assess basal plasma corticosterone levels. Afterwards, the hippocampus of the animals was removed to measure the interleukin 1β (IL-1β) content. Exposure to CSDS increased the plasma corticosterone levels and induced social avoidance along with memory deficit. Maternal separation intensified hippocampal IL-1β contents as well as the plasma corticosterone levels in response to CSDS. Meanwhile, it facilitated the spatial learning and potentiated resilience to social avoidance and memory deficit. In conclusion, although maternal separation increased the basal plasma corticosterone levels, it could facilitate the learning process and induce resilience to the onset of depression and memory deficit in response to CSDS, probably through the compensatory increase in maternal care and the induction of mild hippocampal inflammatory response.
Collapse
Affiliation(s)
- Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Cathomas F, Holt LM, Parise EM, Liu J, Murrough JW, Casaccia P, Nestler EJ, Russo SJ. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron 2022; 110:1116-1138. [PMID: 35182484 PMCID: PMC8989648 DOI: 10.1016/j.neuron.2022.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
41
|
Cheiran Pereira G, Piton E, Moreira Dos Santos B, Ramanzini LG, Muniz Camargo LF, Menezes da Silva R, Bochi GV. Microglia and HPA axis in depression: An overview of participation and relationship. World J Biol Psychiatry 2022; 23:165-182. [PMID: 34100334 DOI: 10.1080/15622975.2021.1939154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: This narrative review article provides an overview on the involvement of microglia and the hypothalamic-pituitary-adrenal (HPA) axis in the pathophysiology of depression, as well investigates the mutual relationship between these two entities: how microglial activation can contribute to the dysregulation of the HPA axis, and vice versa.Methods: Relevant studies and reviews already published in the Pubmed electronic database involving the themes microglia, HPA axis and depression were used to meet the objectives.Results: Exposition to stressful events is considered a common factor in the mechanisms proposed to explain the depressive disorder. Stress can activate microglial cells, important immune components of the central nervous system (CNS). Moreover, another system involved in the physiological response to stressors is the hypothalamic-pituitary-adrenal (HPA) axis, the main stress response system responsible for the production of the glucocorticoid hormone (GC). Also, mediators released after microglial activation can stimulate the HPA axis, inducing production of GC. Likewise, high levels of GCs are also capable of activating microglia, generating a vicious cycle.Conclusion: Immune and neuroendocrine systems seems to work in a coordinated manner and that their dysregulation may be involved in the pathophysiology of depression since neuroinflammation and hypercortisolism are often observed in this disorder.
Collapse
Affiliation(s)
- Gabriele Cheiran Pereira
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Elisa Piton
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Brenda Moreira Dos Santos
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Guilherme Ramanzini
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Fernando Muniz Camargo
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Rossano Menezes da Silva
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
42
|
Frank MG, Nguyen KH, Ball JB, Hopkins S, Kelley T, Baratta MV, Fleshner M, Maier SF. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav Immun 2022; 100:267-277. [PMID: 34915155 PMCID: PMC8667429 DOI: 10.1016/j.bbi.2021.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection produces neuroinflammation as well as neurological, cognitive (i.e., brain fog), and neuropsychiatric symptoms (e.g., depression, anxiety), which can persist for an extended period (6 months) after resolution of the infection. The neuroimmune mechanism(s) that produces SARS-CoV-2-induced neuroinflammation has not been characterized. Proposed mechanisms include peripheral cytokine signaling to the brain and/or direct viral infection of the CNS. Here, we explore the novel hypothesis that a structural protein (S1) derived from SARS-CoV-2 functions as a pathogen-associated molecular pattern (PAMP) to induce neuroinflammatory processes independent of viral infection. Prior evidence suggests that the S1 subunit of the SARS-CoV-2 spike protein is inflammatory in vitro and signals through the pattern recognition receptor TLR4. Therefore, we examined whether the S1 subunit is sufficient to drive 1) a behavioral sickness response, 2) a neuroinflammatory response, 3) direct activation of microglia in vitro, and 4) activation of transgenic human TLR2 and TLR4 HEK293 cells. Adult male Sprague-Dawley rats were injected intra-cisterna magna (ICM) with vehicle or S1. In-cage behavioral monitoring (8 h post-ICM) demonstrated that S1 reduced several behaviors, including total activity, self-grooming, and wall-rearing. S1 also increased social avoidance in the juvenile social exploration test (24 h post-ICM). S1 increased and/or modulated neuroimmune gene expression (Iba1, Cd11b, MhcIIα, Cd200r1, Gfap, Tlr2, Tlr4, Nlrp3, Il1b, Hmgb1) and protein levels (IFNγ, IL-1β, TNF, CXCL1, IL-2, IL-10), which varied across brain regions (hypothalamus, hippocampus, and frontal cortex) and time (24 h and 7d) post-S1 treatment. Direct exposure of microglia to S1 resulted in increased gene expression (Il1b, Il6, Tnf, Nlrp3) and protein levels (IL-1β, IL-6, TNF, CXCL1, IL-10). S1 also activated TLR2 and TLR4 receptor signaling in HEK293 transgenic cells. Taken together, these findings suggest that structural proteins derived from SARS-CoV-2 might function independently as PAMPs to induce neuroinflammatory processes via pattern recognition receptor engagement.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States.
