1
|
Hao X, Wang Y, Hou MJ, Liao L, Yang YX, Wang YH, Zhu BT. Raloxifene Prevents Chemically-Induced Ferroptotic Neuronal Death In Vitro and In Vivo. Mol Neurobiol 2025; 62:3934-3955. [PMID: 39354232 PMCID: PMC11790820 DOI: 10.1007/s12035-024-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Ferroptosis, a regulated form of cell death characterized by excessive iron-dependent lipid peroxidation, can be readily induced in cultured cells by chemicals such as erastin and RSL3. Protein disulfide isomerase (PDI) has been identified as an upstream mediator of chemically induced ferroptosis and also a target for ferroptosis protection. In this study, we discovered that raloxifene (RAL), a selective estrogen receptor modulator known for its neuroprotective actions in humans, can effectively inhibit PDI function and provide robust protection against chemically induced ferroptosis in cultured HT22 neuronal cells. Specifically, RAL can bind directly to PDI both in vitro and in intact neuronal cells and inhibit its catalytic activity. Computational modeling analysis reveals that RAL can tightly bind to PDI through forming a hydrogen bond with its His256 residue, and biochemical analysis further shows that when PDI's His256 is mutated to Ala256, RAL loses its inhibition of PDI's catalytic activity. This inhibition of PDI by RAL significantly reduces the dimerization of both the inducible and neuronal nitric oxide synthases and the accumulation of nitric oxide, both of which have recently been shown to play a crucial role in mediating chemically induced ferroptosis through subsequent induction of ROS and lipid-ROS accumulation. In vivo behavioral analysis shows that mice treated with RAL are strongly protected against kainic acid-induced memory deficits and hippocampal neuronal damage. In conclusion, this study demonstrates that RAL is a potent inhibitor of PDI and can effectively prevent chemically induced ferroptosis in hippocampal neurons both in vitro and in vivo. These findings offer a novel estrogen receptor-independent mechanism for RAL's neuroprotective actions in animal models and humans.
Collapse
Affiliation(s)
- Xiangyu Hao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Yifan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Lixi Liao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China
| | - Ying-Hua Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Road, Longgang District, Shenzhen, 518,172, China.
- Shenzhen Bay Laboratory, Shenzhen, 518,055, China.
| |
Collapse
|
2
|
Lin X, Zhou X, Liu X, Xia L, Cai J, Huang N, Luo Y, Wu W. Icaritin alleviates motor impairment and osteoporosis in Parkinson's disease mice via the ER-PI3K/Akt pathway. Sci Rep 2025; 15:3190. [PMID: 39863664 PMCID: PMC11762315 DOI: 10.1038/s41598-025-87429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests. Serum estradiol, FSH, LH levels were measured by ELISA, and the expression of PI3K/Akt signaling and apoptosis proteins was analyzed by Western blot. Bone mineral density was assessed via dual-energy X-ray absorption, and histology of the uterus and femur was performed. Results showed that ICT alleviated MPTP-induced motor deficits, increased serum estradiol, and improved uterine atrophy. At the molecular level, ICT activated the PI3K/Akt pathway, reduced apoptosis, and mitigated PD symptoms and osteoporosis induced by OVX. These findings suggest ICT may offer therapeutic potential in managing OVX-induced motor dysfunction and PD.
Collapse
Affiliation(s)
- Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Xinyu Zhou
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China
| | - Xingman Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China
| | - Jing Cai
- Department of Neurology, First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Nanqu Huang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China.
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi, Guizhou, China.
- Department of Geriatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China.
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi, Guizhou, China.
- Department of Geriatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Weidong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
3
|
Wang G, Zhuang W, Zhou Y, Wang X, Li Z, Liu C, Li W, He M, Lv E. 17β-estradiol alleviated ferroptotic neuroinflammation by suppressing ATF4 in mouse model of Parkinson's disease. Cell Death Discov 2024; 10:507. [PMID: 39702495 DOI: 10.1038/s41420-024-02273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Neuroinflammation induced by activation of microglial is a vital contributor to progression of Parkinson's disease (PD), emerging evidences suggested that ferroptosis played a pivotal role in microglial activation and subsequent dopaminergic neuron loss. Nevertheless, the fundamental pathogenesis of that ferroptosis contributes to PD is not yet sufficiently understood. Based on GEO dataset, ferroptosis related genes were found to be enriched in PD patients and MPTP mouse model of PD, among them, ATF4 was found to be dramatically differentially expressed. In our study, ectopic expression of ATF4 augmented MPP+-induced cytotoxic and activation of BV2 cells with upregulated intracellular L-ROS, TLR4 and pNF-κB. Ectopic ATF4 effectively promoted transformation of microglial into M1 pro-inflammatory phenotype. 17β-estradiol (E2) attenuated expression of ATF4 in BV2 cells, silence of ATF4 enhanced protective effect of E2 on MPP+-treated BV2 cells. In MPTP-induced PD mouse model, administration of E2 further abated expression of ATF4 and inhibited expressions of pro-inflammatory cytokines and activation of TLR4/NF-κB pathway. Overall, E2 effectively counteracted TLR4/NF-κB signaling pathway by restraining ATF4 and inhibited inflammatory response triggered by ferroptosis, ultimately exerted anti-PD effects.
