1
|
Baidoo N, Shaver A, Ginson B, Castellani J, Lapointe T, Wolter M, Leri F. Memory enhancement by unconditioned and conditioned heroin withdrawal: Role of corticotropin-releasing factor in the central amygdala. Neuropharmacology 2025; 269:110341. [PMID: 39923961 DOI: 10.1016/j.neuropharm.2025.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
To test the hypothesis that unconditioned and conditioned opioid withdrawal enhance memory consolidation through shared neurobiological mechanisms, the current study focused on the central amygdala (CeA) and local corticotropin-releasing factor (CRF) neurotransmission. In the unconditioned withdrawal experiments, male Sprague-Dawley rats were implanted with subcutaneous osmotic mini-pumps releasing 3.5 mg/kg/day heroin (or sham surgery) and injected with 3 mg/kg naloxone (NLX) to precipitate withdrawal. In the conditioned withdrawal experiments, rats injected with heroin (2 mg/kg x 2 injections) received 3 mg/kg NLX immediately prior to confinement to one compartment (CS+) of a place conditioning apparatus, or vehicle prior to confinement in the alternative compartment (CS-). Using immunohistochemistry, it was established that both precipitated withdrawal and confinement to the withdrawal-paired CS + compartment elevated c-Fos expression within the CeA. More importantly, using the post-training approach to target consolidation of object memory, it was found that intra-CeA infusions of the CRF1 receptor antagonist ANT (0.2-2 μg/inf) blocked the memory-enhancing effects of both precipitated withdrawal and exposure to the withdrawal-paired CS + compartment. These findings indicate that pharmacological and conditioned opioid withdrawal influence memory consolidation through a common CRF-mediated mechanism within the CeA.
Collapse
Affiliation(s)
- Nana Baidoo
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada
| | - Aiden Shaver
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada
| | - Brooke Ginson
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada
| | - Julia Castellani
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada
| | - Thomas Lapointe
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada
| | - Michael Wolter
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology & Collaborative Neuroscience Program, University of Guelph, Ontario, Canada; Department of Psychology, University of Toronto Scarborough, Ontario, Canada.
| |
Collapse
|
2
|
Roland AV. Few but Not Futile: A Sparse Nucleus Accumbens Corticotropin-Releasing Factor Population Regulates Reward Learning. Biol Psychiatry 2025; 97:561-562. [PMID: 39971403 DOI: 10.1016/j.biopsych.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/21/2025]
Affiliation(s)
- Alison V Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
3
|
Schneider P, Goldbaum D, Agarwal A, Taylor A, Sundberg P, Gardner EL, Ranaldi R, You ZB, Galaj E. Region-specific neuroadaptations of CRF1 and CRF2 expression following heroin exposure in female rats. Pharmacol Biochem Behav 2025; 247:173931. [PMID: 39626795 PMCID: PMC11769769 DOI: 10.1016/j.pbb.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 01/30/2025]
Abstract
While stress increases vulnerability to development of addiction, the recruitment of corticotropin releasing factor (CRF) with excessive drug use heightens the risk of stress-induced relapse. CRF signaling is transmitted via CRF1 and CRF2 receptors, but the roles of these receptors in heroin self-administration and related neuroadaptations of the CRF system within mesolimbic brain loci are not well understood. In this study, we first investigated the causal role of CRF1 and CRF2 receptors in heroin self-administration. Intracerebroventricular (ICV) microinjections of antalarmin (a CRF1 antagonist) or astressin-2B (a CRF2 antagonist) caused brief, dose-dependent reductions in heroin self-administration in female rats, suggesting that these receptors play a critical role in heroin-motivated behaviors. We then used western blotting to examine neuroadaptive changes to CRF1 and CRF2 receptor expression in key forebrain and midbrain regions associated with opioid addiction. Female Long Evans rats treated with escalating doses of heroin for 16 days demonstrated significantly higher naloxone-precipitated withdrawal symptoms than saline-treated rats. Heroin-treated rats showed a significant decrease in CRF1 receptor protein expression in the ventral tegmental area (VTA) and an increase in the nucleus accumbens (NAc) but no changes in the prefrontal cortex (PFC), insula, dorsal striatum (dSTR), dorsal hippocampus (dHippo), anterior hypothalamus (HYPTH), amygdala, or substantia nigra (SN) as compared to saline-treated rats. After chronic heroin exposure, CRF2 receptor expression was significantly downregulated in the dHippo, VTA and HYPTH but not in the other brain regions we investigated. The results of this study suggest that: (1) CRF1 and CRF2 receptors play an important role in self-administration and (2) heroin exposure may lead to region-specific neuroadaptation of CRF1 and CRF2 receptors. Such neuroadaptations might in part contribute to the continuation of drug use and stress-induced relapse.
Collapse
Affiliation(s)
- Piper Schneider
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Danielle Goldbaum
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Ansh Agarwal
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Ashton Taylor
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Peyton Sundberg
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
4
|
Lin ERH, Veenker FN, Manza P, Yonga MV, Abey S, Wang GJ, Volkow ND. The Limbic System in Co-Occurring Substance Use and Anxiety Disorders: A Narrative Review Using the RDoC Framework. Brain Sci 2024; 14:1285. [PMID: 39766484 PMCID: PMC11674329 DOI: 10.3390/brainsci14121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Substance use disorders (SUDs) and anxiety disorders (ADs) are highly comorbid, a co-occurrence linked to worse clinical outcomes than either condition alone. While the neurobiological mechanisms involved in SUDs and anxiety disorders are intensively studied separately, the mechanisms underlying their comorbidity remain an emerging area of interest. This narrative review explores the neurobiological processes underlying this comorbidity, using the Research Domain Criteria (RDoC) framework to map disruptions in positive valence, negative valence, and cognitive systems across the three stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Anxiety and substance use play a reciprocal role at each stage of addiction, marked by significant psychosocial impairment and dysregulation in the brain. A more thorough understanding of the neural underpinnings involved in comorbid SUDs and anxiety disorders will contribute to more tailored and effective therapeutic interventions and assessments.
Collapse
Affiliation(s)
| | | | | | | | | | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (E.R.-H.L.); (F.N.V.); (P.M.); (M.-V.Y.); (S.A.); (N.D.V.)
| | | |
Collapse
|
5
|
El Mostafi H, Elhessni A, Doumar H, Touil T, Mesfioui A. Behavioral and Amygdala Biochemical Damage Induced by Alternating Mild Stress and Ethanol Intoxication in Adolescent Rats: Reversal by Argan Oil Treatment? Int J Mol Sci 2024; 25:10529. [PMID: 39408860 PMCID: PMC11476757 DOI: 10.3390/ijms251910529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Adolescence is a critical period when the effects of ethanol and stress exposure are particularly pronounced. Argan oil (AO), a natural vegetable oil known for its diverse pharmacological benefits, was investigated for its potential to mitigate addictive-like behaviors and brain damage induced by adolescent intermittent ethanol intoxication (IEI) and unpredictable mild stress (UMS). From P30 to P43, IEI rats received a daily ip ethanol (3 g/kg) on a two-day on/two-day off schedule. On alternate days, the rats were submitted to UMS protocol. Next, a two-bottle free access paradigm was performed over 10 weeks to assess intermittent 20% ethanol voluntary consumption. During the same period, the rats were gavaged daily with AO (15 mL/kg). Our results show that IEI/UMS significantly increased voluntary alcohol consumption (from 3.9 g/kg/24 h to 5.8 g/kg/24 h) and exacerbated withdrawal signs and relapse-like drinking in adulthood. Although AO treatment slightly reduced ethanol intake, it notably alleviated withdrawal signs during abstinence and relapse-like drinking in adulthood. AO's effects were associated with its modulation of the HPA axis (elevated serum corticosterone), restoration of amygdala oxidative balance, BDNF levels, and attenuation of neurodegeneration. These findings suggest that AO's neuroprotective properties could offer a potential therapeutic avenue for reducing ethanol/stress-induced brain damage and addiction. Further research is needed to explore its mechanisms and therapeutic potential in alcohol use disorders.
Collapse
Affiliation(s)
- Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Tarik Touil
- Higher Institute of Nursing and Health Professions of Rabat, Rabat 4502, Morocco;
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| |
Collapse
|
6
|
Huang S, Shi C, Tao D, Yang C, Luo Y. Modulating reward and aversion: Insights into addiction from the paraventricular nucleus. CNS Neurosci Ther 2024; 30:e70046. [PMID: 39295107 PMCID: PMC11410887 DOI: 10.1111/cns.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Drug addiction, characterized by compulsive drug use and high relapse rates, arises from complex interactions between reward and aversion systems in the brain. The paraventricular nucleus (PVN), located in the anterior hypothalamus, serves as a neuroendocrine center and is a key component of the hypothalamic-pituitary-adrenal axis. OBJECTIVE This review aimed to explore how the PVN impacts reward and aversion in drug addiction through stress responses and emotional regulation and to evaluate the potential of PVN as a therapeutic target for drug addiction. METHODS We review the current literature, focusing on three main neuron types in the PVN-corticotropin-releasing factor, oxytocin, and arginine vasopressin neurons-as well as other related neurons, to understand their roles in modulating addiction. RESULTS Existing studies highlight the PVN as a key mediator in addiction, playing a dual role in reward and aversion systems. These findings are crucial for understanding addiction mechanisms and developing targeted therapies. CONCLUSION The role of PVN in stress response and emotional regulation suggests its potential as a therapeutic target in drug addiction, offering new insights for addiction treatment.