| | - Kathy H Nguyen
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Jayson B Ball
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Shelby Hopkins
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Tel Kelley
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Monika Fleshner
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| |
Collapse
|
43
|
Feugere L, Scott VF, Rodriguez-Barucg Q, Beltran-Alvarez P, Wollenberg Valero KC. Thermal stress induces a positive phenotypic and molecular feedback loop in zebrafish embryos. J Therm Biol 2021; 102:103114. [PMID: 34863478 DOI: 10.1016/j.jtherbio.2021.103114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Aquatic organisms must cope with both rising and rapidly changing temperatures. These thermal changes can affect numerous traits, from molecular to ecological scales. Biotic stressors are already known to induce the release of chemical cues which trigger behavioural responses in other individuals. In this study, we infer whether fluctuating temperature, as an abiotic stressor, may similarly induce stress-like responses in individuals not directly exposed to the stressor. To test this hypothesis, zebrafish (Danio rerio) embryos were exposed for 24 h to fluctuating thermal stress, to medium in which another embryo was thermally stressed before ("stress medium"), and to a combination of these. Growth, behaviour, expression of molecular markers, and of whole-embryo cortisol were used to characterise the thermal stress response and its propagation between embryos. Both fluctuating high temperature and stress medium significantly accelerated development, by shifting stressed embryos from segmentation to pharyngula stages, and altered embryonic activity. Importantly, we found that the expression of sulfide:quinone oxidoreductase (SQOR), the antioxidant gene SOD1, and of interleukin-1β (IL-1β) were significantly altered by stress medium. This study illustrates the existence of positive thermal stress feedback loops in zebrafish embryos where heat stress can induce stress-like responses in conspecifics, but which might operate via different molecular pathways. If similar effects also occur under less severe heat stress regimes, this mechanism may be relevant in natural settings as well.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Victoria F Scott
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom; Energy and Environment Institute, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Quentin Rodriguez-Barucg
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Pedro Beltran-Alvarez
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
44
|
Xiang Y, Dai J, Xu L, Li X, Jiang J, Xu J. Research progress in immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury. Life Sci 2021; 287:120117. [PMID: 34740577 DOI: 10.1016/j.lfs.2021.120117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xiaokang Li
- Natl Res Inst Child Hlth & Dev, Div Transplantat Immunol, Tokyo, Japan
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China; Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
45
|
Abd Al Haleem EN, Ahmed HI, El-Naga RN. Lycopene and Chrysin through Mitigation of Neuroinflammation and Oxidative Stress Exerted Antidepressant Effects in Clonidine-Induced Depression-like Behavior in Rats. J Diet Suppl 2021; 20:391-410. [PMID: 34633271 DOI: 10.1080/19390211.2021.1988797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Depression is a severely debilitating psychiatric disorder that influences more than 15% of the population worldwide. It has been demonstrated that it is associated with a high risk of developing other diseases such as cardiovascular diseases, diabetes, stroke, epilepsy, and