Collapse
Affiliation(s)
- Guoming Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Wenxin Zhuang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yijun Zhou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xu Wang
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Chuanliang Liu
- Department of Geriatrics, Weifang People's Hospital, Weifang, China.
| | - Wentong Li
- Department of Pathology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Maotao He
- Department of Pathology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China.
| | - E Lv
- Department of Histoembryology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
4
|
Kim JH, Park S. Development and Impact of a Cognitive Reserve Enhancement Program for Climacteric Korean Women. J Nurs Res 2024; 32:e363. [PMID: 39593227 DOI: 10.1097/jnr.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND In light of the rising incidence of mild cognitive impairment in women, an appropriate cognitive reserve enhancement program is urgently needed for women experiencing climacteric symptoms. PURPOSE The purpose of this study was to develop a cognitive reserve enhancement program for climacteric women based on cognitive reserve theory (CRT) and to verify its effectiveness. METHODS A nonequivalence control group, pre- and post-quasi-experimental design was used. The 58 climacteric women with subjective memory deterioration enrolled as participants were divided into the experimental group (28 women), which received a 24-session CRT-based cognitive reserve enhance program, and the control group (30 women), the members of which received the cognitive training via a mobile application after completion of the study. Valid data from 24 experimental and 26 control participants were available for analysis. Objective cognitive functions, including overall cognitive, memory, attention, and language, were measured pretest and posttest using the following tools: Everyday Cognition Scale (subjective cognitive function), Center for Epidemiologic Studies Depression Scale (depression), and World Health Organization Quality of Life-Brief Version (quality of life). RESULTS The experimental group showed a statistically significant increase in overall cognitive function (t = 3.82, p = .001), memory (t = 2.63, p = .012), attention: number of correct answers (t = 2.12, p = .040), language high-frequency response speed (Z = -2.49, p = .013), and language low-frequency response speed (Z = -2.77, p = .006) in objective cognitive function after 8 weeks in comparison to the control group. CONCLUSIONS/IMPLICATIONS FOR PRACTICE The intervention program tested in this study to enhance cognitive reserve in climacteric women includes cognitive training, emotional and social support, and group physical activity components was found to be effective in enhancing cognitive function.
Collapse
Affiliation(s)
- Ji Hyun Kim
- PhD, RN, Professor, College of Nursing, Sahmyook University, Seoul, Republic of Korea
| | - Seungmi Park
- PhD, RN, Professor, Department of Nursing Science & Research Institute of Nursing Science, Chungbuk National University, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Crisci I, Bonzano S, Nicolas Z, Dallorto E, Peretto P, Krezel W, De Marchis S. Tamoxifen exerts direct and microglia-mediated effects preventing neuroinflammatory changes in the adult mouse hippocampal neurogenic niche. Glia 2024; 72:1273-1289. [PMID: 38515286 DOI: 10.1002/glia.24526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.
Collapse
Affiliation(s)
- Isabella Crisci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Zinter Nicolas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| |
Collapse
|
6
|
Karnik SJ, Margetts TJ, Wang HS, Movila A, Oblak AL, Fehrenbacher JC, Kacena MA, Plotkin LI. Mind the Gap: Unraveling the Intricate Dance Between Alzheimer's Disease and Related Dementias and Bone Health. Curr Osteoporos Rep 2024; 22:165-176. [PMID: 38285083 PMCID: PMC10912190 DOI: 10.1007/s11914-023-00847-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population. RECENT FINDINGS Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Rojas-Cruz AF, Martín-Jiménez CA, González J, González-Giraldo Y, Pinzón AM, Barreto GE, Aristizábal-Pachón AF. Palmitic Acid Upregulates Type I Interferon-Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes. Mol Neurobiol 2023; 60:4842-4854. [PMID: 37184765 PMCID: PMC10293381 DOI: 10.1007/s12035-023-03366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | | | - Janneth González
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Andrés Mauricio Pinzón
- Laboratorio de Bioinformática Y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, 110231, Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX, Limerick, Ireland
| | | |
Collapse
|
8
|
Upadhayay S, Gupta R, Singh S, Mundkar M, Singh G, Kumar P. Involvement of the G-Protein-Coupled Estrogen Receptor-1 (GPER) Signaling Pathway in Neurodegenerative Disorders: A Review. Cell Mol Neurobiol 2023; 43:1833-1847. [PMID: 36307605 PMCID: PMC11412173 DOI: 10.1007/s10571-022-01301-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
Abstract