Collapse
Affiliation(s)
- Shihao Huang
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence ResearchPeking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Cuijie Shi
- College of Forensic MedicineHebei Medical UniversityShijiazhuangChina
| | - Dan Tao
- School of MedicineHunan Normal UniversityChangshaChina
| | - Chang Yang
- School of MedicineHunan Normal UniversityChangshaChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Key Laboratory for Birth Defects Research and Prevention of the National Health CommissionHunan Provincial Maternal and Child Health Care HospitalChangshaChina
| |
Collapse
|
7
|
Mueller LE, Wexler RS, Lovejoy DA, Stein RB, Slee AM. Teneurin C-terminal associated peptide (TCAP)-1 attenuates the development and expression of naloxone-precipitated morphine withdrawal in male Swiss Webster mice. Psychopharmacology (Berl) 2024; 241:1565-1575. [PMID: 38630316 PMCID: PMC11269454 DOI: 10.1007/s00213-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 07/25/2024]
Abstract
RATIONALE Corticotropin-releasing factor (CRF), the apical stress-inducing hormone, exacerbates stress and addictive behaviors. TCAP-1 is a peptide that directly inhibits both CRF-mediated stress and addiction-related behaviors; however, the direct action of TCAP-1 on morphine withdrawal-associated behaviors has not previously been examined. OBJECTIVE To determine whether TCAP-1 administration attenuates behavioral and physiological consequences of morphine withdrawal in mice. METHODS Mice were administered via subcutaneous route TCAP-1 either before or after initial morphine exposure, after which jumping behavior was quantified to assess the effects of TCAP-1 on naloxone-precipitated morphine withdrawal. As a comparison, mice were treated with nonpeptide CRF1 receptor antagonist CP-154,526. In one experiment, plasma corticosterone (CORT) was also measured as a physiological stress indicator. RESULTS Pretreatment with TCAP-1 (10-250 nmol/kg) before morphine treatment significantly inhibited the development of naloxone-precipitated withdrawal. TCAP-1 (250-500 nmol/kg) treatment administered after morphine treatment attenuated the behavioral expression of naloxone-precipitated withdrawal. TCAP-1 (250 nmol/kg) treatment during morphine treatment was more effective than the optimal dosing of CP-154,526 (20 mg/kg) at suppressing the behavioral expression of naloxone-precipitated withdrawal, despite similar reduction of withdrawal-induced plasma CORT level increases. CONCLUSIONS These findings establish TCAP-1 as a potential therapeutic candidate for the prevention and treatment of morphine withdrawal.
Collapse
Affiliation(s)
| | | | - David A Lovejoy
- Protagenic Therapeutics, Inc., New York, NY, USA
- Department of Cell and Systems Biology, University of Toronto, Toronto, CA, Canada
| | | | | |
Collapse
|
8
|
Morrow AL, McFarland MH, O'Buckley TK, Robinson DL. Emerging evidence for pregnane steroid therapeutics for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:59-96. [PMID: 39523063 DOI: 10.1016/bs.irn.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Many lines of research have suggested that the neuroactive pregnane steroids, including pregnenolone, progesterone, and allopregnanolone ([3α,5α]-3-hydroxypregnan-20-one, 3α,5α-THP), have therapeutic potential for treatment of alcohol use disorders (AUDs). In this chapter, we systematically address the preclinical and clinical evidence that supports this approach for AUD treatment, describe the underlying neurobiology of AUDs that are targeted by these treatments, and delineate how pregnane steroids may address various components of the disease. This review updates the theoretical framework for understanding how endogenous steroids that modulate the effects of alcohol, stress, excitatory/inhibitory and dopamine transmission, and the innate immune system appear to play a key role in the prevention and mitigation of AUDs. We further discuss newly discovered limitations of pregnane steroid therapies as well as the challenges that are inherent to development of endogenous compounds for therapeutics. We argue that overcoming these challenges presents the opportunity to help millions who suffer from AUDs across the world.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States.
| | - Minna H McFarland
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Donita L Robinson
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Moreno-Fernández RD, Bernabéu-Brotons E, Carbonell-Colomer M, Buades-Sitjar F, Sampedro-Piquero P. Sex-related differences in young binge drinkers on the neurophysiological response to stress in virtual reality. Front Public Health 2024; 12:1348960. [PMID: 38947350 PMCID: PMC11211283 DOI: 10.3389/fpubh.2024.1348960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Background Stress is one of the main environmental factors involved in the onset of different psychopathologies. In youth, stressful life events can trigger inappropriate and health-damaging behaviors, such as binge drinking. This behavior, in turn, can lead to long-lasting changes in the neurophysiological response to stress and the development of psychological disorders late in life, e.g., alcohol use disorder. Our aim was to analyze the pattern of neurophysiological responses triggered with the exposition to a stressful virtual environment in young binge drinkers. Methods AUDIT-3 (third question from the full AUDIT) was used to detect binge drinking (BD) in our young sample (age 18-25 years). According to the score, participants were divided into control (CO) and BD group. Next, a standardized virtual reality (VR) scenario (Richie's Plank) was used for triggering the stress response while measuring the following neurophysiological variables: brain electrical activity by electroencephalogram (EEG) and cortisol levels through saliva samples both measurements registered before and after the stressful situation. Besides, heart rate (HR) with a pulsometer and electrodermal response (EDA) through electrodes placed on fingers were analyzed before, during and after the VR task. Results Regarding the behavior assessed during the VR task, BD group spent significantly less amount of time walking forward the table and a tendency toward more time walking backwards. There was no statistically significant difference between the BD and the CO group regarding time looking down, but when we controlled the variable sex, the BD women group displayed higher amount of time looking down than the rest of the groups. Neurophysiological measurements revealed that there was not any statistically significant difference between groups in any of the EEG registered measures, EDA response and cortisol levels. Sex-related differences were found in HR response to VR scenario, in which BD women displayed the highest peak of response to the stressor. Also, the change in heartbeat was higher in BD women than men. Conclusion Unveiling the neurophysiological alterations associated with BD can help us to prevent and detect early onset of alcohol use disorder. Also, from our data we conclude that participants' sex can modulate some stress responses, especially when unhealthy behaviors such as BD are present. Nevertheless, the moment of registration of the neurophysiological variables respect to the stressor seems to be a crucial variable.
Collapse
Affiliation(s)
| | | | | | - Francisco Buades-Sitjar
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Sampedro-Piquero
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Clarici A, Bulfon M, Radin Y, Panksepp J. Neuromodulation of safety and surprise in the early stages of infant development: affective homeostatic regulation in bodily and mental functions. Front Psychol 2024; 15:1395247. [PMID: 38903479 PMCID: PMC11187996 DOI: 10.3389/fpsyg.2024.1395247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Developing a sense of internal safety and security depends mainly on others: numerous neuromodulators play a significant role in the homeostatic process, regulating the importance of proximity to a caregiver and experiencing feelings that enable us to regulate our interdependence with our conspecifics since birth. This array of neurofunctional structures have been called the SEPARATION DISTRESS system (now more commonly known as the PANIC/ GRIEF system). This emotional system is mainly involved in the production of depressive symptoms. The disruption of this essential emotional balance leads to the onset of feelings of panic followed by depression. We will focus on the neuropeptides that play a crucial role in social approach behavior in mammals, which enhance prosocial behavior and facilitate the consolidation of social bonds. We propose that most prosocial behaviors are regulated through the specific neuromodulators acting on salient intersubjective stimuli, reflecting an increased sense of inner confidence (safety) in social relationships. This review considers the neurofunctional link between the feelings that may ultimately be at the base of a sense of inner safety and the central neuromodulatory systems. This link may shed light on the clinical implications for the development of early mother-infant bonding and the depressive clinical consequences when this bond is disrupted, such as in post-partum depression, depressive feelings connected to, addiction, neurofunctional disorders, and psychological trauma.