cancer. The current study examines the possibility of chrysin and lycopene having an antidepressant effect in a rat model of depression induced by clonidine, as well as the mechanisms underlying this effect, including the role of neuroinflammation and oxidative stress. Rats were allotted into seven groups. The rats in group 1 served as a control. Group 2 received lycopene only. Group 3 was provided chrysin only. Group 4 was administered clonidine and served as the model. Group 5 was offered lycopene and clonidine. Group 6 was administered chrysin and clonidine. Group 7 was given FLX and clonidine and represented the standard. The experiment lasted two weeks, during which behavioral, biochemical, histopathological, and immunohistochemical measurements were performed. Lycopene and chrysin were used to correct the concentrations of noradrenaline and serotonin hippocampal tissue concentrations. These findings were also improved by immunohistochemical analysis of GFAP, VEGF, caspase3, and histopathological examinations, in which pretreatment of rats with lycopene and chrysin reversed all clonidine-induced alterations. The current research demonstrates that lycopene and chrysin have an auspicious antidepressant effect against clonidine that provoked behavioral hopelessness in rats. Manipulating oxidative stress, inflammation, and apoptosis may partially represent the corrective mechanism for the neuroprotective actions against the depressive effect of clonidine.
Collapse
Affiliation(s)
- Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
46
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
47
|
Sun G, Lin X, Yi X, Zhang P, Liu R, Fu B, Sun Y, Li J, Jiao S, Tian T, Xu XM, Tseng KW, Lin CH. Aircraft noise, like heat stress, causes cognitive impairments via similar mechanisms in male mice. CHEMOSPHERE 2021; 274:129739. [PMID: 33529949 DOI: 10.1016/j.chemosphere.2021.129739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
To our knowledge, little evidence is available about effects of aircraft noise (AN), a non-chemical stressor, on cognitive function. Again, it is unknown whether or not the heat stress (HS)-induced cognitive deficits can be exacerbated by AN. The adult male mice were assigned to four groups: group 1 mice exposed to non-HS (24-26 °C 2 h daily for 4 consecutive days) and white noise (WN) (2 h daily for 4 consecutive days), group 2 mice exposed to WN and HS (32-34 °C 2 h daily for 4 consecutive days), group 3 mice exposed to AN and non-HS (2 h daily for 4 consecutive days) and group 4 mice exposed to AN and HS (2 h daily for consecutive 4 days). Cognitive function were determined by passive avoidance, Y-maze, Morris water maze, and novel object recognition tests. Gut barrier and blood-brain-barrier (BBB) permeability, upload of lipopolysaccharide (LPS) translocation, systemic and central inflammation, and stress reactions were examined. Heat stressed mice displayed both increased stress reactions and learning and memory loss. Heat stress also caused gut barrier hyperpermeability, increased upload of LPS translocation, systemic inflammation, BBB disruption and hippocampal neuroinflammation. Aircraft noise stressed mice did not display systemic inflammation but caused gut barrier hyperpermeability, increased upload of LPS translocation, increased stress reactions, BBB disruption, hippocampal neuroinflammation and cognitive deficits. Aircraft noise exposure further exacerbated the heat stress-induced cognitive deficits and its complications. Our data suggest that AN, like HS, causes cognitive impairments via similar mechanisms in male mice.
Collapse
Affiliation(s)
- Gang Sun
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China.