The G-protein-coupled estrogen receptor-1 (GPER) is an extranuclear estrogen receptor that regulates the expression of several downstream signaling pathways with a variety of biological actions including cell migration, proliferation, and apoptosis in different parts of the brain area. It is endogenously activated by estrogen, a steroidal hormone that binds to GPER receptors which help in maintaining cellular homeostasis and neuronal integrity as well as influences neurogenesis. In contrast, neurodegenerative disorders are a big problem for society, and still many people suffer from motor and cognitive impairments. Research to date reported that GPER has the potential to whittle down motor abnormalities and cognitive dysfunction by limiting the progression of neurodegenerative disorders. Although several findings suggest that GPER activation accelerated transcription of the PI3K/Akt/Gsk-3β and ERK1/2 signaling pathway that halt disease progression by decreasing oxidative stress, neuroinflammation, and apoptosis. Accordingly, the goal of this review is to highlight the basic mechanism of GPER signaling pathway-mediated neuroprotection in various neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), Tardive dyskinesia (TD), and Epilepsy. This review also discusses the role of the GPER activators which might be a promising therapeutic target option to treat neurodegenerative disorders. All the data were obtained from published articles in PubMed (353), Web of Science (788), and Scopus (770) databases using the search terms: GPER, PD, HD, TD, epilepsy, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda Campus, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishav Gupta
- Department of Pharmacology, Central University of Punjab, Ghudda Campus, Ghudda, Bathinda, Punjab, 151401, India
| | - Surbhi Singh
- Department of Pharmacology, Central University of Punjab, Ghudda Campus, Ghudda, Bathinda, Punjab, 151401, India
| | - Maroti Mundkar
- Department of Pharmacology, Central University of Punjab, Ghudda Campus, Ghudda, Bathinda, Punjab, 151401, India
| | - Gursewak Singh
- Department of Pharmacology, Central University of Punjab, Ghudda Campus, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda Campus, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
9
|
Ariyani W, Amano I, Koibuchi N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int J Mol Sci 2023; 24:ijms24109011. [PMID: 37240356 DOI: 10.3390/ijms24109011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
10
|
Hülskötter K, Lühder F, Leitzen E, Flügel A, Baumgärtner W. CD28-signaling can be partially compensated in CD28-knockout mice but is essential for virus elimination in a murine model of multiple sclerosis. Front Immunol 2023; 14:1105432. [PMID: 37090733 PMCID: PMC10113529 DOI: 10.3389/fimmu.2023.1105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The intracerebral infection of mice with Theiler’s murine encephalomyelitis virus (TMEV) represents a well-established animal model for multiple sclerosis (MS). Because CD28 is the main co-stimulatory molecule for the activation of T cells, we wanted to investigate its impact on the course of the virus infection as well as on a potential development of autoimmunity as seen in susceptible mouse strains for TMEV. In the present study, 5 weeks old mice on a C57BL/6 background with conventional or tamoxifen-induced, conditional CD28-knockout were infected intracerebrally with TMEV-BeAn. In the acute phase at 14 days post TMEV-infection (dpi), both CD28-knockout strains showed virus spread within the central nervous system (CNS) as an uncommon finding in C57BL/6 mice, accompanied by histopathological changes such as reduced microglial activation. In addition, the conditional, tamoxifen-induced CD28-knockout was associated with acute clinical deterioration and weight loss, which limited the observation period for this mouse strain to 14 dpi. In the chronic phase (42 and 147 dpi) of TMEV-infection, surprisingly only 33% of conventional CD28-knockout mice showed chronic TMEV-infection with loss of motor function concomitant with increased spinal cord inflammation, characterized by T- and B cell infiltration, microglial activation and astrogliosis at 33-42 dpi. Therefore, the clinical outcome largely depends on the time point of the CD28-knockout during development of the immune system. Whereas a fatal clinical outcome can already be observed in the early phase during TMEV-infection for conditional, tamoxifen-induced CD28-knockout mice, only one third of conventional CD28-knockout mice develop clinical symptoms later, accompanied by ongoing inflammation and an inability to clear the virus. However, the development of autoimmunity could not be observed in this C57BL/6 TMEV model irrespective of the time point of CD28 deletion.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research (IMSF), University Medical Center Goettingen, Goettingen, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research (IMSF), University Medical Center Goettingen, Goettingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Wolfgang Baumgärtner,
| |
Collapse
|
11
|
Henry JD, Grainger SA, von Hippel W. Determinants of Social Cognitive Aging: Predicting Resilience and Risk. Annu Rev Psychol 2023; 74:167-192. [PMID: 35973407 DOI: 10.1146/annurev-psych-033020-121832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review focuses on conceptual and empirical research on determinants of social cognitive aging. We present an integrated model [the social cognitive resource (SCoRe) framework] to organize the literature and describe how social cognitive resilience is determined jointly by capacity and motivational resources. We discuss how neurobiological aging, driven by genetic and environmental influences, is associated with broader sensory, neural, and physiological changes that are direct determinants of capacity as well as indirect determinants of motivation via their influence on expectation of loss versus reward and cognitive effort valuation. Research is reviewed that shows how contextual factors, such as relationship status, familiarity, and practice, are fundamental to understanding the availability of both types of resource. We conclude with a discussion of the implications of social cognitive change in late adulthood for everyday social functioning and with recommendations for future research.