Collapse
Affiliation(s)
- Andrea Clarici
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Bulfon
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Yvonne Radin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Jaak Panksepp
- College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
11
|
Sun Y, Kargarandehkordi A, Slade C, Jaiswal A, Busch G, Guerrero A, Phillips KT, Washington P. Personalized Deep Learning for Substance Use in Hawaii: Protocol for a Passive Sensing and Ecological Momentary Assessment Study. JMIR Res Protoc 2024; 13:e46493. [PMID: 38324375 PMCID: PMC10882478 DOI: 10.2196/46493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI)-powered digital therapies that detect methamphetamine cravings via consumer devices have the potential to reduce health care disparities by providing remote and accessible care solutions to communities with limited care solutions, such as Native Hawaiian, Filipino, and Pacific Islander communities. However, Native Hawaiian, Filipino, and Pacific Islander communities are understudied with respect to digital therapeutics and AI health sensing despite using technology at the same rates as other racial groups. OBJECTIVE In this study, we aimed to understand the feasibility of continuous remote digital monitoring and ecological momentary assessments in Native Hawaiian, Filipino, and Pacific Islander communities in Hawaii by curating a novel data set of longitudinal Fitbit (Fitbit Inc) biosignals with the corresponding craving and substance use labels. We also aimed to develop personalized AI models that predict methamphetamine craving events in real time using wearable sensor data. METHODS We will develop personalized AI and machine learning models for methamphetamine use and craving prediction in 40 individuals from Native Hawaiian, Filipino, and Pacific Islander communities by curating a novel data set of real-time Fitbit biosensor readings and the corresponding participant annotations (ie, raw self-reported substance use data) of their methamphetamine use and cravings. In the process of collecting this data set, we will gain insights into cultural and other human factors that can challenge the proper acquisition of precise annotations. With the resulting data set, we will use self-supervised learning AI approaches, which are a new family of machine learning methods that allows a neural network to be trained without labels by being optimized to make predictions about the data. The inputs to the proposed AI models are Fitbit biosensor readings, and the outputs are predictions of methamphetamine use or craving. This paradigm is gaining increased attention in AI for health care. RESULTS To date, more than 40 individuals have expressed interest in participating in the study, and we have successfully recruited our first 5 participants with minimal logistical challenges and proper compliance. Several logistical challenges that the research team has encountered so far and the related implications are discussed. CONCLUSIONS We expect to develop models that significantly outperform traditional supervised methods by finetuning according to the data of a participant. Such methods will enable AI solutions that work with the limited data available from Native Hawaiian, Filipino, and Pacific Islander populations and that are inherently unbiased owing to their personalized nature. Such models can support future AI-powered digital therapeutics for substance abuse. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46493.
Collapse
Affiliation(s)
- Yinan Sun
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ali Kargarandehkordi
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Christopher Slade
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Aditi Jaiswal
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Gerald Busch
- Department of Psychiatry, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Anthony Guerrero
- Department of Psychiatry, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Kristina T Phillips
- Center for Integrated Health Care Research, Kaiser Permanente Hawaii, Honolulu, HI, United States
| | - Peter Washington
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
12
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
13
|
Galaj E, Barrera ED, Persaud K, Nisanov R, Vashisht A, Goldberg H, Patel N, Lenhard H, You ZB, Gardner EL, Ranaldi R. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int J Neuropsychopharmacol 2023; 26:828-839. [PMID: 37864842 PMCID: PMC10726410 DOI: 10.1093/ijnp/pyad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Rudolf Nisanov
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Hindy Goldberg
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Nima Patel
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NYUSA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
14
|
McElroy BD, Li C, McCloskey NS, Kirby LG. Sex differences in ethanol consumption and drinking despite negative consequences following adolescent social isolation stress in male and female rats. Physiol Behav 2023; 271:114322. [PMID: 37573960 PMCID: PMC10592127 DOI: 10.1016/j.physbeh.2023.114322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Alcohol use disorder (AUD) is a debilitating psychiatric disorder characterized by drinking despite negative social and biological consequences. AUDs make up 71% of substance use disorders, with relapse rates as high as 80%. Current treatments stem from data conducted largely in males and fail to target the psychological distress motivating drinking in stress-vulnerable and at-risk populations. Here we employed a rat model and hypothesized that early life stress would reveal sex differences in ethanol intake and drinking despite negative consequences in adulthood. Rats were group housed or isolated postweaning to evaluate sex and stress effects on ethanol consumption in homecage drinking, self-administration (SA), and punished SA (drinking despite negative consequences) in adulthood. Stressed rats showed elevated homecage ethanol intake, an effect more pronounced in females. During SA, males were more sensitive to stress-induced elevations of drinking over time, but females drank more overall. Stressed rats, regardless of sex, responded more for ethanol than their non-stressed counterparts. Stressed females showed greater resistance to punishment-suppressed SA than stressed males, indicating a more stress-resistant drinking phenotype. Results support our hypothesis that adolescent social isolation stress enhances adult ethanol intake in a sex- and model-dependent manner with females being especially sensitive to early life stress-induced elevations in ethanol intake and punished SA in adulthood. Our findings echo the clinical literature which indicates that stress-vulnerable populations are more likely to 'self-medicate' with substances. Elucidating a potential mechanism that underlies why vulnerable populations 'self-medicate' with alcohol can lead towards developing catered pharmacotherapeutics that could reduce punishment-resistant drinking and relapse.
Collapse
Affiliation(s)
- Bryan D McElroy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America.
| | - Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| |
Collapse
|
15
|
Robinson SL, Thiele TE. Somatostatin signaling modulates binge drinking behavior via the central nucleus of the amygdala. Neuropharmacology 2023; 237:109622. [PMID: 37307896 PMCID: PMC10527233 DOI: 10.1016/j.neuropharm.2023.109622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Somatostatin (SST) is a neuropeptide widely expressed in the central nervous system with dense expression in limbic regions such as the extended amygdala. It has recently gained attention for playing a role in modulating alcohol use disorders and co-morbid neuropsychiatric disorders. However, the role of SST in the central nucleus of the amygdala (CeA), a key region for neuropeptide regulation of alcohol and anxiety related behaviors, in alcohol consumption has not been assessed. In this work we perform an initial examination of the interaction between the CeA SST system and binge ethanol intake. Binge intake is a dangerous pattern of excessive ethanol consumption associated with health complications and the transition into alcohol dependence. We use the Drinking in the Dark (DID) model of binge intake in C57BL/6J male and female mice to examine: 1) the impact of 3 DID cycles on CeA SST expression; 2) the effect of intra-CeA SST injection on binge-like ethanol consumption; and 3) if the SST receptor 2 or 4 (SST2R or SST4R) mediate any effect on consumption. Our results show binge-like ethanol intake decreases SST expression in the CeA, but not neighboring basolateral amygdala. We further found intra-SST CeA administration reduces binge ethanol intake. This decrease was replicated by the administration of an SST4R agonist. These effects were not sex-dependent. Overall, this work lends further support for SST playing a role in alcohol related behaviors and as a potential therapeutic target.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Cheng Y, Dempsey RE, Roodsari SK, Shuboni-Mulligan DD, George O, Sanford LD, Guo ML. Cocaine Regulates NLRP3 Inflammasome Activity and CRF Signaling in a Region- and Sex-Dependent Manner in Rat Brain. Biomedicines 2023; 11:1800. [PMID: 37509440 PMCID: PMC10376186 DOI: 10.3390/biomedicines11071800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cocaine, one of the most abused drugs worldwide, is capable of activating microglia in vitro and in vivo. Several neuroimmune pathways have been suggested to play roles in cocaine-mediated microglial activation. Previous work showed that cocaine activates microglia in a region-specific manner in the brains of self-administered mice. To further characterize the effects of cocaine on microglia and neuroimmune signaling in vivo, we utilized the brains from both sexes of outbred rats with cocaine self-administration to explore the activation status of microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activity, corticotropin-releasing factor (CRF) signaling, and NF-κB levels in the striatum and hippocampus (HP). Age-matched rats of the same sex (drug naïve) served as controls. Our results showed that cocaine increased neuroinflammation in the striatum and HP of both sexes with a relatively higher increases in male brains. In the striatum, cocaine upregulated NLRP3 inflammasome activity and CRF levels in males but not in females. In contrast, cocaine increased NLRP3 inflammasome activity in the HP of females but not in males, and no effects on CRF signaling were observed in this region of either sex. Interestingly, cocaine increased NF-κB levels in the striatum and HP with no sex difference. Taken together, our results provide evidence that cocaine can exert region- and sex-specific differences in neuroimmune signaling in the brain. Targeting neuroimmune signaling has been suggested as possible treatment for cocaine use disorders (CUDs). Our current results indicate that sex should be taken into consideration when determining the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela D Shuboni-Mulligan
- Sleep Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Larry D Sanford
- Sleep Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
17
|
Wang Z, Luo C, Zhou EW, Sandhu AF, Yuan X, Williams GE, Cheng J, Sinha B, Akbar M, Bhattacharya P, Zhou S, Song BJ, Wang X. Molecular Toxicology and Pathophysiology of Comorbid Alcohol Use Disorder and Post-Traumatic Stress Disorder Associated with Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108805. [PMID: 37240148 DOI: 10.3390/ijms24108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The increasing comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) associated with traumatic brain injury (TBI) is a serious medical, economic, and social issue. However, the molecular toxicology and pathophysiological mechanisms of comorbid AUD and PTSD are not well understood and the identification of the comorbidity state markers is significantly challenging. This review summarizes the main characteristics of comorbidity between AUD and PTSD (AUD/PTSD) and highlights the significance of a comprehensive understanding of the molecular toxicology and pathophysiological mechanisms of AUD/PTSD, particularly following TBI, with a focus on the role of metabolomics, inflammation, neuroendocrine, signal transduction pathways, and genetic regulation. Instead of a separate disease state, a comprehensive examination of comorbid AUD and PTSD is emphasized by considering additive and synergistic interactions between the two diseases. Finally, we propose several hypotheses of molecular mechanisms for AUD/PTSD and discuss potential future research directions that may provide new insights and translational application opportunities.