| | - Xiaojing Lin
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China; Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, PR China
| | - Xueqing Yi
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China
| | - Peng Zhang
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China
| | - Ruoxu Liu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, PR China
| | - Bo Fu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, PR China
| | - Yating Sun
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China; Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, PR China
| | - Jing Li
- Department of Neurology, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China
| | - Shuxin Jiao
- Department of Neurology, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, PR China
| | - Tian Tian
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, PR China
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, USA
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei City and Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City and Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
48
|
Patankar PS, Joshi S, Mane A, Manjesh PS, Kokate D. Anxiolytic effect of minocycline in posttraumatic stress disorder model of Syrian hamsters. Tzu Chi Med J 2021; 33:263-269. [PMID: 34386364 PMCID: PMC8323640 DOI: 10.4103/tcmj.tcmj_243_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE The objective was to study the anxiolytic effect of minocycline in resident-intruder social conflict in submissive hamsters post resident intrusion model using open field test (OFT) and elevated plus maze (EPM) and serum cortisol levels. MATERIALS AND METHODS Fifty-two singly housed male Syrian hamsters were used, post standardization of an animal model. Resident intrusion was done (5 min), in which smaller hamsters were placed in the cage of larger hamster, and the behavior of smaller hamster was noted. Eight submissive hamsters per group (disease control, lorazepam group as a positive control, and the test drug was minocycline) were used, and the drug was administered immediately post resident intrusion, intraperitoneally. Behavioral tests, namely OFT and EPM, were done followed by retro-orbital blood collection for serum cortisol estimation. The level of significance was set at P < 0.05. RESULTS The minocycline group showed a statistically significant decrease in serum cortisol levels compared to the disease control group. Among all the variables pertaining to both the behavioral tests, namely EPM and OFT, the results indicated an anxiolytic effect, which was statistically significant compared to the disease control group. CONCLUSION As per the biochemical test using serum cortisol levels and behavioral tests in the form of EPM and OFT, the study concluded that the anxiolytic effect of minocycline is at least comparable to the positive control, lorazepam.
Collapse
Affiliation(s)
- Panini Shrikant Patankar
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, Maharashtra, India
| | - Shirish Joshi
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, Maharashtra, India
| | - Abhishek Mane
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, Maharashtra, India
| | - P. S. Manjesh
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, Maharashtra, India
| | - Dhananjay Kokate
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
49
|
Kino T, Burd I, Segars JH. Dexamethasone for Severe COVID-19: How Does It Work at Cellular and Molecular Levels? Int J Mol Sci 2021; 22:ijms22136764. [PMID: 34201797 PMCID: PMC8269070 DOI: 10.3390/ijms22136764] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by infection of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) significantly impacted human society. Recently, the synthetic pure glucocorticoid dexamethasone was identified as an effective compound for treatment of severe COVID-19. However, glucocorticoids are generally harmful for infectious diseases, such as bacterial sepsis and severe influenza pneumonia, which can develop respiratory failure and systemic inflammation similar to COVID-19. This apparent inconsistency suggests the presence of pathologic mechanism(s) unique to COVID-19 that renders this steroid effective. We review plausible mechanisms and advance the hypothesis that SARS-CoV-2 infection is accompanied by infected cell-specific glucocorticoid insensitivity as reported for some other viruses. This alteration in local glucocorticoid actions interferes with undesired glucocorticoid to facilitate viral replication but does not affect desired anti-inflammatory properties in non-infected organs/tissues. We postulate that the virus coincidentally causes glucocorticoid insensitivity in the process of modulating host cell activities for promoting its replication in infected cells. We explore this tenet focusing on SARS-CoV-2-encoding proteins and potential molecular mechanisms supporting this hypothetical glucocorticoid insensitivity unique to COVID-19 but not characteristic of other life-threatening viral diseases, probably due to a difference in specific virally-encoded molecules and host cell activities modulated by them.
Collapse
Affiliation(s)
- Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Sidra Medicine, Doha 26999, Qatar
- Correspondence: ; Tel.: +974-4003-7566
| | - Irina Burd
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (I.B.); (J.H.S.)
| | - James H. Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (I.B.); (J.H.S.)
| |
Collapse
|
50
|
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021; 10:cells10061283. [PMID: 34064233 PMCID: PMC8224372 DOI: 10.3390/cells10061283] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD. However, none of these hypotheses are comprehensive because none of them can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share some common pathways, which lead us to believe that these hypotheses depict several pieces of the same big puzzle. Therefore, in this review, we provide a brief description of these theories and their strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of all major theories of depression and combine them together to present the current overall picture. The analysis of all hypotheses suggests that there is interdependence between all the brain structures and various substances involved in the pathogenesis of MDD, which could be not entirely universal, but can affect all of the brain regions, to one degree or another, depending on the triggering factor, which, in turn, could explain the different subtypes of MDD.
Collapse
|