Collapse
Affiliation(s)
- Julie D Henry
- School of Psychology, The University of Queensland, St Lucia, Australia; , ,
| | - Sarah A Grainger
- School of Psychology, The University of Queensland, St Lucia, Australia; , ,
| | - William von Hippel
- School of Psychology, The University of Queensland, St Lucia, Australia; , ,
| |
Collapse
|
12
|
Zhang C, Zhou L, Wu XC, Guan TY, Zou XM, Chen C, Yuan MY, Li YH, Wang S, Tao FB, Hao JH, Su PY. Association of serum bisphenol AF concentration with depressive symptoms in adolescents: A nested case-control study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113734. [PMID: 35679728 DOI: 10.1016/j.ecoenv.2022.113734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As an important alternative to bisphenol A (BPA), bisphenol AF (BPAF) is widely used and can be detected in multiple human biological samples. However, there are few studies on neurotoxicity of BPAF at present. In particular, no epidemiological studies have investigated BPAF in relation to depressive symptoms in adolescents. Here, our study aimed to evaluate the associations between serum BPAF concentrations and depressive symptoms in adolescents. METHODS A nested case-control study within an ongoing longitudinal prospective adolescent cohort that was established in Huaibei, China was conducted. A total of 175 participants who had new-onset depressive symptoms (cases) and 175 participants without depressive symptoms (controls) were included. Serum BPAF concentrations was measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. The associations between BPAF exposure and the risk of depressive symptoms in adolescents were assessed using conditional logistic regression. The dose-response relationship between BPAF level and depressive symptoms was estimated using restricted cubic spline analyses. RESULTS In this study, the detection rate of serum BPAF was 100%, and the median (interquartile range, IQR) serum BPAF concentration was 5.24 (4.41-6.11) pg/mL in the case group and 4.86 (4.02-5.77) pg/mL in the control group (P = 0.009). Serum BPAF exposure was a risk factor for depressive symptoms (odds ratio (OR)= 1.132, 95% confidence interval (CI):1.013-1.264). After adjustment for all for confounders, compared with the low-exposure group, the high-exposure group had a 2.806-fold increased risk of depressive symptoms (OR=2.806, 95% CI: 1.188-6.626). Stratified analysis by sex revealed that males were more vulnerable to BPAF exposure than females. After adjustment for all confounders, compared with the low-exposure group, the relative risk of depressive symptoms in the high-exposure group was 3.858 (95% CI: 1.118-12.535) for males, however, no significant association between BPAF exposure and depressive symptoms was found in females. In addition, there was a marked linear association between BPAF exposure and the risk of depressive symptoms in the total population and in males. CONCLUSIONS The adolescents in this study were widely exposed to low levels of BPAF. A significant positive association was found between serum BPAF levels and the risk of depressive symptoms. The association was significantly modified by sex, and males were more vulnerable to BPAF exposure than females.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian-Yue Guan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuan-Min Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chen Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Meng-Yuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yong-Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
13
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
14
|
Vini R, Azeez JM, Remadevi V, Susmi TR, Ayswarya RS, Sujatha AS, Muraleedharan P, Lathika LM, Sreeharshan S. Urolithins: The Colon Microbiota Metabolites as Endocrine Modulators: Prospects and Perspectives. Front Nutr 2022; 8:800990. [PMID: 35187021 PMCID: PMC8849129 DOI: 10.3389/fnut.2021.800990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) have been used in hormone related disorders, and their role in clinical medicine is evolving. Tamoxifen and raloxifen are the most commonly used synthetic SERMs, and their long-term use are known to create side effects. Hence, efforts have been directed to identify molecules which could retain the beneficial effects of estrogen, at the same time produce minimal side effects. Urolithins, the products of colon microbiota from ellagitannin rich foodstuff, have immense health benefits and have been demonstrated to bind to estrogen receptors. This class of compounds holds promise as therapeutic and nutritional supplement in cardiovascular disorders, osteoporosis, muscle health, neurological disorders, and cancers of breast, endometrium, and prostate, or, in essence, most of the hormone/endocrine-dependent diseases. One of our findings from the past decade of research on SERMs and estrogen modulators, showed that pomegranate, one of the indirect but major sources of urolithins, can act as SERM. The prospect of urolithins to act as agonist, antagonist, or SERM will depend on its structure; the estrogen receptor conformational change, availability and abundance of co-activators/co-repressors in the target tissues, and also the presence of other estrogen receptor ligands. Given that, urolithins need to be carefully studied for its SERM activity considering the pleotropic action of estrogen receptors and its numerous roles in physiological systems. In this review, we unveil the possibility of urolithins as a potent SERM, which we are currently investigating, in the hormone dependent tissues.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Juberiya M. Azeez
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Viji Remadevi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T. R. Susmi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R. S. Ayswarya
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Lakshmi Mohan Lathika
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreeja Sreeharshan
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: Sreeja Sreeharshan
| |
Collapse
|
15
|
Ariyani W, Miyazaki W, Amano I, Koibuchi N. Involvement of integrin αvβ3 in thyroid hormone-induced dendritogenesis. Front Endocrinol (Lausanne) 2022; 13:938596. [PMID: 36072926 PMCID: PMC9441609 DOI: 10.3389/fendo.2022.938596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Activation and/or modulation of the membrane-associated receptors plays a critical role in brain development. Thyroid hormone (TH) acts on both nuclear receptors (thyroid hormone receptor, TR) and membrane-associated receptors, particularly integrin αvβ3 in neurons and glia. Integrin αvβ3-mediated signal transduction mediates various cellular events during development including morphogenesis, migration, synaptogenesis, and intracellular metabolism. However, the involvement of integrin αvβ3-mediated TH action during brain development remains poorly understood. Thus, we examined the integrin αvβ3-mediated effects of TH (T3, T4, and rT3) in the neurons and astrocytes using primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture of neurons and astrocytes. We found that TH augments dendrite arborization of cerebellar Purkinje cells. This augmentation was suppressed by knockdown of integrin αvβ3, as well as TRα and TRβ. A selective integrin αvβ3 antagonist, LM609, was also found to suppress TH-induced arborization. However, whether this effect was a direct action of TH on Purkinje cells or due to indirect actions of other cells subset such as astrocytes was not clarified. To further study neuron-specific molecular mechanisms, we used Neuro-2A clonal cells and found TH also induces neurite growth. TH-induced neurite growth was reduced by co-exposure with LM609 or knockdown of TRα, but not TRβ. Moreover, co-culture of Neuro-2A and astrocytes also increased TH-induced neurite growth, indicating astrocytes may be involved in neuritogenesis. TH increased the localization of synapsin-1 and F-actin in filopodia tips. TH exposure also increased phosphorylation of FAK, Akt, and ERK1/2. Phosphorylation was suppressed by co-exposure with LM609 and TRα knockdown. These results indicate that TRs and integrin αvβ3 play essential roles in TH-induced dendritogenesis and neuritogenesis. Furthermore, astrocytes-neuron communication via TR-dependent and TR-independent signaling through membrane receptors and F-actin are required for TH-induced neuritogenesis.