Collapse
Affiliation(s)
- Zufeng Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Edward W Zhou
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron F Sandhu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Yuan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George E Williams
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jialu Cheng
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
C.A. G, G.B. G, H.L. H, D. P, T. S, S.L. D, K. B, W.P. K, C.W. H, T.L. K. Disentangling the effects of Corticotrophin Releasing Factor and GABA release from the ventral bed nucleus of the stria terminalis on ethanol self-administration in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530838. [PMID: 37205547 PMCID: PMC10187230 DOI: 10.1101/2023.03.02.530838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excessive alcohol use causes a great deal of harm and negative health outcomes. Corticotrophin releasing factor (CRF), a stress-related neuropeptide, has been implicated in binge ethanol intake and ethanol dependence. CRF containing neurons in the bed nucleus of the stria terminalis (BNSTCRF) can control ethanol consumption. These BNSTCRF neurons also release GABA, raising the question, is it CRF or GABA release or both that is controlling alcohol consumption. Here, we used viral vectors to separate the effects of CRF and GABA release from BNSTCRF neurons on the escalation of ethanol intake in an operant self-administration paradigm in male and female mice. We found that CRF deletion in BNST neurons reduces ethanol intake in both sexes, with a stronger effect in males. For sucrose self-administration there was no effect of CRF deletion. Suppression of GABA release, via knockdown of vGAT, from BNSTCRF produced a transient increase in ethanol operant self-administration following in male mice, and reduced in motivation to work for sucrose on a progressive ratio schedule of reinforcement in a sex-dependent manner. Together, these results highlight how different signaling molecules from the same populations of neurons can bidirectionally control behavior. Moreover, they suggest that BNST CRF release is important for high intensity ethanol drinking that precedes dependence, whereas GABA release from these neurons may play a role in regulating motivation.
Collapse
|
19
|
Smeets T, Ashton SM, Roelands SJ, Quaedflieg CW. Does stress consistently favor habits over goal-directed behaviors? Data from two preregistered exact replication studies. Neurobiol Stress 2023; 23:100528. [PMID: 36861028 PMCID: PMC9969070 DOI: 10.1016/j.ynstr.2023.100528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Instrumental learning is controlled by two distinct parallel systems: goal-directed (action-outcome) and habitual (stimulus-response) processes. Seminal research by Schwabe and Wolf (2009, 2010) has demonstrated that stress renders behavior more habitual by decreasing goal-directed control. More recent studies yielded equivocal evidence for a stress-induced shift towards habitual responding, yet these studies used different paradigms to evaluate instrumental learning or used different stressors. Here, we performed exact replications of the original studies by exposing participants to an acute stressor either before (cf. Schwabe and Wolf, 2009) or directly after (cf. Schwabe and Wolf, 2010) an instrumental learning phase in which they had learned that distinct actions led to distinct, rewarding food outcomes (i.e., instrumental learning). Then, following an outcome devaluation phase in which one of the food outcomes was consumed until participants were satiated, action-outcome associations were tested in extinction. Despite successful instrumental learning and outcome devaluation and increased subjective and physiological stress levels following stress exposure, the stress and no-stress groups in both replication studies responded indifferently to valued and devalued outcomes. That is, non-stressed participants failed to demonstrate goal-directed behavioral control, thereby rendering the critical test of a shift from goal-directed to habitual control in the stress group inapt. Several reasons for these replication failures are discussed, including the rather indiscriminate devaluation of outcomes that may have contributed to indifferent responding during extinction, which emphasize the need to further our understanding of the boundary conditions in research aimed at demonstrating a stress-induced shift towards habitual control.
Collapse
Affiliation(s)
- Tom Smeets
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands,Corresponding author.
| | - Stephanie M. Ashton
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands,Department of Neuropsychology & Neuropharmacology, Maastricht University, the Netherlands
| | - Simone J.A.A. Roelands
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands
| | | |
Collapse
|
20
|
Bogdan R, Hatoum AS, Johnson EC, Agrawal A. The Genetically Informed Neurobiology of Addiction (GINA) model. Nat Rev Neurosci 2023; 24:40-57. [PMID: 36446900 PMCID: PMC10041646 DOI: 10.1038/s41583-022-00656-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Addictions are heritable and unfold dynamically across the lifespan. One prominent neurobiological theory proposes that substance-induced changes in neural circuitry promote the progression of addiction. Genome-wide association studies have begun to characterize the polygenic architecture undergirding addiction liability and revealed that genetic loci associated with risk can be divided into those associated with a general broad-spectrum liability to addiction and those associated with drug-specific addiction risk. In this Perspective, we integrate these genomic findings with our current understanding of the neurobiology of addiction to propose a new Genetically Informed Neurobiology of Addiction (GINA) model.
Collapse
Affiliation(s)
- Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Fudge JL, Kelly EA, Hackett TA. Corticotropin Releasing Factor (CRF) Coexpression in GABAergic, Glutamatergic, and GABA/Glutamatergic Subpopulations in the Central Extended Amygdala and Ventral Pallidum of Young Male Primates. J Neurosci 2022; 42:8997-9010. [PMID: 36280261 PMCID: PMC9732834 DOI: 10.1523/jneurosci.1453-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates, including human. Corticotropin releasing factor (CRF), a canonical "stress molecule" associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse. CRF's effects on circuits critically depend on its colocation with primary "fast" transmitters, making this crucial for understanding circuit effects. We surveyed the distribution and colocalization of CRF-, VGluT2- (vesicular glutamate transporter 2), and VGAT- (vesicular GABA transporter) mRNA in specific subregions of the CEA and VP in young male monkeys. Although CRF-containing neurons were clustered in the lateral central bed nucleus (BSTLcn), the majority were broadly dispersed throughout other CEA subregions, and the VP. CRF/VGAT-only neurons were highest in the BSTLcn, lateral central amygdala nucleus (CeLcn), and medial central amygdala nucleus (CeM) (74%, 73%, and 85%, respectively). In contrast, lower percentages of CRF/VGAT only neurons populated the sublenticular extended amygdala (SLEAc), ventrolateral bed nucleus (BSTLP), and VP (53%, 54%, 17%, respectively), which had higher complements of CRF/VGAT/VGluT2-labeled neurons (33%, 29%, 67%, respectively). Thus, the majority of CRF-neurons at the "poles" (BSTLcn and CeLcn/CeM) of the CEA are inhibitory, while the "extended" BSTLP and SLEAc subregions, and neighboring VP, have a more complex profile with admixtures of "multiplexed" excitatory CRF neurons. CRF's colocalization with its various fast transmitters is likely circuit-specific, and relevant for understanding CRF actions on specific target sites.SIGNIFICANCE STATEMENT The central extended amygdala (CEA) and ventral pallidum (VP) regulate multiple motivated behaviors through differential downstream projections. The stress neuropeptide corticotropin releasing factor (CRF) is enriched in the CEA, and is thought to "set the gain" through modulatory effects on coexpressed primary transmitters. Using protein and transcript assays in monkey, we found that CRF neurons are broadly and diffusely distributed in CEA and VP. CRF mRNA+ neurons colocalize with VGAT (GABA) and VGluT2 (glutamate) mRNAs in different proportions depending on subregion. CRF mRNA was also coexpressed in a subpopulation of VGAT/VGluT2 mRNA ("multiplexed") cells, which were most prominent in the VP and "pallidal"-like parts of the CEA. Heterogeneous CRF and fast transmitter coexpression across CEA/VP subregions implies circuit-specific effects.
Collapse
Affiliation(s)
- Julie L Fudge
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Emily A Kelly
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Troy A Hackett
- Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
22
|
Chang S, Fermani F, Lao CL, Huang L, Jakovcevski M, Di Giaimo R, Gagliardi M, Menegaz D, Hennrich AA, Ziller M, Eder M, Klein R, Cai N, Deussing JM. Tripartite extended amygdala-basal ganglia CRH circuit drives locomotor activation and avoidance behavior. SCIENCE ADVANCES 2022; 8:eabo1023. [PMID: 36383658 PMCID: PMC9668302 DOI: 10.1126/sciadv.abo1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.
Collapse
Affiliation(s)
- Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Federica Fermani
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Chu-Lan Lao
- Collaborative Research Centre/Sonderforschungsbereich (SFB) 870, Viral Vector Facility, Munich, Germany
| | - Lianyun Huang
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Mira Jakovcevski
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples Italy
| | - Miriam Gagliardi
- Genomics of Complex Diseases, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandru Adrian Hennrich
- Max von Pettenkofer-Institute Virology, Medical Faculty, and Gene Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Ziller
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rüdiger Klein
- Molecules-Signaling-Development, Max Planck Institute for Biological Intelligence (in foundation), Martinsried, Germany
| | - Na Cai
- Translational Genetics, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
23
|
Spironolactone as a potential new pharmacotherapy for alcohol use disorder: convergent evidence from rodent and human studies. Mol Psychiatry 2022; 27:4642-4652. [PMID: 36123420 DOI: 10.1038/s41380-022-01736-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Evidence suggests that spironolactone, a nonselective mineralocorticoid receptor (MR) antagonist, modulates alcohol seeking and consumption. Therefore, spironolactone may represent a novel pharmacotherapy for alcohol use disorder (AUD). In this study, we tested the effects of spironolactone in a mouse model of alcohol drinking (drinking-in-the-dark) and in a rat model of alcohol dependence (vapor exposure). We also investigated the association between spironolactone receipt for at least 60 continuous days and change in self-reported alcohol consumption, using the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C), in a pharmacoepidemiologic cohort study in the largest integrated healthcare system in the US. Spironolactone dose-dependently reduced the intake of sweetened or unsweetened alcohol solutions in male and female mice. No effects of spironolactone were observed on drinking of a sweet solution without alcohol, food or water intake, motor coordination, alcohol-induced ataxia, or blood alcohol levels. Spironolactone dose-dependently reduced operant alcohol self-administration in dependent and nondependent male and female rats. In humans, a greater reduction in alcohol consumption was observed among those who received spironolactone, compared to propensity score-matched individuals who did not receive spironolactone. The largest effects were among those who reported hazardous/heavy episodic alcohol consumption at baseline (AUDIT-C ≥ 8) and those exposed to ≥ 50 mg/day of spironolactone. These convergent findings across rodent and human studies demonstrate that spironolactone reduces alcohol use and support the hypothesis that this medication may be further studied as a novel pharmacotherapy for AUD.
Collapse
|
24
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
25
|
Fischler PV, Soyka M, Seifritz E, Mutschler J. Off-label and investigational drugs in the treatment of alcohol use disorder: A critical review. Front Pharmacol 2022; 13:927703. [PMID: 36263121 PMCID: PMC9574013 DOI: 10.3389/fphar.2022.927703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compounds known to be successful in the treatment of alcohol use disorder include the aversive agent, Disulfiram, the glutamatergic NMDA receptor antagonist, Acamprosate, and the opioid receptor antagonists, Naltrexone and Nalmefene. Although all four are effective in maintaining abstinence or reduction of alcohol consumption, only a small percentage of patients receive pharmacological treatment. In addition, many other medications have been investigated for their therapeutic potential in the treatment of alcohol use disorder. In this review we summarize and compare Baclofen, Gabapentin, Topiramate, Ondansetron, Varenicline, Aripiprazole, Quetiapine, Clozapine, Antidepressants, Lithium, Neuropeptide Y, Neuropeptide S, Corticotropin-releasing factor antagonists, Oxytocin, PF-05190457, Memantine, Ifenprodil, Samidorphan, Ondelopran, ABT-436, SSR149415, Mifepristone, Ibudilast, Citicoline, Rimonabant, Surinabant, AM4113 and Gamma-hydroxybutyrate While some have shown promising results in the treatment of alcohol use disorder, others have disappointed and should be excluded from further investigation. Here we discuss the most promising results and highlight medications that deserve further preclinical or clinical study. Effective, patient-tailored treatment will require greater understanding provided by many more preclinical and clinical studies.
Collapse
Affiliation(s)
- Pascal Valentin Fischler
- Department for Gynecology and Obstetrics, Women’s Clinic Lucerne, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- *Correspondence: Pascal Valentin Fischler,
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Munich, Germany
| | - Erich Seifritz
- Director of the Clinic for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Clinic Zürich, Zürich, Switzerland
| | | |
Collapse
|
26
|
Wagle M, Zarei M, Lovett-Barron M, Poston KT, Xu J, Ramey V, Pollard KS, Prober DA, Schulkin J, Deisseroth K, Guo S. Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Mol Psychiatry 2022; 27:3777-3793. [PMID: 35484242 PMCID: PMC9613822 DOI: 10.1038/s41380-022-01567-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Salient sensory stimuli are perceived by the brain, which guides both the timing and outcome of behaviors in a context-dependent manner. Light is such a stimulus, which is used in treating mood disorders often associated with a dysregulated hypothalamic-pituitary-adrenal stress axis. Relationships between the emotional valence of light and the hypothalamus, and how they interact to exert brain-wide impacts remain unclear. Employing larval zebrafish with analogous hypothalamic systems to mammals, we show in free-swimming animals that hypothalamic corticotropin releasing factor (CRFHy) neurons promote dark avoidance, and such role is not shared by other hypothalamic peptidergic neurons. Single-neuron projection analyses uncover processes extended by individual CRFHy neurons to multiple targets including sensorimotor and decision-making areas. In vivo calcium imaging uncovers a complex and heterogeneous response of individual CRFHy neurons to the light or dark stimulus, with a reduced overall sum of CRF neuronal activity in the presence of light. Brain-wide calcium imaging under alternating light/dark stimuli further identifies distinct and distributed photic response neuronal types. CRFHy neuronal ablation increases an overall representation of light in the brain and broadly enhances the functional connectivity associated with an exploratory brain state. These findings delineate brain-wide photic perception, uncover a previously unknown role of CRFHy neurons in regulating the perception and emotional valence of light, and suggest that light therapy may alleviate mood disorders through reducing an overall sum of CRF neuronal activity.
Collapse
Affiliation(s)
- Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kristina Tyler Poston
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Jin Xu
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vince Ramey
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Invitae Inc., San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA.
- Programs in Human Genetics and Biological Sciences, Kavli Institute of Fundamental Neuroscience, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Aging Research Institute, University of California, San Francisco, CA, 94143-2811, USA.
| |
Collapse
|
27
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
28
|
Edible Mushrooms as a Potential Component of Dietary Interventions for Major Depressive Disorder. Foods 2022; 11:foods11101489. [PMID: 35627059 PMCID: PMC9141008 DOI: 10.3390/foods11101489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Dietary interventions for people suffering from major depressive disorder (MDD) are an ongoing field of research. In this article, we present a comprehensive background for understanding the possibility of using edible medicinal mushrooms as an adjunctive treatment for MDD. We start with a brief history of MDD, its diagnosis, epidemiology and treatment, and the effects of diet on depression symptoms, followed by a review of neurobiological, behavioral, and clinical studies of medicinal mushrooms. We specifically highlight the results of preclinical and clinical studies on dietary supplementation with three selected mushroom species: Lion’s mane (Hericium erinaceus), Caterpillar mushroom (Cordyceps militaris), and Lingzhi/Reishi (Ganoderma lucidum). Preliminary small-sample clinical studies suggest that Lion’s mane can influence well-being of humans. In the case of Reishi, the results of clinical studies are equivocal, while in the case of Caterpillar Mushroom, such studies are underway. Edible mushrooms contain 5-hydroxy-L-tryptophan (5-HTP), which is a direct precursor of serotonin—a neurotransmitter targeted in pharmacotherapy of MDD. Therefore, in light of the well-recognized role of stress as a pathogenic factor of MDD, we also describe the neurobiological mechanisms of the interaction between stress and serotonergic neurotransmission; and summarize the current state of knowledge on dietary supplementation with 5-HTP in MDD.
Collapse
|
29
|
Luciana M, Collins PF. Neuroplasticity, the Prefrontal Cortex, and Psychopathology-Related Deviations in Cognitive Control. Annu Rev Clin Psychol 2022; 18:443-469. [PMID: 35534121 DOI: 10.1146/annurev-clinpsy-081219-111203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A basic survival need is the ability to respond to, and persevere in the midst of, experiential challenges. Mechanisms of neuroplasticity permit this responsivity via functional adaptations (flexibility), as well as more substantial structural modifications following chronic stress or injury. This review focuses on prefrontally based flexibility, expressed throughout large-scale neuronal networks through the actions of excitatory and inhibitory neurotransmitters and neuromodulators. With substance use disorders and stress-related internalizing disorders as exemplars, we review human behavioral and neuroimaging data, considering whether executive control, particularly cognitive flexibility, is impaired premorbidly, enduringly compromised with illness progression, or both. We conclude that deviations in control processes are consistently expressed in the context of active illness but operate through different mechanisms and with distinct longitudinal patterns in externalizing versus internalizing conditions.
Collapse
Affiliation(s)
- Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA; ,
| | - Paul F Collins
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA; ,
| |
Collapse
|
30
|
Levis SC, Baram TZ, Mahler SV. Neurodevelopmental origins of substance use disorders: Evidence from animal models of early-life adversity and addiction. Eur J Neurosci 2022; 55:2170-2195. [PMID: 33825217 PMCID: PMC8494863 DOI: 10.1111/ejn.15223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Addiction is a chronic relapsing disorder with devastating personal, societal, and economic consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource scarcity are linked with increased risk of later-life addiction, but the brain mechanisms underlying this link are still poorly understood. Here, we focus on data from rodent models of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be determined. We first summarize evidence for a link between ELA and addiction in humans, then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous disease with many individually varying behavioral aspects that may be impacted by ELA, we next discuss common rodent assays of addiction-like behaviors. We then summarize the specific addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss some of the underlying changes in brain reward and stress circuits that are likely responsible. By better understanding the behavioral and neural mechanisms by which ELA promotes addiction vulnerability, we hope to facilitate development of new approaches for preventing or treating addiction in those with a history of ELA.