Collapse
Affiliation(s)
- Winda Ariyani
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- *Correspondence: Winda Ariyani, ; Noriyuki Koibuchi,
| | - Wataru Miyazaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, Hirosaki, Aomori, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- *Correspondence: Winda Ariyani, ; Noriyuki Koibuchi,
| |
Collapse
|
16
|
Hülskötter K, Jin W, Allnoch L, Hansmann F, Schmidtke D, Rohn K, Flügel A, Lühder F, Baumgärtner W, Herder V. Double-edged effects of tamoxifen-in-oil-gavage on an infectious murine model for multiple sclerosis. Brain Pathol 2021; 31:e12994. [PMID: 34137105 PMCID: PMC8549030 DOI: 10.1111/bpa.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen gavage is a commonly used method to induce genetic modifications in cre-loxP systems. As a selective estrogen receptor modulator (SERM), the compound is known to have immunomodulatory and neuroprotective properties in non-infectious central nervous system (CNS) disorders. It can even cause complete prevention of lesion development as seen in experimental autoimmune encephalitis (EAE). The effect on infectious brain disorders is scarcely investigated. In this study, susceptible SJL mice were infected intracerebrally with Theiler's murine encephalomyelitis virus (TMEV) and treated three times with a tamoxifen-in-oil-gavage (TOG), resembling an application scheme for genetically modified mice, starting at 0, 18, or 38 days post infection (dpi). All mice developed 'TMEV-induced demyelinating disease' (TMEV-IDD) resulting in inflammation, axonal loss, and demyelination of the spinal cord. TOG had a positive effect on the numbers of oligodendrocytes and oligodendrocyte progenitor cells, irrespective of the time point of application, whereas late application (starting 38 dpi) was associated with increased demyelination of the spinal cord white matter 85 dpi. Furthermore, TOG had differential effects on the CD4+ and CD8+ T cell infiltration into the CNS, especially a long lasting increase of CD8+ cells was detected in the inflamed spinal cord, depending of the time point of TOG application. Number of TMEV-positive cells, astrogliosis, astrocyte phenotype, apoptosis, clinical score, and motor function were not measurably affected. These data indicate that tamoxifen gavage has a double-edged effect on TMEV-IDD with the promotion of oligodendrocyte differentiation and proliferation, but also increased demyelination, depending on the time point of application. The data of this study suggest that tamoxifen has also partially protective functions in infectious CNS disease. These effects should be considered in experimental studies using the cre-loxP system, especially in models investigating neuropathologies.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Wen Jin
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Lisa Allnoch
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Florian Hansmann
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
- Institute of Veterinary PathologyLeipzig UniversityLeipzigGermany
| | - Daniel Schmidtke
- Center for Systems NeuroscienceHannoverGermany
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Karl Rohn
- Institute of Biometry, Epidemiology, and Information ProcessingUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Alexander Flügel
- Center for Systems NeuroscienceHannoverGermany
- Institute for Neuroimmunology and Multiple Sclerosis ResearchUniversity Medical Center GöttingenGöttingenGermany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis ResearchUniversity Medical Center GöttingenGöttingenGermany
| | - Wolfgang Baumgärtner
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Vanessa Herder
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| |
Collapse
|
17
|
Zhang C, Wu XC, Li S, Dou LJ, Zhou L, Wang FH, Ma K, Huang D, Pan Y, Gu JJ, Cao JY, Wang H, Hao JH. Perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147918. [PMID: 34134381 DOI: 10.1016/j.scitotenv.2021.147918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol AF (BPAF), a kind of the ideal substitutes of Bisphenol A (BPA), has frequently been detected in environmental media and biological samples. Numerous studies have focused on the reproductive toxicity, cardiotoxicity and endocrine disrupting toxicity of BPAF. However, little evidence is available on neurodevelopmental toxicity of BPAF. Here, our study is to evaluate the effect of perinatal BPAF exposure (0, 0.34, 3.4 and 34 mg/kg body weight/day, correspond to Ctrl, low-, medium- and high-dose groups) on the cognitive function of adult mouse offspring. This study firstly found that perinatal BPAF exposure caused cognitive impairments of mouse offspring, in which male offspring was more sensitive than female offspring in low- and medium-dose BPAF groups. Furthermore, the dendritic arborization and complexity of hippocampal CA1 and DG neurons in male offspring were impaired in all BPAF groups, and these effects were only found in high-dose BPAF group for female offspring. The damage of BPAF to dendritic spines, and the structural basis of learning and memory, was found in male offspring but not in females. Correspondingly, perinatal BPAF exposure significantly downregulated the expressions of hippocampal PSD-95 and Synapsin-1 proteins, and male offspring was more vulnerable than female offspring. Meanwhile, we explored the alteration of hippocampal estrogen receptors (ERs) to explain the sex specific impairment of cognitive function in low- and medium-dose BPAF groups. The results showed that perinatal BPAF exposure significantly decreased the expression of ERα in male offspring in a dose-dependent manner, but not in female offspring. In addition, we found that perinatal BPAF exposure can disordered the balance of oxidation and antioxidation in hippocampus of male offspring. In summary, perinatal low-dose bisphenol AF exposure impairs synaptic plasticity and cognitive function of adult offspring in a sex-dependent manner. The present results provide a pierce of potential mechanism of BPAF-caused neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sha Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lian-Jie Dou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Feng-Hui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kai Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Pan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Jun Gu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ji-Yu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