Collapse
Affiliation(s)
- Sophia C. Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA
- Department of Pediatrics, University of California Irvine, Irvine, CA
| | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
31
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Ramos-Cejudo J, Genfi A, Abu-Amara D, Debure L, Qian M, Laska E, Siegel C, Milton N, Newman J, Blessing E, Li M, Etkin A, Marmar CR, Fossati S. CRF serum levels differentiate PTSD from healthy controls and TBI in military veterans. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2022; 3:153-162. [PMID: 35211666 PMCID: PMC8764614 DOI: 10.1176/appi.prcp.20210017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background and Objective Posttraumatic stress disorder (PTSD) is a serious and frequently debilitating psychiatric condition that can occur in people who have experienced traumatic stressors, such as war, violence, sexual assault and other life‐threatening events. Treatment of PTSD and traumatic brain injury (TBI) in veterans is challenged by diagnostic complexity, partially due to PTSD and TBI symptoms overlap and to the fact that subjective self‐report assessments may be influenced by a patient's willingness to share their traumatic experiences and resulting symptoms. Corticotropin‐releasing factor (CRF) is one of the main mediators of hypothalamic pituitary adrenal (HPA)‐axis responses in stress and anxiety. Methods and Results We analyzed serum CRF levels in 230 participants including heathy controls (64), and individuals with PTSD (53), TBI (70) or PTSD + TBI (43) by enzyme immunoassay (EIA). Significantly lower CRF levels were found in both the PTSD and PTSD + TBI groups compared to healthy control (PTSD vs. Controls: P = 0.0014, PTSD + TBI vs. Controls: P = 0.0011) and chronic TBI participants (PTSD vs. TBI: P < 0.0001, PTSD + TBI vs. TBI: P < 0.0001), suggesting a PTSD‐related mechanism independent from TBI and associated with CRF reduction. CRF levels negatively correlated with PTSD severity on the Clinically Administered PTSD Scale (CAPS‐5) scale in the whole study group. Conclusions Hyperactivation of the HPA axis has been classically identified in acute stress. However, the recognized enhanced feedback inhibition of the HPA axis in chronic stress supports our findings of lower CRF in PTSD patients. This study suggests that reduced serum CRF in PTSD should be further investigated. Future validation studies will establish if CRF is a possible blood biomarker for PTSD and/or for differentiating PTSD and chronic TBI symptomatology. The HPA axis is activated under acute stress conditions, but an enhanced feedback inhibition may be prevalent in chronic stress conditions such as PTSD. We observed a reduction in serum CRF levels in veterans with PTSD and PTSD + TBI, but not in veterans with chronic TBI alone. A serum CRF reduction may be indicative of CNS mechanisms specific to PTSD and should be further evaluated as a possible peripheral biomarker.
Collapse
Affiliation(s)
- Jaime Ramos-Cejudo
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Afia Genfi
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Duna Abu-Amara
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Ludovic Debure
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,New York University, School of Medicine, Department of Neurology, New York, NY, USA
| | - Meng Qian
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Eugene Laska
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Carole Siegel
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Nicholas Milton
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Jennifer Newman
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Esther Blessing
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Meng Li
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Amit Etkin
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA USA.,Stanford University, Stanford Neurosciences Institute, Stanford, CA, USA.,VA Palo Alto Health Care System, Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Charles R Marmar
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA
| | - Silvia Fossati
- Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,Steven and Alexandra Cohen Veterans Center for the Study of PTSD and TBI, Department of Psychiatry, New York University Grossman School of Medicine, NY, USA.,New York University, School of Medicine, Department of Neurology, New York, NY, USA.,Current Affiliation: Alzheimer's center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
34
|
Neurochemical and Hormonal Contributors to Compulsive Sexual Behavior Disorder. CURRENT ADDICTION REPORTS 2022. [DOI: 10.1007/s40429-021-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Purpose of Review
Compulsive sexual behavior disorder has been recently included in the 11th revision of the International Classification of Diseases (ICD-11), and the possible contribution of neurochemical and hormonal factors have been reported. However, relatively little is known concerning the neurobiology underlying this disorder. The aim of this article is to review and discuss published findings in the area.
Recent Findings
Evidence suggests that the neuroendocrine systems are involved in the pathophysiology of compulsive sexual behavior. The hypothalamus-pituitary adrenal axis, the hypothalamus-pituitary–gonadal axis, and the oxytocinergic system have been implicated.
Summary
Further studies are needed to elucidate the exact involvement of neuroendocrine and hormonal systems in compulsive sexual behavior disorder. Prospective longitudinal studies are particularly needed, especially those considering co-occurring psychiatric disorders and obtaining hormonal assessments in experimental circumstances with appropriate control groups.
Collapse
|
35
|
Mallard TT, Savage JE, Johnson EC, Huang Y, Edwards AC, Hottenga JJ, Grotzinger AD, Gustavson DE, Jennings MV, Anokhin A, Dick DM, Edenberg HJ, Kramer JR, Lai D, Meyers JL, Pandey AK, Paige Harden K, Nivard MG, de Geus EJC, Boomsma DI, Agrawal A, Davis LK, Clarke TK, Palmer AA, Sanchez-Roige S. Item-Level Genome-Wide Association Study of the Alcohol Use Disorders Identification Test in Three Population-Based Cohorts. Am J Psychiatry 2022; 179:58-70. [PMID: 33985350 PMCID: PMC9272895 DOI: 10.1176/appi.ajp.2020.20091390] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWASs) of the Alcohol Use Disorders Identification Test (AUDIT), a 10-item screen for alcohol use disorder (AUD), have elucidated novel loci for alcohol consumption and misuse. However, these studies also revealed that GWASs can be influenced by numerous biases (e.g., measurement error, selection bias), which may have led to inconsistent genetic correlations between alcohol involvement and AUD, as well as paradoxically negative genetic correlations between alcohol involvement and psychiatric disorders and/or medical conditions. The authors used genomic structural equation modeling to elucidate the genetics of alcohol consumption and problematic consequences of alcohol use as measured by AUDIT. METHODS To explore these unexpected differences in genetic correlations, the authors conducted the first item-level and the largest GWAS of AUDIT items (N=160,824) and applied a multivariate framework to mitigate previous biases. RESULTS The authors identified novel patterns of similarity (and dissimilarity) among the AUDIT items and found evidence of a correlated two-factor structure at the genetic level ("consumption" and "problems," rg=0.80). Moreover, by applying empirically derived weights to each of the AUDIT items, the authors constructed an aggregate measure of alcohol consumption that was strongly associated with alcohol dependence (rg=0.67), moderately associated with several other psychiatric disorders, and no longer positively associated with health and positive socioeconomic outcomes. Lastly, by conducting polygenic analyses in three independent cohorts that differed in their ascertainment and prevalence of AUD, the authors identified novel genetic associations between alcohol consumption, alcohol misuse, and health. CONCLUSIONS This work further emphasizes the value of AUDIT for both clinical and genetic studies of AUD and the importance of using multivariate methods to study genetic associations that are more closely related to AUD.
Collapse
Affiliation(s)
- Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Netherlands, 1081HV
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Yuye Huang
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Alexis C Edwards
- Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA 23298
| | - Jouke J Hottenga
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | | | - Daniel E Gustavson
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Andrey Anokhin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA 23220
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John R Kramer
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 4622
| | - Jacquelyn L Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203
| | - Ashwini K Pandey
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203
| | | | - Michel G Nivard
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | - Eco JC de Geus
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | - Dorret I Boomsma
- Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Scotland, UK, EH8 9YL
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
36
|
Miczek KA, DiLeo A, Newman EL, Akdilek N, Covington HE. Neurobiological Bases of Alcohol Consumption After Social Stress. Curr Top Behav Neurosci 2022; 54:245-281. [PMID: 34964935 PMCID: PMC9698769 DOI: 10.1007/7854_2021_273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The urge to seek and consume excessive alcohol is intensified by prior experiences with social stress, and this cascade can be modeled under systematically controlled laboratory conditions in rodents and non-human primates. Adaptive coping with intermittent episodes of social defeat stress often transitions to maladaptive responses to traumatic continuous stress, and alcohol consumption may become part of coping responses. At the circuit level, the neural pathways subserving stress coping intersect with those for alcohol consumption. Increasingly discrete regions and connections within the prefrontal cortex, the ventral and dorsal striatum, thalamic and hypothalamic nuclei, tegmental areas as well as brain stem structures begin to be identified as critical for reacting to and coping with social stress while seeking and consuming alcohol. Several candidate molecules that modulate signals within these neural connections have been targeted in order to reduce excessive drinking and relapse. In spite of some early clinical failures, neuropeptides such as CRF, opioids, or oxytocin continue to be examined for their role in attenuating stress-escalated drinking. Recent work has focused on neural sites of action for peptides and steroids, most likely in neuroinflammatory processes as a result of interactive effects of episodic social stress and excessive alcohol seeking and drinking.
Collapse
Affiliation(s)
- Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, USA,Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alyssa DiLeo
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
37
|
Berhe O, Gerhardt S, Schmahl C. Clinical Outcomes of Severe Forms of Early Social Stress. Curr Top Behav Neurosci 2021; 54:417-438. [PMID: 34628586 DOI: 10.1007/7854_2021_261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Early social stress, particularly severe but nevertheless frequent forms such as abuse and neglect, are among the major risk factors for the development of mental disorders. However, we only have very limited knowledge of the psychobiological disease mechanisms underlying the influence of early life stress and stress-related disorders during this vulnerable phase of life. Early stress can have long-lasting adverse effects on the brain and other somatic systems, e.g. through influences on brain development. In adulthood, the prior experience of abuse or neglect can result in complex clinical profiles. Besides conditions such as mood and anxiety disorders as well as posttraumatic stress disorder, substance use disorders (SUD) are among the most prevalent sequelae of early social stress. Current social stress further influences the development and maintenance of these disorders, e.g., by increasing the risk of relapses. In this chapter, we will first give an overview of currently used methods to assess the phenomenology and pathophysiology of stress-related disorders and then focus on the phenomenological and neurobiological background of the interaction between early social stress and SUD. We will give an overview of important insights from neuroimaging studies and will also highlight recent findings from studies using digital tools such as ecological momentary assessment or virtual reality to capture the influence of early social stress as well as current social stress in everyday life of persons with SUD.
Collapse
Affiliation(s)
- Oksana Berhe
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Sarah Gerhardt
- Department of Addictive Behaviour and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
38
|
Holmgren EB, Wills TA. Regulation of glutamate signaling in the extended amygdala by adolescent alcohol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:223-250. [PMID: 34696874 DOI: 10.1016/bs.irn.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical period for brain development and behavioral maturation, marked by increased risk-taking behavior and the initiation of drug use. There are significant changes in gray matter volume and pruning of synapses along with a shift in excitatory to inhibitory balance which marks the maturation of cognition and decision-making. Because of ongoing brain development, adolescents are particularly sensitive to the detrimental effects of drugs, including alcohol, which can cause long-lasting consequences into adulthood. The extended amygdala is a region critically implicated in withdrawal and negative affect such as anxiety and depression. As negative affective disorders develop during adolescence, the effects of adolescent alcohol exposure on extended amygdala circuitry needs further inquiry. Here we aim to provide a framework to discuss the existing literature on the extended amygdala, the neuroadaptations which result from alcohol use, and the intersection of factors which contribute to the long-lasting effects of this exposure.
Collapse
Affiliation(s)
- E B Holmgren
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - T A Wills
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States; Neuroscience Center of Excellence, LSU Health Sciences Center New Orleans, New Orleans, LA, United States.
| |
Collapse
|
39
|
Boness CL, Watts AL, Moeller KN, Sher KJ. The Etiologic, Theory-Based, Ontogenetic Hierarchical Framework of Alcohol Use Disorder: A Translational Systematic Review of Reviews. Psychol Bull 2021; 147:1075-1123. [PMID: 35295672 PMCID: PMC8923643 DOI: 10.1037/bul0000333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Modern nosologies (e.g., ICD-11, DSM-5) for alcohol use disorder (AUD) and dependence prioritize reliability and clinical presentation over etiology, resulting in a diagnosis that is not always strongly grounded in basic theory and research. Within these nosologies, DSM-5 AUD is treated as a discrete, largely categorical, but graded, phenomenon, which results in additional challenges (e.g., significant phenotypic heterogeneity). Efforts to increase the compatibility between AUD diagnosis and modern conceptualizations of alcohol dependence, which describe it as dimensional and partially overlapping with other psychopathology (e.g., other substance use disorders) will inspire a stronger scientific framework and strengthen AUD's validity. We conducted a systematic review of 144 reviews to integrate addiction constructs and theories into a comprehensive framework with the aim of identifying fundamental mechanisms implicated in AUD. The product of this effort was the Etiologic, Theory-Based, Ontogenetic Hierarchical Framework (ETOH Framework) of AUD mechanisms, which outlines superdomains of cognitive control, reward, as well as negative valence and emotionality, each of which subsume narrower, hierarchically-organized components. We also outline opponent processes and self-awareness as key moderators of AUD mechanisms. In contrast with other frameworks, we recommend an increased conceptual role for negative valence and compulsion in AUD. The ETOH framework serves as a critical step towards conceptualizations of AUD as dimensional and heterogeneous. It has the potential to improve AUD assessment and aid in the development of evidence-based diagnostic measures that focus on key mechanisms in AUD, consequently facilitating treatment matching.
Collapse
Affiliation(s)
| | - Ashley L Watts
- Department of Psychological Science, University of Missouri
| | | | - Kenneth J Sher
- Department of Psychological Science, University of Missouri
| |
Collapse
|
40
|
Baumgartner HM, Schulkin J, Berridge KC. Activating Corticotropin-Releasing Factor Systems in the Nucleus Accumbens, Amygdala, and Bed Nucleus of Stria Terminalis: Incentive Motivation or Aversive Motivation? Biol Psychiatry 2021; 89:1162-1175. [PMID: 33726937 PMCID: PMC8178165 DOI: 10.1016/j.biopsych.2021.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neural systems are important stress mechanisms in the central amygdala (CeA), bed nucleus of stria terminalis (BNST), nucleus accumbens (NAc), and related structures. CRF-containing neural systems are traditionally posited to generate aversive distress states that motivate overconsumption of rewards and relapse in addiction. However, CRF-containing systems may alternatively promote incentive motivation to increase reward pursuit and consumption without requiring aversive states. METHODS We optogenetically stimulated CRF-expressing neurons in the CeA, BNST, or NAc using Crh-Cre+ rats (n = 37 female, n = 34 male) to investigate roles in incentive motivation versus aversive motivation. We paired CRF-expressing neuronal stimulations with earning sucrose rewards in two-choice and progressive ratio tasks and investigated recruitment of distributed limbic circuitry. We further assessed valence with CRF-containing neuron laser self-stimulation tasks. RESULTS Channelrhodopsin excitation of CRF-containing neurons in the CeA and NAc amplified and focused incentive motivation and recruited activation of mesocorticolimbic reward circuitry. CRF systems in both the CeA and NAc supported laser self-stimulation, amplified incentive motivation for sucrose in a breakpoint test, and focused "wanting" on laser-paired sucrose over a sucrose alternative in a two-choice test. Conversely, stimulation of CRF-containing neurons in the BNST produced negative valence or aversive effects and recruited distress-related circuitry, as stimulation was avoided and suppressed motivation for sucrose. CONCLUSIONS CRF-containing systems in the NAc and CeA can promote reward consumption by increasing incentive motivation without involving aversion. In contrast, stimulation of CRF-containing systems in the BNST is aversive but suppresses sucrose reward pursuit and consumption rather than increase, as predicted by traditional hedonic self-medication hypotheses.
Collapse
Affiliation(s)
| | - Jay Schulkin
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
41
|
Bosse GD, Cadeddu R, Floris G, Farero RD, Vigato E, Lee SJ, Zhang T, Gaikwad NW, Keefe KA, Phillips PE, Bortolato M, Peterson RT. The 5α-reductase inhibitor finasteride reduces opioid self-administration in animal models of opioid use disorder. J Clin Invest 2021; 131:143990. [PMID: 33848264 DOI: 10.1172/jci143990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Opioid use disorder (OUD) has become a leading cause of death in the United States, yet current therapeutic strategies remain highly inadequate. To identify potential treatments for OUD, we screened a targeted selection of over 100 drugs using a recently developed opioid self-administration assay in zebrafish. This paradigm showed that finasteride, a steroidogenesis inhibitor approved for the treatment of benign prostatic hyperplasia and androgenetic alopecia, reduced self-administration of multiple opioids without affecting locomotion or feeding behavior. These findings were confirmed in rats; furthermore, finasteride reduced the physical signs associated with opioid withdrawal. In rat models of neuropathic pain, finasteride did not alter the antinociceptive effect of opioids and reduced withdrawal-induced hyperalgesia. Steroidomic analyses of the brains of fish treated with finasteride revealed a significant increase in dehydroepiandrosterone sulfate (DHEAS). Treatment with precursors of DHEAS reduced opioid self-administration in zebrafish in a fashion akin to the effects of finasteride. These results highlight the importance of steroidogenic pathways as a rich source of therapeutic targets for OUD and point to the potential of finasteride as a new treatment option for this disorder.