18
|
Conde DM, Verdade RC, Valadares ALR, Mella LFB, Pedro AO, Costa-Paiva L. Menopause and cognitive impairment: A narrative review of current knowledge. World J Psychiatry 2021; 11:412-428. [PMID: 34513605 PMCID: PMC8394691 DOI: 10.5498/wjp.v11.i8.412] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
A severe impairment of cognitive function characterizes dementia. Mild cognitive impairment represents a transition between normal cognition and dementia. The frequency of cognitive changes is higher in women than in men. Based on this fact, hormonal factors likely contribute to cognitive decline. In this sense, cognitive complaints are more common near menopause, a phase marked by a decrease in hormone levels, especially estrogen. Additionally, a tendency toward worsened cognitive performance has been reported in women during menopause. Vasomotor symptoms (hot flashes, sweating, and dizziness), vaginal dryness, irritability and forgetfulness are common and associated with a progressive decrease in ovarian function and a subsequent reduction in the serum estrogen concentration. Hormone therapy (HT), based on estrogen with or without progestogen, is the treatment of choice to relieve menopausal symptoms. The studies conducted to date have reported conflicting results regarding the effects of HT on cognition. This article reviews the main aspects of menopause and cognition, including the neuroprotective role of estrogen and the relationship between menopausal symptoms and cognitive function. We present and discuss the findings of the central observational and interventional studies on HT and cognition.
Collapse
Affiliation(s)
- Délio Marques Conde
- Department of Gynecology and Obstetrics, Federal University of Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Roberto Carmignani Verdade
- Department of Obstetrics and Gynecology, School of Medical Sciences, State University of Campinas, Campinas 13083-881, São Paulo, Brazil
| | - Ana L R Valadares
- Department of Obstetrics and Gynecology, School of Medical Sciences, State University of Campinas, Campinas 13083-881, São Paulo, Brazil
| | - Lucas F B Mella
- Department of Medical Psychology and Psychiatry-Geriatric Psychiatry and Neuropsychiatric Division, State University of Campinas, Campinas 13083-887, São Paulo, Brazil
| | - Adriana Orcesi Pedro
- Department of Obstetrics and Gynecology, School of Medical Sciences, State University of Campinas, Campinas 13083-881, São Paulo, Brazil
| | - Lucia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, State University of Campinas, Campinas 13083-881, São Paulo, Brazil
| |
Collapse
|
19
|
Hülskötter K, Lühder F, Flügel A, Herder V, Baumgärtner W. Tamoxifen Application Is Associated with Transiently Increased Loss of Hippocampal Neurons following Virus Infection. Int J Mol Sci 2021; 22:8486. [PMID: 34445189 PMCID: PMC8395206 DOI: 10.3390/ijms22168486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022] Open
Abstract
Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (K.H.); (V.H.)
- Center for Systems Neuroscience, 30559 Hannover, Germany;
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Alexander Flügel
- Center for Systems Neuroscience, 30559 Hannover, Germany;
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (K.H.); (V.H.)
- Center for Systems Neuroscience, 30559 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (K.H.); (V.H.)
- Center for Systems Neuroscience, 30559 Hannover, Germany;
| |
Collapse
|
20
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
21
|
Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol 2021; 62:100926. [PMID: 34089761 PMCID: PMC8523217 DOI: 10.1016/j.yfrne.2021.100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
The sex steroid hormones (SSHs) play several roles in regulation of various processes in the cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal development of various brain structures, including regions associated with important physiological, behavioral, cognitive, and emotional functions. This action can be mediated by either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action are relatively well examined, the physiological importance of non-classical mechanism of SSHs action through membrane-associated and transmembrane receptors in the brain remains unclear. The most recent summary describing the role of SSHs in different body systems is lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue level and to describe the effects on various body systems and behavior. Particular emphasis will be on brain regions including the hippocampus, hypothalamus, frontal cortex and cerebellum.
Collapse
Affiliation(s)
- Miriam Pillerová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
22
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
23
|
Activation of microglial G‑protein-coupled receptor 30 protects neurons against excitotoxicity through NF-κB/MAPK pathways. Brain Res Bull 2021; 172:22-30. [PMID: 33848615 DOI: 10.1016/j.brainresbull.2021.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
Neuroexcitotoxicity is a common feature in neuronal damage and neurodegenerative diseases. Our previous studies have confirmed that neuronal and astrocytic G‑protein-coupled receptor 30 (GPR30) play a key role in neuroprotection in vivo and in vitro. Microglia are considered as immune cells in the central nervous system. However, the role of microglial GPR30 in neuroprotection against neuroexcitotoxicity remained unclear. In this study, MTT, Western blot, immunocytochemical staining, phagocytosis assay and wound healing assay were employed to detect the effect of GPR30 in N9 microglial cells after exposure to glutamate. We found that the treatment of GPR30 specific agonist G1 inhibited glutamate-induced proliferation and activation in N9 microglial cells. G1 inhibited M1 polarization, facilitated M2 polarization, and decreased over-phagocytosis but had no effect on migration ability in microglia. The result of neurons and microglia co-culture showed that the activation of microglial GPR30 protected neurons from excitotoxicity through the NF-κB/MAPK signaling pathways. Our findings suggested a key role of microglial GPR30 in excitatory neuronal damage and neurodegenerative diseases.
Collapse
|
24
|
Mahboobifard F, Dargahi L, Jorjani M, Ramezani Tehrani F, Pourgholami MH. The role of ERα36 in cell type-specific functions of estrogen and cancer development. Pharmacol Res 2021; 163:105307. [PMID: 33246174 DOI: 10.1016/j.phrs.2020.105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
|
25
|
Acosta-Martínez M. Shaping Microglial Phenotypes Through Estrogen Receptors: Relevance to Sex-Specific Neuroinflammatory Responses to Brain Injury and Disease. J Pharmacol Exp Ther 2020; 375:223-236. [PMID: 32513838 DOI: 10.1124/jpet.119.264598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/05/2020] [Indexed: 03/08/2025] Open
Abstract
In mammals, 17β-estradiol (E2), the primary endogenous estrogen, maintains normal central nervous system (CNS) function throughout life and influences brain responses to injury and disease. Estradiol-induced cellular changes are mediated through the activation of nuclear and extranuclear estrogen receptors (ERs), which include ERα, ERβ, and the G-protein coupled receptor, GPER1. ERs are widely expressed throughout the brain, acting as transcriptional effectors or rapidly initiating membrane and cytoplasmic signaling cascades in practically all brain cells including microglia, the resident immune cells of the CNS. Activation of ERs by E2 exerts potent anti-inflammatory effects through mechanisms involving the modification of microglial cell responses to acute or chronic brain injury. Recent studies suggest that microglial maturation is influenced by the internal gonadal hormone milieu and that their functions in the normal and diseased brain are sex specific. However, the role that each ER subtype plays in microglial development or in determining microglial function as the primary cellular defense mechanism against pathogens and injury remains unclear. This is partly due to the fact that most studies investigating the mechanisms by which E2-ER signaling modifies microglial cellular phenotypes have been restricted to one sex or age. This review examines the different in vivo and in vitro models used to study the direct and indirect regulation of microglial cell function by E2 through ERs. Ischemic stroke will be used as an example of a neurologic disease in which activation of ERs shapes microglial phenotypes in response to injury in a sex- and age-specific fashion. SIGNIFICANCE STATEMENT: As the primary immune sensors of central nervous system damage, microglia are important potential therapeutic targets. Estrogen receptor signaling modulates microglial responses to brain injury and disease in a sex- and age-specific fashion. Hence, investigating the molecular mechanisms by which estrogen receptors regulate and shape microglial functions throughout life may result in novel and effective therapeutic opportunities that are tailored for each sex and age.
Collapse
|
26
|
Kirshner ZZ, Yao JK, Li J, Long T, Nelson D, Gibbs RB. Impact of estrogen receptor agonists and model of menopause on enzymes involved in brain metabolism, acetyl-CoA production and cholinergic function. Life Sci 2020; 256:117975. [PMID: 32565251 PMCID: PMC7448522 DOI: 10.1016/j.lfs.2020.117975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022]
Abstract
Our goal is to understand how loss of circulating estrogens and estrogen replacement affect brain physiology and function, particularly in brain regions involved in cognitive processes. We recently conducted a large metabolomics study characterizing the effects of rodent models of menopause and treatment with estrogen receptor (ER) agonists on neurochemical targets in hippocampus, frontal cortex, and striatum. Here we characterize effects on levels of several key enzymes involved in glucose utilization and energy production, specifically phosphofructokinase, glyceraldehyde 3-phosphate dehydrogenase, and pyruvate dehydrogenase. We also evaluated effects on levels of β-actin and α-tubulin, choline acetyltransferase (ChAT) activity, and levels of ATP citrate lyase. All experiments were conducted in young adult rats. Experiment 1 compared the effects of ovariectomy (OVX), a model of surgical menopause, and 4-vinylcyclohexene diepoxide (VCD)-treatments, a model of transitional menopause, with tissues collected at proestrus and at diestrus. Experiment 2 used a separate cohort of rats to evaluate the same targets in OVX and VCD-treated rats treated with estradiol or with selective ER agonists. Differences in the expression of metabolic enzymes between cycling animals and models of surgical and transitional menopause were detected. These differences were model-, region- and time- dependent, and were modulated by selective ER agonists. Collectively, the findings demonstrate that loss of ovarian function and ER agonist treatments have differing effects in OVX vs. VCD-treated rats. Differences may help to explain differences in the effects of estrogen treatments on brain function and cognition in women who have experienced surgical vs. transitional menopause.
Collapse
Affiliation(s)
- Z Z Kirshner
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Jeffrey K Yao
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Junyi Li
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Tao Long
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - Doug Nelson
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | - R B Gibbs
- University of Pittsburgh, Department of Pharmaceutical Sciences, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
28
|
Jaggar M, Rea K, Spichak S, Dinan TG, Cryan JF. You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol 2020; 56:100815. [PMID: 31805290 DOI: 10.1016/j.yfrne.2019.100815] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.