Collapse
Affiliation(s)
- Gabriel D Bosse
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Ryan D Farero
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Eva Vigato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Suhjung J Lee
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | - Kristen A Keefe
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Paul Em Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
42
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
43
|
Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021; 753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Despite successful viral suppression by combinatorial anti-retroviral therapy, HIV infection continues to negatively impact the quality of life of patients by promoting neuropathy and HIV-Associated Neurocognitive Disorders (HAND), where substance use disorder (SUD) is highly comorbid and known to worsen health outcomes. While substance abuse exacerbates the progression of HIV, emerging evidence also suggests the virus may potentiate the rewarding effect of abused substances. As HIV does not infect neurons, these effects are theorized to be mediated by viral proteins. Key among these proteins are HIV-1 Tat, which can continue to be produced under viral suppression in patients. This review will recap the behavioral evidence for HIV-1 Tat mediation of a potentiation of cocaine, opioid and alcohol reward, and explore the neurochemical dysfunction associated by Tat as potential mechanisms underlying changes in reward. Targeting rampant oxidative stress, inflammation and excitotoxicity associated with HIV and Tat protein exposure may prove useful in combating persistent substance abuse comorbid with HIV in the clinic.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
44
|
Repeated binge ethanol drinking enhances electrical activity of central amygdala corticotropin releasing factor neurons in vivo. Neuropharmacology 2021; 189:108527. [PMID: 33741403 DOI: 10.1016/j.neuropharm.2021.108527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Binge ethanol drinking is an increasingly problematic component of alcohol use disorder costing the United States approximately over $150 billion every year and causes progressive neuroplasticity alterations in numerous brain regions. However, the precise nature or machinery that underlies binge drinking has not yet been elucidated. Corticotropin releasing factor (CRF) neurons in the central amygdala (CeA) are thought to modulate binge drinking, but the specific circuit mechanisms remain poorly understood. Here, we combined optogenetics with in vivo electrophysiology to identify and record from CeA CRF neurons in mice during a repeated binge ethanol drinking task. First, we found that CeA CRF neurons were more active than CeA non-CRF cells during our binge drinking paradigm. We also observed that CeA CRF neurons displayed a heterogeneous spectrum of responses to a lick of ethanol including, pre-lick activated, lick-excited, lick-inhibited, and no response. Interestingly, pre-lick activated CeA CRF neurons exhibited higher frequency and burst firing during binge drinking sessions. Moreover, their overall tonic and phasic electrical activity enhances over repeated binge drinking sessions. Remarkably, CeA CRF units and pre-lick activated CeA CRF neurons did not show higher firing rate or bursting activity during water and sucrose consumption, suggesting that ethanol may "hijack" or plastically alter their intrinsic excitability. This article is part of the special issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
45
|
al'Absi M, Ginty AT, Lovallo WR. Neurobiological mechanisms of early life adversity, blunted stress reactivity and risk for addiction. Neuropharmacology 2021; 188:108519. [PMID: 33711348 DOI: 10.1016/j.neuropharm.2021.108519] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/13/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Blunted stress reactivity resulting from early exposure to stress during childhood and adolescence may increase vulnerability to addiction. Early life adversity (ELA) affects brain structure and function and results in blunted stress axis reactivity. In this review, we focus on the underlying neurobiological mechanisms associated with a blunted response to stress, ELA, and risk for addictive disorders. ELA and blunted reactivity are accompanied by unstable mood regulation, impulsive behaviors, and reduced cognitive function. Neuroimaging studies reveal cortical and subcortical changes in persons exposed to ELA and those who have a genetic disposition for addiction. We propose a model in which blunted stress reactivity may be a marker of risk for addiction through an altered motivational and behavioral reactivity to stress that contribute to disinhibited behavioral reactivity and impulsivity leading in turn to increased vulnerability for substance use. Evidence supporting this hypothesis in the context of substance use initiation, maintenance, and risk for relapse is presented. The effects of ELA on persons at risk for addiction may lead to early experimentation with drugs of abuse. Early adoption of drug intake may alter neuroregulation in such vulnerable persons leading to a permanent dysregulation of motivational responses consistent with dependence. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, USA.
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - William R Lovallo
- University of Oklahoma Health Sciences Center and VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
Xu H, Li H, Liu D, Wen W, Xu M, Frank JA, Chen J, Zhu H, Grahame NJ, Luo J. Chronic Voluntary Alcohol Drinking Causes Anxiety-like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice. Front Pharmacol 2021; 12:614396. [PMID: 33767622 PMCID: PMC7985542 DOI: 10.3389/fphar.2021.614396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM), and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered the levels of several neurotransmitters and neurotrophic factors in the brain including gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol increased the expression of neuroinflammation markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress, and stimulated neurogenesis.
Collapse
Affiliation(s)
- Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
47
|
Morley KC, Perry CJ, Watt J, Hurzeler T, Leggio L, Lawrence AJ, Haber P. New approved and emerging pharmacological approaches to alcohol use disorder: a review of clinical studies. Expert Opin Pharmacother 2021; 22:1291-1303. [PMID: 33615945 DOI: 10.1080/14656566.2021.1892641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
introduction: The number of medications approved for AUD is small and they generally have limited efficacy. We need new pharmacotherapies for the management of AUD.Areas covered: In this review, the authors aim to synthesise literature for new approved and emerging pharmacotherapies for AUD. Recently approved medications include nalmefene, which was approved in Europe and Australia for the purposes of controlled drinking. Baclofen has also been approved in France but not in other countries. Off label medications including topiramate and gabapentin have received significant attention with multiple RCTs and meta-analyses and have widespread use in several countries including the USA. Several novel medications have emerged over the last decade but further work is required to determine their efficacy and safety for the widespread management of AUD.Expert opinion: Despite significant advances in our understanding of the neurobiological basis of factors that contribute to the development and maintenance of AUD, there have been few new AUD medications approved for almost 20 years. There are many challenges to the development and introduction of new pharmacotherapies for AUD. Strategies for improving the translational pipeline include drug repurposing and utilisation of human acute laboratory models.
Collapse
Affiliation(s)
- Kirsten C Morley
- Central Clinical School, Sydney School of Medicine, Faculty of Medicine & Health, University of Sydney, NSW, Australia.,Edith Collins Centre (Alcohol, Drugs and Toxicology), Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christina J Perry
- University of Melbourne, Mental Health Theme, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Joshua Watt
- Edith Collins Centre (Alcohol, Drugs and Toxicology), Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Tristan Hurzeler
- Central Clinical School, Sydney School of Medicine, Faculty of Medicine & Health, University of Sydney, NSW, Australia
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, USA.,Department of Neuroscience, Georgetown University Medical Center, Washington, USA.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, USA
| | - Andrew J Lawrence
- University of Melbourne, Mental Health Theme, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, USA
| | - Paul Haber
- Central Clinical School, Sydney School of Medicine, Faculty of Medicine & Health, University of Sydney, NSW, Australia.,Edith Collins Centre (Alcohol, Drugs and Toxicology), Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
48
|
Merkin AG, Akinfieva SS, Martyushev-Poklad AV, Beloskurskaya OP, Dinov EN, Ostrovsky SL, Komarov AN, Zakharova OY, Kazhin VA, Nikiforov IA, Glover M. Anxiety: phenomenology, epidemiology, and risk factors during the novel coronavirus SARS-CoV-2 (COVID-19) pandemic. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2021. [DOI: 10.14412/2074-2711-2021-1-107-112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The COVID-19 coronavirus pandemic in 2020 led to significant negative social consequences associated inter alia with adverse effects on mental health. One of the most common mental illness is anxiety disorders, the rise in which is characteristic of social upheaval periods. This paper analyzes the problem of anxiety, reviews information on the epidemiology of anxiety, on the factors and mechanisms of its development. It unveils the association of anxiety with addictive disorders, lifestyle factors, and traumatic childhood experience and highlights the problem of increased anxiety in the context of the novel coronavirus COVID-19 pandemics in Russia.
Collapse
Affiliation(s)
- A. G. Merkin
- Federal Research and Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Biomedical Agency of Russia; Centre for Precise Psychiatry and Neurosciences
| | - S. S. Akinfieva
- Doverie (Trust) National Center for Social Support and Rehabilitation Technologies
| | | | | | - E. N. Dinov
- Peoples' Friendship University of Russia (RUDN University)
| | | | - A. N. Komarov
- Doverie (Trust) National Center for Social Support and Rehabilitation Technologies
| | - O. Yu. Zakharova
- Russian Presidential Academy of National Economy and Public Administration
| | | | - I. A. Nikiforov
- Federal Research and Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Biomedical Agency of Russia
| | - M. Glover
- Centre of Research Excellence: Indigenous Sovereignty & Smoking
| |
Collapse
|
49
|
Dos Santos LC, Junqueira Ayres DD, de Sousa Pinto ÍA, Silveira MA, Albino MDC, Holanda VAD, Lima RH, André E, Padovan CM, Gavioli EC, de Paula Soares V. Early and late behavioral consequences of ethanol withdrawal: focus on brain indoleamine 2,3 dioxygenase activity. Alcohol 2021; 90:1-9. [PMID: 33031882 DOI: 10.1016/j.alcohol.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.
Collapse
Affiliation(s)
- Luana Carla Dos Santos
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Décio Dutra Junqueira Ayres
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ícaro Aleksei de Sousa Pinto
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marana Ali Silveira
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cássia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor Anastácio Duarte Holanda
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ramón Hypolito Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute for Neuroscience, Macaiba, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Cláudia Maria Padovan
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Elaine Cristina Gavioli
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
50
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats. Neuropsychopharmacology 2021; 46:509-518. [PMID: 33191400 PMCID: PMC8027820 DOI: 10.1038/s41386-020-00904-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST), a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6-38) into the BNST dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal ethanol intake in control, nondependent rats. Intra-BNST PACAP(6-38) also reversed ethanol withdrawal-induced anxiety-like behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
|