Collapse
Affiliation(s)
- Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Neurosteroids and neuropathic pain management: Basic evidence and therapeutic perspectives. Front Neuroendocrinol 2019; 55:100795. [PMID: 31562849 DOI: 10.1016/j.yfrne.2019.100795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
Complex mechanisms involved in neuropathic pain that represents a major health concern make its management complicated. Because neurosteroids are bioactive steroids endogenously synthesized in the nervous system, including in pain pathways, they appear relevant to develop effective treatments against neuropathic pain. Neurosteroids act in paracrine or autocrine manner through genomic mechanisms and/or via membrane receptors of neurotransmitters that pivotally modulate pain sensation. Basic studies which uncovered a direct link between neuropathic pain symptoms and endogenous neurosteroid production/regulation, paved the way for the investigations of neurosteroid therapeutic potential against pathological pain. Concordantly, antinociceptive properties of synthetic neurosteroids were evidenced in humans and animals. Neurosteroids promote peripheral analgesia mediated by T-type calcium and gamma-aminobutyric acid type A channels, counteract chemotherapy-induced neuropathic pain and ameliorate neuropathic symptoms of injured spinal cord animals by stimulating anti-inflammatory, remyelinating and neuroprotective processes. Together, these data open interesting perspectives for neurosteroid-based strategies to manage/alleviate efficiently neuropathic pain.
Collapse
|
30
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
31
|
Abstract
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Geriatric Research, Education, and Clinical Center (GRECC), Tennessee VA Health Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
32
|
Tominna R, Chokr S, Feri M, Chuon T, Sinchak K. Plasma membrane G protein-coupled estrogen receptor 1 (GPER) mediates rapid estradiol facilitation of sexual receptivity through the orphanin-FQ-ORL-1 system in estradiol primed female rats. Horm Behav 2019; 112:89-99. [PMID: 30981690 DOI: 10.1016/j.yhbeh.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022]
Abstract
In estradiol-primed nonreceptive ovariectomized rats, activation of G protein-coupled estrogen receptor 1 (GPER) in the arcuate nucleus of the hypothalamus (ARH) rapidly facilitates sexual receptivity (lordosis). Estradiol priming activates ARH β-endorphin (β-END) neurons that then activate medial preoptic (MPN) μ-opioid receptors (MOP) to inhibit lordosis. ARH infusion of non-esterified 17β-estradiol (E2) 47.5 h after 17β-estradiol benzoate (2 μg EB) priming deactivates MPN MOP and rapidly facilitates lordosis within 30 min via activation of GPER. Since it was unclear where GPERs were located in the neuron, we tested the hypothesis that GPER signaling is initiated at the plasma membrane. Membrane impermeable estradiol (17β-estradiol conjugated to biotin; E-Biotin) infused into the ARH of EB primed rats facilitated lordosis within 30 min, and MPN MOP was deactivated. These actions were blocked by pretreating with GPER antagonist, G-15. Further, we used cell fractionation and western blot techniques to demonstrate that GPER is expressed both in plasma membrane and cytosolic ARH fractions. In previous studies, the orphanin FQ/nociceptin-opioid receptor-like receptor-1 (OFQ/N-ORL-1) system mediated estradiol-only facilitation of lordosis. Therefore, we tested whether the OFQ/N-ORL-1 system mediates E-Biotin-GPER facilitation of lordosis. Pretreatment of UFP-101, an ORL-1 selective antagonist, blocked the facilitation of lordosis and deactivation of MPN MOP by ARH infusion of E-Biotin. Double-label immunohistochemistry revealed that GPER is expressed within approximately 70% of OFQ/N neurons. These data indicate that membrane GPER mediates the E2/E-Biotin facilitation of lordosis by inducing OFQ/N neurotransmission, which inhibits β-END neurotransmission to reduce MPN MOP activation.
Collapse
Affiliation(s)
- Reema Tominna
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States of America
| | - Sima Chokr
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States of America
| | - Micah Feri
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States of America
| | - Timbora Chuon
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States of America
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States of America.
| |
Collapse
|
33
|
Klambatsen A, Nygard SK, Chang AJ, Quinones V, Jenab S. Sex differences in memory and intracellular signaling after methamphetamine binge treatment. Brain Res 2019; 1711:16-22. [PMID: 30629943 DOI: 10.1016/j.brainres.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 01/21/2023]
Abstract
Methamphetamine is a neurotoxic psychostimulant known to cause cell death and terminal degradation of dopaminergic neurons in the striatum concomitant with memory deficits. However, most of the research studies have not examined the influence of sex on these changes. In this study we compared the effects of a binge regimen of methamphetamine (four injections of 4 mg/kg) on male, female, and ovariectomized (OVX) female Sprague-Dawley rats. We show that male and OVX female animals had a deficit in a novel object recognition task, while intact females did not show this deficit. Neurochemical analysis of the same animals indicated higher levels of FosB protein in caudate-putamen (CPu) and nucleus accumbens (NAc) of the male animals than intact or OVX females. Methamphetamine also increased Bcl-2 protein levels in CPu of all the cohorts. We did not find a significant effect of methamphetamine on the dopamine neuron markers tyrosine hydroxylase (TH) or dopamine transporter (DAT) 7 days after methamphetamine administrations. Our behavioral and neurochemical studies indicate that methamphetamine differentially affects male and female animals and shows sex differences in memory and molecular mechanisms in the striatum of these animals.
Collapse
Affiliation(s)
- Anthony Klambatsen
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Subprogram, Graduate School and University Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - Stephanie K Nygard
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Subprogram, Graduate School and University Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Anna J Chang
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA.
| | - Vanya Quinones
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Subprogram, Graduate School and University Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - Shirzad Jenab
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Subprogram, Graduate School and University Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|